2,496
Views
58
CrossRef citations to date
0
Altmetric
Original Articles

Critical review of ARGs reduction behavior in various sludge and sewage treatment processes in wastewater treatment plants

, , ORCID Icon, , , & show all
Pages 1623-1674 | Published online: 01 Mar 2019

References

  • Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Thomaidis, N. S., & Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. Journal of Hazardous Materials, 323(Pt A), 274–298. doi: 10.1016/j.jhazmat.2016.04.045
  • Alexander, J., Knopp, G., Dötsch, A., Wieland, A., & Schwartz, T. (2016). Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts. Science of the Total Environment, 559, 103–112. doi: 10.1016/j.scitotenv.2016.03.154
  • Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: Antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8(4), 251–259. doi: 10.1038/nrmicro2312
  • Alrousan, D. M., Dunlop, P. S., Mcmurray, T. A., & Byrne, J. A. (2009). Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films. Water Research, 43(1), 47–54. doi: 10.1016/j.watres.2008.10.015
  • Auerbach, E. A., Seyfried, E. E., & Mcmahon, K. D. (2007). Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Research, 41(5), 1143–1151. doi: 10.1016/j.watres.2006.11.045
  • Aydin, S., Ince, B., & Ince, O. (2016). Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes. Bioresource Technology, 207, 332–338. doi: 10.1016/j.biortech.2016.01.080
  • Baquero, F., Martínez, J. L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19(3), 260–265. doi: 10.1016/j.copbio.2008.05.006
  • Baran, W., Adamek, E., Ziemiańska, J., & Sobczak, A. (2011). Effects of the presence of sulfonamides in the environment and their influence on human health. Journal of Hazardous Materials, 196, 1–15. doi: 10.1016/j.jhazmat.2011.08.082
  • Barancheshme, F., & Munir, M. (2017). Strategies to combat antibiotic resistance in the wastewater treatment plants. Front Microbiology, 8, 2603.
  • Batt, A. L., Kim, S., & Aga, D. S. (2007). Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere, 68(3), 428–435. doi: 10.1016/j.chemosphere.2007.01.008
  • Beaber, J. W., Hochhut, B., & Waldor, M. K. (2004). SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature, 427(6969), 72–74. doi: 10.1038/nature02241
  • Ben, W., Qiang, Z., Adams, C., Zhang, H., & Chen, L. (2008). Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography-mass spectrometry. Journal of Chromatography A, 1202(2), 173–180. doi: 10.1016/j.chroma.2008.07.014
  • Bosshard, F., Bucheli, M., Meur, Y., & Egli, T. (2010). The respiratory chain is the cell's Achilles' heel during UVA inactivation in Escherichia coli. Microbiology (Reading, England)), 156(Pt 7), 2006–2015. doi: 10.1099/mic.0.038471-0
  • Bouki, C., Venieri, D., & Diamadopoulos, E. (2013). Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicology and Environmental Safety, 91(4), 1–9. doi: 10.1016/j.ecoenv.2013.01.016
  • Breazeal, M. V., Novak, J. T., Vikesland, P. J., & Pruden, A. (2013). Effect of wastewater colloids on membrane removal of antibiotic resistance genes. Water Research, 47(1), 130–140. doi: 10.1016/j.watres.2012.09.044
  • Burch, T. R., Sadowsky, M. J., & LaPara, T. M. (2013a). Aerobic digestion reduces the quantity of antibiotic resistance genes in residual municipal wastewater solids. Front Microbiology, 4(4), 17.
  • Burch, T. R., Sadowsky, M. J., & LaPara, T. M. (2013b). Air-drying beds reduce the quantities of antibiotic resistance genes and class 1 integrons in residual municipal wastewater solids. Environmental Science & Technology, 47(17), 9965–9971. doi: 10.1021/es4024749
  • Burch, T. R., Sadowsky, M. J., & LaPara, T. M. (2017). Effect of different treatment technologies on the fate of antibiotic resistance genes and class 1 Integrons when residual municipal wastewater solids are applied to Soil. Environmental Science & Technology, 51(24), 14225–14232. doi: 10.1021/acs.est.7b04760
  • Burch, T. R., Sadowsky, M. J., & LaPara, T. M. (2014). Fate of antibiotic resistance genes and class 1 integrons in soil microcosms following the application of treated residual municipal wastewater solids. Environmental Science & Technology, 48(10), 5620–5627. doi: 10.1021/es501098g
  • Burch, T. R., Sadowsky, M. J., & LaPara, T. M. (2016). Modeling the fate of antibiotic resistance genes and class 1 integrons during thermophilic anaerobic digestion of municipal wastewater solids. Applied Microbiology and Biotechnology, 100(3), 1437–1444. doi: 10.1007/s00253-015-7043-x
  • Calero-Cáceres, W., Melgarejo, A., Colomer-Lluch, M., Stoll, C., Lucena, F., Jofre, J., & Muniesa, M. (2014). Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions. Environmental Science & Technology, 48(13), 7602–7611. doi: 10.1021/es501851s
  • Calerocáceres, W., & Muniesa, M. (2016). Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. Water Research, 95, 11–18. doi: 10.1016/j.watres.2016.03.006
  • Cano, R., Nielfa, A., & Fdz-Polanco, M. (2014). Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes: Energy and economic feasibility study. Bioresource Technology, 168(3), 14–22. doi: 10.1016/j.biortech.2014.02.007
  • Carattoli, A. (2013). Plasmids and the spread of resistance. International Journal of Medical Microbiology: Ijmm, 303(6-7), 298–304. doi: 10.1016/j.ijmm.2013.02.001
  • Carey, D. E., Zitomer, D. H., Kappell, A. D., Choi, M. J., Hristova, K. R., & Mcnamara, P. J. (2016). Chronic exposure to triclosan sustains microbial community shifts and alters antibiotic resistance gene levels in anaerobic digesters. Environmental Science: Processes & Impacts, 18(8), 1060–1067. doi: 10.1039/C6EM00282J
  • Chen, H., & Zhang, M. (2013). Effects of advanced treatment systems on the removal of antibiotic resistance genes in wastewater treatment plants from Hangzhou, China. Environmental Science & Technology, 47(15), 8157–8163.
