1,445
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

End-of-waste life: Inventory of alternative end-of-use recirculation routes of bio-based plastics in the European Union context

ORCID Icon, &
Pages 1835-1892 | Published online: 27 Mar 2019

References

  • ABC. (2018). Retrieved from http://americanbiogascouncil.org/index.asp#
  • Abou-Zeid, D. M., Müller, R. J., & Deckwer, W. D. (2001). Degradation of natural and synthetic polyesters under anaerobic conditions. Journal of Biotechnology, 86(2), 113–126. doi:10.1016/S0168-1656(00)00406-5
  • Abou-Zeid, D. M., Muller, R. J., & Deckwer, W. D. (2004). Biodegradation of aliphatic homopolyesters and aliphatic – Aromatic copolyesters by anaerobic microorganisms. Biomacromolecules, 5(5), 1687–1697. doi:10.1021/bm0499334
  • Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, ΕV. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP)). Journal of Hazardous Materials, 149(3), 536–542. doi:10.1016/j.jhazmat.2007.06.076
  • Akesson, D., Fazelinejad, S., Skrifvars, V. V., & Skrifvars, M. (2016). Mechanical recycling of polylactic acid composites reinforced with wood fibres by multiple extrusion and hydrothermal ageing. Journal of Reinforced Plastics and Composites, 35(16), 1248–1259. doi:10.1177/0731684416647507
  • Alaerts, L., Augustinus, M., & Van Acker, K. (2018). Impact of bio-based plastics on current recycling of plastics. Sustainability, 10(5), 1487. doi:10.3390/su10051487
  • Alavi Nikje, M. M., & Nikrah, M. (2007). Glycerin as a new glycolysing agent for chemical recycling of cold cure polyurethane foam wastes in “split-phase” condition. Polymer Bulletin, 58(2), 411–423. doi:10.1007/s00289-006-0683-3
  • Al-Itry, R., Lamnawar, K., & Maazouz, A. (2014). Reactive extrusion of PLA, PBAT with a multi-functional epoxide: Physico-chemical and rheological properties. European Polymer Journal, 58, 90–102. doi:10.1016/j.eurpolymj.2014.06.013
  • Al-Sabagh, A. M., Yehia, F. Z., Eshaq, G., Rabie, A. M., & ElMetwally, A. E. (2016). Greener routes for recycling of polyethylene terephthalate. Egyptian Journal of Petroleum, 25(1), 53–64. doi:10.1016/j.ejpe.2015.03.001
  • AS 5810. (2010). Biodegradable plastics–biodegradable plastics suitable for home composting. Australian Standard.
  • ASTM D5511. (2018). Standard test method for determining anaerobic biodegradation of plastic materials under high-solids anaerobic-digestion conditions. ASTM International.
  • ASTM D6400. (2012). Standard specification for labeling of plastics designed to be aerobically composted in municipal or industrial facilities. ASTM International.
  • ASTM D6866. (2018). Standard test methods for determining the biobased content of solid, liquid, and gaseous samples using radiocarbon analysis. ASTM International.
  • Babu, R. P., O'Connor, K., & Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2(1), 8. doi:10.1186/2194-0517-2-8
  • Badia, J. D., & Ribes-Greus, A. (2016). Mechanical recycling of polylactide, upgrading trends and combination of valorization techniques. European Polymer Journal, 84, 22–39. doi:10.1016/j.eurpolymj.2016.09.005
  • Badia, J. D., Santonja-Blasco, L., Martinez-Felipe, A., & Ribes-Greus, A. (2012). Reprocessed polylactide, studies of thermo-oxidative decomposition. Bioresource Technology, 114, 622–628.
  • Badia, J. D., Santonja-Blasco, L., Martinez-Felipe, A., & Ribes-Greus, A. (2012). Hygrothermal ageing of reprocessed polylactide. Polymer Degradation and Stability, 97(10), 1881–1890.
  • Badia, J. D., Stromberg, E., Karlsson, S., & Ribes-Greus, A. (2012). Material valorisation of amorphous polylactide. Influence of thermomechanical degradation on the morphology, segmental dynamics, thermal and mechanical performance. Polymer Degradation and Stability, 97(4), 670–678. doi:10.1016/j.polymdegradstab.2011.12.019
  • Beltrán, F. R., Barrio, I., Lorenzo, V., Martínez Urreaga, J., & de la Orden, M. U. (2017, June 21–24). Mechanical recycling of polylactide, improvement of the properties of the recycled material. 5th International Conference on Sustainable Solid Waste Management, Athens. Retrieved from http://athens2017.uest.gr/proceedings/
  • Beltrán, F. R., Lorenzo, V., Acosta, J., de la Orden, M. U., & Martínez Urreaga, J. (2018). Effect of simulated mechanical recycling processes on the properties of poly(lactic acid). Journal of Environmental Management, 216(15), 25–31. doi:10.1016/j.jenvman.2017.05.020
  • Beltrán, F. R., Lorenzo, V., de la Orden, M. U., & Martínez-Urreaga, J. (2016). Effect of different mechanical recycling processes on the hydrolytic degradation of poly(l-lactic acid). Polymer Degradation and Stability, 133, 339–348. doi:10.1016/j.polymdegradstab.2016.09.018
  • Border, D. (2002). Processes and plant for waste composting and other aerobic treatment. Environment Agency, R&D Technical Report P1-311/TR, ISBN 184432124X.
