2,477
Views
86
CrossRef citations to date
0
Altmetric
Reviews

Microalgal extracellular polymeric substances and their interactions with metal(loid)s: A review

, , , , , & ORCID Icon show all
Pages 1769-1802 | Published online: 01 Mar 2019

References

  • Aeschbacher, M., Vergari, D., Schwarzenbach, R. P., & Sander, M. (2011). Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids. Environmental Science & Technology, 45(19), 8385–8394. doi:10.1021/es201981g
  • Aguilera, A., Souza-Egipsy, V., San Martín-Uriz, P., & Amils, R. (2008). Extraction of extracellular polymeric substances from extreme acidic microbial biofilms. Applied Microbiology and Biotechnology, 78(6), 1079–1088. doi:10.1007/s00253-008-1390-9
  • Alasonat, E., & Slaveykova, V. I. (2012). Effects of extraction methods on the composition and molar mass distributions of exopolymeric substances of the bacterium Sinorhizobium meliloti. Bioresource Technology, 114(2), 603–609. doi:10.1016/j.biortech.2012.03.071
  • Allard, B., & Casadevall, E. (1990). Carbohydrate composition and characterization of sugars from the green microalga Botryococcus braunii. Phytochemistry, 29(6), 1875–1878. doi:10.1016/0031-9422(90)85031-A
  • Andrade, L. R., Leal, R. N., Noseda, M., Duarte, M. E. R., Pereira, M. S., Mourao, P. A., … Amado Filho, G. M. (2010). Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity. Marine Pollution Bulletin, 60(9), 1482–1488. doi:10.1016/j.marpolbul.2010.05.004
  • Angelaalincy, M., Senthilkumar, N., Karpagam, R., Kumar, G. G., Ashokkumar, B., & Varalakshmi, P. (2017). Enhanced extracellular polysaccharide production and self-sustainable electricity generation for PAMFCs by Scenedesmus sp. SB1. ACS Omega, 2(7), 3754–3765. doi:10.1021/acsomega.7b00326
  • Angelis, S. D., Novak, A., Sydney, E., Soccol, V., Carvalho, J., Pandey, A., … Soccol, C. (2012). Co-culture of microalgae, cyanobacteria, and macromycetes for exopolysaccharides production: Process preliminary optimization and partial characterization. Applied Biochemistry and Biotechnology, 167(5), 1092–1106. doi:10.1007/s12010-012-9642-7
  • Anjana, K., Kaushik, A., Kiran, B., & Nisha, R. (2007). Biosorption of Cr(VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. Journal of Hazardous Materials, 148(1–2), 383–386. doi:10.1016/j.jhazmat.2007.02.051
  • Arroussi, H. E., Benhima, R., Elbaouchi, A., Sijilmassi, B., Mernissi, N. E., Aafsar, A., … Smouni, A. (2018). Dunaliella salina exopolysaccharides: A promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). Journal of Applied Phycology, 30(5), 2929–2941. doi:10.1007/s10811-017-1382-1
  • Arulraj, D., Vijayaraghavan, R., Garlapati, D., Tharifkhan, S. A., Dharmar, P., & Lakshmanan, U. (2018). Identification of potential marine filamentous heterocyst cyanobacterium producing higher EPS coupled with higher viscosity. International Journal for Research in Applied Science Engineering Technology, (IJRASET), 6, 3474–3479. www.ijraset.com.
  • Assuncao, M. F., Amaral, R., Martins, C. B., Ferreira, J. D., Ressurreiçao, S., Santos, S. D., … Santos, L. M. (2017). Screening microalgae as potential sources of antioxidants. Journal of Applied Phycology, 29, 865–877. doi:10.1007/s10811-016-0980-7
  • Avery, S. V., & Tobin, J. M. (1993). Mechanism of adsorption of hard and soft metal ions to Saccharomyces cerevisiae and influence of hard and soft anions. Applied and Environmental Microbiology, 59(9), 2851–2856.
  • Baba, M., Suzuki, I., & Shiraiwa, Y. (2011). Proteomic analysis of high-CO2-inducible extracellular proteins in the unicellular green algae, Chlamydomonas reinhardtii. Plant and Cell Physiology, 52(8), 1302–1314. doi:10.1093/pcp/pcr078
  • Bafana, A. (2013). Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii. Carbohydrate Polymers, 95(2), 746–752. doi:10.1016/j.carbpol.2013.02.016
  • Bao, P., Xia, M., Liu, A., Wang, M., Shen, L., Yu, R., … Fang, C. (2018). Extracellular polymeric substances (EPS) secreted by Purpureocillium lilacinum strain Y3 promote biosynthesis of jarosite. RSC Advances, 8(40), 22635–22642. doi:10.1039/C8RA03060J
  • Bender, J., & Phillips, P. (2004). Microbial mats for multiple applications in aquaculture and bioremediation. Bioresource Technology, 94(3), 229–238. doi:10.1016/j.biortech.2003.12.016
  • Bhunia, B., Prasad, U. U., Oinam, G., Mondal, A., Bandyopadhyay, T. K., & Tiwari, O. N. (2018). Characterization, genetic regulation and production of cyanobacterial exopolysaccharides and its applicability for heavy metal removal. Carbohydrate Polymers, 179, 228–243. doi:10.1016/j.carbpol.2017.09.091
  • Bilbao, P. G. S., Damiani, C., Salvador, G. A., & Leonardi, P. (2016). Haematococcus pluvialis as a source of fatty acids and phytosterols: Potential nutritional and biological implications. Journal of Applied Phycology, 28(6), 3283–3294. doi:10.1007/s10811-016-0899-z
  • Bindu, S. H., & Charya, M. S. (2018). Influence of plant oils and metals on exopolysaccharide production by Fomitopsis feei. PSM Microbiology, 3(3), 93–97.
