850
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Technology for mercury removal from flue gas of coal based thermal power plants: A comprehensive review

ORCID Icon & ORCID Icon
Pages 1700-1736 | Published online: 08 Mar 2019

References

  • Albarede, F. (2011). Chalcophile elements. In Encyclopedia of astrobiology (pp. 283–283). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-11274-4_261
  • An, J., Shang, K., Lu, N., Jiang, Y., Wang, T., Li, J., & Wu, Y. (2014). Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas. Journal of Hazardous Materials, 268, 237–245. doi:10.1016/j.jhazmat.2014.01.022
  • Balasundaram, K., & Sharma, M. (2015). Investigations into a thiol-impregnated CaCO3-based adsorbent for mercury removal: A full factorial design approach. RSC Advances, 5, 73868–73874. doi:10.1039/C5RA10902G
  • Balasundaram, K., & Sharma, M. (2018). Concurrent removal of elemental mercury and SO2 from flue gas using a thiol-impregnated CaCO3-based adsorbent: A full factorial design study. Environmental Science and Pollution Research, 25, 15518–15528. doi:10.1007/s11356-018-1672-4
  • Baltrus, J. P., Granite, E. J., Pennline, H. W., Stanko, D., Hamilton, H., Rowsell, L., … Chu, W. (2010). Surface characterization of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas. Fuel, 89, 1323–1325. doi:10.1016/j.fuel.2009.09.030
  • Baltrus, J. P., Granite, E. J., Rupp, E. C., Stanko, D. C., Howard, B., & Pennline, H. W. (2011). Effect of palladium dispersion on the capture of toxic components from fuel gas by palladium-alumina sorbents. Fuel, 90, 1992–1998. doi:10.1016/j.fuel.2011.01.001
  • Baltrus, J. P., Granite, E. J., Stanko, D. C., & Pennline, H. W. (2008). Surface characterization of Pd/Al2O3 sorbents for mercury adsorption from fuel gas. Main Group Chemistry, 7, 217–225. doi:10.1080/10241220802509432
  • Bisson, T. M., Ong, Z. Q., MacLennan, A., Hu, Y., & Xu, Z. (2015). Impact of sulfur loading on brominated biomass ash on mercury capture. Energy & Fuels, 29, 8110–8117. doi:10.1021/acs.energyfuels.5b01213
  • Bisson, T. M., Xu, Z., Gupta, R., Maham, Y., Liu, Y., Yang, H., … Patel, M. (2013). Chemical-mechanical bromination of biomass ash for mercury removal from flue gases. Fuel, 108, 54–59. doi:10.1016/j.fuel.2012.02.035
  • Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: A general review. Chemosphere, 40, 1335–1351. doi:10.1016/S0045-6535(99)00283-0
  • Boxiong, S., Hongqing, M., Chuan, H., & Xiaopeng, Z. (2014). Low temperature NH3-SCR over Zr and Ce pillared clay based catalysts. Fuel Processing Technology, 119, 121–129. doi:10.1016/j.fuproc.2013.10.026
  • BP. (2016). BP Energy Outlook 2035. Retrieved from https://www.bp.com/content/dam/bp/pdf/energy-economics/energy-outlook-2016/bp-energy-outlook-2016.pdf
  • Cai, J., Shen, B., Li, Z., Chen, J., & He, C. (2014). Removal of elemental mercury by clays impregnated with KI and KBr. Chemical Engineering Journal, 241, 19–27. doi:10.1016/j.cej.2013.11.072
  • Chang-Yu, W., Tai-Gyu, L., Glendon, T., Elizabeth, A., & Biswas, P. (1998). Capture of mercury in combustion systems by in situ-generated titania particles with UV irradiation. Environmental Engineering Science, 15, 137–198. doi:10.1089/ees.1998.15.137
  • Chen, S. S., Hsi, H. C., Nian, S. H., & Chiu, C. H. (2014). Synthesis of N-doped TiO2 photocatalyst for low-concentration elemental mercury removal under various gas conditions. Applied Catalysis B: Environmental, 160–161(1), 58–565. doi:10.1016/j.apcatb.2014.05.022
  • Chen, W., Ma, Y., Yan, N., Qu, Z., Yang, S., Xie, J., … Jia, J. (2014). The co-benefit of elemental mercury oxidation and slip ammonia abatement with SCR-Plus catalysts. Fuel, 133, 263–269. doi:10.1016/j.fuel.2014.04.086
  • Chen, W., Pei, Y., Huang, W., Qu, Z., Hu, X., & Yan, N. (2016). Novel effective catalyst for elemental mercury removal from coal-fired flue gas and the mechanism investigation. Environmental Science & Technology, 50, 2564–2572. doi:10.1021/acs.est.5b05564
  • Cheng, G., Bai, B., Zhang, Q., & Cai, M. (2014). Hg0 removal from flue gas by ionic liquid/H2O2. Journal of Hazardous Materials, 280, 767–773. doi:10.1016/j.jhazmat.2014.09.007
  • Cheng, G., Zhang, Q., & Bai, B. (2014). Removal of Hg0 from flue gas using Fe-based ionic liquid. Chemical Engineering Journal, 252, 159–165. doi:10.1016/j.cej.2014.05.007
  • Chiu, C. H., Hsi, H. C., & Lin, C. C. (2014). Control of mercury emissions from coal-combustion flue gases using CuCl2-modified zeolite and evaluating the cobenefit effects on SO2 and NO removal. Fuel Processing Technology, 126, 138–144. doi:10.1016/j.fuproc.2014.04.031
  • Chiu, C. H., Hsi, H. C., & Lin, H. P. (2015). Multipollutant control of Hg/SO2/NO from coal-combustion flue gases using transition metal oxide-impregnated SCR catalysts. Catalysis Today, 245, 2–9. doi:10.1016/j.cattod.2014.09.008
  • Chiu, C. H., Hsi, H. C., Lin, H. P., & Chang, T. C. (2015). Effects of properties of manganese oxide-impregnated catalysts and flue gas condition on multipollutant control of Hg0 and NO. Journal of Hazardous Materials, 291, 1–8. doi:10.1016/j.jhazmat.2015.02.076
  • Chiu, C.-H., Lin, H.-P., Kuo, T.-H., Chen, S.-S., Chang, T.-C., Su, K.-H., & Hsi, H.-C. (2015). Simultaneous control of elemental mercury/sulfur dioxide/nitrogen monoxide from coal-fired flue gases with metal oxide-impregnated activated carbon. Aerosol and Air Quality Research, 15, 2094–2103. doi:10.4209/aaqr.2015.03.0176
  • Cho, J. H., Lee, T. G., & Eom, Y. (2012). Gas-phase elemental mercury removal in a simulated combustion flue gas using TiO2 with fluorescent light. Journal of the Air & Waste Management Association, 62, 1208–1213. doi:10.1080/10962247.2012.700901
  • Cimino, S., & Scala, F. (2016). Removal of Elemental Mercury by MnO x Catalysts Supported on TiO2 or Al2O3. Industrial & Engineering Chemistry Research, 55, 5133–5138. doi:10.1021/acs.iecr.5b04147
  • Dang, H., Liao, Y., Ng, T. W., Huang, G., Xiong, S., Xiao, X., … Wong, P. K. (2016). The simultaneous centralized control of elemental mercury emission and deep desulfurization from the flue gas using magnetic Mn-Fe spinel as a co-benefit of the wet electrostatic precipitator. Fuel Processing Technology, 142, 345–351. doi:10.1016/j.fuproc.2015.10.036
  • De, M., Azargohar, R., Dalai, A. K., & Shewchuk, S. R. (2013). Mercury removal by bio-char based modified activated carbons. Fuel, 103, 570–578. doi:10.1016/j.fuel.2012.08.011
  • Ding, F., Zhao, Y., Mi, L., Li, H., Li, Y., & Zhang, J. (2012). Removal of gas-phase elemental mercury in flue gas by inorganic chemically promoted natural mineral sorbents. Industrial & Engineering Chemistry Research, 51, 3039–3047. doi:10.1021/ie202231r
  • Dong, S. S., Zhang, J., Bin, Gao, L. L., Wang, Y. L., & Zhou, D. D. (2012). Preparation of spherical activated carbon-supported and Er3+:YAlO3-doped TiO2 photocatalyst for methyl orange degradation under visible light. Transactions of Nonferrous Metals Society of China (English Edition), 22, 2477–2483. doi:10.1016/S1003-6326(11)61488-X
  • Du, W., Yin, L., Zhuo, Y., Xu, Q., Zhang, L., & Chen, C. (2014). Catalytic oxidation and adsorption of elemental mercury over CuCl2-impregnated sorbents. Industrial & Engineering Chemistry Research, 53, 582–591. doi:10.1021/ie4016073
  • Du, W., Yin, L., Zhuo, Y., Xu, Q., Zhang, L., & Chen, C. (2015). Performance of CuOx-neutral Al2O3 sorbents on mercury removal from simulated coal combustion flue gas. Fuel Processing Technology, 131 (, 403–408. doi:10.1016/j.fuproc.2014.11.039
  • EPA. (2005). Control of mercury emissions from coal-fired electric utility boilers. Air pollution prevention and control division, national risk management research laboratory office of research and development, U.S. environmental protection agency, research triangle park, NC.