  • Bourguignon, D. (2017). Circular economy package. European Parliamentary Research Service (EPRS), Briefing EU Legislation in Progress.
  • Bourguignon, D. (2016). Closing the loop – New circular economy package. European Parliamentary Research Service (EPRS) Briefing. Retrieved from http://www.europarl.europa.eu/RegData/etudes/BRIE/2016/573899/EPRS_BRI%282016%29573899_EN.pdf
  • Briassoulis, D., & Degli Innocenti, F. (2017). Chapter 6: Standards for soil biodegradable plastics. In M. Malinconico (Ed.), Soil degradable bioplastics for a sustainable modern agriculture. Green Chemistry and Sustainable Technology (pp. 139–168). Heidelberg, Germany: Springer-Verlag GmbH. ISBN 978-3-662-54128-9
  • Briassoulis, D., Hiskakis, M., Babou, E., Antiohos, S., & Papadi, C. (2012). Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential. Waste Management, Waste Management, 32(6), 1075–1090. doi:10.1016/j.wasman.2012.01.018
  • Brüster, B., Addiego, F., Hassouna, F., Ruch, D., Raquez, J., & Dubois, P. (2016). Thermo-mechanical degradation of plasticized poly(lactide) after multiple reprocessing to simulate recycling: Multi-scale analysis and underlying mechanisms. Polymer Degradation and Stability, 131, 132–144. doi:10.1016/j.polymdegradstab.2016.07.017
  • BSI PAS 110. (2018). Specification for digestate. The Waste and Resources Action Programme (WRAP). Retrieved from http://www.wrap.org.uk/content/bsi-pas-110-specification-digestate
  • CEN/TC 16721. (2014). Bio-based products – Overview of methods to determine the bio-based content. European Committee for Standardization, Brussels, Belgium.
  • Chariyachotilert, C., Joshi, S., Selke, S. E. M., & Auras, R. (2012). Assessment of the properties of poly(L-lactic acid) sheets produced with differing amounts of postconsumer recycled poly(L-lactic acid). Journal of Plastic Film and Sheeting, 28(4), 314–335. doi:10.1177/8756087911434337
  • Cheung, M. K., Wan, K. P. Y., & Yu, P. H. (2002). Miscibility morphology of chiral semicrystalline poly (R)-(3-hydroxybutyrate)/chitosan, poly (R)-(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan blends studied with DSC, 1H T1 and T1r CRAMPS. Journal of Applied Polymer Science, 86(5), 1253–1258.
  • Clark, J. H., Farmer, T. J., Herrero-Davila, L., & Sherwood, J. (2016). Circular economy design considerations for research and process development in the chemical sciences. Green Chemistry, 18(14), 3914–3934. doi:10.1039/C6GC00501B
  • Cornell, D. D. (1995). In F. Richard (Ed.), Plastics, rubber, and paper recycling—A pragmatic approach (pp. 72–79). Washington, DC: ACS.
  • Dubois, P., & Narayan, R. (2003). Biodegradable compositions by reactive processing of aliphatic polyester/polysaccharide blends. Macromolecular Symposia, 198(1), 233–243.
  • EBA. (2015a). Biogas statistics. Retrieved from http://european-biogas.eu/2015/12/16/biogasreport2015/
  • EBA. (2015b). Biogas and biomethane – The products of efficient and sustainable use of resources. European Biogas Association. Retrieved from http://european-biogas.eu/wp-content/uploads/2015/05/2015-EBA-Mission-and-Vision.pdf
  • EC. (2000). List of wastes in commission decision 2000/532/E. Commission Decision. Retrieved from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG,2000D0532,20020101,EN,pdf
  • EC. (2008, March 28). Commission Regulation (EC) No 282/2008 on recycled plastic materials and articles intended to come into contact with foods and amending Regulation (EC) No 2023/2006, OJ L 86/9.
  • EC. (2011a, July 7). Lead market initiative – Speed up time-to-market of innovations and pilot new innovation policy in Europe, Growth. Retrieved from http://ec.europa.eu/growth/content/lead-market-initiative-–-speed-time-market-innovations-and-pilot-new-innovation-policy-0_en
  • EC. (2011b). Plastic waste in the environment. BIO Intelligence Service, Specific contract 07.0307/2009/545281/ETU/G2 under Framework contract ENV.G.4/FRA/2008/0112, Revised final report.
  • EC. (2011c). Regulation (EU) No 10/2011 on plastic materials and articles intended to come into contact with food, OJ L 12/1, 15.1.2011; Amended, 2018/79, 2018/831.
  • EC. (2015a, December 2). Closing the loop, Commission adopts ambitious new Circular Economy Package to boost competitiveness, create jobs and generate sustainable growth, press release. Retrieved from http://europa.eu/rapid/press-release_IP-15-6203_en.htm
  • EC. (2015b, October 23). Commission Regulation (EU) 2015/1906 amending Regulation (EC) No 282/2008 on recycled plastic materials and articles intended to come into contact with foods, OJ L 278/11.
  • EC. (2015c, December 2). Closing the loop – An EU action plan for the Circular Economy, Communication from the Commission to the EP&C, the European Economic and Social Committee and the Committee of the Regions, COM/2015/0614 final.