  • Bockelmann, U., Janke, A., Kuhn, R., Neu, T. R., Wecke, J., Lawrence, J. R., & Szewzyk, U. (2006). Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiology Letters, 262(1), 31–38. doi:10.1111/j.1574-6968.2006.00361.x
  • Boggs, M. A., Jiao, Y., Dai, Z., Zavarin, M., & Kersting, A. B. (2016). Plutonium interactions with Pseudomonas sp. and its extracellular polymeric substances. Applied and Environmental Microbiology, 82(24), 7093–7101. doi:10.1128/AEM.02572-16
  • Bohorquez, J., McGenity, T. J., Papaspyrou, S., García-Robledo, E., Corzo, A., & Underwood, G. J. (2017). Different types of diatom-derived extracellular polymeric substances drive changes in heterotrophic bacterial communities from intertidal sediments. Frontiers in Microbiology, 8, 245. doi.10.3389/fmicb.2017.00245
  • Borah, D., Nainamalai, S., Gopalakrishnan, S., Rout, J., Alharbi, N. S., Alharbi, S. A., & Nooruddin, T. (2018). Biolubricant potential of exopolysaccharides from the cyanobacterium Cyanothece epiphytica. Applied Microbiology and Biotechnology, 102(8), 3635–3647. doi:10.1007/s00253-018-8892-x
  • Bontognali, T. R. R., Mckenzie, J. A., Warthmann, R. J., & Vasconcelos, C. (2014). Microbially influenced formation of Mg-calcite and Ca-dolomite in the presence of exopolymeric substances produced by sulfate-reducing bacteria. Terra Nova, 26(1), 72–77. doi:10.1111/ter.12072
  • Brown, M. J., & Lester, J. (1982). Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge—I. Effects of metal concentration. Water Research, 16(11), 1549–1680.
  • Casano, L. M., Braga, M. R., Alvarez, R., Campo, E. M. D., & Barreno, E. (2015). Differences in the cell walls and extracellular polymers of the two Trebouxia microalgae coexisting in the lichen Ramalina farinacea are consistent with their distinct capacity to immobilize extracellular Pb. Plant Science, 236, 195–204. doi:10.1016/j.plantsci.2015.04.003
  • Chakraborty, J., Mallick, S., Raj, R., & Das, S. (2018). Functionalization of extracellular polymers of Pseudomonas aeruginosa N6P6 for synthesis of CdS nanoparticles and cadmium bioadsorption. Journal of Polymers and the Environment, 26(7), 3097–3108. doi:10.1007/s10924-018-1195-6
  • Chen, B., Li, F., Liu, N., Ge, F., Xiao, H., & Yang, Y. (2015). Role of extracellular polymeric substances from Chlorella vulgaris in the removal of ammonium and orthophosphate under the stress of cadmium. Bioresource Technology, 190, 299–306. doi:10.1016/j.biortech.2015.04.080
  • Chen, H. W., Huang, W. J., Wu, T. H., & Hon, C. L. (2014). Effects of extracellular polymeric substances on the bioaccumulation of mercury and its toxicity toward the cyanobacterium Microcystis aeruginosa. Journal of Environmental Science and Health, Part A, 49(12), 1370–1379. doi:10.1080/10934529.2014.928249
  • Chentir, I., Hamdi, M., Doumandji, A., HadjSadok, A., Ouada, H. B., Nasri, M., & Jridi, M. (2017). Enhancement of extracellular polymeric substances (EPS) production in Spirulina (Arthrospira sp.) by two-step cultivation process and partial characterization of their polysaccharidic moiety. International Journal of Biological Macromolecules, 105, 1412–1420. doi:10.1016/j.ijbiomac.2017.07.009
  • Chiovitti, A., Higgins, M. J., Harper, R. E., Wetherbee, R., & Bacic, A. (2003). The complex polysaccharides of the raphid diatom Pinnularia viridis (Bacillariophyceae). Journal of Phycology, 39(3), 543–554. doi:10.1046/j.1529-8817.2003.02162.x
  • Comte, S., Guibaud, G., & Baudu, M. (2008). Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. Journal of Hazardous Materials, 151(1), 185–193. doi:10.1016/j.jhazmat.2007.05.070
  • Coutaud, M., Méheut, M., Glatzel, P., Pokrovski, G. S., Viers, J., Rols, J. L., & Pokrovsky, O. S. (2018). Small changes in Cu redox state and speciation generate large isotope fractionation during adsorption and incorporation of Cu by a phototrophic biofilm. Geochimica Et Cosmochimica Acta, 220, 1–18. doi:10.1016/j.gca.2017.09.018
  • Cruz, K., Guezennec, J., & Barkay, T. (2017). Binding of Hg by bacterial extracellular polysaccharide: A possible role in Hg tolerance. Applied Microbiology and Biotechnology, 101(13), 5493–5503. doi:10.1007/s00253-017-8239-z
  • Dalai, S., Pakrashi, S., Nirmala, M. J., Chaudhri, A., Chandrasekaran, N., Mandal, A., & Mukherjee, A. (2013). Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system. Aquatic Toxicology, 138, 1–11. doi:10.1016/j.aquatox.2013.04.005
  • Decho, A. W., & Gutierrez, T. (2017). Microbial extracellular polymeric substances (EPSs) in ocean systems. Frontiers in Microbiology, 8, 922. . doi:10.3389/fmicb.2017.00922
  • Deepika, K., Raghuram, M., Kariali, E., & Bramhachari, P. (2016). Biological responses of symbiotic Rhizobium radiobacter strain VBCK1062 to the arsenic contaminated rhizosphere soils of mungbean. Ecotoxicology and Environmental Safety, 134, 1–10. doi:10.1016/j.ecoenv.2016.08.008
  • Dmytryk, A., Saeid, A., & Chojnacka, K. (2014). Biosorption of microelements by Spirulina: towards technology of mineral feed supplements. The Scientific World Journal, 2014, 1. doi:10.1155/2014/356328
  • Dobrowolski, R., Szcześ, A., Czemierska, M., & Jarosz-Wikołazka, A. (2017). Studies of cadmium(II), lead(II), nickel(II), cobalt(II) and chromium(VI) sorption on extracellular polymeric substances produced by Rhodococcus opacus and Rhodococcus rhodochrous. Bioresource Technology, 225, 113–120. doi:10.1016/j.biortech.2016.11.040
  • Domozych, D. S. (1999). Disruption of the Golgi apparatus and secretory mechanism in the desmid, Closterium acerosum, by Brefeldin A. Journal of Experimental Botany, 50(337), 1323–1330. doi:10.1093/jxb/50.337.1323
  • Fang, L., Huang, Q., Wei, X., Liang, W., Rong, X., Chen, W., & Cai, P. (2010). Micro-calorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites. Bioresource Technology, 101(15), 5774–5779. doi:10.1016/j.biortech.2010.02.075