  • Chen, J., Ying, G. G., Wei, X. D., Liu, Y. S., Liu, S. S., Hu, L. X., … Yang, Y. Q. (2016). Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Effect of flow configuration and plant species. Science of the Total Environment, 571, 974–982. doi: 10.1016/j.scitotenv.2016.07.085
  • Chen, J., Yu, Z., Michel, F. C., Wittum, T., & Morrison, M. (2007). Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Applied and Environmental Microbiology, 73(14), 4407–4416. doi: 10.1128/AEM.02799-06
  • Chi, Y., Li, Y., Fei, X., Wang, S., & Yuan, H. (2011). Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment. Journal of Environmental Science, 23(8), 1257–1265. doi: 10.1016/S1001-0742(10)60561-X
  • Cho, M., Kim, J., Kim, J. Y., Yoon, J., & Kim, J. H. (2010). Mechanisms of Escherichia coli inactivation by several disinfectants. Water Research, 44(11), 3410–3418. doi: 10.1016/j.watres.2010.03.017
  • Christgen, B., Yang, Y., Ahammad, S. Z., Li, B., Rodriquez, D. C., Zhang, T., & Graham, D. W. (2015). Metagenomics shows that low-energy anaerobic-aerobic treatment reactors reduce antibiotic resistance gene levels from domestic wastewater. Environmental Science & Technology, 49(4), 2577–2584. doi: 10.1021/es505521w
  • Daghrir, R., & Drogui, P. (2013). Tetracycline antibiotics in the environment: A review. Environmental Chemistry Letters, 11(3), 209–227. doi: 10.1007/s10311-013-0404-8
  • Dang, B., Mao, D., Xu, Y., & Luo, Y. (2017). Conjugative multi-resistant plasmids in Haihe River and their impacts on the abundance and spatial distribution of antibiotic resistance genes. Water Research, 111, 81–91. doi: 10.1016/j.watres.2016.12.046
  • Diao, H. F., Li, X. Y., Gu, J. D., Shi, H. C., & Xie, Z. M. (2004). Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction. Process Biochemistry, 39(11), 1421–1426. doi: 10.1016/S0032-9592(03)00274-7
  • Diehl, D. L., & LaPara, T. M. (2010). Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids. Environmental Science & Technology, 44(23), 9128–9133. doi: 10.1021/es102765a
  • Dodd, M. C. (2012). Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. Journal of Environmental Monitoring, 14(7), 1754. doi: 10.1039/c2em00006g
  • Du, J., Geng, J., Ren, H., Ding, L., Xu, K., & Zhang, Y. (2015). Variation of antibiotic resistance genes in municipal wastewater treatment plant with A(2)O-MBR system. Environmental Science and Pollution Research, 22(5), 3715–3726. doi: 10.1007/s11356-014-3552-x
  • Dunford, R., Salinaro, A., Cai, L., Serpone, N., Horikoshi, S., Hidaka, H., & Knowland, J. (1997). Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Letters, 418(1–2), 87–90. doi: 10.1016/S0014-5793(97)01356-2
  • Eischeid, A. C., Meyer, J. N., & Linden, K. G. (2009). UV disinfection of adenoviruses: molecular indications of DNA damage efficiency. Applied and Environmental Microbiology, 75(1), 23–28. doi: 10.1128/AEM.02199-08
  • Fang, H., Zhang, Q., Nie, X., Chen, B., Xiao, Y., Zhou, Q., … Liang, X. (2017). Occurrence and elimination of antibiotic resistance genes in a long-term operation integrated surface flow constructed wetland. Chemosphere, 173, 99–106. doi: 10.1016/j.chemosphere.2017.01.027
  • Feng, L., Luo, J., & Chen, Y. (2015). Dilemma of sewage sludge treatment and disposal in China. Environmental Science &Amp; Technology, 49(8), 4781–4782. doi: 10.1021/acs.est.5b01455
  • Ferro, G., Fiorentino, A., Alferez, M. C., Polo-López, M. I., Rizzo, L., & Fernández-Ibáñez, P. (2015). Urban wastewater disinfection for agricultural reuse: Effect of solar driven AOPs in the inactivation of a multidrug resistant E. coli strain. Applied Catalysis B, 178(Pt 3), 65–73. doi: 10.1016/j.apcatb.2014.10.043
  • Ferro, G., Guarino, F., Castiglione, S., & Rizzo, L. (2016). Antibiotic resistance spread potential in urban wastewater effluents disinfected by UV/H2O2 process. Science of the Total Environment, 560–561, 29–35. doi: 10.1016/j.scitotenv.2016.04.047
  • Ferro, G., Guarino, F., Cicatelli, A., & Rizzo, L. (2017). β-lactams resistance gene quantification in an antibiotic resistant Escherichia coli water suspension treated by advanced oxidation with UV/H2O2. Journal of Hazardous Materials, 323, 426–433. doi: 10.1016/j.jhazmat.2016.03.014
  • Fiorentino, A., Ferro, G., Alferez, M. C., Polo-López, M. I., Fernández-Ibañez, P., & Rizzo, L. (2015). Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes. Journal of Photochemistry and Photobiology B, 148, 43–50. doi: 10.1016/j.jphotobiol.2015.03.029
  • Gallert, C., Fund, K., & Winter, J. (2005). Antibiotic resistance of bacteria in raw and biologically treated sewage and in groundwater below leaking sewers. Applied Microbiology and Biotechnology, 69(1), 106–112. doi: 10.1007/s00253-005-0033-7
  • Gao, L., Shi, Y., Li, W., Niu, H., Liu, J., & Cai, Y. (2012). Occurrence of antibiotics in eight sewage treatment plants in Beijing, China. Chemosphere, 86(6), 665–671. doi: 10.1016/j.chemosphere.2011.11.019
  • Gao, P., Gu, C., Wei, X., Li, X., Chen, H., Jia, H., … Ma, C. (2017). The role of zero valent iron on the fate of tetracycline resistance genes and class 1 integrons during thermophilic anaerobic co-digestion of waste sludge and kitchen waste. Water Research, 111, 92–99. doi: 10.1016/j.watres.2016.12.047
  • Gao, P., Munir, M., & Xagoraraki, I. (2012). Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Science of the Total Environment, 421–422(3), 173–183. doi: 10.1016/j.scitotenv.2012.01.061
  • Ghosh, S., Ramsden, S. J., & LaPara, T. M. (2009). The role of anaerobic digestion in controlling the release of tetracycline resistance genes and class 1 integrons from municipal wastewater treatment plants. Applied Microbiology and Biotechnology, 84(4), 791–796. doi: 10.1007/s00253-009-2125-2
  • Gu, C., & Karthikeyan, K. G. (2005). Interaction of tetracycline with aluminum and iron hydrous oxides. Environmental Science &Amp; Technology, 39(8), 2660–2667.
