1,376
Views
28
CrossRef citations to date
0
Altmetric
Reviews

Algogenic organic matter derived DBPs: Precursor characterization, formation, and future perspectives – A review

, , , &
Pages 1803-1834 | Published online: 04 Mar 2019

References

  • Akhter, M., Dutta Majumd, R., Fortier-McGill, B., Soong, R., Liaghati-Mobarhan, Y., Simpson, M., … Simpson, A. J. (2016). Identification of aquatically available carbon from algae through solution-state NMR of whole 13C-labelled cells. Analytical and Bioanalytical Chemistry, 408, 4357–4370. doi:10.1007/s00216-016-9534-8
  • Beauchamp, N., Laflamme, O., Simard, S., Dorea, C., Pelletier, G., Bouchard, C., & Rodriguez, M. (2018). Relationships between DBP concentrations and differential UV absorbance in full-scale conditions. Water Research, 131, 110–121. doi:10.1016/j.watres.2017.12.031
  • Beauchamp, N., Dorea, C., Bouchard, C., & Rodriguez, M. (2018). Use of differential absorbance to estimate concentrations of chlorinated disinfection by-product in drinking water: Critical review and research needs. Critical Reviews in Environmental Science and Technology, 48, 210–241. doi:10.1080/10643389.2018.1443668
  • Bellar, T. A., Lichtenberg, J. J., & Kroner, R. C. (1974). The occurrence of organohalides in chlorinated drinking waters. Journal – American Water Works Association, 66, 703–706. doi:10.1002/j.1551-8833.1974.tb02129.x
  • Chang, E., Chiang, P., & Liiang, C. (1998). The occurrence of disinfection by‐products in Taiwan drinking water. Toxicological & Environmental Chemistry, 67, 333–349. doi:10.1080/02772249809358626
  • Chang, H. H., Tung, H. H., Chao, C. C. & Wang, G. S. 2010. Occurrence of haloacetic acids (HAAs) and trihalomethanes (THMs) in drinking water of Taiwan. Environ. Monit. Assess. 162 (1), 237–250. doi:10.1007/s10661-009-0792-1
  • Chellam, S., & Sari, M. A. (2016). Aluminum electrocoagulation as pretreatment during microfiltration of surface water containing NOM: A review of fouling, NOM, DBP, and virus control. Journal of Hazardous Materials, 304, 490–501. doi:10.1016/j.jhazmat.2015.10.054
  • Chen, B., & Westerhoff, P. (2010). Predicting disinfection by-product formation potential in water. Water Res, 44, 3755–3762. doi:10.1016/j.watres.2010.04.009
  • Chen, C., Zhang, X. J., Zhu, L. X., Liu, J., He, W. J., & Han, H. D. (2008). Disinfection by-products and their precursors in a water treatment plant in North China: Seasonal changes and fraction analysis. Sci. Total. Environ, 397(1–3), 140–147. doi:10.1016/j.scitotenv.2008.02.032
  • Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence excitation − emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 37, 5701–5710. doi:10.1021/es034354c
  • Chow, C. W. K., Fabris, R., Leeuwen, J. V., Wang, D., & Drikas, M. (2008). Assessing natural organic matter treatability using high performance size exclusion chromatography. Environmental Science & Technology, 42, 6683–6689. doi:10.1021/es800794r
  • Chowdhury, S., Champagne, P., & McLellan, P. J. (2009). Models for predicting disinfection byproduct (DBP) formation in drinking waters: A chronological review. Science of the Total Environment, 407, 4189–4206. doi:10.1016/j.scitotenv.2009.04.006
  • Chu, H., Yu, H., Tan, X., Zhang, Y., Zhou, X., Yang, L., & Li, D. (2015). Extraction procedure optimization and the characteristics of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) from Chlorella pyrenoidosa. Colloids and Surfaces B, 125, 238–246. doi:10.1016/j.colsurfb.2014.08.007
  • Coble, P. G. (2007). Marine optical biogeochemistry: The chemistry of ocean color. Chemical Reviews, 107, 402–418. doi:10.1021/cr050350+
  • Coral, L. A., Zamyadi, A., Barbeau, B., Bassetti, F. J., Lapolli, F. R., & Prevost, M. (2013). Oxidation of Microcystis aeruginosa and Anabaena flos-aquae by ozone: Impacts on cell integrity and chlorination by-product formation. Water Research, 47, 2983–2994. doi:10.1016/j.watres.2013.03.012
  • De Leeuw, J., & Largeau, C. (1993). A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation. In M. H. Engel, & S. A. Macko (Eds.), Organic geochemistry (pp. 23–72). New York, NY: Plenum Press.