  • Fimbres-Olivarria, D., Carvajal-Millan, E., Lopez-Elias, J. A., Martinez-Robinson, K. G., Miranda-Baeza, A., Martinez-Cordova, L. R., … Valdez-Holguin, J. E. (2018). Chemical characterization and antioxidant activity of sulfated polysaccharides from Navicula sp. Food Hydrocolloids, 75, 229–236. doi:10.1016/j.foodhyd.2017.08.002
  • Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews. Microbiology, 8(9), 623–633. doi:10.1038/nrmicro2415
  • Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews. Microbiology, 14(9), 563–575. doi:10.1038/nrmicro.2016.94
  • Fourest, E., & Volesky, B. (1997). Alginate properties and heavy metal biosorption by marine algae. Applied Biochemistry and Biotechnology, 67(3), 215–226. doi:10.1007/BF02788799
  • Freire-Nordi, C. S., Vieira, A. A. H., & Nascimento, O. R. (2005). The metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR study. Process Biochemistry, 40(6), 2215–2224. doi:10.1016/j.procbio.2004.09.003
  • Gan, N., Xiao, Y., Zhu, L., Wu, Z., Liu, J., Hu, C., & Song, L. (2012). The role of microcystis in maintaining colonies of bloom-forming Microcystis sp. Environmental Microbiology, 14(3), 730–742. doi:10.1111/j.1462-2920.2011.02624.x
  • Garcia-Meza, J. V., Barrangue, C., & Admiraal, W. (2005). Biofilm formation by algae as a mechanism for surviving on mine tailings. Environmental Toxicology and Chemistry, 24(3), 573–581. doi:10.1897/04-064R.1
  • Ge, L. Y., Huang, Y. G., Gao, D. X., & Deng, H. H. (2013). Comparison of extraction methods for quantifying extracellular polymers of marine Algae. Applied Mechanics and Materials, 260-261, 1173–1178. doi:10.4028/www.scientific.net/AMM.260-261.1173
  • Gors, S., Schumann, R., Haubner, N., & Karsten, U. (2007). Fungal and algal biomass in biofilms on artificial surfaces quantified by ergosterol and chlorophyll a as biomarkers. International Biodeterioration and Biodegradation, 60(1), 50–59. doi:10.1016/j.ibiod.2006.10.003
  • Gu, D., Jiao, Y., Wu, J., Liu, Z., & Chen, Q. (2017). Optimization of EPS production and characterization by a halophilic bacterium, Kocuria rosea ZJUQH from Chaka Salt Lake with response surface methodology. Molecules (Basel, Switzerland), 22(5), 814. doi:10.3390/molecules22050814
  • Guibaud, G., van Hullebusch, E., Bordas, F., d’Abzac, P., & Joussein, E. (2009). Sorption of Cd(II) and Pb(II) by exopolymeric substances (EPS) extracted from activated sludges and pure bacterial strains: Modeling of the metal/ligand ratio effect and role of the mineral fraction. Bioresource Technology, 100(12), 2959–2968. doi:10.1016/j.biortech.2009.01.040
  • Gupta, P., & Diwan, B. (2017). Bacterial exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports, 13(C), 58–71. doi:10.1016/j.btre.2016.12.006
  • Halaj, M., Chválová, B., Cepák, V., Lukavský, J., & Capek, P. (2018). Searching for microalgal species producing extracellular biopolymers. Chemical Papers, 72(10), 2673–2678. doi:10.1007/s11696-018-0517-4
  • Halaj, M., Paulovičová, E., Paulovičová, L., Jantová, S., Cepák, V., Lukavský, J., & Capek, P. (2018). Biopolymer of Dictyosphaerium chlorelloides-chemical characterization and biological effects. International Journal of Biological Macromolecules, 113, 1248–1257. doi:10.1016/j.ijbiomac.2018.03.052
  • Harris, P. O., & Ramelow, G. J. (1990). Binding of metal ions by particulate biomass derived from Chlorella vulgaris and Scenedesmus quadricauda. Environmental Science & Technology, 24(2), 220–228. doi:10.1021/es00072a011
  • Hou, J., Yang, Y., Wang, P., Chao, W., Miao, L., Xun, W., … Liu, Z. (2017). Effects of CeO2, CuO, and ZnO nanoparticles on physiological features of Microcystis aeruginosa and the production and composition of extracellular polymeric substances. Environmental Science and Pollution Research, 24(1), 226–235. doi:10.1007/s11356-016-7387-5
  • Hu, C., Liu, Y., Paulsen, B. S., Petersen, D., & Klaveness, D. (2003). Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of fine sand grain. Carbohydrate Polymers, 54(1), 33–42. doi:10.1016/S0144-8617(03)00135-8
  • Huang, Z., Xu, P., Chen, G., Zeng, G., Chen, A., Song, Z., … Hu, L. (2018). Silver ion-enhanced particle-specific cytotoxicity of silver nanoparticles and effect on the production of extracellular secretions of Phanerochaete chrysosporium. Chemosphere, 196, 575–584. doi:10.1016/j.chemosphere.2017.12.185
  • Joshi, P. M., & Juwarkar, A. A. (2009). In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environmental Science & Technology, 43(15), 5884–5889. doi:10.1021/es900063b
  • Kalpana, R., Angelaalincy, M. J., Kamatchirajan, B. V., Vasantha, V. S., Ashokkumar, B., Ganesh, V., & Varalakshmi, P. (2018). Exopolysaccharide from Bacillus cereus VK1 enhancement, characterization and its potential application in heavy metal removal. Colloid and Surfaces B; Biointerfaces, 171, 327–334. doi:10.1016/j.colsurfb.2018.07.043
  • Kang, F., Alvarez, P. J., & Zhu, D. (2014). Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity. Environmental Science & Technology, 48(1), 316–322. doi:10.1021/es403796x
  • Kang, F., Qu, X., Alvarez, P. J., & Zhu, D. (2017). Extracellular saccharide-mediated reduction of Au3+ to gold nanoparticles: New insights for heavy metals biomineralization on microbial surfaces. Environmental Science & Technology, 51(5), 2776–2785. doi:10.1021/acs.est.6b05930
  • Kantar, C., Cetin, Z., & Demiray, H. (2008). In situ stabilization of chromium (VI) in polluted soils using organic ligands: The role of galacturonic, glucuronic and alginic acids. Journal of Hazardous Materials, 159(2-3), 287–293. doi:10.1016/j.jhazmat.2008.02.022
  • Kaplan, D., Christiaen, D., & Arad, S. M. (1987). Chelating properties of extracellular polysaccharides from Chlorella spp. Applied and Environmental Microbiology, 53(12), 2953–2956.
