810
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Methylmercury and selenium interactions: Mechanisms and implications for soil remediation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1737-1768 | Published online: 03 Apr 2019

References

  • Afton, S. E., & Caruso, J. A. (2009). The effect of Se antagonism on the metabolic fate of Hg in Allium fistulosum. Journal of Analytical Atomic Spectrometry, 24(6), 759–766. doi:10.1039/b823251b
  • Amde, M., Yin, Y., Zhang, D., & Liu, J. (2016). Methods and recent advances in speciation analysis of mercury chemical species in environmental samples: A review. Chemical Speciation and Bioavailability, 28(1–4), 51–65. doi:10.1080/09542299.2016.1164019
  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Prasad, M. N. V., Wenzel, W. W., & Rinklebe, J. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation-A review. Earth-Science Reviews, 171, 621–645. doi:10.1016/j.earscirev.2017.06.005
  • Avendano, R., Chaves, N., Fuentes, P., Sanchez, E., Jimenez, J. I., & Chavarria, M. (2016). Production of selenium nanoparticles in Pseudomonas putida KT2440. Scientific Reports, 6, 37155.
  • Bachand, P. A., Bachand, S. M., Fleck, J. A., Alpers, C. N., Stephenson, M., & Windham-Myers, L. (2014). Methylmercury production in and export from agricultural wetlands in California, USA: The need to account for physical transport processes into and out of the root zone. Science of the Total Environment, 472, 957–970. doi:10.1016/j.scitotenv.2013.11.086
  • Baldi, F., Pepi, M., & Filippelli, M. (1993). Methylmercury resistance in desulfovibrio desulfuricans strains in relation to methylmercury degradation. Applied and Environmental Microbiology, 59(8), 2479–2485.
  • Bao, Z. (1975). Discovery of tiemannite and its prospecting significance. Exploration and Mining Geology, 11(1), 35–37.
  • Barkay, T., Turner, R. R., Vandenbrook, A., & Liebert, C. (1991). The relationships of Hg(II) volatilization from a freshwater pond to the abundance of mer genes in the gene pool of the indigenous microbial community. Microbial Ecology, 21(2), 151–161. doi:10.1007/BF02539150
  • Barnett, M. O., Harris, L. A., Turner, R. R., Stevenson, R. J., Henson, T. J., Melton, R. C., & Hoffman, D. P. (1997). Formation of mercuric sulfide in soil. Environmental Science & Technology, 31(11), 3037–3043. doi:10.1021/es960389j
  • Beckers, F., & Rinklebe, J. (2017). Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47(9), 693–794. doi:10.1080/10643389.2017.1326277
  • Begley, T. P., Walts, A. E., & Walsh, C. T. (1986). Mechanistic studies of a protonolytic organomercurial cleaving enzyme: Bacterial organomercurial lyase. Biochemistry, 25(22), 7192–7200. doi:10.1021/bi00370a064
  • Belzile, N., Chen, Y. W., Gunn, J. M., Tong, J., Alarie, Y., Delonchamp, T., & Lang, C. Y. (2006). The effect of selenium on mercury assimilation by freshwater organisms. Canadian Journal of Fisheries and Aquatic Sciences, 63(1), 1–10. doi:10.1139/f05-202
  • Benoit, J. M., Gilmour, C. C., Heyes, A., Mason, R. P., & Miller, C. L.. (2003). Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In Y., Cai, & O. C. Braids (Eds.), Biogeochemistry of Environmentally Important Trace Elements (835, pp. 262–297). Washington, DC: American Chemical Society.
  • Benoit, J. M., Gilmour, C. C., Mason, R. P., & Heyes, A. (1999). Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environmental Science & Technology, 33(6), 951–957. doi:10.1021/es9808200
  • Biswas, A., Brooks, S. C., Miller, C. L., Mosher, J. J., Yin, X. L., & Drake, M. M. (2011). Bacterial growth phase influences methylmercury production by the sulfate-reducing bacterium desulfovibrio desulfuricans ND132. Science of the Total Environment, 409(19), 3943–3948. doi:10.1016/j.scitotenv.2011.06.037
  • Bjornberg, A., Hakanson, L., & Lundbergh, K. (1988). A theory on the mechanisms regulating the bioavailability of mercury in natural waters. Environmental Pollution, 49(1), 53–61. doi:10.1016/0269-7491(88)90013-9
  • Blaylock, M. J., & James, B. R. (1994). Redox transformations and plant uptake of selenium resulting from root-soil interactions. Plant and Soil, 158(1), 1–12. doi:10.1007/BF00007911
  • Bradley, M. A., Barst, B. D., & Basu, N. (2017). A review of mercury bioavailability in humans and fish. International Journal of Environmental Research and Public Health, 14(2), E169.
  • Branfireun, B. A., Roulet, N. T., Kelly, C. A., & Rudd, J. W. M. (1999). In situ sulphate stimulation of mercury methylation in a boreal peatland: Toward a link between acid rain and methylmercury contamination in remote environments. Global Biogeochemical Cycles, 13(3), 743–750. doi:10.1029/1999GB900033
  • Brown, T. A., & Shrift, A. (1981). Exclusion of selenium from proteins of selenium-tolerant Astragalus species. Plant Physiology, 67(5), 1051–1053. doi:10.1104/pp.67.5.1051
  • Burger, J. (2012). Selenium:mercury molar ratios in fish from the Savannah River: Implications for risk management. Journal of Risk Research, 15(6), 627–644. doi:10.1080/13669877.2011.649298
  • Cammen, L. M. (1979). Ingestion rate: An empirical model for aquatic deposit feeders and detritivores. Oecologia, 44(3), 303–310. doi:10.1007/BF00545232
  • Chander, K., & Joergensen, R. G. (2007). Microbial biomass and activity indices after organic substrate addition to a selenium-contaminated soil. Biology and Fertility of Soils, 44(1), 241–244. doi:10.1007/s00374-007-0212-z
  • Chapman, E. E. V., Robinson, J., Berry, J., & Campbell, L. M. (2016). Can a low-dose selenium (Se) additive reduce environmental risks of mercury (Hg) and arsenic (As) in old gold mine tailings? Water Air and Soil Pollution, 227(6), 216. doi:10.1007/s11270-016-2909-9
  • Chen, D., & Sun, S. (1991). Tiemannite and metacinnabar from Mercury Belt in Western Hunan-Eastern Guizhou. Acta Petrologica Et Mineralogica, 10(1), 58–62.