  • EC. (2016, June 8). 7th Environment Action Programme, General Union Environment Action Programme to 2020, Environment, EC. Retrieved from http://ec.europa.eu/environment/newprg/index.htm
  • EC. (2017a, December 1). Waste: Review of waste policy and legislation, environment. Retrieved from http://ec.europa.eu/environment/waste/target_review.htm
  • EC. (2017b, January 26). Communication from the Commission to the EP&C, the European Economic and Social Committee and the Committee of the Regions – The role of waste-to-energy in the circular economy, COM(2017) 34 final.
  • EC. (2018a, January 16). A European Strategy for Plastics in a Circular Economy, Communication from the Commission to the EP&C, the European Economic and Social Committee and the Committee of the Regions Brussels, COM(2018) 28 final.
  • EC. (2018b). A sustainable Bioeconomy for Europe, strengthening the connection between economy, society and the environment - Updated Bioeconomy Strategy, Directorate-General for Research and Innovation, European Union, ISBN 978-92-79-94145-0.
  • ECN. (2009). Biological waste treatment in Europe – Technical and market developments. European Compost Network.
  • ΕΕΑ. (2018). The circular economy and the bioeconomy partners in sustainability. European Environment Agency, EEA Report No 8/2018, ISSN 1977-8449. doi:10.2800/02937
  • Ellen MacArthur Foundation. (2017). Circular economy overview. Retrieved from https://www.ellenmacarthurfoundation.org/circular-economy/overview/concept
  • El–Shafee, E., Saad, G. R., & Fahmy, S. M. (2001). Miscibility, crystallization and phase structure of poly(3-hydroxybutyrate)/cellulose acetate butyrate blend. European Polymer Journal, 37(10), 2091–2104.
  • EN 13432, 2000/AC. (2005). Packaging – Requirements for packaging recoverable through composting and biodegradation – Test scheme and evaluation criteria for the final acceptance of packaging, European Standard, European Committee for Standardization.
  • EN 14045. (2003). Packaging – Evaluation of the disintegration of packaging materials in practical oriented tests under defined composting conditions. European Standard, European Committee for Standardization.
  • EN 14046. (2003). Packaging – Evaluation of the ultimate aerobic biodegradability of packaging materials under controlled composting conditions – Method by analysis of released carbon dioxide. European Standard, European Committee for Standardization.
  • EN 14995. (2006). Plastics – Evaluation of compostability – Test scheme and specifications. European Standard, European Committee for Standardization.
  • EN 16575. (2014). Bio-based products – Vocabulary. European Standard, European Committee for Standardization.
  • EP Think Tank. (2017). Circular economy package: Four legislative proposals on waste, briefing. Retrieved from http://www.europarl.europa.eu/thinktank/en/document.html?reference=EPRS_BRI%282017%29603954
  • EP&C. (1994, December 31). Directive 94/62/EC on packaging and packaging waste, EP&C, OJ L 365, pp. 10–23.
  • EP&C. (2000, December 22). Directive 2000/60/EC of the EP&C establishing a framework for Community action in the field of water policy, OJ L 327, pp. 1–73 and amendments.
  • EP&C. (2004a, December 9). Regulation (EC) 2150/2002 of EP&C on waste statistics, OJ L 332.
  • EP&C. (2004b, April 30). Regulation (EC) 850/2004 of the EP&C on persistent organic pollutants and amending Directive 79/117/EEC, OJ L 158/7.
  • EP&C. (2006, December 30). Regulation (EC) 1907/2006 of the EP&C concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), OJ L 136/3.
  • EP&C. (2008, November 22). Directive 2008/98/EC of the EP&C on waste and repealing certain Directives, (Waste Framework Directive), OJ L 312/3.
  • EP&C. (2010a, December 17). Directive 2010/75/EU of the EP&C on industrial emissions (integrated pollution prevention and control), OJ L 334/17.
  • EP&C. (2010b, August 25). Regulations (EU) No 756/2010 and 757/2010 amending Regulation (EC) No 850/2004 of the EP&C on persistent organic pollutants as regards Annexes IV and V, OJ L 223/20 and Annexes I and III, OJ L 223/29.
  • EP&C. (2015, May 6). Directive (EU) 2015/720 of the EP&C amending Directive 94/62/EC as regards reducing the consumption of lightweight plastic carrier bags, OJ L 115/11.
  • EP&C. (2018, June 14). Directive (EU) 2018/851 of the EP&C Amending Directive 2008/98/EC on waste, OJ L 150.
  • EP. (2018, August 6). Amendments adopted by the EP on 24 October 2017 on the COM (2016) 157:Proposal for a regulation of the EP&C laying down rules on the making available on the market of CE marked fertilising products and amending Regulations (EC) 1069/2009 and (EC) 1107/2009.
  • EPA. (1990). Clean Air Act, 42 U.S.C. §7401 et seq. (1970), Amended 1990, Title 42—The Public Health and Welfare, Clean Air Act as of 2008, U.S. Government Printing Office.
  • EPA. (2002). Federal Water Pollution Control ACT, 33 U.S.C. §1251 et seq. (1972), as Amended Through P.L. 107–303.