  • Dunnick, J. K., Haseman, J. K., Lilja, H. S., & Wyand, S. (1985). Toxicity and carcinogenicity of chlorodibromomethane in Fischer 344/N rats and B6C3F1 mice. Fundamental and Applied Toxicology, 5 (6 Pt 1), 1128–1136.
  • Fang, J., Ma, J., Yang, X., & Shang, C. (2010). Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa. Water Research, 44, 1934–1940. doi:10.1016/j.watres.2009.11.046
  • Fang, J., Yang, X., Ma, J., Shang, C., & Zhao, Q. (2010). Characterization of algal organic matter and formation of DBPs from chlor(am)ination. Water Research, 44, 5897–5906. doi:10.1016/j.watres.2010.07.009
  • Fogg, G., Nalewajko, C., & Watt, W. (1965). Extracellular products of phytoplankton photosynthesis. Proceedings of the Royal Society of London. Series B, Biological Sciences, 162, 517–534. doi:10.1098/rspb.1965.0054
  • Ge, F., Xiao, Y., Yang, Y., Wang, W., Moe, B., & Li, X. F. (2018). Formation of water disinfection byproduct 2,6-dichloro-1,4-benzoquinone from chlorination of green algae. Journal of Environmental Sciences (China), 63, 1–8. doi:10.1016/j.jes.2017.10.001
  • Geider, R., & La Roche, J. (2002). Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology, 37, 1–17. doi:10.1017/S0967026201003456
  • Goslan, E. H., Seigle, C., Purcell, D., Henderson, R., Parsons, S. A., Jefferson, B., & Judd, S. J. (2017). Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter. Chemosphere, 170, 1–9. doi:10.1016/j.chemosphere.2016.11.148
  • Graham, N. J., Wardlaw, V. E., Perry, R., & Jiang, J. Q. (1998). The significance of algae as trihalomethane precursors. Water Science and Technology, 37, 83–89. doi:10.2166/wst.1998.0110
  • Hao, R., Ren, H., Li, J., Ma, Z., Wan, H., Zheng, X., & Cheng, S. (2012). Use of three-dimensional excitation and emission matrix fluorescence spectroscopy for predicting the disinfection by-product formation potential of reclaimed water. Water Research, 46, 5765–5776. doi:10.1016/j.watres.2012.08.007
  • Henderson, R., Parsons, S. A., & Jefferson, B. (2008). The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Research, 42, 1827–1845. doi:10.1016/j.watres.2007.11.039
  • Henderson, R. K., Baker, A., Parsons, S. A., & Jefferson, B. (2008). Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Research, 42, 3435–3445. doi:10.1016/j.watres.2007.10.032
  • Henderson, R. K., Parsons, S. A., & Jefferson, B. (2010). The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae. Water Research, 44, 3617–3624. doi:10.1016/j.watres.2010.04.016
  • Her, N., Amy, G., Foss, D., Cho, J., Yoon, Y., & Kosenka, P. (2002). Optimization of method for detecting and characterizing NOM by HPLC-size exclusion chromatography with UV and on-line DOC detection. Environmental Science & Technology, 36, 1069–1076.
  • Her, N., Amy, G., Park, H. R., & Song, M. (2004). Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Research, 38, 1427–1438. doi:10.1016/j.watres.2003.12.008
  • Hidayah, E. N., Chou, Y. C., & Yeh, H. H. (2017). Comparison between HPSEC-OCD and F-EEMs for assessing DBPs formation in water. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 52, 391–402. doi:10.1080/10934529.2016.1262607
  • Hoehn, R. C., Barnes, D. B., Thompson, B. C., Randall, C. W., Grizzard, T. J., & Shaffer, P. T. (1980). Algae as sources of trihalomethane precursors. Journal - American Water Works Association, 72, 344–350. doi:10.1002/j.1551-8833.1980.tb04528.x
  • Hong, H. C., Huang, F. Q., Wang, F. Y., Ding, L. X., Lin, H. J., & Liang, Y. (2013). Properties of sediment NOM collected from a drinking water reservoir in South China, and its association with THMs and HAAs formation. Journal of Hydrology, 476, 274–279. doi:10.1016/j.jhydrol.2012.10.040
  • Hong, H. C., Mazumder, A., Wong, M. H., & Liang, Y. (2008). Yield of trihalomethanes and haloacetic acids upon chlorinating algal cells, and its prediction via algal cellular biochemical composition. Water Research, 42, 4941–4948. doi:10.1016/j.watres.2008.09.019
  • Hong, H. C., Wong, M. H., & Liang, Y. (2009). Amino Acids as Precursors of Trihalomethane and Haloacetic Acid Formation During Chlorination. Archives of Environmental Contamination and Toxicology, 56, 638–645. doi:10.1007/s00244-008-9216-4
  • Hua, G., Kim, J., & Reckhow, D. A. (2014). Disinfection byproduct formation from lignin precursors. Water Research, 63, 285–295. doi:10.1016/j.watres.2014.06.029
  • Hua, G., & Reckhow, D. A. (2007). Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size. Environmental Science & Technology, 41, 3309–3315.