  • Chen, Y. W., Truong, H. Y. T., & Belzile, N. (2009). Abiotic formation of elemental selenium and role of iron oxide surfaces. Chemosphere, 74(8), 1079–1084. doi:10.1016/j.chemosphere.2008.10.043
  • Chen, Y., Yin, Y., Shi, J., Liu, G., Hu, L., Liu, J., … Jiang, G. (2017). Analytical methods, formation, and dissolution of cinnabar and its impact on environmental cycle of mercury. Critical Reviews in Environmental Science and Technology, 47(24), 2415–2447. doi:10.1080/10643389.2018.1429764
  • Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36(8), 609–662. doi:10.1080/10408440600845619
  • Compeau, G. C., & Bartha, R. (1985). Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology 50(2), 498–502.
  • Curry, J. P., & Schmidt, O. (2007). The feeding ecology of earthworms – A review. Pedobiologia, 50(6), 463–477. doi:10.1016/j.pedobi.2006.09.001
  • Dang, F., & Wang, W. X. (2011). Antagonistic interaction of mercury and selenium in a marine fish is dependent on their chemical species. Environmental Science & Technology, 45(7), 3116–3122. doi:10.1021/es103705a
  • Dang, F., Zhao, J., Greenfield, B., Zhong, H., Wang, Y. J., Yang, Z. S., & Zhou, D. M. (2015). Soil geochemistry and digestive solubilization control mercury bioaccumulation in the earthworm Pheretima guillemi. Journal of Hazardous Materials, 292, 44–51. doi:10.1016/j.jhazmat.2015.03.012
  • Dang, F., Zhao, J., & Zhou, D. (2016). Uptake dynamics of inorganic mercury and methylmercury by the earthworm Pheretima guillemi. Chemosphere, 144, 2121–2126. doi:10.1016/j.chemosphere.2015.10.111
  • Deacon, G. B. (1978). Volatilization of methylmercuric chloride by hydrogen-sulfide. Nature, 275(5678), 344–344. doi:10.1038/275344a0
  • Deonarine, A., & Hsu-Kim, H. (2009). Precipitation of mercuric sulfide nanoparticles in NOM-containing water: Implications for the natural environment. Environmental Science &Amp; Technology, 43(7), 2368–2373.
  • Drott, A., Bjorn, E., Bouchet, S., & Skyllberg, U. (2013). Refining thermodynamic constants for mercury(II)-sulfides in equilibrium with metacinnabar at sub-micromolar aqueous sulfide concentrations. Environmental Science & Technology, 47(9), 4197–4203. doi:10.1021/es304824n
  • Dungan, R. S., & Frankenberger, W. T. (1999). Microbial transformations of selenium and the bioremediation of seleniferous environments. Bioremediation Journal, 3(3), 171–188. doi:10.1080/10889869991219299
  • Dungan, R. S., Yates, S. R., & Frankenberger, W. T. (2003). Transformations of selenate and selenite by Stenotrophomonas maltophilia isolated from a seleniferous agricultural drainage pond sediment. Environmental Microbiology, 5(4), 287–295. doi:10.1046/j.1462-2920.2003.00410.x
  • Ecimovic, S., Velki, M., Vukovic, R., Stolfa Camagajevac, I., Petek, A., Bosnjakovic, R., … Loncaric, Z. (2018). Acute toxicity of selenate and selenite and their impacts on oxidative status, efflux pump activity, cellular and genetic parameters in earthworm Eisenia andrei. Chemosphere, 212, 307–318. doi:10.1016/j.chemosphere.2018.08.095
  • Ekstrom, E. B., Morel, F. M. M., & Benoit, J. M. (2003). Mercury methylation independent of the acetyl-coenzyme a pathway in sulfate-reducing bacteria. Applied and Environmental Microbiology, 69(9), 5414–5422. doi:10.1128/AEM.69.9.5414-5422.2003
  • Fernandez-Martinez, A., & Charlet, L. (2009). Selenium environmental cycling and bioavailability: A structural chemist point of view. Reviews in Environmental Science and Bio/Technology, 8(1), 81–110. doi:10.1007/s11157-009-9145-3
  • Fitzgerald, W. F., Lamborg, C. H., & Hammerschmidt, C. R. (2007). Marine biogeochemical cycling of mercury. Chemical Reviews, 107(2), 641–662. doi:10.1021/cr050353m
  • Fleming, E. J., Mack, E. E., Green, P. G., & Nelson, D. C. (2006). Mercury methylation from unexpected sources: Molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Applied and Environmental Microbiology, 72(1), 457–464. doi:10.1128/AEM.72.1.457-464.2006
  • Fox, B., & Walsh, C. T. (1982). Mercuric reductase. purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction-active disulfide. Journal of Biological Chemistry, 257(5), 2498–2503.