  • Kehr, J.-C., & Dittmann, E. (2015). Biosynthesis and function of extracellular glycans in cyanobacteria. Life (Basel, Switzerland), 5(1), 164–180. doi:10.3390/life5010164
  • Kellam, S. J., & Walker, J. M. (1987). An extracellular protease from the alga Chlorella sphaerkii: Portland Press Limited. Biochemical Society Transactions, 15(3), 520–521. doi:10.1042/bst0150520
  • Khan, Z., Al-Thabaiti, S. A., Obaid, A. Y., & Al-Youbi, A. (2011). Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids and Surfaces B: Biointerfaces, 82(2), 513–517. doi:10.1016/j.colsurfb.2010.10.008
  • Khandeparker, R. D., & Bhosle, N. B. (2001). Extracellular polymeric substances of the marine fouling diatom Amphora rostrata Wm. Sm. Biofouling, 17(2), 117–127. doi:10.1080/08927010109378471
  • Kiran, B., & Kaushik, A. (2008). Cyanobacterial biosorption of Cr(VI): Application of two parameter and Bohart Adams models. Chemical Engineering Journal, 144(3), 391–399. doi:10.1016/j.cej.2008.02.003
  • Kiran, B., & Thanasekaran, K. (2011). Metal tolerance of an indigenous cyanobacterial strain, Lyngbya putealis. International Biodeterioration and Biodegradation, 65(8), 1128–1132. doi:10.1016/j.ibiod.2011.08.011
  • Kometani, N., Doi, H., Asami, K., & Yonezawa, Y. (2002). Laser flash photolysis study of the photochemical formation of colloidal Ag nanoparticles in the presence of benzophenone. Physical Chemistry Chemical Physics, 4(20), 5142–5147. doi:10.1039/b205829d
  • Kumar, D., Kastanek, P., & Adhikary, S. P. (2018). Exopolysaccharides from cyanobacteria and microalgae and their commercial application. Current Science, 115, 234–241.
  • Kumar, K. S., Dahms, H.-U., Won, E.-J., Lee, J.-S., & Shin, K.-H. (2015). Microalgae a promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329–352. doi:10.1016/j.ecoenv.2014.12.019
  • Kumari, S., Mangwani, N., & Das, S. (2017). Interaction of Pb(II) and biofilm associated extracellular polymeric substances of a marine bacterium Pseudomonas pseudoalcaligenes NP103. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 173, 655–665. doi:10.1016/j.saa.2016.10.009
  • Lai, C. Y., Dong, Q. Y., Chen, J. X., Zhu, Q. S., Yang, X., Chen, W. D., … Zhu, L. (2018). Role of extracellular polymeric substances in a methane based membrane biofilm reactor reducing vanadate. Environmental Science & Technology, 52 (18), 10680–10688. doi:10.1021/acs.est.8b02374
  • Li, C., Zhou, L., Yang, H., Lv, R., Tian, P., Li, X., … Lin, F. (2017). Self-assembled exopolysaccharide nanoparticles for bioremediation and green synthesis of noble metal nanoparticles. ACS Applied Materials & Interfaces, 9(27), 22808–22818. doi:10.1021/acsami.7b02908
  • Li, C. C., Wang, Y. J., Du, H., Cai, P., Peijnenburg, W. J. G. M., & Zhou, D. M. (2017). Influence of bacterial extracellular polymeric substances on the sorption of Zn on γ-alumina: A combination of FTIR and EXAFS studies. Environmental Pollution, 220, 997–1004. doi:10.1016/j.envpol.2016.11.048
  • Li, N., Wei, D., Wang, S., Hu, L., Xu, W., Du, B., & Wei, Q. (2017). Comparative study of the role of extracellular polymeric substances in biosorption of Ni(II) onto aerobic/anaerobic granular sludge. Journal of Colloid and Interface Science, 490, 754–761. doi:10.1016/j.jcis.2016.12.006
  • Li, T., Lin, G., Podola, B., & Melkonian, M. (2015). Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR. Journal of Hazardous Materials, 297, 112–118. doi:10.1016/j.jhazmat.2015.04.080
  • Li, W. W., & Yu, H.-Q. (2014). Insight into the roles of microbial extracellular polymer substances in metal biosorption. Bioresource Technology, 160, 15–23. doi:10.1016/j.biortech.2013.11.074
  • Li, Y., Li, Q., Yang, F., Bao, J., Hu, Z., Zhu, W., … Dong, Q. (2015). Chromium (VI) detoxification by oxidation and flocculation of exopolysaccharides from Arthrobacter sp. B4. International Journal of Biological Macromolecules, 81, 235–240. doi:10.1016/j.ijbiomac.2015.07.013
  • Liu, G., & Miao, X. (2017). Switching cultivation for enhancing biomass and lipid production with extracellular polymeric substance as co-products in Heynigia riparia SX01. Bioresource Technology, 227, 214–220. doi:10.1016/j.biortech.2016.12.039
  • Liu, H., & Fang, H. H. (2002). Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnology and Bioengineering, 80(7), 806–811. doi:10.1002/bit.10432
  • Liu, J., Wang, F., Wu, W., Wan, J., Yang, J., Xiang, S., & Wu, Y. (2018). Biosorption of high-concentration Cu(II) by periphytic biofilms and the development of a fiber periphyton bioreactor (FPBR). Bioresource Technology, 248, 127–134. doi:10.1016/j.biortech.2017.06.037
  • Liu, Y., & Fang, H. H. (2003). Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Critical Reviews in Environmental Science and Technology, 33(3), 237–273. doi:10.1080/10643380390814479
  • Liu, Y., Alessi, D., Owttrim, G., Petrash, D., Mloszewska, A., Lalonde, S., … Konhauser, K. (2015). Cell surface reactivity of Synechococcus sp. PCC 7002: Implications for metal sorption from seawater. Geochimica Et Cosmochimica Acta, 169, 30–44. doi:10.1016/j.gca.2015.07.033
  • Loustau, E., Rols, J.-L., Leflaive, J., Marcato-Romain, C.-E., & Girbal-Neuhauser, E. (2018). Comparison of extraction methods for the characterization of extracellular polymeric substances from aggregates of three biofilm-forming phototrophic microorganisms. Canadian Journal of Microbiology, 64 (11), 887–899. doi:10.1139/cjm-2018-0182