  • Hua, G., Reckhow, D. A., & Abusallout, I. (2015). Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources. Chemosphere, 130, 82–89. doi:10.1016/j.chemosphere.2015.03.039
  • Hua, L.-C., Chao, S.-J., & Huang, C. (2019). Fluorescent and molecular weight dependence of THM and HAA formation from intracellular algogenic organic matter (IOM). Water Research, 148, 231–238. doi:10.1016/j.watres.2018.10.051
  • Hua, L. C., Lin, J. L., Syue, M. Y., Huang, C. P., & Chen, P. C. (2018). Optical properties of algogenic organic matter within the growth period of Chlorella sp. and predicting their disinfection by-product formation. Science of the Total Environment, 621, 1467–1474. doi:10.1016/j.scitotenv.2017.10.082
  • Hua, L.-C., Lin, J.-L., Chao, S.-J., & Huang, C. (2018). Probing algogenic organic matter (AOM) by size-exclusion chromatography to predict AOM-derived disinfection by-product formation. Science of the Total Environment, 645, 71–78. doi:10.1016/j.scitotenv.2018.07.100
  • Hua, L. C., Lin, J. L., Chen, P. C., & Huang, C. P. (2017). Chemical structures of extra- and intra-cellular algogenic organic matters as precursors to the formation of carbonaceous disinfection byproducts. Chemical Engineering Journal, 328, 1022–1030. doi:10.1016/j.cej.2017.07.123
  • Huang, J., Graham, N., Templeton, M. R., Zhang, Y., Collins, C., & Nieuwenhuijsen, M. (2009). A comparison of the role of two blue-green algae in THM and HAA formation. Water Research, 43, 3009–3018. doi:10.1016/j.watres.2009.04.029
  • Huber, S. A., Balz, A., Abert, M., & Pronk, W. (2011). Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography – organic carbon detection – organic nitrogen detection (LC-OCD-OND). Water Research, 45, 879–885. doi:10.1016/j.watres.2010.09.023
  • Johnstone, D. W., & Miller, C. M. (2009). Fluorescence excitation–emission matrix regional transformation and chlorine consumption to predict trihalomethane and haloacetic acid formation. Environmental Engineering Science, 26, 1163–1170. doi:10.1089/ees.2009.0035
  • Kögel-Knabner, I. (1997). NMR in Soil Science 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma, 80, 243–270. doi:10.1016/S0016-7061(97)00055-4
  • Koivusalo, M., & Vartiainen, T. (1997). Drinking water chlorination by-products and cancer. Reviews on Environmental Health, 12, 81–90.
  • Korshin, G. V., Li, C. W., & Benjamin, M. M. (1997). Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory. Water Research, 31, 1787–1795. doi:10.1016/S0043-1354(97)00006-7
  • Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S. J., Chinn, R., Sclimenti, M. J., … Thruston, A. D. (2006). Occurrence of a new generation of disinfection byproducts. Environmental Science & Technology, 40, 7175–7185.