  • EPA. (2015). Sustainable Materials Management Program Strategic Plan, Fiscal Year 2017–2022. Retrieved from https://www.epa.gov/sites/production/files/2016-03/documents/smm_strategic_plan_october_2015.pdf
  • EPA. (2017a). Reduce, Reuse, Recycle, United States Environmental Protection Agency. Retrieved from https://www.epa.gov/recycle
  • EPA. (2017b). Types of Composting and Understanding the Process, Sustainable Management of Food, United States Environmental Protection Agency. Retrieved from https://www.epa.gov/sustainable-management-food/types-composting-and-understanding-process
  • EPA. (2017c). Basic Information about Anaerobic Digestion (AD), Environmental Protection Agency, United States. Retrieved from https://www.epa.gov/anaerobic-digestion/basic-information-about-anaerobic-digestion-ad
  • EPA. (2018a, October). Guide to the facts and figures report about materials, waste and recycling. Waste Reduction Model (WARM), U.S. Food and Drug Administration.
  • EPA. (2018b, October). National overview, facts and figures on materials, wastes and recycling. U.S. Food and Drug Administration.
  • EPA. (2018c). Our nation’s air, status and trends through 2018. Retrieved from https://gispub.epa.gov/air/trendsreport/2018
  • Eunomia Research & Consulting. (2002). Scuola Agraria del Parco di Monza, HDRA Consultants, ZREU and LDK ECO on behalf of ECOTEC Research & Consulting, Economic analysis of options for managing biodegradable municipal waste, Final Report to the European Commission.
  • European Bioplastics. (2015a). The behaviour of bioplastic films in mechanical recycling streams: Meta study.
  • European Bioplastics. (2015b). Mechanical recycling fact sheet.
  • European Bioplastics. (2015c). Anaerobic digestion, fact sheet April. Retrieved from http://docs.european-bioplastics.org/publications/bp/EUBP_BP_Anaerobic_digestion.pdf
  • European Bioplastics. (2015d). EN 13432 Certified bioplastics Performance in industrial composting, Back Ground, April 2015
  • European Bioplastics. (2016, June). Home composting of compostable bioplastics. Position of European Bioplastics.
  • European Bioplastics. (2017a). Bioplastics market data 2017: Global production capacities of bioplastics 2017–2022: Report.
  • European Bioplastics. (2017b). Recycling and recovery, end-of-life options for bioplastics: Position of European Bioplastics.
  • European Bioplastics. (2017c). Bioplastics – Furthering efficient waste management – Recycling and recovery options for bioplastics: Fact sheet.
  • EEA. (2018). Legislative instrument details. Waste Statistics Regulation (EC) 2150/2002, EIONET, Reporting Obligations Database (ROD), European Environment Agency. Retrieved from https://rod.eionet.europa.eu/instruments/528
  • Eurostat. (2013). Archive: Greenhouse gas emissions from waste disposal. Eurostat, Statistics explained.
  • Eurostat. (2017). Waste statistics: Environmental data centre on waste. Eurostat, Statistics explained.
  • Eurostat. (2018, July 19). Municipal waste statistics. Statistics explained.
  • Fazelinejad, S., Åkesson, D., & Skrifvars, M. (2017). Repeated mechanical recycling of polylactic acid filled with chalk. Progress in Rubber, Plastics and Recycling Technology, 33(1), 1.
  • FDA. (2006, August). Guidance for industry: Use of recycled plastics in food packaging (chemistry considerations). Contains Nonbinding Recommendations, Office of Food Additive Safety, Division of Food Contact Notifications HFS-275, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration.
  • FDA. (2018, April 1). Title 21: Food and Drugs, Code of Federal Regulations. Chapter I – Food and Drug Administration, Department of Health and Human Services.
  • FNR. (2017). PLA in the waste stream: Summary report. FNR. Retrieved from https://www.umsicht.fraunhofer.de/content/dam/umsicht/en/documents/press-releases/2017/pla-in-the-waste-stream.pdf
  • Frère, L., Paul-Pont, I., Rinnert, E., Petton, S., Jaffré, J., Bihannic, I., … Huvet, A. (2017). Influence of environmental and anthropogenic factors on the composition, concentration and special distribution of microplastics. A case study of the bay of Brest. Environmental Pollution, 225, 211–222. doi:10.1016/j.envpol.2017.03.023
  • Ghimire, S. (2018). Biodegradable plastic mulch and suitability for sustainable and organic agriculture. WSU Extension, FS103E.
  • Gironi, F., Frattari, S., & Piemonte, V. (2016). PLA chemical recycling process optimization: PLA solubilization in organic solvents. Journal of Polymers and the Environment, 24(4), 328–333. doi:10.1007/s10924-016-0777-4
  • Goldstein, N. (2017). The state of organics recycling in the U.S. Biocycle.net, the JG Press Inc./BioCycle, BioCycle, 58(9), 22.