  • Frohne, T., & Rinklebe, J. (2013). Biogeochemical fractions of mercury in soil profiles of two different floodplain ecosystems in Germany. Water Air and Soil Pollution, 224(6), 1591–1608.
  • Fujita, M., Ike, M., Nishimoto, S., Takahashi, K., & Kashiwa, M. (1997). Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1. Journal of Fermentation and Bioengineering, 83(6), 517–522. doi:10.1016/S0922-338X(97)81130-0
  • Fulda, B., Voegelin, A., & Kretzschmar, R. (2013). Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Environmental Science & Technology, 47(22), 12775–12783. doi:10.1021/es401997d
  • Gailer, J., George, G. N., Pickering, I. J., Madden, S., Prince, R. C., Yu, E. Y., … Aposhian, H. V. (2000). Structural basis of the antagonism between inorganic mercury and selenium in mammals. Chemical Research in Toxicology, 13(11), 1135–1142. doi:10.1021/tx000050h
  • Garbisu, C., Ishii, T., Leighton, T., & Buchanan, B. B. (1996). Bacterial reduction of selenite to elemental selenium. Chemical Geology, 132(1–4), 199–204. doi:10.1016/S0009-2541(96)00056-3
  • Gilbert, S. G., & Grantwebster, K. S. (1995). Neurobehavioral effects of developmental methylmercury exposure. Environmental Health Perspectives, 103, 135–142. doi:10.2307/3432363
  • Gilmour, C. C., Elias, D. A., Kucken, A. M., Brown, S. D., Palumbo, A. V., Schadt, C. W., & Wall, J. D. (2011). Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Applied and Environmental Microbiology, 77(12), 3938–3951. doi:10.1128/AEM.02993-10
  • Gilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D., Somenahally, A. C., … Elias, D. A. (2013). Mercury methylation by novel microorganisms from new environments. Environmental Science & Technology, 47(20), 11810–11820. doi:10.1021/es403075t
  • Gong, Y., Nunes, L. M., Greenfield, B. K., Qin, Z., Yang, Q., Huang, L., … Zhong, H. (2018). Bioaccessibility-corrected risk assessment of urban dietary methylmercury exposure via fish and rice consumption in China. Science of the Total Environment, 630, 222–230. doi:10.1016/j.scitotenv.2018.02.224
  • Graham, A. M., Aiken, G. R., & Gilmour, C. C. (2012). Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environmental Science & Technology, 46(5), 2715–2723. doi:10.1021/es203658f
  • Hamelin, S., Amyot, M., Barkay, T., Wang, Y. P., & Planas, D. (2011). Methanogens: Principal methylators of mercury in Lake Periphyton. Environmental Science & Technology, 45(18), 7693–7700. doi:10.1021/es2010072
  • Han, Z. X., Lv, C. X., & Zheng, Z. R. (2008). Toxicity of mercury to Carassius aurats and the antagonistic effect of selenium. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry, 38(7), 584–590. doi:10.1080/15533170802293246
  • Hartilainen, H. (2005). Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (Gms), 18(4), 309–318. doi:10.1016/j.jtemb.2005.02.009
  • Herbel, M. J., Blum, J. S., Oremland, R. S., & Borglin, S. E. (2003). Reduction of elemental selenium to selenide: Experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiology Journal, 20(6), 587–602. doi:10.1080/713851163
  • Hoang-Yen Thi, T., Chen, Y. W., Saleh, M., Nehzati, S., George, G. N., Pickering, I. J., & Belzile, N. (2014). Proteomics of Desulfovibrio desulfuricans and X-ray absorption spectroscopy to investigate mercury methylation in the presence of selenium. Metallomics, 6(3), 465–475. doi:10.1039/c3mt00323j
  • Hockin, S. L., & Gadd, G. M. (2003). Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms. Applied and Environmental Microbiology, 69(12), 7063–7072. doi:10.1128/AEM.69.12.7063-7072.2003
  • Hsu-Kim, H., Kucharzyk, K. H., Zhang, T., & Deshusses, M. A. (2013). Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environmental Science & Technology, 47(6), 2441–2456. doi:10.1021/es304370g
  • Hu, H., Lin, H., Zheng, W., Tomanicek, S. J., Johs, A., Feng, X., … Gu, B. (2013). Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nature Geoscience, 6(9), 751–754. doi:10.1038/ngeo1894
  • Hu, Z. Y., Cheng, K., X, U., Zhao, Y. W., Wang, T. J., Zhang, H. C., & Cao, Z. H. (2002). Dynamics of atmospheric sulphur deposition on rapeseed/rice rotation in selected area of South China. China Environmental Science, 22(1), 11–15.
  • Ike, M., Takahashi, K., Fujita, T., Kashiwa, M., & Fujita, M. (2000). Selenate reduction by bacteria isolated from aquatic environment free from selenium contamination. Water Research, 34(11), 3019–3025. doi:10.1016/S0043-1354(00)00041-5
  • Jacques, D., & Leterme, B. (2013). Best available technologies versus current practices in mercury contaminated land management: The results of the IMaHg European Hg survey. AquaConSoil 12th international UFZ-Deltares conference on Groundwater-Soil- Systems. And Water Resource Management-Barcelona-Spain, 14–17 April
  • Jayaweera, G. R., & Biggar, J. W. (1996). Role of redox potential in chemical transformations of selenium in soils. Soil Science Society of America Journal, 60(4), 1056–1063. doi:10.2136/sssaj1996.03615995006000040014x
  • Jeong, H. Y., Klaue, B., Blum, J. D., & Hayes, K. F. (2007). Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS)). Environmental Science &Amp; Technology, 41(22), 7699–7705.