  • Lai, C. H., Chou, Y. C., & Yeh, H. H. (2015). Assessing the interaction effects of coagulation pretreatment and membrane material on UF fouling control using HPSEC combined with peak-fitting. Journal of Membrane Science, 474, 207–214. doi:10.1016/j.memsci.2014.09.052
  • Leenheer, J. A., & Croué, J. P. (2003). Peer reviewed: Characterizing aquatic dissolved organic matter. Environmental Science & Technology, 37(1), 18A–26A. doi:10.1021/es032333c
  • Leloup, M., Nicolau, R., Pallier, V., Yéprémian, C., & Feuillade-Cathalifaud, G. (2013). Organic matter produced by algae and cyanobacteria: Quantitative and qualitative characterization. Journal of Environmental Sciences, 25, 1089–1097. doi:10.1016/S1001-0742(12)60208-3
  • Li, L., Gao, N., Deng, Y., Yao, J., & Zhang, K. (2012). Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds. Water Research, 46, 1233–1240.
  • Li, L., Wang, Z., Rietveld, L. C., Gao, N., Hu, J., Yin, D., & Yu, S. (2014). Comparison of the effects of extracellular and intracellular organic matter extracted from Microcystis aeruginosa on ultrafiltration membrane fouling: Dynamics and mechanisms. Environmental Science & Technology, 48, 14549–14557. doi:10.1021/es5035365
  • Li, W. T., Jin, J., Li, Q., Wu, C. F., Lu, H., Zhou, Q., & Li, A. M. (2016). Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment. Water Research, 93, 1–9.
  • Liao, X., Liu, J., Yang, M., Ma, H., Yuan, B., & Huang, C. H. (2015). Evaluation of disinfection by-product formation potential (DBPFP) during chlorination of two algae species — Blue-green Microcystis aeruginosa and diatom Cyclotella meneghiniana. Science of the Total Environment, 532, 540–547. doi:10.1016/j.scitotenv.2015.06.038
  • Lin, J. L., Hua, L. C., Hung, S. K., & Huang, C. P (2018). Algal removal from cyanobacteria-rich waters by preoxidation-assisted coagulation–flotation: Effect of algogenic organic matter release on algal removal and trihalomethane formation. Journal of Environmental Sciences, 63, 147–155. doi:10.1016/j.jes.2017.02.007
  • Lin, J. L., Hua, L. C., Wu, Y., & Huang, C. P. (2016). Pretreatment of algae-laden and manganese-containing waters by oxidation-assisted coagulation: Effects of oxidation on algal cell viability and manganese precipitation. Water Research, 89, 261–269. doi:10.1016/j.watres.2015.11.042
  • Lin, J. L., Huang, C. P., & Wang, W. M. (2015). Effect of cell integrity on algal destabilization by oxidation-assisted coagulation. Separation and Purification Technology, 151, 262–268. doi:10.1016/j.seppur.2015.07.064
  • Linden, L. G., Lewis, D. M., Burch, M. D., & Brookes, J. D. (2004). Interannual variability in rainfall and its impact on nutrient load and phytoplankton in Myponga Reservoir, South Australia. International Journal of River Basin Management, 2, 169–179. doi:10.1080/15715124.2004.9635230
  • Lui, Y. S., Qiu, J. W., Zhang, Y. L., Wong, M. H., & Liang, Y. (2011). Algal-derived organic matter as precursors of disinfection by-products and mutagens upon chlorination. Water Research, 45, 1454–1462. doi:10.1016/j.watres.2010.11.007
  • Mao, J., Cory, R. M., McKnight, D. M., & Schmidt-Rohr, K. (2007). Characterization of a nitrogen-rich fulvic acid and its precursor algae from solid state NMR. Organic Geochemistry, 38, 1277–1292. doi:10.1016/j.orggeochem.2007.04.005
  • Mao, J. D., Tremblay, L., Gagné, J. P., Kohl, S., Rice, J., & Schmidt-Rohr, K. (2007). Humic acids from particulate organic matter in the Saguenay Fjord and the St. Lawrence Estuary investigated by advanced solid-state NMR. Geochimica et Cosmochimica Acta, 71, 5483–5499. doi:10.1016/j.gca.2007.09.022
  • Matilainen, A., Gjessing, E. T., Lahtinen, T., Hed, L., Bhatnagar, A., & Sillanpää, M. (2011). An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere, 83, 1431–1442. doi:10.1016/j.chemosphere.2011.01.018
  • McArthur, S. L., Mishra, G., & Easton, C. D. (2014). Applications of XPS in biology and biointerface analysis. In V. S. Smentkowski (Ed.), Surface analysis and techniques in biology (pp. 9–36). Cham, Switzerland: Springer International Publishing.