  • Guardabassi, L., Wong, D. M. A. L. F., & Dalsgaard, A. (2002). The effects of tertiary wastewater treatment on the prevalence of antimicrobial resistant bacteria. Water Research, 36(8), 1955–1964. doi: 10.1016/S0043-1354(01)00429-8
  • Guo, C., Wang, K., Hou, S., Wan, L., Lv, J., Zhang, Y., … Xu, J. (2017). H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes. Journal of Hazardous Materials, 323(Pt B), 710–718. doi: 10.1016/j.jhazmat.2016.10.041
  • Guo, J., Li, J., Chen, H., Bond, P. L., & Yuan, Z. (2017). Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Research, 123, 468. doi: 10.1016/j.watres.2017.07.002
  • Gupta, S. K., Shin, H., Han, D., Hur, H. G., & Unno, T. (2018). Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant. Journal of Microbiology, 56(6), 408–415. doi: 10.1007/s12275-018-8195-z
  • Hao, R., Zhao, R., Qiu, S., Wang, L., & Song, H. (2015). Antibiotics crisis in China. Science (New York, N.Y.), 348(6239), 1100–1101. doi: 10.1126/science.348.6239.1100-d
  • Hirsch, R., Ternes, T., Haberer, K., & Kratz, K. L. (1999). Occurrence of antibiotics in the aquatic environment. The Science of the Total Environment, 225(1–2), 109–118.
  • Hogg, M., Wallace, S. S., & Doublié, S. (2005). Bumps in the road: How replicative DNA polymerases see DNA damage. Current Opinion in Structural Biology, 15(1), 86–93. doi: 10.1016/j.sbi.2005.01.014
  • Hong, S. M., Park, J. K., & Lee, Y. O. (2004). Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids. Water Research, 38(6), 1615–1625. doi: 10.1016/j.watres.2003.12.011
  • Huang, H., Chen, Y., Zheng, X., Su, Y., Wan, R., & Yang, S. (2016). Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer. Bioresource Technology, 218, 1284–1289. doi: 10.1016/j.biortech.2016.07.097
  • Huang, H., Zheng, X., Chen, Y., Liu, H., Wan, R., & Su, Y. (2017). Alkaline fermentation of waste sludge causes a significant reduction of antibiotic resistance genes in anaerobic reactors. Science of the Total Environment, 580, 380–387. doi: 10.1016/j.scitotenv.2016.11.186
  • Huang, J. J., Hu, H. Y., Lu, S. Q., Li, Y., Tang, F., Lu, Y., & Wei, B. (2012). Monitoring and evaluation of antibiotic-resistant bacteria at a municipal wastewater treatment plant in China. Environment International, 42(1), 31–36. doi: 10.1016/j.envint.2011.03.001
  • Huang, M. H., Zhang, W., Liu, C., & Hu, H. Y. (2015). Fate of trace tetracycline with resistant bacteria and resistance genes in an improved AAO wastewater treatment plant. Process Safety and Environmental Protection, 93, 68–74. doi: 10.1016/j.psep.2014.04.004
  • Ikehata, K., Naghashkar, N. J., & El-Din, M. G. (2006). Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review. Ozone: Science & Engineering, 28(6), 353–414. doi: 10.1080/01919510600985937
  • Imlay, J. A. (2003). Pathways of oxidative damage. Annual Review of Microbiology, 57(1), 395–418. doi: 10.1146/annurev.micro.57.030502.090938
  • Ishizaki, K., Sawadaishi, K., Miura, K., & Shinriki, N. (1987). Effect of ozone on plasmid DNA of Escherichia coli in situ. Water Research, 21(7), 823–827. doi: 10.1016/0043-1354(87)90158-8
  • Iwane, T., Urase, T., & Yamamoto, K. (2001). Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water. Water Science and Technology, 43(2), 91–99. doi: 10.2166/wst.2001.0077
  • Jang, H. M., Shin, J., Choi, S., Shin, S. G., Park, K. Y., Cho, J., & Kim, Y. M. (2017). Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge. Bioresource Technology, 244(Pt 1), 433–444. doi: 10.1016/j.biortech.2017.07.153
  • Ju, F., Li, B., Ma, L., Wang, Y., Huang, D., & Zhang, T. (2016). Antibiotic resistance genes and human bacterial pathogens: Co-occurrence, removal, and enrichment in municipal sewage sludge digesters. Water Research, 91, 1–10. doi: 10.1016/j.watres.2015.11.071
  • Karaolia, P., Michael, I., García-Fernández, I., Agüera, A., Malato, S., Fernández-Ibáñez, P., & Fatta-Kassinos, D. (2014). Reduction of clarithromycin and sulfamethoxazole-resistant Enterococcus by pilot-scale solar-driven Fenton oxidation. Science of the Total Environment, 468-469, 19–27. doi: 10.1016/j.scitotenv.2013.08.027
  • Karkman, A., Johnson, T. A., Lyra, C., Stedtfeld, R. D., Tamminen, M., Tiedje, J. M., & Virta, M. (2016). High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant. FEMS Microbiology Ecology, 92(3), fiw014. doi: 10.1093/femsec/fiw014
  • Kemper, N. (2008). Veterinary antibiotics in the aquatic and terrestrial environment. Ecological Indicators, 8(1), 1–13. doi: 10.1016/j.ecolind.2007.06.002
  • LaPara, T. M., Burch, T. R., Mcnamara, P. J., Tan, D. T., Yan, M., & Eichmiller, J. J. (2011). Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-superior harbor. Environmental Science & Technology, 45(22), 9543–9549. doi: 10.1021/es202775r
  • Lee, J., Jeon, J. H., Shin, J., Jang, H. M., Kim, S., Song, M. S., & Kim, Y. M. (2017). Quantitative and qualitative changes in antibiotic resistance genes after passing through treatment processes in municipal wastewater treatment plants. Science of the Total Environment, 605–606, 906–914. doi: 10.1016/j.scitotenv.2017.06.250
  • Lee, J., Shin, S. G., Jang, H. M., Kim, Y. B., Lee, J., & Kim, Y. M. (2017). Characterization of antibiotic resistance genes in representative organic solid wastes: Food waste-recycling wastewater, manure, and sewage sludge. Science of the Total Environment, 579, 1692–1698. doi: 10.1016/j.scitotenv.2016.11.187
  • Li, A. D., Li, L. G., & Zhang, T. (2015). Exploring antibiotic resistance gene and metal resistance genes in plasmid metagenomes from wastewater treatment plants. Front Microbiology, 6, 1025.