  • Feeley, T. J., III, Jones, A. P., Murphy, J. T., Munson, R. K., & Ciferno, J. P. (2014). DOE’s mercury control technology research, development, and demonstration program. In E. J. Granite, H. W. Pennline, & C. Senior (Eds.), Mercury Control for Coal-Derived Gas Streams. Weinheim, Germany: Wiley-VCH.
  • Feeley, T. J., Brickett, L. A., Palko, B. A. O., & Murphy, J. T. (2005). Field testing of mercury control technologies for coal-fired power plants. DOE/NETL Mercury R&D Program Review.
  • Feeley, T. J., Murphy, J. T., Hoffmann, J. W., Granite, E. J., & Renninger, S. A. (2003). DOE-NETL’s mercury control technology R&D program for coal-fired power plants. EM: Air and Waste Management Association’s Magazine for Environmental Managers (October 2003).
  • Feng, T., Feng, G. S., Yan, L., & Pan, J. H. (2014). One-dimensional nanostructured TiO2 for photocatalytic degradation of organic pollutants in wastewater. International Journal of Photoenergy, 2014 (, 1–14. doi:10.1155/2014/563879
  • Fenton, H. J. (1894). Oxidation of tartaric acid in the presence of iron. Journal of the Chemical Society, Transactions, 65, 899–910. doi:10.1039/CT8946500899
  • Finkelman, R. (1994). Modes of occurrences of potential hazardous elements in coal: Level of confidence. Fuel Processing Technology, 39(1–3), 21–34. doi:10.1016/0378-3820(94)90169-4
  • Fu, K. L., Yu Yao, M., Guang Qin, C., Wen Cheng, G., Li, Y., Cai, M., … Ping Nie, J. (2016). Study on the removal of oxidized mercury (Hg2+) from flue gas by thiol chelating resin. Fuel Processing Technology, 148, 28–34. doi:10.1016/j.fuproc.2016.02.014
  • Galbreath, K. C., & Zygarlicke, C. J. (1996). Mercury speciation in coal combustion and gasification flue gases. Environmental Science & Technology, 30, 2421–2426. doi:10.1021/es950935t
  • Galbreath, K. C., & Zygarlicke, C. J. (2000). Mercury transformations in coal combustion flue gas. Fuel Processing Technology, 65, 289–310. doi:10.1016/S0378-3820(99)00102-2
  • Gao, Y., Zhang, Z., Wu, J., Duan, L., Umar, A., Sun, L., … Wang, Q. (2013). A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases. Environmental Science and Technology, 47, 10813–10823. doi:10.1021/es402495h
  • Granite, E. J. (2014). Preface. In Mercury Control for Coal-Derived Gas Streams. Weinheim, Germany: Wiley-VCH.
  • Granite, E. J. (2017). Comment on “Mercury oxidation by UV irradiation: Effect of contact time, UV wavelength, and moisture content”. Industrial & Engineering Chemistry Research, 56, 9408–9409. doi:10.1021/acs.iecr.7b02831
  • Granite, E. J., Freeman, M. C., Hargis, R. A., O’Dowd, W. J., & Pennline, H. W. (2007). The thief process for mercury removal from flue gas. Journal of Environmental Management, 84, 628–634. doi:10.1016/j.jenvman.2006.06.022
  • Granite, E. J., Myers, C. R., King, W. P., Stanko, D. C., & Pennline, H. W. (2006). Sorbents for mercury capture from fuel gas with application to gasification system. Industrial & Engineering Chemistry Research, 45, 4844–4848. doi:10.1021/ie060456a
  • Granite, E. J., & Pennline, H. W. (2002). Photochemical removal of mercury from flue gas. Industrial & Engineering Chemistry Research, 41, 5470–5476. doi:10.1021/ie020251b
  • Granite, E. J., & Pennline, H. W. (2003). US 6576092B2.
  • Granite, E. J., & Pennline, H. W. (2006). US7033419B1.
  • Granite, E. J., & Pennline, H. W. (2010). US7776780B1.
  • Granite, E. J., & Pennline, H. W. (2011a). US8069703B1.
  • Granite, E. J., & Pennline, H. W. (2011b). US8071500B1.
  • Granite, E. J., & Pennline, H. W. (2014). Sorbents for gasification processes. In Mercury Control for Coal-Derived Gas Streams (pp. 357–374). Weinheim, Germany: Wiley-VCH.
  • Granite, E. J., Pennline, H. W., & Hargis, R. A. (1998). Novel sorbents for mercury removal from flue gas. Industrial & Engineering Chemistry Research, 39, 1020–1029. doi:10.1021/ie990758v
  • Granite, E. J., Pennline, H. W., & Hargis, R. A. (2000). Novel sorbents for mercury removal from flue gas. Industrial & Engineering Chemistry Research, 39, 1020–1029. doi:10.1021/ie990758v
  • Granite, E. J., Pennline, H. W., & Hoffman, J. S. (1999). Effects of photochemical formation of mercuric oxide. Industrial & Engineering Chemistry Research, 38, 5034–5037. doi:10.1021/ie9904495
  • Granite, E. J., Pennline, H. W., & Senior, C. (Eds.). (2014). Mercury Control for Coal-Derived Gas Streams. Weinheim, Germany: Wiley-VCH.
  • Granite, E. J., & Presto, A. A. (2008a). Comment on the “Role of SO2 for elemental mercury removal from coal combustion flue gas by activated carbon.” Energy and Fuels, 22, 2284–2289. doi:10.1021/ef800134t
  • Granite, E. J., & Presto, A. A. (2008b). Response to comment on “Impact of sulfur oxides on mercury capture by activated carbon.” Environmental Science & Technology, 42, 972–973. doi:10.1021/es7023093
  • Granite, E. J., & Uffalussy, K. J. (2014). Novel capture technologies: Non-carbon sorbents and photochemical oxidations. In E. J. Granite & H. W. Pennline (Eds.), Mercury control for coal-derived gas streams (pp. 339–356). Weinheim, Germany: Wiley-VCH.