  • Ma, L., Wang, F., Yu, Y., Liu, J., & Wu, Y. (2018). Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor. Bioresource Technology, 248(Pt B), 61–67. doi:10.1016/j.biortech.2017.07.014
  • Mandik, Y. I., Cheirsilp, B., Boonsawang, P., & Prasertsan, P. (2015). Optimization of flocculation efficiency of lipid-rich marine Chlorella sp. biomass and evaluation of its composition in different cultivation modes. Bioresource Technology, 182, 89–97. doi:10.1016/j.biortech.2015.01.125
  • Markou, G., & Nerantzis, E. (2013). Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnology Advances, 31(8), 1532–1542. doi:10.1016/j.biotechadv.2013.07.011
  • Maznah, W. W., Al-Fawwaz, A., & Surif, M. (2012). Biosorption of copper and zinc by immobilized and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. Journal of Environmental Sciences, 24(8), 1386–1393. doi:10.1016/S1001-0742(11)60931-5
  • Miao, A.-J., Schwehr, K. A., Xu, C., Zhang, S.-J., Luo, Z., Quigg, A., & Santschi, P. H. (2009). The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environmental Pollution, 157(11), 3034–3041. doi:10.1016/j.envpol.2009.05.047
  • Micheletti, E., Colica, G., Viti, C., Tamagnini, P., & De Philippis, R. (2008). Selectivity in the heavy metal removal by exopolysaccharide-producing cyanobacteria. Journal of Applied Microbiology, 105(1), 88–94. doi:10.1111/j.1365-2672.2008.03728.x
  • Mishra, A., & Jha, B. (2009). Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresource Technology, 100(13), 3382–3386. doi:10.1016/j.biortech.2009.02.006
  • Mohite, B. V., Koli, S. H., Narkhede, C. P., Patil, S. N., & Patil, S. V. (2017). Prospective of microbial exopolysaccharide for heavy metal exclusion. Applied Biochemistry and Biotechnology, 183(2), 582–600. doi:10.1007/s12010-017-2591-4
  • Mona, S., & Kaushik, A. (2015). Chromium and cobalt sequestration using exopolysaccharides produced by freshwater cyanobacterium Nostoc linckia. Ecological Engineering, 82, 121–125. doi:10.1016/j.ecoleng.2015.04.037
  • Moreau, J. W., Weber, P. K., Martin, M. C., Gilbert, B., Hutcheon, I. D., & Banfield, J. F. (2007). Extracellular proteins limit the dispersal of biogenic nanoparticles. Science, 316(5831), 1600–1603. doi:10.1126/science.1141064
  • Morelli, E., & Pratesi, E. (1997). Production of phytochelatins in the marine diatom Phaeodactylum tricornutum in response to copper and cadmium exposure. Bulletin of Environmental Contamination and Toxicology, 59(4), 657–664. doi:10.1007/s001289900530
  • Mota, R., Rossi, F., Andrenelli, L., Pereira, S. B., De Philippis, R., & Tamagnini, P. (2016). Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: Interactions between metals and RPS binding sites. Applied Microbiology and Biotechnology, 100(17), 7765–7775. doi:10.1007/s00253-016-7602-9
  • Newell, B., Dalpont, G., & Grant, B. (1972). The excretion of organic nitrogen by marine algae in batch and continuous culture. Canadian Journal of Botany, 50(12), 2605–2611. doi:10.1139/b72-334
  • Noda, K., Ohno, N., Tanaka, K., Kamiya, N., Okuda, M., Yadomae, T., … Shoyama, Y. (1996). A water-soluble antitumor glycoprotein from Chlorella vulgaris. Planta Medica, 62(05), 423–426. doi:10.1055/s-2006-957931
  • Nouha, K., Kumar, R. S., Balasubramanian, S., & Tyagi, R. D. (2018). Critical review of EPS production, synthesis and composition for sludge flocculation. Journal of Environmental Sciences, 66, 225–245. doi:10.1016/j.jes.2017.05.020
  • Ozturk, S., & Aslim, B. (2008). Relationship between chromium (VI) resistance and extracellular polymeric substances (EPS) concentration by some cyanobacterial isolates. Environmental Science and Pollution Research, 15(6), 478–480. doi:10.1007/s11356-008-0027-y
  • Ozturk, S., Aslim, B., & Suludere, Z. (2009). Evaluation of chromium (VI) removal behavior by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Bioresource Technology, 100(23), 5588–5593. doi:10.1016/j.biortech.2009.06.001
  • Ozturk, S., Aslim, B., & Suludere, Z. (2010). Cadmium(II) sequestration characteristics by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Bioresource Technology, 101(24), 9742–9748. doi:10.1016/j.biortech.2010.07.105
  • Ozturk, S., Aslim, B., Suludere, Z., & Tan, S. (2014). Metal removal of cyanobacterial exopolysaccharides by uronic acid content and monosaccharide composition. Carbohydrate Polymers, 101, 265–271. doi:10.1016/j.carbpol.2013.09.040
  • Palma, H., Killoran, E., Sheehan, M., Berner, F., & Heimann, K. (2017). Assessment of microalga biofilms for simultaneous remediation and biofuel generation in mine tailings water. Bioresource Technology, 234, 327–335. doi:10.1016/j.biortech.2017.03.063
  • Paperi, R., Micheletti, E., & De Philippis, R. (2006). Optimization of copper sorbing-desorbing cycles with confined cultures of the exopolysaccharide-producing cyanobacterium Cyanospira capsulata. Journal of Applied Microbiology, 101(6), 1351–1356. doi:10.1111/j.1365-2672.2006.03021.x
  • Pardo, R., Herguedas, M., Barrado, E., & Vega, M. (2003). Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Analytical and Bioanalytical Chemistry, 376(1), 26–32. doi:10.1007/s00216-003-1843-z
  • Park, H.-S., Ko, M.-S., & Lee, J.-U. (2010). Adsorption and redox state alteration of arsenic, chromium and uranium by bacterial extracellular polymeric substances (EPS). Economic and Environmental Geology, 43(3), 223–233. (In Korean).