  • Li, H., Zhu, X., & Ni, J. (2011). Comparison of electrochemical method with ozonation, chlorination and monochloramination in drinking water disinfection. Electrochimica Acta, 56(27), 9789–9796. doi: 10.1016/j.electacta.2011.08.053
  • Li, J., Cheng, W., Xu, L., Jiao, Y., Baig, S. A., & Chen, H. (2016). Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: Effluents' influence to downstream water environment. Environmental Science and Pollution Research, 23(7), 6826–6835. doi: 10.1007/s11356-015-5916-2
  • Li, N., Sheng, G. P., Lu, Y. Z., Zeng, R. J., & Yu, H. Q. (2017). Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. Water Research, 111, 204–212. doi: 10.1016/j.watres.2017.01.010
  • Li, X. W., Shi, H. C., Li, K. X., Zhang, L., & Gan, Y. (2014). Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China. Frontiers of Environmental Science & Engineering, 8(6), 888–894. doi: 10.1007/s11783-014-0735-0
  • Liao, H., Lu, X., Rensing, C., Friman, V. P., Geisen, S., Chen, Z., … Zhu, Y. (2018). Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge. Environmental Science & Technology, 52(1), 266–276. doi: 10.1021/acs.est.7b04483
  • Lin, W., Li, S., Zhang, S., & Yu, X. (2016). Reduction in horizontal transfer of conjugative plasmid by UV irradiation and low-level chlorination. Water Research, 91, 331–338. doi: 10.1016/j.watres.2016.01.020
  • Lin, W., Zhang, M., Zhang, S., & Yu, X. (2016). Can chlorination co-select antibiotic-resistance genes? Chemosphere, 156, 412–419.
  • Liu, J., Hu, G., Li, F., & Li, L. (2011). Advances in the microbial flora of anaerobic digestive systems. Industrial Water Treatment, 31(10), 10–14.
  • Liu, M., Ding, R., Zhang, Y., Gao, Y., Tian, Z., Zhang, T., & Yang, M. (2014). Abundance and distribution of macrolide-lincosamide-streptogramin resistance genes in an anaerobic-aerobic system treating spiramycin production wastewater. Water Research, 63(1), 33–41. doi: 10.1016/j.watres.2014.05.045
  • Luo, Y., Mao, D., Rysz, M., Zhou, Q., Zhang, H., Xu, L., & P, J. J. A. (2010). Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environmental Science & Technology, 44(19), 7220–7225. doi: 10.1021/es100233w
  • Lupo, A., Coyne, S., & Berendonk, T. U. (2012). Origin and evolution of antibiotic resistance: The common mechanisms of emergence and spread in water bodies. Front Microbiology, 3(3), 18.
  • Ma, Y., Wilson, C. A., Novak, J. T., Riffat, R., Aynur, S., Murthy, S., & Pruden, A. (2011). Effect of various sludge digestion conditions on sulfonamide, macrolide, and tetracycline resistance genes and class I Integrons. Environmental Science & Technology, 45(18), 7855–7861. doi: 10.1021/es200827t
  • Macauley, J. J., Qiang, Z., Adams, C. D., Surampalli, R., & Mormile, M. R. (2006). Disinfection of swine wastewater using chlorine, ultraviolet light and ozone. Water Research, 40(10), 2017–2026. doi: 10.1016/j.watres.2006.03.021
  • Macwan, D. P., Dave, P. N., & Chaturvedi, S. (2011). A review on nano-TiO2 sol–gel type syntheses and its applications. Journal of Materials Science, 46(11), 3669–3686. doi: 10.1007/s10853-011-5378-y
  • Makowska, N., Koczura, R., & Mokracka, J. (2016). Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water. Chemosphere, 144, 1665–1673. doi: 10.1016/j.chemosphere.2015.10.044
  • Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1–59. doi: 10.1016/j.cattod.2009.06.018
  • Mateo-Sagasta, J., Raschid-Sally, L., & Thebo, A. (2015). Global wastewater and sludge production, treatment and use. Netherlands: Springer.
  • Mazel, D. (2006). Integrons: Agents of bacterial evolution. Nature Reviews Microbiology, 4(8), 608–620. doi: 10.1038/nrmicro1462
  • Mckinney, C. W., & Pruden, A. (2012). Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environmental Science & Technology, 46(24), 13393–13400. doi: 10.1021/es303652q
  • Michael, I., Rizzo, L., Mcardell, C. S., Manaia, C. M., Merlin, C., Schwartz, T., … Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 47(3), 957–995. doi: 10.1016/j.watres.2012.11.027
  • Michaelkordatou, I., Karaolia, P., & Fattakassinos, D. (2017). The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater. Water Research, 129, 208–230. doi: 10.1016/j.watres.2017.10.007
  • Michalova, E., Novotna, P., & Schlegelova, J. (2004). Tetracyclines in veterinary medicine and bacterial resistance to them. A review. Veterinary Medicine, 49(3), 79–100.