  • Han, L., Meng, H., Wang, J., Hu, Y., Bao, W., Chang, L., & Wang, H. (2016). Application of spent H2S scavenger of iron oxide in mercury capture from flue gas. Industrial & Engineering Chemistry Research, 55, 5100–5107. doi:10.1021/acs.iecr.5b04982
  • He, C., Shen, B., Chen, J., & Cai, J. (2014). Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs. Environmental Science & Technology, 48, 7891–7898. doi:10.1021/es5007719
  • Honghu, L., Jiangjun, H., & He, W. (2016). Catalytic oxidation removal of gaseous elemental mercury in flue gas over niobium-loaded catalyst. The Canadian Journal of Chemical Engineering, 94, 1486–1494. doi:10.1002/cjce.22516
  • Hosseini, S. M. (2008). Structural, electronic and optical properties of spinel MgAl2O4 oxide. Physica Status Solidi (b)), 245, 2800–2807. doi:10.1002/pssb.200844142
  • Hsi, H.-C., Tsai, C.-Y., Kuo, T.-H., & Chiang, C.-S. (2011). Development of low-concentration mercury adsorbents from biohydrogen-generation agricultural residues using sulfur impregnation. Bioresource Technology, 102, 7470–7477. doi:10.1016/j.biortech.2011.05.036
  • Hsi, H.-C., Tsai, C.-Y., & Lin, K.-J. (2014). Impact of surface functional groups, water vapor, and flue gas components on mercury adsorption and oxidation by sulfur-impregnated activated carbons. Energy & Fuels, 28, 3300–3309. doi:10.1021/ef500075d
  • Ie, I. R., Hung, C. H., Jen, Y. S., Yuan, C. S., & Chen, W. H. (2013). Adsorption of vapor-phase elemental mercury (Hg0) and mercury chloride (HgCl2) with innovative composite activated carbons impregnated with Na2S and S0 in different sequences. Chemical Engineering Journal, 229, 469–476. doi:10.1016/j.cej.2013.06.059
  • IEA. (2010). World Energy Outlook 2010. Paris. Retrieved from http://www.worldenergyoutlook.org/weo2010/
  • IEA. (2013). World Energy Outlook. Paris. Retrieved from http://www.worldenergyoutlook.org/weo2013/
  • Jampaiah, D., Ippolito, S. J., Sabri, Y. M., Tardio, J., Selvakannan, P. R., Nafady, A., … Bhargava, S. K. (2016). Ceria–zirconia modified MnOx catalysts for gaseous elemental mercury oxidation and adsorption. Catalysis Science & Technology, 6, 1792–1803. doi:10.1039/C5CY01534K
  • Johari, K., Saman, N., & Mat, H. (2014). Adsorption enhancement of elemental mercury onto sulphur-functionalized silica gel adsorbents. Environmental Technology, 35, 629–636. doi:10.1080/09593330.2013.840321
  • Jones, A. P., Hoffmann, J. W., Smith, D. N., Feeley, T. J., & Murphy, J. T. (2007). DOE/NETL’s phase II mercury control technology field testing program: Preliminary economic analysis of activated carbon injection. Environmental Science & Technology, 41, 1365–1371. doi:10.1021/es0617340
  • Jun-Huang, W., Qu, Z., Chen, W., Xu, H., & Yan, N. (2016). An enhancement method for the elemental mercury removal from coal-fired flue gas based on novel discharge activation reactor. Fuel, 171, 59–64. doi:10.1016/j.fuel.2015.12.066
  • Jun-Huang, W., Xu, H. M., Qu, Z., Zhao, S. J., Chen, W. M., & Yan, N. Q. (2016). Significance of Fe2O3 modified SCR catalyst for gas-phase elemental mercury oxidation in coal-fired flue gas. Fuel Processing Technology, 149, 23–28. doi:10.1016/j.fuproc.2016.04.007
  • Kesraoui-Ouki, S., Cheeseman, C. R., & Perry, R. (1994). Natural zeolite utilisation in pollution control: A review of applications to metals’ effluents. Journal of Chemical Technology and Biotechnology, 59, 121–126. doi:10.1002/jctb.280590202
  • King, W. P., Granite, E. J., & Pennline, H. W. (2003). An assessment of potential sorbents for mercury removal from fuel gas.
  • Klasson, K. T., Lima, I. M., Boihem, L. L., & Wartelle, L. H. (2010). Feasibility of mercury removal from simulated flue gas by activated chars made from poultry manures. Journal of Environmental Management, 91, 2466–2470. doi:10.1016/j.jenvman.2010.06.028
  • Kutchko, B. G., & Kim, A. G. (2006). Fly ash characterization by SEM-EDS. Fuel, 85, 2537–2544. doi:10.1016/j.fuel.2006.05.016
  • Laslo, D. J. (2014). US8663586 B1.
  • Li, F., Zhang, Y., Xiao, D., Wang, D., Pan, X., & Yang, X. (2010). Hydrothermal method prepared Ce-P-O catalyst for the selective catalytic reduction of NO with NH3 in a broad temperature range. ChemCatChem, 2, 1416–1419. doi:10.1002/cctc.201000179
  • Li, G., Shen, B., Li, Y., Zhao, B., Wang, F., He, C., … Zhang, M. (2015). Removal of element mercury by medicine residue derived biochars in presence of various gas compositions. Journal of Hazardous Materials, 298, 162–169. doi:10.1016/j.jhazmat.2015.05.031
  • Li, G., Wang, S., Wang, F., Wu, Q., Tang, Y., & Shen, B. (2017). Role of inherent active constituents on mercury adsorption capacity of chars from four solid wastes. Chemical Engineering Journal, 307, 544–552. doi:10.1016/j.cej.2016.08.106
  • Li, G., Wang, S., Wu, Q., Wang, F., & Shen, B. (2016). Mercury sorption study of halides modified bio-chars derived from cotton straw. Chemical Engineering Journal, 302, 305–313. doi:10.1016/j.cej.2016.05.045
  • Li, H., Wu, S., Li, L., Wang, J., Ma, W., & Shih, K. (2015). CuO–CeO2/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation at low temperatures. Catalysis Science & Technology, 5, 5129–5138. doi:10.1039/C5CY00794A
  • Li, H., Wu, S., Wu, C. Y., Wang, J., Li, L., & Shih, K. (2015). SCR Atmosphere Induced Reduction of Oxidized Mercury over CuO-CeO2/TiO2 Catalyst. Environmental Science & Technology, 49, 7373–7379. doi:10.1021/acs.est.5b01104
  • Li, H., Zhu, L., Wang, J., Li, L., & Shih, K. (2016). Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas. Environmental Science & Technology, 50, 9551–9557. doi:10.1021/acs.est.6b02115
  • Li, J., Chen, J., Yu, Y., & He, C. (2015). Fe-Mn-Ce/ceramic powder composite catalyst for highly volatile elemental mercury removal in simulated coal-fired flue gas. Journal of Industrial and Engineering Chemistry, 25, 352–358. doi:10.1016/j.jiec.2014.11.015
  • Li, Q., Jiang, J., Duan, L., Deng, J., Jiang, L., Li, Z., & Hao, J. (2015). Improving the Removal Efficiency of Elemental Mercury by Pre-Existing Aerosol Particles in Double Dielectric Barrier Discharge Treatments. Aerosol and Air Quality Research, 15, 1506–1513. doi:10.4209/aaqr.2014.12.0334
  • Li, S., Huang, Y., Wang, F., Liu, J., Feng, F., Shen, X., … Yan, K. (2014). Fundamentals and environmental applications of non-thermal plasmas: Multi-pollutants emission control from coal-fired flue gas. Plasma Chemistry and Plasma Processing, 34, 579–603. doi:10.1007/s11090-013-9517-x
  • Limbong, D., Kumampung, J., Rimper, J., Arai, T., & Miyazaki, N. (2003). Emissions and environmental implications of mercury from artisanal gold mining in nort Sulawesi, Indonesia. The Science of the Total Environment, 302(1–3), 227–236. doi:10.1016/S0048-9697(02)00397-2
  • Lin, C. J., & Pehkonen, S. O. (1999). The chemistry of atmospheric mercury: A review. Atmospheric Environment, 33, 2067–2079. doi:10.1016/S1352-2310(98)00387-2
  • Lineberry, Q. J., Cao, Y., Lin, Y., Ghose, S., Connell, J. W., & Pan, W. P. (2009). Mercury capture from flue gas using palladium nanoparticle-decorated substrates as injected sorbent. Energy & Fuels, 23, 1512–1517. doi:10.1021/ef800733h
  • Liu, H., Yuan, B., Zhang, B., Hu, H., Li, A., Luo, G., & Yao, H. (2014). Removal of mercury from flue gas using sewage sludge-based adsorbents. Journal of Material Cycles and Waste Management, 16(1), 101–107. doi:10.1007/s10163-013-0145-6