  • Jeremiason, J. D., Engstrom, D. R., Swain, E. B., Nater, E. A., Johnson, B. M., Almendinger, J. E., … Kolka, R. K. (2006). Sulfate addition increases methylmercury production in an experimental wetland. Environmental Science & Technology, 40(12), 3800–3806. doi:10.1021/es0524144
  • Jiang, S., Cuong Tu, H., Lee, J. H., Hieu Van, D., Han, S., & Hur, H. G. (2012). Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200. Chemosphere, 87(6), 621–624. doi:10.1016/j.chemosphere.2011.12.083
  • Jin, L. J., Guo, P., & Xu, X. Q. (1997). Effect of selenium on mercury methylation in anaerobic lake sediments. Bulletin of Environmental Contamination and Toxicology, 59(6), 994–999. doi:10.1007/s001289900581
  • Jonsson, S., Mazrui, N. M., & Mason, R. P. (2016). Dimethylmercury formation mediated by inorganic and organic reduced sulfur surfaces. Scientific Reports, 6, 27958.
  • Junier, P., Junier, T., Podell, S., Sims, D. R., Detter, J. C., Lykidis, A., … Bernier-Latmani, R. (2010). The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1. Environmental Microbiology 12, 2738–2754. doi:10.1111/j.1462-2920.2010.02242.x
  • KabataPendias, A., Mukherjee, A. B., KabataPendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer.
  • Kashiwa, M., Ike, M., Mihara, H., Esaki, N., & Fujita, M. (2001). Removal of soluble selenium by a selenate-reducing bacterium Bacillus sp SF-1. Biofactors, 14(1–4), 261–265. doi:10.1002/biof.5520140132
  • Kerin, E. J., Gilmour, C. C., Roden, E., Suzuki, M. T., Coates, J. D., & Mason, R. P. (2006). Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology, 72(12), 7919–7921. doi:10.1128/AEM.01602-06
  • Khan, M. A. K., & Wang, F. (2009). Mercury-selenium compounds and their toxicological significance: Toward a molecular understanding of the mercury-selenium antagonism. Environmental Toxicology and Chemistry, 28(8), 1567–1577. doi:10.1897/08-375.1
  • Khan, M. A. K., & Wang, F. (2010). Chemical demethylation of methylmercury by selenoamino acids. Chemical Research in Toxicology, 23(7), 1202–1206. doi:10.1021/tx100080s
  • Kim, Y., Yuan, K., Ellis, B. R., & Becker, U. (2017). Redox reactions of selenium as catalyzed by magnetite: Lessons learned from using electrochemistry and spectroscopic methods. Geochimica Et Cosmochimica Acta, 199, 304–323. doi:10.1016/j.gca.2016.10.039
  • Lamers, L. P. M., Tomassen, H. B. M., & Roelofs, J. G. M. (1998). Sulfate-induced entrophication and phytotoxicity in freshwater wetlands. Environmental Science & Technology, 32(2), 199–205. doi:10.1021/es970362f
  • Lavoie, R. A., Jardine, T. D., Chumchal, M. M., Kidd, K. A., & Campbell, L. M. (2013). Biomagnification of mercury in aquatic food webs: A worldwide meta-analysis. Environmental Science & Technology, 47(23), 13385–13394. doi:10.1021/es403103t
  • Li, D. B., Cheng, Y. Y., Wu, C., Li, W. W., Li, N., Yang, Z. C., … Yu, H. Q. (2014). Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Scientific Reports, 4, 3735. doi:10.1038/srep03735
  • Li, H. F., Lombi, E., Stroud, J. L., McGrath, S. P., & Zhao, F. J. (2010). Selenium speciation in soil and rice: Influence of water management and Se fertilization. Journal of Agricultural and Food Chemistry, 58(22), 11837–11843. doi:10.1021/jf1026185
  • Li, P., Feng, X., Chan, H. M., Zhang, X., & Du, B. (2015). Human body burden and dietary methylmercury intake: The relationship in a rice-consuming population. Environmental Science & Technology, 49(16), 9682–9689. doi:10.1021/acs.est.5b00195
  • Li, Y. F., Zhao, J. T., Li, Y. Y., Li, H. J., Zhang, J. F., Li, B., Gao, Y. X., Chen, C. Y., Luo, M. Y., Huang, R., & Li, J. (2015). The concentration of selenium matters: A field study on mercury accumulation in rice by selenite treatment in Qingzhen, Guizhou, China. Plant and Soil, 391(1-2), 195–205. doi:10.1007/s11104-015-2418-4
  • Li, Y., Zhao, J., Gao, Y., Li, Y., Li, B., Zhao, Y., & Chai, Z. (2014). Effects of iron plaque and selenium on the absorption and translocation of inorganic mercury and methylmercury in rice (Oryza sativa L.). Asian Journal of Ecotoxicology, 9(5), 972–977.
  • Lin, C. C., Yee, N., & Barkay, T. (2011). Microbial transformations in the mercury cycle. Hoboken: Wiley-Blackwell.
  • Liu, C. Q., Cao, S. Q., Chen, G. A., & Wu, X. J. (1990). Sulphur in the agriculture of China. Acta Pedologica Sinica, 27(4), 398–404.
  • Liu, Y. R., Yu, R. Q., Zheng, Y. M., & He, J. Z. (2014). Analysis of the microbial community structure by monitoring an Hg methylation gene (hgcA) in paddy soils along an Hg gradient. Applied and Environmental Microbiology, 80(9), 2874–2879. doi:10.1128/AEM.04225-13
  • Lortie, L., Gould, W. D., Rajan, S., McCready, R. G. L., & Cheng, K. J. (1992). Reduction of selenate and selenite to elemental selenium by a pseudomonas stutzeri Isolate. Applied and Environmental Microbiology, 58(12), 4042–4044.