  • Michod, R. E., Bernstein, H., & Nedelcu, A. M. (2008). Adaptive value of sex in microbial pathogens. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 8(3), 267–285. doi: 10.1016/j.meegid.2008.01.002
  • Miller, J., Novak, J. T., Pruden, A., Knocke, W. R., Young, K., Young, Y., … Hull, M. (2012). Effect of nanosilver and antibiotic loading on Fate of antibiotic resistance genes in thermophilic and mesophilic anaerobic digesters. Proceedings of the Water Environment Federation, 2012(2), 1221–1234. doi: 10.2175/193864712811693579
  • Miller, J. H., Novak, J. T., Knocke, W. R., & Amy, P. (2016). Survival of antibiotic resistant bacteria and horizontal gene transfer control antibiotic resistance gene content in anaerobic digesters. Frontiers in Microbiology, 7(18), 263.
  • Miller, J. H., Novak, J. T., Knocke, W. R., Young, K., Hong, Y., Vikesland, P. J., … Pruden, A. (2013). Effect of silver nanoparticles and antibiotics on antibiotic resistance genes in anaerobic digestion. Water Environment Research, 85(5), 411–421. doi: 10.2175/106143012X13373575831394
  • Mishra, S., & Imlay, J. (2012). Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Archives of Biochemistry and Biophysics, 525(2), 145–160. doi: 10.1016/j.abb.2012.04.014
  • Mitchell, S. M., Ullman, J. L., Bary, A., Cogger, C. G., Teel, A. L., & Watts, R. J. (2015). Antibiotic degradation during thermophilic composting. Water, Air, & Soil Pollution, 226(2), 13.
  • Moreira, N. F., Sousa, J. M., Macedo, G., Ribeiro, A. R., Barreiros, L., Pedrosa, M., … Segundo, M. A. (2016). Photocatalytic ozonation of urban wastewater and surface water using immobilized TiO2 with LEDs: Micropollutants, antibiotic resistance genes and estrogenic activity. Water Research, 94, 10–22. doi: 10.1016/j.watres.2016.02.003
  • Munir, M., Wong, K., & Xagoraraki, I. (2011). Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Research, 45(2), 681–693. doi: 10.1016/j.watres.2010.08.033
  • Nelson, M. L., & Levy, S. B. (2011). The history of the tetracyclines. Annals of the New York Academy of Sciences, 1241, 17–32. doi: 10.1111/j.1749-6632.2011.06354.x
  • Nnadozie, C. F., Kumari, S., & Bux, F. (2017). Status of pathogens, antibiotic resistance genes and antibiotic residues in wastewater treatment systems. Reviews in Environmental Science and Bio/Technology, 16(2), 1–25.
  • Oh, J., Salcedo, D. E., Medriano, C. A., & Kim, S. (2014). Comparison of different disinfection processes in the effective removal of antibiotic-resistant bacteria and genes. Journal of Environmental Sciences, 26(6), 1238–1242. doi: 10.1016/S1001-0742(13)60594-X
  • Ohtani, B. (2010). Photocatalysis A to Z—What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C, 11(4), 157–178. doi: 10.1016/j.jphotochemrev.2011.02.001
  • Öncü, N. B., Menceloğlu, Y. Z., & Balcıoğlu, I. A. (2016). Comparison of the effectiveness of chlorine, ozone, and photocatalytic disinfection in reducing the risk of antibiotic resistance pollution. Journal of Advanced Oxidation Technologies, 14(14), 196–203.
  • Oppenländer, T. (2007). Photochemical purification of water and air. Advanced oxidation processes (AOPs): Principles, reaction mechanisms, reactor concepts. Chemistry International – Newsmagazine for IUPAC, 25(4), 31–31.
  • Pak, G., Espineli, S. D., Lee, H., Oh, J., Maeng, S. K., Song, K. G., … Kim, S. (2016). Comparison of antibiotic resistance removal efficiencies using ozone disinfection under different pH and suspended solids and humic substance concentrations. Environmental Science & Technology, 50(14), 7590. doi: 10.1021/acs.est.6b01340
  • Park, S., You, X., & Imlay, J. A. (2005). Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx- mutants of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 102(26), 9317–9322. doi: 10.1073/pnas.0502051102
  • Pei, J., Yao, H., Wang, H., Ren, J., & Yu, X. (2016). Comparison of ozone and thermal hydrolysis combined with anaerobic digestion for municipal and pharmaceutical waste sludge with tetracycline resistance genes. Water Research, 99, 122–128. doi: 10.1016/j.watres.2016.04.058
  • Pei, J., Yao, H., Wang, H., Shan, D., Jiang, Y., Ma, L., & Yu, X. (2015). Effect of ultrasonic and ozone pre-treatments on pharmaceutical waste activated sludge's solubilisation, reduction, anaerobic biodegradability and acute biological toxicity. Bioresource Technology, 192, 418–423. doi: 10.1016/j.biortech.2015.05.079
  • Pilli, S., Bhunia, P., Yan, S., Leblanc, R. J., Tyagi, R. D., & Surampalli, R. Y. (2011). Ultrasonic pretreatment of sludge: A review. Ultrasonics Sonochemistry, 18(1), 1–18. doi: 10.1016/j.ultsonch.2010.02.014
  • Pruden, A., Pei, R., Storteboom, H., & Carlson, K. H. (2006). Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado. Environmental Science & Technology, 40(23), 7445–7450. doi: 10.1021/es060413l
  • Pryor, W. A., Das, B., & Church, D. F. (1991). The ozonation of unsaturated fatty acids: Aldehydes and hydrogen peroxide as products and possible mediators of ozone toxicity. Chemical Research in Toxicology, 4(3), 341–348. doi: 10.1021/tx00021a014
  • Qian, Y., Xu, K., Su, C., Zheng, J., & Chen, H. (2015). Effect of initial pH on the behavior characteristics of antibiotic resistance genes in sludge under anaerobic environment. Journal of Ecotoxicology, 10(5), 47–55.