  • Liu, K. H., Chen, M. Y., Tsai, Y. C., Lin, H. P., & Hsi, H. C. (2017). Control of Hg0 and NO from coal-combustion flue gases using MnOx-CeOx/mesoporous SiO2 from waste rice husk. Catalysis Today, 297, 104–112. doi:10.1016/j.cattod.2017.03.037
  • Liu, Y., & Adewuyi, Y. G. (2016). A review on removal of elemental mercury from flue gas using advanced oxidation process: Chemistry and process. Chemical Engineering Research and Design, 112, 199–250. doi:10.1016/j.cherd.2016.06.024
  • Liu, Y., Bisson, T. M., Yang, H., & Xu, Z. (2010). Recent developments in novel sorbents for flue gas clean up. Fuel Processing Technology, 91, 1175–1197. doi:10.1016/j.fuproc.2010.04.015
  • Liu, Y., Tian, C., Yan, B., Lu, Q., Xie, Y., Chen, J., … Zeng, H. (2015). Nanocomposites of graphene oxide, Ag nanoparticles, and magnetic ferrite nanoparticles for elemental mercury (Hg 0) removal. RSC Advances, 5, 15634–15640. doi:10.1039/C4RA16016A
  • Liu, Y., & Wang, Q. (2014). Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor. Environmental Science & Technology, 48, 12181–12189. doi:10.1021/es501966h
  • Liu, Y., Wang, Y., Wang, Q., Pan, J., Zhang, Y., Zhou, J., & Zhang, J. (2015). A study on removal of elemental mercury in flue gas using fenton solution. Journal of Hazardous Materials, 292, 164–172. doi:10.1016/j.jhazmat.2015.03.027
  • Liu, Y., Zhang, J., & Yin, Y. (2014). Study on absorption of elemental mercury from flue gas by UV/H2O2: Process parameters and reaction mechanism. Chemical Engineering Journal, 249, 72–78. doi:10.1016/j.cej.2014.03.080
  • Liu, Y., Zhou, J., Zhang, Y., Pan, J., Wang, Q., & Zhang, J. (2015). Removal of Hg0 and simultaneous removal of Hg0/SO2/NO in flue gas using two Fenton-like reagents in a spray reactor. Fuel, 145, 180–188. doi:10.1016/j.fuel.2014.12.084
  • Liu, Z., Sriram, V., & Lee, J. Y. (2017). Heterogeneous oxidation of elemental mercury vapor over RuO2/rutile TiO2 catalyst for mercury emissions control. Applied Catalysis B: Environmental, 207, 143–152. doi:10.1016/j.apcatb.2017.02.021
  • Lu, D., Anthony, E. J., Tan, Y., Dureau, R., Ko, V., & Douglas, M. A. (2007). Mercury removal from coal combustion by Fenton reactions – Part A: Bench-scale tests. Fuel, 86, 2789–2797. doi:10.1016/j.fuel.2007.03.025
  • Ma, J., Li, C., Zhao, L., Zhang, J., Song, J., Zeng, G., … Xie, Y. (2015). Study on removal of elemental mercury from simulated flue gas over activated coke treated by acid. Applied Surface Science, 329, 292–300. doi:10.1016/j.apsusc.2014.11.090
  • Ma, S., Zhao, Y., Yang, J., Zhang, S., Zhang, J., & Zheng, C. (2017). Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma. Renewable and Sustainable Energy Reviews, 67, 791–810. doi:10.1016/j.rser.2016.09.066
  • Ma, Y., Mu, B., Zhang, X., Yuan, D., Ma, C., Xu, H., … Fang, S. (2019). Graphene enhanced Mn-Ce binary metal oxides for catalytic oxidation and adsorption of elemental mercury from coal-fired flue gas. Chemical Engineering Journal, 358, 1499–1506. doi:10.1016/j.cej.2018.10.150
  • Manivannan, A., Ramakrishnan, L., Seehra, M. S., Granite, E. J., Butler, J. E., Tryk, D. A., & Fujishima, A. (2005). Mercury detection at boron doped diamond electrodes using a rotating disk technique. Journal of Electroanalytical Chemistry, 577, 287–293. doi:10.1016/j.jelechem.2004.12.006
  • Maroto-Valer, M. M., Zhang, Y., Granite, E. J., Tang, Z., & Pennline, H. W. (2005). Effect of porous structure and surface functionality on the mercury capture of a fly ash carbon and its activated sample. Fuel, 84(1), 105–108. doi:10.1016/j.fuel.2004.07.005
  • Mars, P., & Maessen, J. G. H. (1968). The mechanism and the kinetics of sulfur dioxide oxidation on catalysts containing vanadium and alkali oxides. Journal of Catalysis, 10(1), 1–12. doi:10.1016/0021-9517(68)90216-9
  • Matsunaga, T., Yamaoka, H., Ohtani, S., Harada, Y., & Fujii, T. (2008). High photocatalytic activity of palladium-deposited mesoporous TiO2/SiO2 fibers. Applied Catalysis A: General, 351, 231–238. doi:10.1016/j.apcata.2008.09.020
  • McLarnon, C. R., Granite, E. J., & Pennline, H. W. (2005). The PCO process for photochemical removal of mercury from flue gas. Fuel Processing Technology, 87(1), 85–89. doi:10.1016/j.fuproc.2005.07.001
  • Meij, R., Vredenbregt, L. H. J., & Te Winkel, H. (2002). The fate and behavior of mercury in coal-fired power plants. Journal of the Air & Waste Management Association (1995), 52, 912–917. doi:10.1080/10473289.2002.10470833
  • Misaelides, P. (2011). Application of natural zeolites in environmental remediation: A short review. Microporous and Mesoporous Materials, 144(1–3), 15–18. doi:10.1016/j.micromeso.2011.03.024
  • Montalvo, S., Guerrero, L., Borja, R., Sánchez, E., Milán, Z., Cortés, I., & Angeles de la la Rubia, M. (2012). Application of natural zeolites in anaerobic digestion processes: A review. Applied Clay Science, 58, 125–133. doi:10.1016/j.clay.2012.01.013
  • Mukherjee, A. B., Zevenhoven, R., Bhattacharya, P., Sajwan, K. S., & Kikuchi, R. (2008). Mercury flow via coal and coal utilization by-products: A global perspective. Resources, Conservation and Recycling, 52, 571–591. doi:10.1016/j.resconrec.2007.09.002
  • Munson, C., Indrakanti, P., Ramezan, M., Granite, E. J., & Tennant, J. (2014). Evaluation of palladium-based sorbents for trace mercury removal in electricity generation. International Journal of Clean Coal and Energy, 3, 65–76. doi:10.4236/ijcce.2014.34007
  • Napan, K., Teng, L., Quinn, J. C., & Wood, B. D. (2015). Impact of heavy metals from flue gas integration with microalgae production. Algal Research, 8, 83–88. doi:10.1016/j.algal.2015.01.003
  • Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1–3), 33–50. doi:10.1016/S0304-3894(02)00282-0
  • Niu, Q., Luo, J., Xia, Y., Sun, S., & Chen, Q. (2017). Surface modification of bio-char by dielectric barrier discharge plasma for Hg0 removal. Fuel Processing Technology, 156, 310–316. doi:10.1016/j.fuproc.2016.09.013
  • O’Dowd, W. J., Hargis, R. A., Granite, E. J., & Pennline, H. W. (2004). Recent advances in mercury removal technology at the National Energy Technology Laboratory. Fuel Processing Technology, 85, 533–548. doi:10.1016/j.fuproc.2003.11.007
  • O’Dowd, W. J., Pennline, H. W., Freeman, M. C., Granite, E. J., Hargis, R. A., Lacher, C. J., & Karash, A. (2006). A technique to control mercury from flue gas: The thief process. Fuel Processing Technology, 87, 1071–1084. doi:10.1016/j.fuproc.2006.05.006
  • Oh, Y., Morris, C. D., & Kanatzidis, M. G. (2012). Polysulfide chalcogels with ion-exchange properties and highly efficient mercury vapor sorption. Journal of the American Chemical Society, 134, 14604–14608. doi:10.1021/ja3061535
  • Pacyna, E. G., Pacyna, J. M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., … Maxson, P. (2010). Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 44, 2487–2499. doi:10.1016/j.atmosenv.2009.06.009
  • Pavlish, J. H., Sondreal, E. A., Mann, M. D., Olson, E. S., Galbreath, K. C., Laudal, D. L., & Benson, S. A. (2003). Status review of mercury control options for coal-fired power plants. Fuel Processing Technology, 82, 89–165. doi:10.1016/S0378-3820(03)00059-6
  • Pekney, N. J., Martello, D. V., Schroeder, K., & Granite, E. J. (2007). Measurement of mercury flux from coal utilization by-products with a laboratory flux chamber. Mercury.