  • Meng, F., Huang, G., Li, Z., & Li, S. (2012). Microbial Transformation of Structural and Functional Makeup of Human-Impacted Riverine Dissolved Organic Matter. Industrial & Engineering Chemistry Research, 51, 6212–6218. doi:10.1021/ie300504d
  • Nguyen, M., Westerhoff, P., Baker, L., Hu, Q., Esparza-Soto, M., & Sommerfeld, M. (2005). Characteristics and Reactivity of Algae-Produced Dissolved Organic Carbon. Journal of Environmental Engineering, 131, 1574–1582. doi:10.1061/(ASCE)0733-9372(2005)131:11(1574)
  • Nikolaou, A. D., & Lekkas, T. D. (2001). The role of natural organic matter during formation of chlorination by-products: A review. Acta Hydrochimica et Hydrobiologica, 29, 63–77. doi:10.1002/1521-401X(200109)29:2/3<63::AID-AHEH63>3.0.CO;2-C
  • Peleato, N. M., & Andrews, R. C. (2015). Comparison of three-dimensional fluorescence analysis methods for predicting formation of trihalomethanes and haloacetic acids. Journal of Environmental Sciences., 27, 159–167. doi:10.1016/j.jes.2014.04.014
  • Peleato, N. M., Legge, R. L., & Andrews, R. C. (2018). Neural networks for dimensionality reduction of fluorescence spectra and prediction of drinking water disinfection by-products. Water Research, 136, 84–94. doi:10.1016/j.watres.2018.02.052
  • Pifer, A. D., & Fairey, J. L. (2012). Improving on SUVA254 using fluorescence-PARAFAC analysis and asymmetric flow-field flow fractionation for assessing disinfection byproduct formation and control. Water Research, 46, 2927–2936. doi:10.1016/j.watres.2012.03.002
  • Pivokonsky, M., Kloucek, O., & Pivokonska, L. (2006). Evaluation of the production, composition and aluminum and iron complexation of algogenic organic matter. Water Research, 40, 3045–3052. doi:10.1016/j.watres.2006.06.028
  • Pivokonsky, M., Naceradska, J., Brabenec, T., Novotna, K., Baresova, M., & Janda, V. (2015). The impact of interactions between algal organic matter and humic substances on coagulation. Water Research, 84, 278–285. doi:10.1016/j.watres.2015.07.047
  • Pivokonsky, M., Naceradska, J., Kopecka, I., Baresova, M., Jefferson, B., Li, X., & Henderson, R. K. (2016). The impact of algogenic organic matter on water treatment plant operation and water quality: A review. Critical Reviews in Environmental Science and Technology, 46, 291–335.
  • Pivokonsky, M., Safarikova, J., Baresova, M., Pivokonska, L., & Kopecka, I. (2014). A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga. Water Research, 51, 37–46. doi:10.1016/j.watres.2013.12.022
  • Plummer, J. D., & Edzwald, J. K. (2001). Effect of Ozone on Algae as Precursors for Trihalomethane and Haloacetic Acid Production. Environmental Science & Technology, 35, 3661–3668.
  • Pressman, J. G., Richardson, S. D., Speth, T. F., Miltner, R. J., Narotsky, M. G., Hunter, I. I. I. E. S., … Simmons, J. E. (2010). Concentration, Chlorination, and Chemical Analysis of Drinking Water for Disinfection Byproduct Mixtures Health Effects Research: U.S. EPA’s Four Lab Study. Environmental Science & Technology, 44, 7184–7192. doi:10.1021/es9039314
  • Qu, F., Liang, H., He, J., Ma, J., Wang, Z., Yu, H., & Li, G. (2012). Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling. Water Research, 46, 2881–2890. doi:10.1016/j.watres.2012.02.045
  • Reckhow, D. A., Singer, P. C., & Malcolm, R. L. (1990). Chlorination of humic materials: Byproduct formation and chemical interpretations. Environmental Science & Technology, 24, 1655–1664. doi:10.1021/es00081a005
  • Revsbech, N., Jbrgensen, B., Blackburn, T., Santschi, P., Benoit, G., & Tenbrink, M. (1994). Aquatic fulvic acids in algal-rich Antarctic ponds. Limnology and Oceanography, 39, 1972–1979.
  • Roccaro, P., Vagliasindi, F. G. A., & Korshin, G. V. (2009). Changes in NOM Fluorescence Caused by Chlorination and their Associations with Disinfection by-Products Formation. Environmental Science & Technology, 43, 724–729. doi:10.1021/es801939f
  • Rook, J. J. (1974). Formation of haloforms during chlorination of natural waters. Water Treatment and Examination, 23, 234–243.