  • Qiao, M., Ying, G. G., Singer, A. C., & Zhu, Y. G. (2018). Review of antibiotic resistance in China and its environment. Environment International, 110, 160–172. doi: 10.1016/j.envint.2017.10.016
  • Quach-Cu, J., Herrera-Lynch, B., Marciniak, C., Adams, S., Simmerman, A., & Reinke, R. (2018). The effect of primary, secondary, and tertiary wastewater treatment processes on antibiotic resistance gene (ARG) concentrations in solid and dissolved wastewater fractions. Water, 10(1), 37. doi: 10.3390/w10010037
  • Rahube, T. O., Marti, R., Scott, A., Tien, Y. C., Murray, R., Sabourin, L., … Topp, E. (2014). Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest. Applied and Environmental Microbiology, 80(22), 6898–6907. doi: 10.1128/AEM.02389-14
  • Riber, L., Poulsen, P. H. B., Al-Soud, W. A., Skov Hansen, L. B., Bergmark, L., Brejnrod, A., … Sørensen, S. J. (2014). Exploring the immediate and long-term impact on bacterial communities in soil amended with animal and urban organic waste fertilizers using pyrosequencing and screening for horizontal transfer of antibiotic resistance. FEMS Microbiology Ecology, 90(1), 206–224. doi: 10.1111/1574-6941.12403
  • Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., … Fattakassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 447(9), 345–360. doi: 10.1016/j.scitotenv.2013.01.032
  • Roberts, M. C. (2010). Update on acquired tetracycline resistance genes. FEMS Microbiology Letters, 245(2), 195–203. doi: 10.1016/j.femsle.2005.02.034
  • Sørensen, S. J., Bailey, M., Hansen, L. H., Kroer, N., & Wuertz, S. (2005). Studying plasmid horizontal transfer in situ: A critical review. Nature Reviews. Microbiology, 3(9), 700–710. doi: 10.1038/nrmicro1232
  • Sarmah, A. K., Meyer, M. T., & Boxall, A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759. doi: 10.1016/j.chemosphere.2006.03.026
  • Selvam, A., Xu, D., Zhao, Z., & Wong, J. W. (2012). Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Bioresource Technology, 126(4), 383–390. doi: 10.1016/j.biortech.2012.03.045
  • Selvam, A., Zhao, Z., & Wong, J. W. C. (2012). Composting of swine manure spiked with sulfadiazine, chlortetracycline and ciprofloxacin. Bioresource Technology, 126(12), 412–417. doi: 10.1016/j.biortech.2011.12.073
  • Sharma, V. K., Johnson, N., Cizmas, L., Mcdonald, T. J., & Kim, H. (2016). A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere, 150(3), 702–714. doi: 10.1016/j.chemosphere.2015.12.084
  • Singh, R., Schroeder, C. M., Meng, J., White, D. G., Mcdermott, P. F., Wagner, D. D., … Walker, R. D. (2005). Identification of antimicrobial resistance and class 1 integrons in Shiga toxin-producing Escherichia coli recovered from humans and food animals. Journal of Antimicrobial Chemotherapy, 56(1), 216–219. doi: 10.1093/jac/dki161
  • Sousa, J. M., Macedo, G., Pedrosa, M., Becerra-Castro, C., Castro-Silva, S., Pereira, M. F. R., … Manaia, C. M. (2017). Ozonation and UV 254 nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater. J Hazard Mater, 323(Pt A), 434–441. doi: 10.1016/j.jhazmat.2016.03.096
  • Su, J. Q., Wei, B., Ou-Yang, W. Y., Huang, F. Y., Zhao, Y., Xu, H. J., & Zhu, Y. G. (2015). Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environmental Science & Technology, 49(12), 7356–7363. doi: 10.1021/acs.est.5b01012
  • Su, J. Q., An, X. L., Li, B., Gillings, M. R., Chen, H., Zhang, T., & Zhu, Y. G. (2017). Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome, 5(1), 84.
  • Sukul, P., & Spiteller, M. (2006). Sulfonamides in the environment as veterinary drugs. Reviews of Environmental Contamination and Toxicology, 187, 66–101.
  • Sun, W., Qian, X., Gu, J., Wang, X. J., & Duan, M. L. (2016). Mechanism and effect of temperature on variations in antibiotic resistance genes during anaerobic digestion of dairy manure. Scientific Reports, 6, 30237.
  • Sunada, K., Watanabe, T., & Hashimoto, K. (2003). Studies on photokilling of bacteria on TiO2 thin film. Journal of Photochemistry and Photobiology A, 156(1–3), 227–233. doi: 10.1016/S1010-6030(02)00434-3
  • Suquet, C., Warren, J. J., Seth, N., & Hurst, J. K. (2010). Comparative study of HOCl-inflicted damage to bacterial DNA ex vivo and within cells. Archives of Biochemistry and Biophysics, 493(2), 135–142. doi: 10.1016/j.abb.2009.10.006
  • Szczepanowski, R., Linke, B., Krahn, I., Gartemann, K. H., Gützkow, T., Eichler, W., … Schlüter, A. (2009). Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology, 155(7), 2306–2319. doi: 10.1099/mic.0.028233-0
  • Metcalf & Eddy, Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2003). Wastewater engineering: Treatment and reuse (4th ed.). Boston: McGraw-Hill.
  • Tang, J. Y., Bu, Y. Q., Zhang, X. X., Huang, K. L., He, X. W., Ye, L., … Ren, H. Q. (2016). Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water. Ecotoxicology and Environmental Safety, 132, 260–269. doi: 10.1016/j.ecoenv.2016.06.016
  • Tian, Z., Zhang, Y., Yu, B., & Yang, M. (2016). Changes of resistome, mobilome and potential hosts of antibiotic resistance genes during the transformation of anaerobic digestion from mesophilic to thermophilic. Water Research, 98, 261. doi: 10.1016/j.watres.2016.04.031
  • Tong, J., Liu, J., Zheng, X., Zhang, J., Ni, X., Chen, M., & Wei, Y. (2016). Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment. Bioresource Technology, 217, 37–43. doi: 10.1016/j.biortech.2016.02.130
  • Tong, J., Lu, X., Zhang, J., Sui, Q., Wang, R., Chen, M., & Wei, Y. (2017). Occurrence of antibiotic resistance genes and mobile genetic elements in enterococci and genomic DNA during anaerobic digestion of pharmaceutical waste sludge with different pretreatments. Bioresource Technology, 235, 316–324. doi: 10.1016/j.biortech.2017.03.104
  • Ungemach, F. R. (2000). Figures on quantities of antibacterials used for different purposes in the EU countries and interpretation. Acta Veterinaria Scandinavica. Supplementum, 93(4), 89–97.