  • Pennline, H. W., Granite, E. J., Freeman, M. C., Hargis, R. A., & O’Dowd, W. J. (2003). US 6521021B1.
  • Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1–84. doi:10.1080/10643380500326564
  • Pires, M., Fiedler, H., & Teixeira, E. C. (1997). Geochemical distribution of trace elements in coal: Modelling and environmental aspects. Fuel, 76, 1425–1437. doi:10.1016/S0016-2361(97)00127-0
  • Poulston, S., Granite, E. J., Pennline, H. W., Myers, C. R., Stanko, D. P., Hamilton, H., … Chu, W. (2007). Metal sorbents for high temperature mercury capture from fuel gas. Fuel, 86, 2201–2203. ISS.), doi:10.1016/j.fuel.2007.05.015
  • Presto, A. A., & Granite, E. J. (2006). Survey of catalysts for oxidation of mercury in flue gas. Environmental Science & Technology, 40, 5601–5609. doi:10.1021/es060504i
  • Presto, A. A., & Granite, E. J. (2007). Impact of sulfur oxides on mercury capture by activated carbon. Environmental Science & Technology, 41, 6579–6584. doi:10.1021/es0708316
  • Presto, A. A., & Granite, E. J. (2008). Noble metal catalysts for mercury oxidation in utility flue gas. Platinum Metals Review, 52, 144–154. doi:10.1595/147106708X319256
  • Presto, A. A., Granite, E. J., & Karash, A. (2007). Further investigation of the impact of sulfur oxides on mercury capture by activated carbon. Industrial & Engineering Chemistry Research, 46, 8273–8276. doi:10.1021/ie071045c
  • Presto, A. A., Granite, E. J., Karash, A., Hargis, R. A., O'Dow, W. J., & Pennline, H. W. (2006). A kinetic approach to the catalytic oxidation of mercury in flue gas. Energy & Fuels, 20, 1941–1945. doi:10.1021/ef060207z
  • Pudasainee, D., Seo, Y.-C., Sung, J.-H., Jang, H.-N., & Gupta, R. (2016). Mercury co-beneficial capture in air pollution control devices of coal-fired power plants. International Journal of Coal Geology, 170, 6–11. doi:10.1016/j.coal.2016.08.013
  • Qi, H., Xu, W., Wang, J., Tong, L., & Zhu, T. (2015). Hg0 removal from flue gas over different zeolites modified by FeCl3. Journal of Environmental Sciences (China), 28, 110–117. doi:10.1016/j.jes.2014.05.050
  • Qi, X., Mei, Gu, M., Li, Zhu, X., Yuan, Wu, J., Long, H. M., He, K., & … U, Q. (2016). Fabrication of BiOIO3 nanosheets with remarkable photocatalytic oxidation removal for gaseous elemental mercury. Chemical Engineering Journal, 285, 11–19. doi:10.1016/j.cej.2015.09.055
  • Qu, Z., Xie, J., Xu, H., Chen, W., & Yan, N. (2015). Regenerable sorbent with a high capacity for elemental mercury removal and recycling from the simulated flue gas at a low temperature. Energy & Fuels, 29, 6187–6196. doi:10.1021/acs.energyfuels.5b00868
  • Rafaj, P., Bertok, I., Cofala, J., & Schöpp, W. (2013). Scenarios of global mercury emissions from anthropogenic sources. Atmospheric Environment, 79, 472–479. doi:10.1016/j.atmosenv.2013.06.042
  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 177(1–3), 70–80. doi:10.1016/j.jhazmat.2009.12.047
  • Reddy, B. M., Durgasri, N., Kumar, T. V., & Bhargava, S. K. (2012). Abatement of gas-phase mercury—recent developments. Catalysis Reviews, 54, 344–398. doi:10.1080/01614940.2012.650966
  • Reddy, G. K., He, J., Thiel, S. W., Pinto, N. G., & Smirniotis, P. G. (2015). Sulfur-tolerant Mn-Ce-Ti sorbents for elemental mercury removal from flue gas: Mechanistic investigation by XPS. The Journal of Physical Chemistry C, 119, 8634–8644. doi:10.1021/jp512185s
  • Reddy, S. K. K., Prabhu, A., A., A. S., & Srinivasakannan, C. (2016). Application of sulfonated carbons for mercury removal in gas processing. Energy & Fuels, 30, 3227–3232. doi:10.1021/acs.energyfuels.5b02630
  • Rodriguez-Perez, J., Lopez-Anton, M. A., Diaz-Somoano, M., Garcia, R., & Martinez-Tarazona, M. R. (2013). Regenerable sorbents for mercury capture in simulated coal combustion flue gas. Journal of Hazardous Materials, 260, 869–877. doi:10.1016/j.jhazmat.2013.06.026
  • Romero, A., Dorado, F., Asencio, I., Garcia, P. B., & Valverde, J. L. (2006). Ti-pillared clays: Synthesis and general characterization. Clays and Clay Minerals, 54, 737–747. doi:10.1346/CCMN.2006.0540608
  • Rungnim, C., Meeprasert, J., Kunaseth, M., Junkaew, A., Khamdahsag, P., Khemthong, P., … Namuangruk, S. (2015). Understanding synergetic effect of TiO2-supported silver nanoparticle as a sorbent for Hg0 removal. Chemical Engineering Journal, 274, 132–142. doi:10.1016/j.cej.2015.03.101
  • Rupp, E. C., Granite, E. J., & Stanko, D. C. (2010). Method for detection of trace metal and metalloid contaminants in coal-generated fuel gas using gas chromatography/ion trap mass spectrometry. Analytical Chemistry, 82, 6315–6317. doi:10.1021/ac1012249
  • Rupp, E. C., Granite, E. J., & Stanko, D. C. (2013). Laboratory scale studies of Pd/γ-Al2O3 sorbents for the removal of trace contaminants from coal-derived fuel gas at elevated temperatures. Fuel, 108, 131–136. doi:10.1016/j.fuel.2010.12.013
  • Scala, F., Anacleria, C., & Cimino, S. (2013). Characterization of a regenerable sorbent for high temperature elemental mercury capture from flue gas. Fuel, 108, 13–18. doi:10.1016/j.fuel.2010.12.028
  • Scala, F., Chirone, R., & Lancia, A. (2011). Elemental mercury vapor capture by powdered activated carbon in a fluidized bed reactor. Fuel, 90, 2077–2082. doi:10.1016/j.fuel.2011.02.042
  • Scala, F., & Cimino, S. (2015). Elemental mercury capture and oxidation by a regenerable manganese-based sorbent: The effect of gas composition. Chemical Engineering Journal, 278, 134–139. doi:10.1016/j.cej.2014.11.094
  • Senior, C. L., Sarofim, A. F., Zeng, T., Helble, J. J., & Mamani-Paco, R. (2000). Gas-phase transformations of mercury in coal-fired power plants. Fuel Processing Technology, 63, 197–213. doi:10.1016/S0378-3820(99)00097-1
  • Shao, H., Liu, X., Zhou, Z., Zhao, B., Chen, Z., & Xu, M. (2016). Elemental mercury removal using a novel KI modified bentonite supported by starch sorbent. Chemical Engineering Journal, 291, 306–316. doi:10.1016/j.cej.2016.01.090
  • Shen, B., Chen, J., & Yue, S. (2015). Removal of elemental mercury by titanium pillared clay impregnated with potassium iodine. Microporous and Mesoporous Materials, 203, 216–223. doi:10.1016/j.micromeso.2014.10.030
  • Shen, B., Li, G., Wang, F., Wang, Y., He, C., Zhang, M., & Singh, S. (2015). Elemental mercury removal by the modified bio-char from medicinal residues. Chemical Engineering Journal, 272, 28–37. doi:10.1016/j.cej.2015.03.006
  • Shen, H., Ie, I. R., Yuan, C. S., & Hung, C. H. (2016). The enhancement of photo-oxidation efficiency of elemental mercury by immobilized WO3/TiO2 at high temperatures. Applied Catalysis B: Environmental, 195, 90–103. doi:10.1016/j.apcatb.2016.04.045
  • Shi, Y., Deng, S., Wang, H., Huang, J., Li, Y., Zhang, F., & Shu, X. (2016). Fe and Co modified vanadium–titanium steel slag as sorbents for elemental mercury adsorption. RSC Advances, 6, 15999–16009. doi:10.1039/C5RA26712A
  • Shu, T., Lu, P., & He, N. (2013). Mercury adsorption of modified mulberry twig chars in a simulated flue gas. Bioresource Technology, 136, 182–187. doi:10.1016/j.biortech.2013.02.087
  • Sickafus, K. E., Wills, J. M., & Grimes, N. W. (1999). Structure of spinel. Journal of the American Ceramic Society, 82, 3279–3292. doi:10.1111/j.1151-2916.1999.tb02241.x
  • Sjostrom, S., Durham, M., Bustard, C. J., & Martin, C. (2010). Activated carbon injection for mercury control: Overview. Fuel, 89, 1320–1322. doi:10.1016/j.fuel.2009.11.016
  • Sloss, L. (2012). Legislation, standards and methods for mercury emissions control.