  • Scully, F., Kravitz, R., Howell, G., Speed, M., Arber, R., & Jolley, R. (1985). Contribution of proteins to the formation of trihalomethanes on chlorination of natural waters. In R. L. Joley, R. J. Bull, W. P. Davis, S. Katz, M. H. Roberts, & V. A. Jacobs (Eds.), Water chlorination: Chemistry, environmental impact and health effects (5, pp. 807–820). Chelsea, MI: Lewis Publishers Inc.
  • Scully, F. E., Howell, G. D., Kravitz, R., Jewell, J. T., Hahn, V., & Speed, M. (1988). Proteins in natural waters and their relation to the formation of chlorinated organics during water disinfection. Environmental Science & Technology, 22, 537–542. doi:10.1021/es00170a009
  • Shen, Q. H., Zhi, T. T., Cheng, L. H., Xu, X. H., & Chen, H. L. (2013). Hexavalent chromium detoxification by nonliving Chlorella vulgaris cultivated under tuned conditions. Chemical Engineering Journal, 228, 993–1002.
  • Shutova, Y., Baker, A., Bridgeman, J., & Henderson, R. (2016). On-line monitoring of organic matter concentrations and character in drinking water treatment systems using fluorescence spectroscopy. Environmental Science: Water Research & Technology, 2, 749–760. doi:10.1039/C6EW00048G
  • Sillanpää, M., Matilainen, A., & Lahtinen, T. (2015). Characteization of NOM. In M. Sillanpää (Ed.), Natural organic matter in water: Characterization and treatment method (pp. 17–53). Oxford, UK: Butterworth-Heinemann.
  • Singer, P., Weinberg, H., Krasner, S., Arora, H., & Najm, I. (2002). Relative dominance of HAAs and THMs in treated drinking water. AWWA Research Foundation and American Water Works Association, Denver, CO. Report No. 90844.
  • Singer, P. C. (1994). Control of disinfection by‐products in drinking water. Journal of Environmental Engineering, 120, 727–744. doi:10.1061/(ASCE)0733-9372(1994)120:4(727)
  • Sorensen, J. P. R., Vivanco, A., Ascott, M. J., Gooddy, D. C., Lapworth, D. J., Read, D. S., … Taylor, R. G. (2018). Online fluorescence spectroscopy for the real-time evaluation of the microbial quality of drinking water. Water Research, 137, 301–309. doi:10.1016/j.watres.2018.03.001
  • Tang, X., Zheng, H., Gao, B., Zhao, C., Liu, B., Chen, W., & Guo, J. (2017). Interactions of specific extracellular organic matter and polyaluminum chloride and their roles in the algae-polluted water treatment. Journal of Hazardous Materials, 332, 1–9. doi:10.1016/j.jhazmat.2017.02.060
  • Ting, Y. P., Teo, W. K., & Soh, C. Y. (1995). Gold uptake by Chlorella vulgaris. Journal of Applied Phycology, 7(1), 97–100. doi:10.1007/BF00003557
  • Tomaselli, L. (2004). The microalgal cell. In A. Richmond (Ed.), Handbook of microalgal culture: Biotechnology and applied phycology (pp. 3–19). Hoboken, NJ: John Wiley & Sons.
  • Tomlinson, A., Drikas, M., & Brookes, J. D. (2016). The role of phytoplankton as pre-cursors for disinfection by-product formation upon chlorination. Water Research, 102, 229–240. doi:10.1016/j.watres.2016.06.024
  • Uyak, V., & Demirbas, K. D. (2014). Formation of disinfection byproducts (DBPs) in surface water sources: Differential ultraviolet (UV) absorbance approach. Environmental Forensics, 15(1), 52–65. doi:10.1080/15275922.2013.853711
  • Villacorte, L. O., Ekowati, Y., Neu, T. R., Kleijn, J. M., Winters, H., Amy, G., … Kennedy, M. D. (2015). Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae. Water Reseacrh, 73, 216–230. doi:10.1016/j.watres.2015.01.028
  • Wang, C., Bai, L., Jiang, H. L., & Xu, H. (2016). Algal bloom sedimentation induces variable control of lake eutrophication by phosphorus inactivating agents. Science of the Total Environment, 557–558, 479–488. doi:10.1016/j.scitotenv.2016.03.082
  • Watt, W. D. (1966). Release of dissolved organic material from the cells of phytoplankton populations. Proceedings of the Royal Society of London. Series B, Biological Sciences, 164, 521–551.