  • Patel, V. K., Sahoo, N. K., Patel, A. K., Rout, P. K., Naik, S. N., & Kalra, A. (2017). Exploring microalgae consortia for biomass production: A synthetic ecological engineering approach towards sustainable production of biofuel feedstock. Algal Biofuels, 8, 109–126. https://doi.org/10.1007/978-3-319-51010-1-6.
  • Paul, C., & Pohnert, G. (2013). Induction of protease release of the resistant diatom Chaetoceros didymus in response to lytic enzymes from an algicidal bacterium. Plos One, 8(3), e57577. doi:10.1371/journal.pone.0057577
  • Paulsen, B. S., Aslaksen, T., Freire, ‐Nordi, C. S., & Vieira, A. A. (1998). Extracellular polysaccharides from Ankistrodesmus densus (Chlorophyceae). Journal of Phycology, 34(4), 638–641. doi:10.1046/j.1529-8817.1998.340638.x
  • Pereira, S., Zille, A., Micheletti, E., Moradas-Ferreira, P., De Philippis, R., & Tamagnini, P. (2009). Complexity of cyanobacterial exopolysaccharides: Composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiology Reviews, 33(5), 917–941. doi:10.1111/j.1574-6976.2009.00183.x
  • Perez-Novo, C., Pateiro-Moure, M., Osorio, F., Nóvoa-Muñoz, J., López-Periago, E., & Arias-Estévez, M. (2008). Influence of organic matter removal on competitive and noncompetitive adsorption of copper and zinc in acid soils. Journal of Colloid and Interface Science, 322(1), 33–40. doi:10.1016/j.jcis.2008.03.002
  • Perpetuo, E. A., Souza, C. B., & Nascimento, C. A. O. (2011). Engineering bacteria for bioremediation. Progress in molecular and environmental bioengineering from analysis and modeling to technology applications. Rejieka, Croatia: InTech Publishers, 605–632. Doi. 10.5772/19546.
  • Phoenix, V. R., Adams, D. G., & Konhauser, K. O. (2000). Cyanobacterial viability during hydrothermal biomineralization. Chemical Geology, 169(3–4), 329–338. doi:10.1016/S0009-2541(00)00212-6
  • Pistocchi, R., Mormile, M., Guerrini, F., Isani, G., & Boni, L. (2000). Increased production of extra and intracellular metal-ligands in phytoplankton exposed to copper and cadmium. Journal of Applied Phycology, 12(3/5), 469–477. doi:10.1023/A:1008162812651
  • Pletikapic, G., Žutić, V., Vinković Vrček, I., & Svetličić, V. (2012). Atomic force microscopy characterization of silver nanoparticles interactions with marine diatom cells and extracellular polymeric substance. Journal of Molecular Recognition, 25(5), 309–317. doi:10.1002/jmr.2177
  • Qian, J., Li, K., Wang, P., Wang, C., Shen, M., Liu, J., … Tian, X. (2017). Toxic effects of three crystalline phases of TiO2 nanoparticles on extracellular polymeric substances in freshwater biofilms. Bioresource Technology, 241, 276–283. doi:10.1016/j.biortech.2017.05.121
  • Raungsomboon, S., Chidthaisong, A., Bunnag, B., Inthorn, D., & Harvey, N. W. (2006). Production, composition and Pb2+ adsorption characteristics of capsular polysaccharides extracted from a cyanobacterium Gloeocapsa gelatinosa. Water Research, 40(20), 3759–3766. doi:10.1016/j.watres.2006.08.013
  • Rossi, F., & De Philippis, R. (2015). Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life, 5(2), 1218–1238. doi:10.3390/life5021218
  • Rossi, F., & De Philippis, R. (2016). Exocellular polysaccharides in microalgae and cyanobacteria: Chemical features, role and enzymes and genes involved in their biosynthesis. The Physiology of Microalgae, Springer, 6, 565–590.
  • Rossi, F., Mugnai, G., & De Philippis, R. (2018). Complex role of the polymeric matrix in biological soil crusts. Plant and Soil, 429(1–2), 19–34. doi:10.1007/s11104-017-3441-4
  • Salehizadeh, H., & Shojaosadati, S. (2003). Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Research, 37(17), 4231–4235. doi:10.1016/S0043-1354(03)00418-4
  • Sardar, U. R., Bhargavi, E., Devi, I., Bhunia, B., & Tiwari, O. N. (2018). Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: A critical review. Carbohydrate Polymers, 199, 353–364. doi:10.1016/j.carbpol.2018.07.037
  • Sbihi, K., Cherifi, O., El Gharmali, A., Oudra, B., & Aziz, F. (2012). Accumulation and toxicological effects of cadmium, copper and zinc on the growth and photosynthesis of the freshwater diatom Planothidium lanceolatum (Brébisson) Lange-Bertalot: A laboratory study. Journal of Material and Environmental Science, 3, 497–506.