  • Stergarek, A., Horvat, M., Frkal, P., & Stergarek, J. (2010). Removal of Hg0 from flue gases in wet FGD by catalytic oxidation with air – An experimental study. Fuel, 89, 3167–3177. doi:10.1016/j.fuel.2010.04.006
  • Strezov, V., Evans, T. J., Ziolkowski, A., & Nelson, P. F. (2010). Mode of occurrence and thermal stability of mercury in coal. Energy & Fuels, 24(1), 53–57. doi:10.1021/ef900473p
  • Styszko-Grochowiak, K., Gołaś, J., Jankowski, H., & Koziński, S. (2004). Characterization of the coal fly ash for the purpose of improvement of industrial on-line measurement of unburned carbon content. Fuel, 83, 1847–1853. doi:10.1016/j.fuel.2004.03.005
  • Sun, C., Snape, C. E., & Liu, H. (2013). Development of low-cost functional adsorbents for control of mercury (Hg) emissions from coal combustion. Energy & Fuels, 27, 3875–3882. doi:10.1021/ef3019782
  • Tan, Z., Qiu, J., Zeng, H., Liu, H., & Xiang, J. (2011). Removal of elemental mercury by bamboo charcoal impregnated with H2O2. Fuel, 90, 1471–1475. doi:10.1016/j.fuel.2010.12.004
  • Tan, Z., Su, S., Qiu, J., Kong, F., Wang, Z., Hao, F., & Xiang, J. (2012). Preparation and characterization of Fe2O3–SiO2 composite and its effect on elemental mercury removal. Chemical Engineering Journal, 195–196, 218–225. doi:10.1016/j.cej.2012.04.083
  • Tan, Z., Sun, L., Xiang, J., Zeng, H., Liu, Z., Hu, S., & Qiu, J. (2012). Gas-phase elemental mercury removal by novel carbon-based sorbents. Carbon, 50, 362–371. doi:10.1016/j.carbon.2011.08.036
  • Tan, Z., Xiang, J., Su, S., Zeng, H., Zhou, C., Sun, L., … Qiu, J. (2012). Enhanced capture of elemental mercury by bamboo-based sorbents. Journal of Hazardous Materials, 239–240, 160–166. doi:10.1016/j.jhazmat.2012.08.053
  • Tang, H., Duan, Y., Zhu, C., Li, C., She, M., Zhou, Q., & Cai, L. (2017). Characteristics of a biomass-based sorbent trap and its application to coal-fired flue gas mercury emission monitoring. International Journal of Coal Geology, 170, 19–27. doi:10.1016/j.coal.2016.09.012
  • Tang, R., Yang, W., Wang, H., Zhou, J., Zhang, Z., & Wu, S. (2016). Preparation of fly-ash-modified bamboo-shell carbon black and its mercury removal performance in simulated flue gases. Energy & Fuels, 30, 4191–4196. doi:10.1021/acs.energyfuels.5b02795
  • Tao, S., Li, C., Fan, X., Zeng, G., Lu, P., Zhang, X., … Fan, C. (2012). Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas. Chemical Engineering Journal, 210, 547–556. doi:10.1016/j.cej.2012.09.028
  • Tsai, C. Y., Kuo, T. H., & Hsi, H. C. (2012). Fabrication of Al-doped TiO2 visible-light photocatalyst for low-concentration mercury removal. International Journal of Photoenergy, 2012, 1. doi:10.1155/2012/874509
  • Wade, C. B., Thurman, C., Freas, W., Student, J., Matty, D., & Mohanty, D. K. (2012). Preparation and characterization of high efficiency modified activated carbon for the capture of mercury from flue gas in coal-fired power plants. Fuel Processing Technology, 97, 107–117. doi:10.1016/j.fuproc.2012.01.017
  • Wan, Q., Duan, L., He, K., & Li, J. (2011). Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas. Chemical Engineering Journal, 170, 512–517. doi:10.1016/j.cej.2010.11.060
  • Wang, H., Zhou, S., Xiao, L., Wang, Y., Liu, Y., & Wu, Z. (2011). Titania nanotubes-A unique photocatalyst and adsorbent for elemental mercury removal. Catalysis Today, 175(1), 202–208. doi:10.1016/j.cattod.2011.03.006
  • Wang, L., Zhao, Y., & Zhang, J. (2017). Comprehensive Evaluation of Mercury Photocatalytic Oxidation by Cerium-Based TiO2 Nanofibers. Industrial and Engineering Chemistry Research, 56, 3804–3812. doi:10.1021/acs.iecr.6b04995
  • Wang, S., Zhang, L., Li, G., Wu, Y., Hao, J., Pirrone, N., … Ancora, M. P. (2009). Mercury emission and speciation of coal-fired power plants in China. Atmospheric Chemistry and Physics Discussions, 9, 24051–24083. doi:10.5194/acpd-9-24051-2009
  • Wang, S., Zhang, Y., Gu, Y., Wang, J., Liu, Z., Zhang, Y., … Pan, W-P. (2016). Using modified fly ash for mercury emissions control for coal-fired power plant applications in China. Fuel, 181, 1230–1237. doi:10.1016/j.fuel.2016.02.043
  • Wang, Y., & Duan, Y. (2011). Effect of manganese ions on the structure of Ca(OH)2 and Mercury Adsorption Performance of Mnx+/Ca(OH)2 Composites. Energy & Fuels, 25, 1553–1558. doi:10.1021/ef200113t
  • Wang, Y., Duan, Y., Yang, L., Zhao, C., Shen, X., Zhang, M., … Chen, C. (2009). Experimental study on mercury transformation and removal in coal-fired boiler flue gases. Fuel Processing Technology, 90, 643–651. doi:10.1016/j.fuproc.2008.10.013
  • Wang, Y., Li, C., Zhao, L., Xie, Y., Zhang, X., Zeng, G., … Zhang, J. (2016). Study on the removal of elemental mercury from simulated flue gas by Fe2O3-CeO2/AC at low temperature. Environmental Science and Pollution Research, 23, 5099–5110. doi:10.1007/s11356-015-5717-7
  • Wang, Y., Shen, B., He, C., Yue, S., & Wang, F. (2015). Simultaneous removal of NO and Hg0 from flue gas over Mn–Ce/Ti-PILCs. Environmental Science & Technology, 49, 9355–9363. doi:10.1021/acs.est.5b01435
  • Wei, Z., Luo, Y., Li, B., Cheng, Z., Wang, J., & Ye, Q. (2015). Microwave assisted catalytic removal of elemental mercury from flue gas using Mn/zeolite catalyst. Atmospheric Pollution Research, 6(1), 45–51. doi:10.5094/APR.2015.006
  • Wei, Z. S., Luo, Y. W., Li, B. R., Chen, Z. Y., Ye, Q. H., Huang, Q. R., & He, J. C. (2015). Elemental mercury oxidation from flue gas by microwave catalytic oxidation over Mn/Al2O3. Journal of Industrial and Engineering Chemistry, 24, 315–321. doi:10.1016/j.jiec.2014.10.002
  • Wen, X., Li, C., Fan, X., Gao, H., Zhang, W., Chen, L., … Zhao, Y. (2011). Experimental Study of Gaseous Elemental Mercury Removal. Energy & Fuels, 25, 2939–2944. doi:10.1021/ef200144j
  • Weng, X., Mei, R., Shi, M., Kong, Q., Liu, Y., & Wu, Z. (2015). CePO4 catalyst for elemental mercury removal in simulated coal-fired flue gas. Energy & Fuels, 29, 3359–3365. doi:10.1021/acs.energyfuels.5b00119