  • Gómez, E. F., & Michel, F. C. Jr. (2013). Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polymer Degradation and Stability, 98(12), 2583–2591. doi:10.1016/j.polymdegradstab.2013.09.018
  • Goto, M. (2009). Chemical recycling of plastics using sub- and supercritical fluids. The Journal of Supercritical Fluids, 47(3), 500–507. doi:10.1016/j.supflu.2008.10.011
  • Guo, R., Li, G., Jiang, T., Schuchardt, F., Chen, T., Zhao, Y., & Shen, Y. (2012). Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresource Technology, 112, 171–178. doi:10.1016/j.biortech.2012.02.099
  • Hamad, K., Kaseem, M., & Fawaz, D. (2013). Recycling of waste from polymer materials: An overview of the recent works. Polymer Degradation and Stability, 98(12), 2801–2812. doi:10.1016/j.polymdegradstab.2013.09.025
  • Hogg, D., Favoino, E., Nielsen, N., Thompson, J., Wood, K., Penschke, A., … Papageorgiou, S. (2002). Economic analysis of options for managing biodegradable municipal waste. Eunomia Research & Consulting, Final Report.
  • Hopmann, C., Schippers, S., & Höfs, C. (2015). Influence of recycling of poly(lactic acid) on packaging relevant properties. Journal of Applied Polymer Science, 132(9), 41532.
  • Horvat, P., & Kržan, A. (2012). Certification of biodegradable plastics, project PLASTiCE, Version 3. Retrieved from www.plastice.org
  • Institute for Prospective Technological Studies (IPTS). (2013). End-of-waste criteria for waste plastic for conversion: Technical proposals [Final draft report].
  • ISO 15270. (2008). Plastics – Guidelines for the recovery and recycling of plastics waste. International Organization for Standardization.
  • ISO 16929. (2013). Plastics – Determination of the degree of disintegration of plastic materials under defined composting conditions in a pilot-scale test. International Organization for Standardization.
  • ISWM-TINOS. (2011). LCA studies for composting and anaerobic digestion units, Deliverable 1-4, ISWM-TINOS LIFE 10/ENV/GR/00610.
  • Jeswani, H. K., & Azapagic, A. (2016). Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK. Waste Management, 50, 346–363. doi:10.1016/j.wasman.2016.02.010
  • JRC. (2017, May). Best Available Techniques (BAT) Reference Document on Waste Incineration, Industrial Emissions Directive 2010/75/EU, Integrated Pollution Prevention and Control, DRAFT 1. Retrieved from https://ec.europa.eu/jrc
  • Kalmykovaa, Y., Sadagopanb, M., & Rosadoc, L. (2018). Circular economy – From review of theories and practices to development of implementation tools. Resources, Conservation & Recycling, 135, 190–201.
  • Ke, T., & Sun, X. S. (2003). Starch, poly(lactic acid), and poly(vinyl alcohol) blends. Journal of Polymers and the Environment, 11(1), 7–14.
  • Khoonkari, M., Haghighi, A. H., Sefidbakht, Y., Shekoohi, K., & Ghaderian, A. (2015). Chemical recycling of PET wastes with different catalysts. International Journal of Polymer Science, 2015, 1. doi:10.1155/2015/124524
  • Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation & Recycling, 127, 221–232.
  • Kriekouki, A., Lazarus, A., & Schaible, C. (2018, April). A wasted opportunity? EU environmental standards for waste incineration plants under review. European Environmental Bureau.
  • Le Duigou, A., Pillin, I., Bourmaud, A., Davies, P., & Baley, C. (2008). Effect of recycling on mechanical behaviour of biocompostable flax/poly(l-lactide) composites. Composites Part A: Applied Science and Manufacturing, 39(9), 1471–1478. doi:10.1016/j.compositesa.2008.05.008
  • Lopez, J. P., Girones, J., Mendez, J. A., Puig, J., & Pelach, M. A. (2012). Recycling ability of biodegradable matrices and their cellulose-reinforced composites in a plastic recycling stream. Journal of Polymers and the Environment, 20(1), 96–103. doi:10.1007/s10924-011-0333-1
  • MacKerron, C. (2012). Unfinished business: The case for extended producer responsibility for post-consumer packaging. San Francisco, CA: As You Sow. Retrieved from www.asyousow.org
  • Maekawa, M., Pearce, R., Marchessault, R. H., & Manley, R. S. J. (1999). Miscibility and tensile properties of poly(b-hydroxybutyrate)-cellulose propionate blend. Polymer, 40(6), 1501–1505. doi:10.1016/S0032-3861(98)00359-0
  • Martin, O., & Averous, L. (2001). Poly(lactic acid), plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209–6219. doi:10.1016/S0032-3861(01)00086-6
  • Meng, X., Shi, G., Wu, C., Chen, W., Xin, Z., Shi, Y., & Sheng, Y. (2016). Chain extension and oxidation stabilization of Triphenyl Phosphite (TPP) in PLA. Polymer Degradation and Stability, 124, 112–118. doi:10.1016/j.polymdegradstab.2015.12.003
  • Mistriotis, A., Briassoulis, D., Giannoulis, A., & D’Aquino, S. (2016). Design of biodegradable bio-based equilibrium modified atmosphere packaging (EMAP) for fresh fruits and vegetables by using micro-perforated poly-lactic acid (PLA) films. Postharvest Biology and Technology, 111, 380–389. doi:10.1016/j.postharvbio.2015.09.022
  • Molenveld, K., van den Oever, M., & Bos, H. (2015). Biobased packaging catalogue. Wageningen, Netherlands: Wageningen Food & Biobased Research – WUR.