  • Lowry, G. V., Shaw, S., Kim, C. S., Rytuba, J. J., & Brown, G. E. (2004). Macroscopic and microscopic observations of particle-facilitated mercury transport from new idria and sulphur bank mercury mine tailings. Environmental Science & Technology, 38(19), 5101–5111. doi:10.1021/es034636c
  • Luque-Garcia, J. L., Cabezas-Sanchez, P., Anunciacao, D. S., & Camara, C. (2013). Analytical and bioanalytical approaches to unravel the selenium-mercury antagonism: A review. Analytica Chimica Acta, 801, 1–13. doi:10.1016/j.aca.2013.08.043
  • Marvin-DiPasquale, M., Windham-Myers, L., Agee, J. L., Kakouros, E., Kieu Le, H., Fleck, J. A., … Stricker, C. A. (2014). Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA. Science of the Total Environment, 484, 288–299. doi:10.1016/j.scitotenv.2013.09.098
  • Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H. (1990). Transformations of selenium as affected by sediment oxidation-reduction potential and pH. Environmental Science & Technology, 24(1), 91–96. doi:10.1021/es00071a010
  • Meng, B., Feng, X., Qiu, G., Liang, P., Li, P., Chen, C., & Shang, L. (2011). The process of methylmercury accumulation in rice (Oryza sativa L.). Environmental Science & Technology, 45(7), 2711–2717. doi:10.1021/es103384v
  • Mergler, D., Anderson, H. A., Chan, L. H. M., Mahaffey, K. R., Murray, M., Sakamoto, M., & Stern, A. H. (2007). Methylmercury exposure and health effects in humans: A worldwide concern. Ambio: A Journal of the Human Environment, 36(1), 3–11. doi:10.1579/0044-7447(2007)36[3:MEAHEI2.0.CO;2]
  • Merritt, K. A., & Amirbahman, A. (2009). Mercury methylation dynamics in estuarine and coastal marine environments — A critical review. Earth-Science Reviews, 96(1-2), 54–66. doi:10.1016/j.earscirev.2009.06.002
  • Mikkelsen, R. L., Mikkelsen, D. S., & Abshahi, A. (1989). Effects of soil flooding on selenium transformations and accumulation by rice. Soil Science Society of America Journal, 53(1), 122–127. doi:10.2136/sssaj1989.03615995005300010023x
  • Mikkelsen, R. L., Page, A. L., & Bingham, F. T. (1989). Factors affecting selenium accumulation by agricultural crops 1. Selenium in Agriculture & the Environment [Sssaspecialpubl(Seleniuminagric)], 65–94. doi:10.2136/sssaspecpub23.c4
  • Mounicou, S., Shah, M., Meija, J., Caruso, J. A., Vonderheide, A. P., & Shann, J. (2006). Localization and speciation of selenium and mercury in Brassica juncea-Implications for Se-Hg antagonism. Journal of Analytical Atomic Spectrometry, 21(4), 404–412. doi:10.1039/b514954a
  • Moura, V. L., & de Lacerda, L. D. (2018). Contrasting mercury bioavailability in the marine and fluvial dominated areas of the Jaguaribe River Basin, Ceara, Brazil. Bulletin of Environmental Contamination and Toxicology, 101(1), 49–54. doi:10.1007/s00128-018-2368-7
  • Myneni, S. C. B., Tokunaga, T. K., & Brown, G. E. (1997). Abiotic selenium redox transformations in the presence of Fe(II,III) oxides. Science, 278(5340), 1106–1109. doi:10.1126/science.278.5340.1106
  • Nelson, D. C., Casey, W. H., Sison, J. D., Mack, E. E., Ahmad, A., & Pollack, J. S. (1996). Selenium uptake by sulfur-accumulating bacteria. Geochimica Et Cosmochimica Acta, 60(18), 3531–3539. doi:10.1016/0016-7037(96)00221-9
  • Nuttall, K. L., & Allen, F. S. (1984). Kinitics of the reaction between hydrogen selenide ion and oxygen. Inorganica Chimica Acta-Bioinorganic Chemistry, 91(4), 243–246. doi:10.1016/S0020-1693(00)81844-7
  • Nuutinen, S., & Kukkonen, J. V. K. (1998). The effect of selenium and organic material in lake sediments on the bioaccumulation of methylmercury by Lumbriculus variegatus (Oligochaeta). Biogeochemistry, 40(2/3), 267–278.
  • Oremland, R. S., Hollibaugh, J. T., Maest, A. S., Presser, T. S., Miller, L. G., & Culbertson, C. W. (1989). Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: Biogeochemical significance of a novel, sulfate-independent respiration. Applied and Environmental Microbiology, 55(9), 2333–2343.
  • Parizek, J., & Ostadalova, I. (1967). Protective effect of small amounts of selenite in sublimate intoxication. Experientia, 23(2), 142–143.