  • Wiatros-Motyka, M. M., Sun, C. G., Stevens, L. A., & Snape, C. E. (2013). High capacity co-precipitated manganese oxides sorbents for oxidative mercury capture. Fuel, 109, 559–562. doi:10.1016/j.fuel.2013.03.019
  • Wu, C., Cao, Y., Dong, Z., Cheng, C., Li, H., & Pan, W. (2010). Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler. Journal of Environmental Sciences, 22, 277–282. doi:10.1016/S1001-0742(09)60105-4
  • Wu, H., Li, C., Zhao, L., Zhang, J., Zeng, G., Xie, Y., … Wang, Y. (2015). Removal of gaseous elemental mercury by cylindrical activated coke loaded with CoOx -CeO2 from simulated coal combustion flue gas. Energy & Fuels, 29, 6747–6757. doi:10.1021/acs.energyfuels.5b00871
  • Xiao, X., Yang, H., Zhang, H., Lu, J., & Yue, G. (2005). Research on carbon content in fly ash from circulating fluidized bed boilers. Energy & Fuels, 19, 1520–1525. doi:10.1021/ef049678g
  • Xie, J., Qu, Z., Yan, N., Yang, S., Chen, W., Hu, L., … Liu, P. (2013). Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery. Journal of Hazardous Materials, 261, 206–213. doi:10.1016/j.jhazmat.2013.07.027
  • Xie, J., Xu, H., Qu, Z., Huang, W., Chen, W., Ma, Y., … Yan, N. (2014). Sn-Mn binary metal oxides as non-carbon sorbent for mercury removal in a wide-temperature window. Journal of Colloid and Interface Science, 428(x ), 121–127. doi:10.1016/j.jcis.2014.04.032
  • Xie, Y., Li, C., Zhao, L., Zhang, J., Zeng, G., Zhang, X., … Tao, S. (2015). Experimental study on Hg0 removal from flue gas over columnar MnOx-CeO2/activated coke. Applied Surface Science, 333, 59–67. doi:10.1016/j.apsusc.2015.01.234
  • Xing, L., Xu, Y., & Zhong, Q. (2012). Mn and Fe modified fly ash as a superior catalyst for elemental mercury capture under air conditions. Energy & Fuels, 26, 4903–4909. doi:10.1021/ef3005256
  • Xu, H., Qu, Z., Zhao, S., Mei, J., Quan, F., & Yan, N. (2015). Different crystal-forms of one-dimensional MnO2 nanomaterials for the catalytic oxidation and adsorption of elemental mercury. Journal of Hazardous Materials, 299, 86–93. doi:10.1016/j.jhazmat.2015.06.012
  • Xu, H., Qu, Z., Zong, C., Huang, W., Quan, F., & Yan, N. (2015). MnOx/graphene for the catalytic oxidation and adsorption of elemental mercury. Environmental Science & Technology, 49, 6823–6830. doi:10.1021/es505978n
  • Xu, H., Zhang, H., Zhao, S., Huang, W., Qu, Z., & Yan, N. (2016). Elemental mercury (Hg0) removal over spinel LiMn2O4 from coal-fired flue gas. Chemical Engineering Journal, 299, 142–149. doi:10.1016/j.cej.2016.04.094
  • Xu, W., Wang, H., Zhou, X., & Zhu, T. (2014). CuO/TiO2 catalysts for gas-phase Hg0 catalytic oxidation. Chemical Engineering Journal, 243, 380–385. doi:10.1016/j.cej.2013.12.014
  • Xu, W., Wang, H., Zhu, T., Kuang, J., & Jing, P. (2013). Mercury removal from coal combustion flue gas by modified fly ash. Journal of Environmental Sciences (China), 25, 393–398. doi:10.1016/S1001-0742(12)60065-5
  • Xu, Y., Zeng, X., Luo, G., Zhang, B., Xu, P., Xu, M., & Yao, H. (2016). Chlorine-char composite synthesized by co-pyrolysis of biomass wastes and polyvinyl chloride for elemental mercury removal. Fuel, 183, 73–79. doi:10.1016/j.fuel.2016.06.024
  • Xu, Y., Zeng, X., Zhang, B., Zhu, X., Zhou, M., Zou, R., … Yao, H. (2016). Experiment and kinetic study of elemental mercury adsorption over a novel chlorinated sorbent derived from coal and waste polyvinyl chloride. Energy & Fuels, 30, 10635–10642. doi:10.1021/acs.energyfuels.6b01372
  • Xu, Y., Zhong, Q., & Liu, X. (2014). Elemental mercury oxidation and adsorption on magnesite powder modified by Mn at low temperature. Journal of Hazardous Materials, 283C, 252–259. doi:10.1016/j.jhazmat.2014.09.034
  • Xu, Y., Zhong, Q., & Xing, L. (2014). Gas-phase elemental mercury removal from flue gas by cobalt-modified fly ash at low temperatures. Environmental Technology, 35, 2870–2877. doi:10.1080/09593330.2014.924569
  • Yang, H., Xu, Z., Fan, M., Bland, A. E., & Judkins, R. R. (2007). Adsorbents for capturing mercury in coal-fired boiler flue gas. Journal of Hazardous Materials, 146(1–2), 1–11. doi:10.1016/j.jhazmat.2007.04.113
  • Yang, J., Zhao, Y., Ma, S., Zhu, B., Zhang, J., & Zheng, C. (2016). Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust. Environmental Science & Technology, 50, 12040–12047. doi:10.1021/acs.est.6b03743
  • Yang, J., Zhao, Y., Zhang, J., & Zheng, C. (2014). Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas. Environmental Science & Technology, 48, 14837–14843. doi:10.1021/es504419v
  • Yang, S., Guo, Y., Yan, N., Wu, D., He, H., Qu, Z., … Jia, J. (2011). Nanosized cation-deficient Fe-Ti spinel: A novel magnetic sorbent for elemental mercury capture from flue gas. ACS Applied Materials & Interfaces, 3, 209–217. doi:10.1021/am100835c
  • Yang, W., Li, C., Wang, H., Li, X., Zhang, W., & Li, H. (2018). Cobalt doped ceria for abundant storage of surface active oxygen and efficient elemental mercury oxidation in coal combustion flue gas. Applied Catalysis B: Environmental, 239, 233–244. doi:10.1016/j.apcatb.2018.08.014
  • Yao, Y., Velpari, V., & Economy, J. (2014). Design of sulfur treated activated carbon fibers for gas phase elemental mercury removal. Fuel, 116, 560–565. doi:10.1016/j.fuel.2013.08.063
  • Yuan, Y., Zhao, Y., Li, H., Li, Y., Gao, X., Zheng, C., & Zhang, J. (2012). Electrospun metal oxide–TiO2 nanofibers for elemental mercury removal from flue gas. Journal of Hazardous Materials, 227–228, 427–435. doi:10.1016/j.jhazmat.2012.05.003
  • Zeng, J., Li, C., Zhao, L., Gao, L., Du, X., Zhang, J., … Zeng, G. (2017). Removal of elemental mercury from simulated flue gas over peanut shells carbon loaded with iodine ions, manganese oxides, and zirconium dioxide. Energy and Energy & Fuels, 31, 13909–13920. doi:10.1021/acs.energyfuels.7b02500
  • Zeng, X., Xu, Y., Zhang, B., Luo, G., Sun, P., Zou, R., & Yao, H. (2017). Elemental mercury adsorption and regeneration performance of sorbents FeMnOx enhanced via non-thermal plasma. Chemical Engineering Journal, 309, 503–512. doi:10.1016/j.cej.2016.10.047
  • Zhang, A., Zheng, W., Song, J., Hu, S., Liu, Z., & Xiang, J. (2014). Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature. Chemical Engineering Journal, 236, 29–38. doi:10.1016/j.cej.2013.09.060