  • Sharma, M., Kaushik, A., Bala, K., & Kamra, A. (2008). Sequestration of chromium by exopolysaccharides of Nostoc and Gloeocapsa from dilute aqueous solutions. Journal of Hazardous Materials, 157(2), 315–318.
  • Shen, L., Li, Z., Wang, J., Liu, A., Li, Z., Yu, R., … Zeng, W. (2018). Characterization of extracellular polysaccharide/protein contents during the adsorption of Cd(II) by Synechocystis sp. PCC6803. Environmental Science and Pollution Research, 25(21), 20713–20722. doi:10.1007/s11356-018-2163-3
  • Shen, Y., Yu, T., Xie, Y., Chen, J., Ho, S.-H., Wang, Y., & Huang, F. (2019). Attached culture of Chlamydomonas sp. JSC4 for biofilm production and TN/TP/Cu (II) removal. Biochemical Engineering Journal, 141, 1–9. doi:10.1016/j.bej.2018.09.017
  • Sheng, G.-P., Xu, J., Li, W.-H., & Yu, H.-Q. (2013). Quantification of the interactions between Ca2+, Hg2+ and extracellular polymeric substances (EPS) of sludge. Chemosphere, 93(7), 1436–1441. doi:10.1016/j.chemosphere.2013.07.076
  • Sheng, G. P., Yu, H. Q., & Li, X. Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances, 28(6), 882–894. doi:10.1016/j.biotechadv.2010.08.001
  • Shnyukova, E., & Zolotareva, E. (2015). Diatom exopolysaccharides: A review. International Journal on Algae, 17(1), 50–67. doi:10.1615/InterJAlgae.v17.i1.50
  • Shou, W., Kang, F., & Lu, J. (2018). Nature and value of freely dissolved EPS ecosystem services: Insight into molecular coupling mechanisms for regulating metal toxicity. Environmental Science & Technology, 52(2), 457–466. doi:10.1021/acs.est.7b04834
  • Si, S., & Mandal, T. K. (2007). Tryptophan-based peptides to synthesize gold and silver nanoparticles: A mechanistic and kinetic study. Chemistry – A European Journal, 13(11), 3160–3168. doi:10.1002/chem.200601492
  • Sindu, P. A., & Gautam, P. (2017). Studies on the biofilm produced by Pseudomonas aeruginosa grown in different metal fatty acid salt media and its application in biodegradation of fatty acids and bioremediation of heavy metal ions. Canadian Journal of Microbiology, 63(1), 61–73. doi:10.1139/cjm-2015-0384
  • Strojsová, A., & Dyhrman, S. T. (2008). Cell-specific β-N-acetylglucosaminidase activity in cultures and field populations of eukaryotic marine phytoplankton. FEMS Microbiology Ecology, 64, 351–361. doi:10.1111/j.1574-6941.2008.00479.x
  • Sulaymon, A. H., Mohammed, A. A., & Al-Musawi, T. J. (2013). Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environmental Science and Pollution Research, 20(5), 3011–3023. doi:10.1007/s11356-012-1208-2
  • Sun, M., Li, W.-W., Mu, Z.-X., Wang, H.-L., Yu, H.-Q., Li, Y.-Y., & Harada, H. (2012). Selection of effective methods for extracting extracellular polymeric substances (EPSs) from Bacillus megaterium TF10. Separation and Purification Technology, 95, 216–221. doi:10.1016/j.seppur.2012.05.010
  • Takahashi, E., Ledauphin, J., Goux, D., & Orvain, F. (2009). Optimizing extraction of extracellular polymeric substances (EPS) from benthic diatoms: Comparison of the efficiency of six EPS extraction methods. Marine and Freshwater Research, 60(12), 1201–1210. doi:10.1071/MF08258
  • Tapia, J., Muñoz, J., González, F., Blázquez, M., & Ballester, A. (2011). Mechanism of adsorption of ferric iron by extracellular polymeric substances (EPS) from a bacterium Acidiphilium sp. Water Science and Technology, 64(8), 1716–1722. doi:10.2166/wst.2011.649
  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, Clinical and Environmental Toxicology, Springer, Basel, 101, 133–164.