  • Parks, J. M., Johs, A., Podar, M., Bridou, R., Hurt, R. A., Jr., Smith, S. D., … Liang, L. (2013). The genetic basis for bacterial mercury methylation. Science, 339(6125), 1332–1335. doi:10.1126/science.1230667
  • Patty, C., Barnett, B., Mooney, B., Kahn, A., Levy, S., Liu, Y., … Andrews, J. C. (2009). Using X-ray microscopy and Hg L-3 XAMES to study Hg binding in the rhizosphere of spartina cordgrass. Environmental Science & Technology, 43(19), 7397–7402. doi:10.1021/es901076q
  • Qin, C., Chen, M., Yan, H., Shang, L., Yao, H., Li, P., & Feng, X. (2018). Compound specific stable isotope determination of methylmercury in contaminated soil. The Science of the Total Environment, 644, 406–412. doi:10.1016/j.scitotenv.2018.06.328
  • Ralston, N. V. C., Blackwell, J. L., I. I. I., & Raymond, L. J. (2007). Importance of molar ratios in selenium-dependent protection against methylmercury toxicity. Biological Trace Element Research, 119(3), 255–268. doi:10.1007/s12011-007-8005-7
  • Rayman, M. P. (2012). Selenium and human health. Lancet (London, England), 379(9822), 1256–1268. doi:10.1016/S0140-6736(11)61452-9
  • Rosenfeld, C. E., James, B. R., & Santelli, C. M. (2018). Persistent bacterial and fungal community shifts exhibited in selenium-contaminated reclaimed mine soils. Applied and Environmental Microbiology, 84(16), 1394. doi:10.1128/AEM.01394-18
  • Schaefer, J. K., Kronberg, R. M., Morel, F. M. M., & Skyllberg, U. (2014). Detection of a key Hg methylation gene, hgcA, in wetland soils. Environmental Microbiology Reports, 6(5), 441–447. doi:10.1111/1758-2229.12136
  • Schaefer, J. K., & Morel, F. M. M. (2009). High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nature Geoscience, 2(2), 123–126. doi:10.1038/ngeo412
  • Schaefer, J. K., Rocks, S. S., Zheng, W., Liang, L., Gu, B., & Morel, F. M. M. (2011). Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 108(21), 8714–8719. doi:10.1073/pnas.1105781108
  • Scheinost, A. C., & Charlet, L. (2008). Selenite reduction by Mackinawite, magnetite and siderite: XAS characterization of nanosized redox products. Environmental Science & Technology, 42(6), 1984–1989. doi:10.1021/es071573f
  • Schiavon, M., dall’Acqua, S., Mietto, A., Pilon-Smits, E. A. H., Sambo, P., Masi, A., & Malagoli, M. (2013). Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.). Journal of Agricultural and Food Chemistry, 61(44), 10542–10554. doi:10.1021/jf4031822
  • Seller, P., Kelly, C. A., Rudd, J. W. M., & MacHutchon, A. R. (1996). Photodegradation of methylmercury in lakes. Nature, 380(6576), 694–697. doi:10.1038/380694a0
  • Shaheen, S. M., Rinklebe, J., Frohne, T., White, J. R., & DeLaune, R. D. (2016). Redox effects on release kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic freshwater marsh soils. Chemosphere, 150, 740–748. doi:10.1016/j.chemosphere.2015.12.043
  • Shanker, K., Mishra, S., Srivastava, S., Srivastava, R., Daas, S., Prakash, S., & Srivastava, M. M. (1996a). Effect of selenite and selenate on plant uptake and translocation of mercury by tomato (Lycopersicum esculentum). Plant and Soil, 183(2), 233–238. doi:10.1007/BF00011438
  • Shanker, K., Mishra, S., Srivastava, S., Srivastava, R., Dass, S., Prakash, S., & Srivastava, M. M. (1996b). Study of mercury-selenium (Hg–Se) interactions and their impact on Hg uptake by the radish (Raphanus sativus) plant. Food and Chemical Toxicology, 34(9), 883–886. doi:10.1016/S0278-6915(96)00047-6
  • Sheehan, M. C., Burke, T. A., Navas-Acien, A., Breysse, P. N., McGready, J., & Fox, M. A. (2014). Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: A systematic review. Bulletin of the World Health Organization, 92(4), 254–269F. doi:10.2471/BLT.12.116152
  • Skyllberg, U. (2008). Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: Illumination of controversies and implications for MeHg net production. Journal of Geophysical Research-Biogeosciences, 113, G00C03. doi:10.1029/2008JG000745
  • Skyllberg, U., & Drott, A. (2010). Competition between disordered iron sulfide and natural organic matter associated thiols for mercury(II)-an EXAFS study. Environmental Science & Technology, 44(4), 1254–1259. doi:10.1021/es902091w
  • Sorokin, D. Y., Chernyh, N. A., & Poroshina, M. N. (2015). Desulfonatronobacter acetoxydans Sp nov.,: A first acetate-oxidizing, extremely salt-tolerant alkaliphilic SRB from a hypersaline soda lake. Extremophiles, 19(5), 899–907. doi:10.1007/s00792-015-0765-y
  • Spangler, W. J., Spigarelli, J. L., Rose, J. M., Flippin, R. S., & Miller, H. H. (1973). Degradation of methylmercury by bacteria isolated from environmental samples. Applied Microbiology, 25(4), 488–493.
  • Tang, W., Cheng, J., Zhao, W., & Wang, W. (2015). Mercury levels and estimated total daily intakes for children and adults from an electronic waste recycling area in Taizhou, China: Key role of rice and fish consumption. Journal of Environmental Sciences, 34, 107–115. doi:10.1016/j.jes.2015.01.029
  • Tang, W., Dang, F., Evans, D., Zhong, H., & Xiao, L. (2017). Understanding reduced inorganic mercury accumulation in rice following selenium application: Selenium application routes, speciation and doses. Chemosphere, 169, 369–376. doi:10.1016/j.chemosphere.2016.11.087
  • Thomas, S. A., Rodby, K. E., Roth, E. W., Wu, J., & Gaillard, J. F. (2018). Spectroscopic and microscopic evidence of biomediated HgS species formation from Hg(II)-cysteine complexes: Implications for Hg(II) bioavailability. Environmental Science & Technology, 57, 17.