  • Zhang, B., Xu, P., Qiu, Y., Yu, Q., Ma, J., Wu, H., … Yao, H. (2015). Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases. Chemical Engineering Journal, 263, 1–8. doi:10.1016/j.cej.2014.10.090
  • Zhang, B., Zeng, X., Xu, P., Chen, J., Xu, Y., Luo, G., … Yao, H. (2016). Using the novel method of nonthermal plasma to add Cl active sites on activated carbon for removal of mercury from flue gas. Environmental Science & Technology, 50, 11837–11843. doi:10.1021/acs.est.6b01919
  • Zhang, J., Duan, Y., Zhao, W., Zhu, C., Zhou, Q., & She, M. (2015). Removal of elemental mercury from simulated flue gas by combining non-thermal plasma with calcium oxide. Plasma Chemistry and Plasma Processing, 36, 1–15. doi:10.1007/s11090-015-9668-z
  • Zhang, J., Duan, Y., Zhou, Q., Zhu, C., She, M., & Ding, W. (2016). Adsorptive removal of gas-phase mercury by oxygen non-thermal plasma modified activated carbon. Chemical Engineering Journal, 294, 281–289. doi:10.1016/j.cej.2016.02.002
  • Zhang, L., Zhuo, Y., Du, W., Tao, Y., Chen, C., & Xu, X. (2012). Hg removal characteristics of noncarbon sorbents in a fixed-bed reactor. Industrial & Engineering Chemistry Research, 51, 5292–5298. doi:10.1021/ie202750c
  • Zhang, M., Wang, P., Dong, Y., Sui, H., & Xiao, D. (2014). Study of elemental mercury oxidation over an SCR catalyst with calcium chloride addition. Chemical Engineering Journal, 253, 243–250. doi:10.1016/j.cej.2014.05.066
  • Zhang, Y., Zhang, Y., Wang, T., Lin, J. W., Romero, C. E., Pan, W. & Ping, (2017). Oxidation of elemental mercury with non-thermal plasma coupled with a wet process. Fuel, 197, 320–325. doi:10.1016/j.fuel.2017.02.052
  • Zhao, B., Yi, H., Tang, X., Li, Q., Liu, D., & Gao, F. (2016). Copper modified activated coke for mercury removal from coal-fired flue gas. Chemical Engineering Journal, 286, 585–593. doi:10.1016/j.cej.2015.10.107
  • Zhao, H., Yang, G., Gao, X., Pang, C. H., Kingman, S. W., & Wu, T. (2016). Hg0 Capture over CoMoS/γ-Al2O3 with MoS2 Nanosheets at Low Temperatures. Environmental Science & Technology, 50, 1056–1064. doi:10.1021/acs.est.5b04278
  • Zhao, H., Yang, G., Gao, X., Pang, C., Kingman, S., Lester, E., & Wu, T. (2016). Hg0-temperature-programmed surface reaction and its application on the investigation of metal oxides for Hg0 capture. Fuel, 181, 1089–1094. doi:10.1016/j.fuel.2016.04.095
  • Zhao, J., & Yang, X. (2003). Photocatalytic oxidation for indoor air purification: A literature review. Building and Environment, 38, 645–654. doi:10.1016/S0360-1323(02)00212-3
  • Zhao, L., Huang, Y., Chen, H., Zhao, Y., & Xiao, T. (2017). Study on the preparation of bimetallic oxide sorbent for mercury removal. Fuel, 197, 20–27. doi:10.1016/j.fuel.2017.01.122
  • Zhao, L., Li, C., Zhang, X., Zeng, G., Zhang, J., & Xie, Y. (2015). A review on oxidation of elemental mercury from coal-fired flue gas with selective catalytic reduction catalysts. Catalysis Science & Technology, 5, 3459–3472. doi:10.1039/C5CY00219B
  • Zhao, L., Li, C., Zhang, X., Zeng, G., Zhang, J., & Xie, Y. (2016). Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas. Environmental Science and Pollution Research, 23, 1471–1481. doi:10.1007/s11356-015-5143-x
  • Zhao, Y., & Hao, R. (2014). Macrokinetics of Hg0 removal by a vaporized multicomponent oxidant. Industrial & Engineering Chemistry Research, 53, 10899–10905. doi:10.1021/ie5009376
  • Zhao, Y., Hao, R., & Qi, M. (2015). Integrative process of preoxidation and absorption for simultaneous removal of SO2, NO and Hg0. Chemical Engineering Journal, 269, 159–167. doi:10.1016/j.cej.2015.01.064
  • Zhao, Y., Hao, R., Xue, F., & Feng, Y. (2017). Simultaneous removal of multi-pollutants from flue gas by a vaporized composite absorbent. Journal of Hazardous Materials, 321, 500–508. doi:10.1016/j.jhazmat.2016.09.044
  • Zhi, J., Yu, X., Bao, J., Jiang, X., & Yang, H. (2016). Catalytic oxidation and capture of elemental mercury from simulated flue gas using Mn-doped titanium dioxide. Korean Journal of Chemical Engineering, 33, 1823–1830. doi:10.1007/s11814-016-0026-5
  • Zhou, C., Sun, L., Xiang, J., Hu, S., Su, S., & Zhang, A. (2015). The experimental and mechanism study of novel heterogeneous Fenton-like reactions using Fe3-xTixO4 catalysts for Hg0 absorption. Proceedings of the Combustion Institute, 35, 2875–2882. doi:10.1016/j.proci.2014.06.049
  • Zhou, C., Sun, L., Zhang, A., Ma, C., Wang, B., Yu, J., … Xiang, J. (2015). Elemental mercury (Hg0) removal from containing SO2/NO flue gas by magnetically separable Fe2.45Ti0.55O4/H2O2 advanced oxidation processes. Chemical Engineering Journal, 273, 381–389. doi:10.1016/j.cej.2015.03.105
  • Zhou, C., Sun, L., Zhang, A., Wu, X., Ma, C., Su, S., … Xiang, J. (2015). Fe3-xCuxO4 as highly active heterogeneous Fenton-like catalysts toward elemental mercury removal. Chemosphere, 125, 16–24. doi:10.1016/j.chemosphere.2014.12.082
  • Zhou, Q., Duan, Y. F., Hong, Y. G., Zhu, C., She, M., Zhang, J., & Wei, H. Q. (2015). Experimental and kinetic studies of gas-phase mercury adsorption by raw and bromine modified activated carbon. Fuel Processing Technology, 134, 325–332. doi:10.1016/j.fuproc.2014.12.052
  • Zhou, Q., Duan, Y., Zhu, C., She, M., Zhang, J., & Yao, T. (2015). In-flight mercury removal and cobenefit of SO2 and NO Reduction by NH4Br impregnated activated carbon injection in an entrained flow reactor. Energy & Fuels, 29, 8118–8125. doi:10.1021/acs.energyfuels.5b01903
  • Zhou, Z.-J., Liu, X.-W., Zhao, B., Chen, Z.-G., Shao, H.-Z., Wang, L.-L., & Xu, M.-H. (2015). Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants. Fuel Processing Technology, 131, 99–108. doi:10.1016/j.fuproc.2014.11.014
  • Zhou, Z., Liu, X., Liao, Z., Shao, H., Hu, Y., Xu, Y., & Xu, M. (2016). A novel low temperature catalyst regenerated from deactivated SCR catalyst for Hg0 oxidation. Chemical Engineering Journal, 304, 121–128. doi:10.1016/j.cej.2016.06.080

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.