  • Molero, C., Lucas, dA., Romero, F., & Rodríguez, J. F. (2009). Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst. Journal of Material Cycles and Waste Management, 11(2), 130–132. doi:10.1007/s10163-008-0224-2
  • Monnet, F. (2003). An introduction to anaerobic digestion of organic wastes, Remade Scotland [Final report]. Retrieved from http://www.biogasmax.co.uk/media/introanaerobicdigestion__073323000_1011_24042007.pdf
  • Monson, K. D., Esteves, S. R., Guwy, A. J., & Dinsdale, R. M. (2007). Anaerobic digestion of biodegradable municipal wastes. A review. SERC, ISBN978-1-84054-157-1.
  • Müller-Guttenbrunn Group. (2017). Complex waste plastics recycling industry ‘wish list’ to promote a rapid transition to a circular economy. Retrieved from http://www.mgg-recycling.com/wp-content/uploads/ELV-and-WEEE-recycling-industry-Circular-Economy-Wish-List.pdf
  • Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels, a comprehensive review. Renewable & Sustainable Energy Reviews, 14(2), 578–597. doi:10.1016/j.rser.2009.10.003
  • NatureWorks LLC. (2005). NatureWorks® PLA in the Recycling Stream in the United States. Minnetonka, MN: NatureWorks LLC. Retrieved from http://www.plasticredesignproject.org/files/NWRecyclePsntn.pdf
  • NatureWorks LLC. (2009). Using near-infrared sorting to recycle PLA Bottles. Minnetonka, MN: NatureWorks LLC. Retrieved from www.natureworksllc.com
  • NatureWorks LLC. (2019). NatureWorks® PLA in the Recycling Stream in the United States. NWcorp001082604V4.
  • NF T51-800. (2015). Plastics – Specifications for plastics suitable for home composting, AFNOR.
  • Nordberg, A. (2015). Review of European policies affecting implementation of anaerobic digestion, AD-NETT II-network, QLK5-CT-2000-00439. Retrieved from https://www.researchgate.net/publication/267415853_Review_of_European_policies_affecting_implementation_of_anaerobic_digestion
  • OECD. (2015). Recycling of Waste Containing Nanomaterials, Organisation for Economic Co-operation and Development, Environment Directorate, Environment Policy Committee, Working Party on Resource Productivity and Waste, Unclassified ENV/EPOC/WPRPW(2013)2/FINAL.
  • Ohkoshi, I., Abe, H., & Doi, Y. (2000). Miscibility and solid-state structures for blends of poly((S)-lactide) with atactic poly((R,S)-3-hydroxybutyrate). Polymer, 41(15), 5985–5992.
  • Oliveux, G., Bailleul, J. L., & La Salle, E. L. (2012). Chemical recycling of glass fibre reinforced composites using subcritical water. Composites Part A: Applied Science and Manufacturing, 43(11), 1809–1818. doi:10.1016/j.compositesa.2012.06.008
  • Open-Bio. (2014a, April). Opening bio-based markets via standards, labelling and procurement, Deliverable No. 6.1, Review on centralized composting Gent. Retrieved from http://www.biobasedeconomy.eu/research-knowledge/open-bio/
  • Open-Bio. (2014b). Opening bio-based markets via standards, labelling and procurement, Work package 6, Managed end-of-life options, Deliverable No. 6.6, Review on standards for biogasification. Retrieved from http://www.biobasedeconomy.eu/research-knowledge/open-bio/
  • Open-Bio. (2016). A Methodology for the indirect assessment of the renewability of bio-based products. Retrieved from http://www.biobasedeconomy.eu/research/open-bio/publications
  • Park, J. W., Im, S. S., Kim, S. H., & Kim, Y. H. (2000). Biodegradable polymer blends of poly(L-lactic acid) and gelatinized starch. Polymer Engineering & Science, 40(12), 2539–2550.
  • Pillin, I., Montrelay, N., Bourmaud, A., & Grohens, Y. (2008). Effect of thermomechanical cycles on the physico-chemical properties of poly(lactic acid). Polymer Degradation and Stability, 93(2), 321–328. doi:10.1016/j.polymdegradstab.2007.12.005
  • Piotrowski, S., Carus, M., & Carrez, D. (2018). European Bioeconomy in Figures 2008–2015, BIC Plastic recyclers, Chemical Recycling. Retrieved from http://www.plasticsrecyclers.eu/chemical-recycling
  • Plastic Waste Management Institute. An introduction to plastic recycling. Retrieved from http://www.pwmi.or.jp
  • Plastics Recyclers Europe. (2016). 20 years later & the way forward – Making more from plastics waste, Strategy Paper.
  • PlasticsEurope. (2017). An analysis of European latest plastics production, demand and waste data, PlasticsEurope’s Market Research and Statistics Group (PEMRG), Plastics – The Facts 2017.