  • Tomei, F. A., Barton, L. L., Lemanski, C. L., Zocco, T. G., Fink, N. H., & Sillerud, L. O. (1995). Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. Journal of Industrial Microbiology, 14(3–4), 329–336. doi:10.1007/BF01569947
  • Tran, T. A. T., Dinh, Q. T., Cui, Z. W., Huang, J., Wang, D., Wei, T. J., … Ning, P. (2018). Comparing the influence of selenite (Se4+) and selenate (Se6+) on the inhibition of the mercury (Hg) phytotoxicity to pak choi. Ecotoxicology and Environmental Safety, 147, 897–904. doi:10.1016/j.ecoenv.2017.09.061
  • Truong, H. Y. T., Chen, Y. W., & Belzile, N. (2013). Effect of sulfide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans. Science of the Total Environment, 449, 373–384. doi:10.1016/j.scitotenv.2013.01.054
  • United States Environmental Protection Agency (USEPA). (2007). Ecological soil screening levels for selenium. OSWER Directive 9285.7–72, Washington, DC.
  • Vieira, H. C., Morgado, F., Soares, A. M., & Abreu, S. N. (2015). Fish consumption recommendations to conform to current advice in regard to mercury intake. Environmental Science and Pollution Research, 22(13), 9595–9602. doi:10.1007/s11356-015-4635-z
  • Wang, J., Anderson, C. W. N., Xing, Y., Fan, Y., Xia, J., Shaheen, S. M., Rinklebe, J., & Feng, X. (2018). Thiosulphate-induced phytoextraction of mercury in Brassica juncea: Spectroscopic investigations to define a mechanism for Hg uptake. Environmental Pollution, 242, 986–993. doi:10.1016/j.envpol.2018.07.065
  • Wang, J., Feng, X., Anderson, C. W. N., Qiu, G., Ping, L., & Bao, Z. (2011). Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil-results from a greenhouse study. Journal of Hazardous Materials, 186(1), 119–127. doi:10.1016/j.jhazmat.2010.10.097
  • Wang, J., Feng, X., Anderson, C. W. N., Wang, H., Zheng, L., & Hu, T. (2012). Implications of mercury speciation in thiosulfate treated plants. Environmental Science & Technology, 46(10), 5361–5368. doi:10.1021/es204331a
  • Wang, J., Feng, X., Anderson, C. W. N., Xing, Y., & Shang, L. (2012). Remediation of mercury contaminated sites – A review. Journal of Hazardous Materials, 221, 1–18. doi:10.1016/j.jhazmat.2012.04.035
  • Wang, J., Xing, Y., Xie, Y., Meng, Y., Xia, J., & Feng, X. (2019). The use of calcium carbonate-enriched clay minerals and diammonium phosphate as novel immobilization agents for mercury remediation: Spectral investigations and field applications. Science of the Total Environment, 646, 1615–1623. doi:10.1016/j.scitotenv.2018.07.225
  • Wang, W. X. (2002). Interactions of trace metals and different marine food chains. Marine Ecology Progress Series, 243, 295–309. doi:10.3354/meps243295
  • Wang, X., Tam, N. F. Y., Fu, S., Ametkhan, A., Ouyang, Y., & Ye, Z. (2014). Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa). Annals of Botany, 114(2), 271–278. doi:10.1093/aob/mcu117
  • Wang, X., Ye, Z., Li, B., Huang, L., Meng, M., Shi, J., & Jiang, G. (2014). Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg. Environmental Science & Technology, 48(3), 1878–1885. doi:10.1021/es4038929
  • Wang, X., Zhang, D., Pan, X., Lee, D. J., Al-Misned, F. A., Mortuza, M. G., & Gadd, G. M. (2017). Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere, 170, 266–273. doi:10.1016/j.chemosphere.2016.12.020
  • Wang, Y., Dang, F., Zheng, X., & Zhong, H. (2019). Biochar amendment to further reduce methylmercury accumulation in rice grown in selenium-amended paddy soil. Journal of Hazardous Materials, 365, 590–596. doi:10.1016/j.jhazmat.2018.11.052
  • Wang, Y. J., Dang, F., Zhao, J. T., & Zhong, H. (2016). Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil. Environmental Pollution, 213, 232–239. doi:10.1016/j.envpol.2016.02.021
  • Wang, Y. J., Dang, F., Evans, R. D., Zhong, H., Zhao, J., & Zhou, D. (2016). Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: The key role of antagonism in soil. Scientific Reports, 6, 19477. doi:10.1038/srep19477
  • Wang, Y. J., Dang, F., Zhong, H., Wei, Z., & Li, P. (2016). Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions. Environmental Science and Pollution Research, 23(5), 4602–4608. doi:10.1007/s11356-015-5696-8
  • Wang, Y. J., Wei, Z. B., Zeng, Q. L., & Zhong, H. (2016). Amendment of sulfate with Se into soils further reduces methylmercury accumulation in rice. Journal of Soils and Sediments, 16(12), 2720–2727. doi:10.1007/s11368-016-1453-y
  • Weber, J. H., Evans, R., Jones, S. H., & Hines, M. E. (1998). Conversion of mercury(II) into mercury(0), monomethylmercury cation, and dimethylmercury in saltmarsh sediment slurries. Chemosphere, 36(7), 1669–1687. doi:10.1016/S0045-6535(97)10042-X
  • Wiatrowski, H. A., Das, S., Kukkadapu, R., Ilton, E. S., Barkay, T., & Yee, N. (2009). Reduction of Hg(II) to Hg(0) by magnetite. Environmental Science & Technology, 43(14), 5307–5313.