  • Watt, W. D. (1969). Extracellular release of organic matter from two freshwater diatoms. Annals of Botany, 33, 427–437. doi:10.1093/oxfordjournals.aob.a084296
  • Wert, E. C., & Rosario-Ortiz, F. L. (2013). Intracellular organic matter from cyanobacteria as a precursor for carbonaceous and nitrogenous disinfection byproducts. Environmental Science & Technology, 47, 6332–6340. doi:10.1021/es400834k
  • Westerhoff, P., Aiken, G., Amy, G., & Debroux, J. (1999). Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Reseacrh, 33, 2265–2276. doi:10.1016/S0043-1354(98)00447-3
  • Xie, P., Ma, J., Fang, J., Guan, Y., Yue, S., Li, X., & Chen, L. (2013). Comparison of permanganate preoxidation and preozonation on algae containing water: Cell integrity, characteristics, and chlorinated disinfection byproduct formation. Environmental Science & Technology, 47, 14051–14061. doi:10.1021/es4027024
  • Xu, H., & Jiang, H. (2015). Effects of cyanobacterial extracellular polymeric substances on the stability of ZnO nanoparticles in eutrophic shallow lakes. Environmental Pollution, 197, 231–239. doi:10.1016/j.envpol.2014.10.031
  • Xue, C., Wang, Q., Chu, W., & Templeton, M. R. (2014). The impact of changes in source water quality on trihalomethane and haloacetonitrile formation in chlorinated drinking water. Chemosphere, 117, 251–255. doi:10.1016/j.chemosphere.2014.06.083
  • Yang, X., Guo, W., & Shen, Q. (2011). Formation of disinfection byproducts from chlor(am)ination of algal organic matter. Journal of Hazardous Materials, 197, 378–388. doi:10.1016/j.jhazmat.2011.09.098
  • Yang, X., Shang, C., Lee, W., Westerhoff, P., & Fan, C. (2008). Correlations between organic matter properties and DBP formation during chloramination. Water Research, 42, 2329–2339. doi:10.1016/j.watres.2007.12.021
  • Zhang, T. Y., Lin, Y. L., Xu, B., Cheng, T., Xia, S. J., Chu, W. H., & Gao, N. Y. (2016). Formation of organic chloramines during chlor(am)ination and UV/chlor(am)ination of algae organic matter in drinking water. Water Research, 103, 189–196. doi:10.1016/j.watres.2016.07.036
  • Zhang, Y., van Dijk, M. A., Liu, M., Zhu, G., & Qin, B. (2009). The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: Field and experimental evidence. Water Research, 43, 4685–4697. doi:10.1016/j.watres.2009.07.024
  • Zhao, Z. Y., Gu, J. D., Fan, X. J., & Li, H. B. (2006). Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments. Journal of Hazardous Materials, 134(1–3), 60–66. doi:10.1016/j.jhazmat.2005.10.032
  • Zhou, S., Shao, Y., Gao, N., Deng, Y., Li, L., Deng, J., & Tan, C. (2014). Characterization of algal organic matters of Microcystis aeruginosa: Biodegradability, DBP formation and membrane fouling potential. Water Research, 52, 199–207. doi:10.1016/j.watres.2014.01.002
  • Zhou, S., Shao, Y., Gao, N., Zhu, S., Li, L., Deng, J., & Zhu, M. (2014). Removal of Microcystis aeruginosa by potassium ferrate (VI): Impacts on cells integrity, intracellular organic matter release and disinfection by-products formation. Chemical Engineering Journal, 251, 304–309. doi:10.1016/j.cej.2014.04.081
  • Zhou, S., Zhu, S., Shao, Y., & Gao, N. (2015). Characteristics of C-, N-DBPs formation from algal organic matter: Role of molecular weight fractions and impacts of pre-ozonation. Water Research, 72, 381–390. doi:10.1016/j.watres.2014.11.023
  • Zhu, M., Gao, N., Chu, W., Zhou, S., Zhang, Z., Xu, Y., & Dai, Q. (2015). Impact of pre-ozonation on disinfection by-product formation and speciation from chlor(am)ination of algal organic matter of Microcystis aeruginosa. Ecotoxicology and Environmental Safety, 120, 256–262. doi:10.1016/j.ecoenv.2015.05.048

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.