  • Van Boeckel, T. P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A., & Laxminarayan, R. (2014). Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 14(8), 742–750. doi: 10.1016/S1473-3099(14)70780-7
  • Venieri, D., Gounaki, I., Bikouvaraki, M., Binas, V., Zachopoulos, A., Kiriakidis, G., & Mantzavinos, D. (2017). Solar photocatalysis as disinfection technique: Inactivation of Klebsiella pneumoniae in sewage and investigation of changes in antibiotic resistance profile. Journal of Environmental Management, 195(Pt 2), 140–147. doi: 10.1016/j.jenvman.2016.06.009
  • Wang, L., Oda, Y., Grewal, S., Morrison, M., Michel, F. C., & Yu, Z. (2012). Persistence of resistance to erythromycin and tetracycline in swine manure during simulated composting and lagoon treatments. Microbial Ecology, 63(1), 32–40. doi: 10.1007/s00248-011-9921-9
  • Wang, L. S., Hu, H. Y., & Wang, C. (2007). Effect of ammonia nitrogen and dissolved organic matter fractions on the genotoxicity of wastewater effluent during chlorine disinfection. Environmental Science & Technology, 41(1), 160–165. doi: 10.1021/es0616635
  • Wang, J., Ben, W. W., Yang, M., Zhang, Y., & Qiang, Z. M. (2016). Dissemination of veterinary antibiotics and corresponding resistance genes from a concentrated swine feedlot along the waste treatment paths. Environment International, 92–93, 317–323. doi: 10.1016/j.envint.2016.04.020
  • Wang, X., Ryu, D., Houtkooper, R. H., & Auwerx, J. (2015). Antibiotic use and abuse: A threat to mitochondria and chloroplasts with impact on research, health, and environment. Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology, 37(10), 1045–1053. doi: 10.1002/bies.201500071
  • Wang, Z., Zhang, X. X., Huang, K. L., Miao, Y., Shi, P., Liu, B., … Li, A. M. (2013). Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant. PLoS ONE, 8, 76079.
  • Wéry, N., Lhoutellier, C., Ducray, F., Delgenès, G. P., & Godon, J. J. (2008). Behaviour of pathogenic and indicator bacteria during urban wastewater treatment and sludge composting, as revealed by quantitative PCR. Water Research, 42(1–2), 53–62. doi: 10.1016/j.watres.2007.06.048
  • WHO. (2001). WHO global strategy for containment of antimicrobial resistance. Geneva: World Health Organization. Retrieved from http://www.who.int/drugresistance/WHO_Global_Strategy_English.pdf
  • Wu, D., Dolfing, J., & Xie, B. (2018). Bacterial perspectives on the dissemination of antibiotic resistance genes in domestic wastewater bio-treatment systems: Beneficiary to victim. Applied Microbiology and Biotechnology, 102(2), 597–604. doi: 10.1007/s00253-017-8665-y
  • Wu, Y., Cui, E., Zuo, Y., Cheng, W., & Chen, H. (2018). Fate of antibiotic and metal resistance genes during two-phase anaerobic digestion of residue sludge revealed by metagenomic approach. Environmental Science and Pollution Research, 25(14), 13956–13963. doi: 10.1007/s11356-018-1598-x
  • Wu, Y., Cui, E., Zuo, Y., Cheng, W., Rensing, C., & Chen, H. (2016). Influence of two-phase anaerobic digestion on fate of selected antibiotic resistance genes and class I integrons in municipal wastewater sludge. Bioresource Technology, 211, 414–421. doi: 10.1016/j.biortech.2016.03.086
  • Xi, C., Zhang, Y., Marrs, C. F., Ye, W., Simon, C., Foxman, B., & Nriagu, J. (2009). Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Applied and Environmental Microbiology, 75(17), 5714–5718. doi: 10.1128/AEM.00382-09
  • Xie, W. Y., Yang, X. P., Li, Q., Wu, L. H., Shen, Q. R., & Zhao, F. J. (2016). Changes in antibiotic concentrations and antibiotic resistome during commercial composting of animal manures. Environmental Pollution, 219, 182–190. doi: 10.1016/j.envpol.2016.10.044
  • Xie, X., Zhou, Q., He, Z., & Bao, Y. (2010). Physiological and potential genetic toxicity of chlortetracycline as an emerging pollutant in wheat (Triticum aestivum L.). Environmental Toxicology and Chemistry, 29(4), 922–928. doi: 10.1002/etc.79
  • Xu, J., Xu, Y., Wang, H., Guo, C., Qiu, H., He, Y., … Meng, W. (2015). Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere, 119, 1379–1385. doi: 10.1016/j.chemosphere.2014.02.040
  • Yang, Y., Li, B., Ju, F., & Zhang, T. (2013). Exploring variation of antibiotic resistance genes in activated sludge over a four-year period through a metagenomic approach. Environmental Science & Technology, 47(18), 10197–10205. doi: 10.1021/es4017365
  • Yang, G., Zhang, G., & Wang, H. (2015). Current state of sludge production, management, treatment and disposal in China. Water Research, 78, 60–73. doi: 10.1016/j.watres.2015.04.002
  • Yang, Y., Li, B., Zou, S., Fang, H. H., & Zhang, T. (2014). Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Research, 62, 97–106. doi: 10.1016/j.watres.2014.05.019
  • Yang, Y., Song, W., Lin, H., Wang, W., Du, L., & Xing, W. (2018). Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. Environment International, 116, 60–73. doi: 10.1016/j.envint.2018.04.011
  • Yi, X., Tran, N. H., Yin, T., He, Y., & Gin, K. Y. (2017). Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system. Water Research, 121, 46–60. doi: 10.1016/j.watres.2017.05.008