  • Plichta, A., Lisowska, P., Kundys, A., Zychewicz, A., Dębowski, M., & Florjańczyk, Z. (2014). Chemical recycling of poly(lactic acid) via controlled degradation with protic (macro)molecules. Polymer Degradation and Stability, 108, 288–296. doi:10.1016/j.polymdegradstab.2014.03.006
  • PolyFerm Canada Inc. Retrieved from http://www.polyfermcanada.com/pha.htm
  • Ragaert, K., Delva, L., & Geem, K. V. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management (New York, N.Y.), 69, 24–58. doi:10.1016/j.wasman.2017.07.044
  • Rahimi, A., & García, M. (2017). Chemical recycling of waste plastics for new materials production. Nature Reviews Chemistry, 1(6), 0046. doi:10.1038/s41570-017-0046
  • REN21-Net. (2017). Renewables 2017 Global Status Report, REN21-Renewable Energy Policy Network for the 21st century. Retrieved from http://www.ren21.net/REN21Activities/GlobalStatusReport.aspx
  • Renewable Energy Association. (2017). The voice of the renewables industry in the UK: Composting. Information on composting. Retrieved from https://www.r-e-a.net/renewable-technologies/composting
  • Ricci–Jürgensen, M., & Confalonieri, A. (2016). Technical guidance on the operation of organic waste treatment plants. Vienna, Austria: ISWA – The International Solid Waste Association.
  • Riding, M. J., Herbert, B. M. J., Ricketts, L., Dodd, I., Ostle, N., & Semple, K. T. (2015). Harmonising conflicts between science, regulation, perception and environmental impact, the case of soil conditioners from bioenergy. Environment International, 75, 52–67. doi:10.1016/j.envint.2014.10.025
  • Riuji Lohri, C., Diener, S., Zabaleta, I., Mertenat, A., & Zurbrugg, C. (2017). Treatment technologies for urban solid biowaste to create value products, a review with focus on low- and middle income settings. Reviews in Environmental Science and Bio/Technology, 16(1), 81–130. doi:10.1007/s11157-017-9422-5
  • Sadler, S. (1992). Wirtschftliche und technologische Aspekte bei der reaktiven Polymerverarbeitung. Diploma Thesis. Technische Universität Berlin, Germany, pp. 65–69.
  • Sam, A., Bi, X., & Farnsworth, D. (2017). How incentives affect the adoption of anaerobic digesters in the United States. Sustainability, 9, 1221. doi:10.3390/su9071221
  • Sawyer, D. (2018). The benefits and issues of sorting plastics for improved recycling – With special emphasis on PLA. NatureWorks LLC. Retrieved from http://news.bio-based.eu/media/news-images/20090324-06/Introduction_to_sorting_021909_FINAL_pdf.pdf
  • Schneiderman, D. K., Vanderlaan, M. E., Mannion, A. M., Panthani, T. R., Batiste, D. C., Wang, J. Z., … Hillmyer, M. A. (2016). Chemically recyclable biobased polyurethanes. ACS Macro Letters, 5(4), 515–518. doi:10.1021/acsmacrolett.6b00193
  • Shah, B., Whitehouse, R., & McCarthy, S. (2012). A study on recycling of polyhydroxybutyrate (PHB) copolymer and its effect on material properties, Orlando, FL.
  • Shanks, R. A., Hodzic, A., & Wong, S. (2004). Thermoplastic biopolyester natural fibre composites. Journal of Applied Polymer Science, 91(4), 2114–2121.
  • Sherwood, J., Clark, J. H., Farmer, T. J., Herrero-Davila, L., & Moity, L. (2016). Recirculation: A new concept to drive innovation in sustainable product design for bio-based products. Molecules, 22(1), 48–65.
  • Shinoda, H., Asou, Y., Kashima, T., Kato, T., Tseng, Y., & Yagi, T. (2003). Amphiphilic biodegradable coplymer, poly(aspartic acidco-lactide), acceleration of degradation rate and improvement of thermal stability for poly(lactic acid), poly(butylene succinate) and poly(e-caprolactone). Polymer Degradation and Stability, 80(2), 241–250.
  • Shogren, R. L., Doane, W. M., Garlotta, D., Lawton, J. W., & Willett, J. L. (2003). Biodegradation of starch/polylactic acid/poly(hydroxyester–ether) composite bars in soil. Polymer Degradation and Stability, 79(3), 405–411.
  • Siebert, S. (2016). Bio-waste recycling in Europe against the backdrop of the circular economy package. European Compost Network ECN eV. Retrieved from www.compostnetwork.info
  • Song, J. H., Murphy, R. J., Narayan, R., & Davies, G. B. H. (2009). Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1526), 2127–2139. doi:10.1098/rstb.2008.0289
  • Soroudi, A., & Jakubowicz, I. (2013). Recycling of bioplastics, their blends and biocomposites: A review. European Polymer Journal, 49(10), 2839–2858. doi:10.1016/j.eurpolymj.2013.07.025
  • Stagner, J. (2016). Methane generation from anaerobic digestion of biodegradable plastics – A review. International Journal of Environmental Studies, 73(3), 462–468. doi:10.1080/00207233.2015.1108607
  • STAR-ProBio Project. (2017). European Union’s Horizon 2020 research and innovation programme. Grant Agreement Number 727740. Retrieved from http://www.star-probio.eu/
  • Suyatma, N. E., Copinet, A., Tighzert, L., & Coma, V. (2004). Mechanicaland barrier properties of biodegradable films made fromchitosan and poly(lactic acid) blend. Journal of Polymers and the Environment, 12(1), 1–6. doi:10.1023/B:JOOE.0000003121.12800.4e
  • Takamura, M., Nakamura, T., Takahashi, T., & Koyama, K. (2008). Effect of type of peroxide on cross-linking of poly(llactide). Polymer Degradation and Stability, 93(10), 1909–1916. doi:10.1016/j.polymdegradstab.2008.07.001
  • The White House. (2012). The US bioeconomy blueprint: Obama Administration. Washington, DC: The White House.