  • Williams, P. N., Lombi, E., Sun, G. X., Scheckel, K., Zhu, Y. G., Feng, X., … Meharg, A. A. (2009). Selenium characterization in the global rice supply chain. Environmental Science & Technology, 43(15), 6024–6030. doi:10.1021/es900671m
  • Windham-Myers, L., Fleck, J. A., Ackerman, J. T., Marvin-DiPasquale, M., Stricker, C. A., Heim, W. A., … Alpers, C. N. (2014). Mercury cycling in agricultural and managed wetlands: A synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study. Science of the Total Environment, 484, 221–231. doi:10.1016/j.scitotenv.2014.01.033
  • Windham-Myers, L., Marvin-DiPasquale, M., Kakouros, E., Agee, J. L., Kieu Le, H., Stricker, C. A., … Ackerman, J. T. (2014). Mercury cycling in agricultural and managed wetlands of California, USA: Seasonal influences of vegetation on mercury methylation, storage, and transport. Science of the Total Environment, 484, 308–318. doi:10.1016/j.scitotenv.2013.05.027
  • Winkel, L. H. E., Johnson, C. A., Lenz, M., Grundl, T., Leupin, O. X., Amini, M., & Charlet, L. (2012). Environmental selenium research: From microscopic processes to global understanding. Environmental Science & Technology, 46(2), 571–579. doi:10.1021/es203434d
  • Wolfenden, S., Charnock, J. M., Hilton, J., Livens, F. R., & Vaughan, D. J. (2005). Sulfide species as a sink for mercury in lake sediments. Environmental Science & Technology, 39(17), 6644–6648. doi:10.1021/es048874z
  • Yang, D. Y., Chen, Y. W., & Belzile, N. (2011). Evidences of non-reactive mercury-selenium compounds generated from cultures of Pseudomonas fluorescens. Science of the Total Environment, 409(9), 1697–1703. doi:10.1016/j.scitotenv.2011.01.030
  • Yang, D. Y., Chen, Y. W., Gunn, J. M., & Belzile, N. (2008). Selenium and mercury in organisms: Interactions and mechanisms. Environmental Reviews, 16(NA), 71–92. doi:10.1139/A08-001
  • Yathavakilla, S. K. V., & Caruso, J. A. (2007). A study of Se-Hg antagonism in Glycine max (soybean) roots by size exclusion and reversed phase HPLC-ICPMS. Analytical and Bioanalytical Chemistry, 389(3), 715–723. doi:10.1007/s00216-007-1458-x
  • Yu, Q., Boyanov, M. I., Liu, J., Kemner, K. M., & Fein, J. B. (2018). Adsorption of selenite onto bacillus subtilis: The overlooked role of cell envelope sulfhydryl sites in the microbial conversion of Se(IV). Environmental Science & Technology, 52(18), 10400–10407. doi:10.1021/acs.est.8b02280
  • Yu, R. Q., Reinfelder, J. R., Hines, M. E., & Barkay, T. (2013). Mercury methylation by the methanogen Methanospirillum hungatei. Applied and Environmental Microbiology, 79(20), 6325–6330. doi:10.1128/AEM.01556-13
  • Zehr, J. P., & Oremland, R. S. (1987). Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments. Applied and Environmental Microbiology, 53(6), 1365–1369.
  • Zhang, H., Feng, X., Jiang, C., Li, Q., Liu, Y., Gu, C., … Larssen, T. (2014). Understanding the paradox of selenium contamination in mercury mining areas: High soil content and low accumulation in rice. Environmental Pollution, 188, 27–36. doi:10.1016/j.envpol.2014.01.012
  • Zhang, H., Feng, X., Larssen, T., Qiu, G., & Vogt, R. D. (2010). In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environmental Health Perspectives, 118(9), 1183–1188. doi:10.1289/ehp.1001915
  • Zhang, H., Feng, X., Larssen, T., Shang, L., & Li, P. (2010). Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain. Environmental Science & Technology, 44(12), 4499–4504. doi:10.1021/es903565t
  • Zhang, H., Feng, X., Zhu, J., Sapkota, A., Meng, B., Yao, H., … Larssen, T. (2012). Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.). Environmental Science & Technology, 46(18), 10040–10046.
  • Zhang, T., Kim, B., Leyard, C., Reinsch, B. C., Lowry, G. V., Deshusses, M. A., & Hsu-Kim, H. (2012). Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environmental Science & Technology, 46(13), 6950–6958. doi:10.1021/es203181m
  • Zhao, J., Hu, Y., Gao, Y., Li, Y., Li, B., Dong, Y., & Chai, Z. (2013). Mercury modulates selenium activity via altering its accumulation and speciation in garlic (Allium sativum). Metallomics, 5(7), 896–903. doi:10.1039/c3mt20273a
  • Zhao, J., Li, Y., Li, Y., Gao, Y., Li, B., Hu, Y., … Chai, Z. (2014). Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level. Metallomics, 6(10), 1951–1957. doi:10.1039/C4MT00170B
  • Zhong, H., & Wang, W. X. (2006a). Sediment-bound inorganic Hg extraction mechanisms in the gut fluids of marine deposit feeders. Environmental Science & Technology, 40(19), 6181–6186. doi:10.1021/es061195z
  • Zhong, H., & Wang, W. X. (2009). Inorganic mercury binding with different sulfur species in anoxic sediments and their gut juice extractions. Environmental Toxicology and Chemistry, 28(9), 1851–1857. doi:10.1897/08-539.1
  • Zhong, H., & Wang, W. X. (2006b). Metal-solid interactions controlling the bioavailability of mercury from sediments to clams and sipunculans. Environmental Science & Technology, 40(12), 3794–3799. doi:10.1021/es0523441
  • Zhu, H., Zhong, H., & Wu, J. (2016). Incorporating rice residues into paddy soils affects methylmercury accumulation in rice. Chemosphere, 152, 259–264. doi:10.1016/j.chemosphere.2016.02.095

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.