  • Yoon, Y., Chung, H. J., Wen, D. D., Dodd, M. C., Hur, H. G., & Lee, Y. (2017). Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine, UV, and UV/H2O2. Water Research, 123, 783–793. doi: 10.1016/j.watres.2017.06.056
  • Youngquist, C. P., Mitchell, S. M., & Cogger, C. G. (2016). Fate of antibiotics and antibiotic resistance during digestion and composting: A review. Journal of Environmental Quality, 45(2), 537–545. doi: 10.2134/jeq2015.05.0256
  • Yu, Z., Michel, F. C., Hansen, G., Wittum, T., & Morrison, M. (2005). Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Applied and Environmental Microbiology, 71(11), 6926–6933. doi: 10.1128/AEM.71.11.6926-6933.2005
  • Yuan, Q. B., Guo, M. T., Wei, W. J., & Yang, J. (2016). Reductions of bacterial antibiotic resistance through five biological treatment processes treated municipal wastewater. Environmental Science and Pollution Research, 23(19), 19495–19503. doi: 10.1007/s11356-016-7048-8
  • Zábranská, J., Dohányos, M., Jeníček, P., Ružičková, H., & Vránová, A. (2003). Efficiency of autothermal thermophilic aerobic digestion and thermophilic anaerobic digestion of municipal wastewater sludge in removing Salmonella spp. and indicator bacteria. Water Science and Technology, 47(3), 151–156. doi: 10.2166/wst.2003.0187
  • Zhang, J., Cai, X., Qi, L., Shao, C., Lin, Y., Zhang, J., … Wei, Y. (2015). Effects of aeration strategy on the evolution of dissolved organic matter (DOM) and microbial community structure during sludge bio-drying. Applied Microbiology and Biotechnology, 99(17), 7321–7331. doi: 10.1007/s00253-015-6640-z
  • Zhang, J., Chen, M., Sui, Q., Tong, J., Jiang, C., Lu, X., … Wei, Y. (2016a). Impacts of addition of natural zeolite or a nitrification inhibitor on antibiotic resistance genes during sludge composting. Water Research, 91(9), 339–349. doi: 10.1016/j.watres.2016.01.010
  • Zhang, J., Chen, M., Sui, Q., Wang, R., Tong, J., & Wei, Y. (2016b). Fate of antibiotic resistance genes and its drivers during anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresource Technology, 217, 28–36. doi: 10.1016/j.biortech.2016.02.140
  • Zhang, J., Liu, J., Wang, Y., Yu, D., Sui, Q., Wang, R., … Wei, Y. (2017). Profiles and drivers of antibiotic resistance genes distribution in one-stage and two-stage sludge anaerobic digestion based on microwave-H2O2 pretreatment. Bioresource Technology, 241, 573–581. doi: 10.1016/j.biortech.2017.05.157
  • Zhang, J., Lv, C., Tong, J., Liu, J., Liu, J., Yu, D., … Wei, Y. (2016c). Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresource Technology, 200(2), 253. doi: 10.1016/j.biortech.2015.10.037
  • Zhang, J., Sui, Q., Tong, J., Buhe, C., Wang, R., Chen, M., & Wei, Y. (2016). Sludge bio-drying: Effective to reduce both antibiotic resistance genes and mobile genetic elements. Water Research, 106, 62–70. doi: 10.1016/j.watres.2016.09.055
  • Zhang, Q. Q., Ying, G. G., Pan, C. G., Liu, Y. S., & Zhao, J. L. (2015). Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 49(11), 6772–6782. doi: 10.1021/acs.est.5b00729
  • Zhang, T., Yang, Y., & Pruden, A. (2015). Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach. Applied Microbiology and Biotechnology, 99(18), 7771. doi: 10.1007/s00253-015-6688-9
  • Zhang, X. X., Zhang, T., & Fang, H. H. P. (2009). Antibiotic resistance genes in water environment. Applied Microbiology and Biotechnology, 82(3), 397–414. doi: 10.1007/s00253-008-1829-z
  • Zhang, Y., Zhuang, Y., Geng, J., Ren, H., Xu, K., & Ding, L. (2016). Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes. Science of the Total Environment, 550, 184–191. doi: 10.1016/j.scitotenv.2016.01.078
  • Zhang, Y., Zhuang, Y., Geng, J., Ren, H., Zhang, Y., Ding, L., & Xu, K. (2015). Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. Science of the Total Environment, 512–513, 125–132. doi: 10.1016/j.scitotenv.2015.01.028
  • Zhao, L., Gu, W. M., He, P. J., & Shao, L. M. (2011). Biodegradation potential of bulking agents used in sludge bio-drying and their contribution to bio-generated heat. Water Research, 45(6), 2322–2330. doi: 10.1016/j.watres.2011.01.014
  • Zhao, L., Gu, W. M., He, P. J., & Shao, L. M. (2010). Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge. Water Research, 44(20), 6144–6152. doi: 10.1016/j.watres.2010.07.002
  • Zhu, Y., Wang, Y., Zhou, S., Jiang, X., Ma, X., & Liu, C. (2018). Robust performance of a membrane bioreactor for removing antibiotic resistance genes exposed to antibiotics: Role of membrane foulants. Water Research, 130, 139–150. doi: 10.1016/j.watres.2017.11.067
  • Zhu, Y. G., Gillings, M., Simonet, P., Stekel, D., Banwart, S., & Penuelas, J. (2017). Human dissemination of genes and microorganisms in Earth's Critical Zone. Global Change Biology, 24(4), 1488–1499.
  • Zhuang, Y., Ren, H., Geng, J., Zhang, Y., Zhang, Y., Ding, L., & Xu, K. (2015). Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. Environmental Science and Pollution Research, 22(9), 7037–7044. doi: 10.1007/s11356-014-3919-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.