  • Vimalnath, S., & Subramanian, S. (2018). Studies on the biosorption of Pb(II) ions from aqueous solution using extracellular polymeric substances (EPS) of Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces, 172, 60–67. doi:10.1016/j.colsurfb.2018.08.024
  • Volesky, B., & May-Phillips, H. (1995). Biosorption of heavy metals by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 42(5), 797–806. doi:10.1007/BF00171964
  • Wang, C., Fan, Q., Zhang, X., Lu, X., Xu, Y., Zhu, W., … Hao, L. (2018). Isolation, characterization, and pharmaceutical applications of an exopolysaccharide from Aerococcus Uriaeequi. Marine Drugs, 16(9), 337. doi:10.3390/md16090337
  • Wang, L. L., Wang, L. F., Ren, X.-M., Ye, X.-D., Li, W.-W., Yuan, S.-J., … Wang, X. K. (2012). pH dependence of structure and surface properties of microbial EPS. Environmental Science &Amp; Technology, 46(2), 737–744. doi:10.1021/es203540w
  • Wang, M., Kuo-Dahab, W. C., Dolan, S., & Park, C. (2014). Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp. in wastewater treatment. Bioresource Technology, 154(2), 131–137. doi:10.1016/j.biortech.2013.12.047
  • Wang, X., Hua, Z., & Mao, H. (2018). Influential factors for metal ions removal using extracellular polymeric substances produced by Cloacibacterium normanense. Water and Environment Journal, 32(4), 650–656. doi:10.1111/wej.12363
  • Wei, D., Li, M., Wang, X., Han, F., Li, L., Guo, J., … Du, B. (2016). Extracellular polymeric substances for Zn(II) binding during its sorption process onto aerobic granular sludge. Journal of Hazardous Materials, 301(15), 407–415. doi:10.1016/j.jhazmat.2015.09.018
  • Wei, L., Li, Y., Noguera, D. R., Zhao, N., Song, Y., Ding, J., … Cui, F. (2017). Adsorption of Cu2+ and Zn2+ by extracellular polymeric substances (EPS) in different sludges: Effect of EPS fractional polarity on binding mechanism. Journal of Hazardous Materials, 321, 473–483. doi:10.1016/j.jhazmat.2016.05.016
  • Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., … Brawley, S. H. (2017). Algae as nutritional and functional food sources: Revisiting our understanding. Journal of Applied Phycology, 29(2), 949–982. doi:10.1007/s10811-016-0974-5
  • Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C., & Mattick, J. S. (2002). Extracellular DNA required for bacterial biofilm formation. Science (New York, N.Y.), 295(5559), 1487doi:10.1126/science.295.5559.1487
  • Wingender, J., Jaeger, K.-E., & Flemming, H.-C. (1999). Interaction between extracellular polysaccharides and enzymes microbial extracellular polymeric substances. Berlin: Springer, 231–251. https://doi.org/10.1007/978-3.642.60147.713.
  • Wu, J., Ma, L. L., & Zeng, R. J. (2018). Role of extracellular polymeric substances in efficient chromium(VI) removal by algae-based Fe/C nano-composite. Chemosphere, 211, 608–616. doi:10.1016/j.chemosphere.2018.07.186
  • Wu, Y., Yang, J., Tang, J., Kerr, P., & Wong, P. K. (2017). The remediation of extremely acidic and moderate pH soil leachates containing Cu(II) and Cd(II) by native periphytic biofilm. Journal of Cleaner Production, 162, 846–855. doi:10.1016/j.jclepro.2017.06.086
  • Xiao, R., & Zheng, Y. (2016). Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology Advances, 34(7), 1225–1244. doi:10.1016/j.biotechadv.2016.08.004
  • Xiao, R., Yang, X., Li, M., Li, X., Wei, Y., Cao, M., … Zheng, Y. (2018). Investigation of composition, structure and bioactivity of extracellular polymeric substances from original and stress-induced strains of Thraustochytrium striatum. Carbohydrate Polymers, 195, 515–524. doi:10.1016/j.carbpol.2018.04.126
  • Xu, H., Cai, H., Yu, G., & Jiang, H. (2013). Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Research, 47(6), 2005–2014. doi:10.1016/j.watres.2013.01.019
  • Yan, P., Xia, J. S., Chen, Y. P., Liu, Z. P., Guo, J. S., Shen, Y., … Wang, J. (2017). Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry. Bioresource Technology, 232, 354–363. doi:10.1016/j.biortech.2017.02.067
  • Yang, J., Wei, W., Pi, S., Ma, F., Li, A., Wu, D., & Xing, J. (2015). Competitive adsorption of heavy metals by extracellular polymeric substances extracted from Klebsiella sp. J1. Bioresource Technology, 196, 533–539. doi:10.1016/j.biortech.2015.08.011
  • Zhang, D., Lee, D.-J., & Pan, X. (2013). Desorption of Hg(II) and Sb(V) on extracellular polymeric substances: Effects of pH, EDTA, Ca(II) and temperature shocks. Bioresource Technology, 128, 711–715. doi:10.1016/j.biortech.2012.10.089
  • Zhang, D., Pan, X., Mostofa, K. M., Chen, X., Mu, G., Wu, F., … Liu, Y. (2010). Complexation between Hg(II) and biofilm extracellular polymeric substances: An application of fluorescence spectroscopy. Journal of Hazardous Materials, 175(1-3), 359–365. doi:10.1016/j.jhazmat.2009.10.011
  • Zhang, S., Xu, C., & Santschi, P. H. (2008). Chemical composition and 234Th(IV) binding of extracellular polymeric substances (EPS) produced by the marine diatom Amphora sp. Marine Chemistry, 112(1-2), 81–92. doi:10.1016/j.marchem.2008.05.009
  • Zhang, X., Yang, C.-W., Yu, H.-Q., & Sheng, G.-P. (2016). Light-induced reduction of silver ions to silver nanoparticles in aquatic environments by microbial extracellular polymeric substances (EPS). Water Research, 106, 242–248. doi:10.1016/j.watres.2016.10.004
  • Zhang, Z., Cai, R., Zhang, W., Fu, Y., & Jiao, N. (2017). A novel exopolysaccharide with metal adsorption capacity produced by a marine bacterium Alteromonas sp. JL2810. Marine Drugs, 15(6), 175. doi:10.3390/md15060175
  • Zhou, K., Hu, Y., Zhang, L., Yang, K., & Lin, D. (2016). The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae. Scientific Reports, 6, 32998.
  • Zhou, Y., Nguyen, B. T., Lai, Y. S., Zhou, C., Xia, S., & Rittmann, B. E. (2016). Using flow cytometry to evaluate thermal extraction of EPS from Synechocystis sp. PCC 6803. Algal Research, 20, 276–281. doi:10.1016/j.algal.2016.10.024
  • Zhou, Y., Xia, S., Nguyen, B. T., Long, M., Zhang, J., & Zhang, Z. (2017). Interactions between metal ions and the biopolymer in activated sludge: Quantification and effects of system pH value. Frontiers of Environmental Science & Engineering, 11, 7.
  • Zhou, Y., Xia, S., Zhang, J., Nguyen, B. T., & Zhang, Z. (2017). Insight into the influences of pH value on Pb(II) removal by the biopolymer extracted from activated sludge. Chemical Engineering Journal, 308, 1098–1104. doi:10.1016/j.cej.2016.09.141

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.