  • Technopolis group. (2016, July 13). Regulatory barriers for the circular economy: Lessons from ten case studies. Technopolis group [Final report].
  • Tsuneizumi, Y., Kuwahara, M., Okamoto, K., & Matsumura, S. (2010). Chemical recycling of poly(lactic acid)-based polymer blends using environmentally benign catalysts. Polymer Degradation and Stability, 95(8), 1387–1393. doi:10.1016/j.polymdegradstab.2010.01.019
  • Tukker, A., de Groot, H., Simons, L., & Wiegersma, S. (1999). Chemical recycling of plastic waste (PVC and other resins), TNO report, STB-99-55 Final, TNO Institute of Strategy, Technology and Policy.
  • UN. (2016). The Paris agreement: Framework convention on climate change. UNFCCC. Retrieved from https://unfccc.int/process/the-paris-agreement/what-is-the-paris-agreement
  • UNI 11183. (2006). Plastic materials biodegradable at room temperature – Requirements and test methods. Italian Standards.
  • US Composting Council. (2018). Compostable plastics 101: An overview of compostable plastics sponsored by the California organics recycling council. Retrieved from https://compostingcouncil.org/wp-content/plugins/wp-pdfupload/pdf/8095/Compostable%20Plastics%20101%20Paper.pdf
  • US Congress. (2002, May 13). 2002/2014 Farm Bill: Farm Security and Rural Investment Act of 2002. Public Law 107–171.
  • USDA. (2010, November). Composting. Chapter 2, Part 637 Environmental Engineering, National Engineering Handbook, United States Department of Agriculture, Natural Resources Conservation Service, 210–VI–NEH, Amend. 40.
  • USDA. (2014, August). Biogas opportunities roadmap. U.S. Department of Agriculture, U.S. Environmental Protection Agency, U.S. Department of Energy. Retrieved from https://www.usda.gov/oce/reports/energy/Biogas_Opportunities_Roadmap_8-1-14.pdf
  • USDA. (2015). USDA organic regulations 7 CFR 205. National Organic Program. Retrieved from https://www.ams.usda.gov/sites/default/files/media/Compost_FINAL.pdf
  • USDA. (2018a). USDA BioPreferred® Program 2018 Product Audit Overview, U.S. Department of Agriculture (USDA). Retrieved from https://www.biopreferred.gov/BioPreferred/
  • USDA. (2018b). The National List of Allowed and Prohibited Substances. Title 7: Agriculture, Part 205—National Organic Program, Subpart G—Administrative, e-CFR data is current as of October 25, 2018.
  • USEPA. (2012). Phthalates action plan. Washington, DC: U.S. Environmental Protection Agency (EPA).
  • Vagonyte, E. (2015). Biogas & Biomethane. AGRI-FOR-ENERGY 2, Work Package 4, European Biomass Association.
  • Vandevivere, P., De Baere, L., & Verstraete, W. (2003). Types of anaerobic digester for solid wastes. In J. Mata-Alvarez (Ed.), Biomethanization of the organic fraction of municipal solid wastes (pp. 111–137). Cornwall, UK: IWA Publishing.
  • Vilpoux, O., & Avérous, L. (2004). Chap 18: Starch-based plastics. In M. P. Cereda, & O. Vilpoux (Eds.), Technology, use and potentialities of Latin American starchy tubers. Collection Latin American starchy tubers (pp. 521–553). São Paolo, Brazil: NGO Raízes and Cargill Foundation. Book No. 3.
  • Wang, H., Sun, X., & Seib, P. (2001). Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate. Journal of Applied Polymer Science, 82(7), 1761–1767.
  • Wang, H., Sun, X., & Seib, P. (2002a). Mechanical properties of poly(lactic acid) and wheat starch blends with methylenediphenyl diisocyanate. Journal of Applied Polymer Science, 84(6), 1257–1262.
  • Wang, H., Sun, X., & Seib, P. (2002b). Effect of starch moisture on properties of wheat starch/poly(lactic acid) blend containing methylenediphenyl diisocyanate. Journal of Polymers and the Environment, 10(4), 133–138.
  • Wang, L. K., Pereira, N. C., Hung, Y.-T., Shammas, N. K. (Eds.). (2009). Handbook of environmental engineering, Volume 8, Biological treatment processes, anaerobic digestion. New York, NY: Humana Press, a part of Springer Science + Business Media, LLC.
  • Wang, T., Cheng, G., Ma, S., Cai, Z., & Zhang, L. (2003). Crystallization behavior, mechanical properties, and environmental biodegradability of poly(beta-hydroxybutyrate)/cellulose acetate butyrate blends. Journal of Applied Polymer Science, 89(8), 2116–2122.
  • Yagi, H., Ninomiya, F., Funabashi, M., & Kunioka, M. (2009). Anaerobic biodegradation tests of poly(lactic acid) under mesophilic and thermophilic conditions using a new evaluation system for methane fermentation in anaerobic sludge. International Journal of Molecular Sciences, 10(9), 3824–3835. doi:10.3390/ijms10093824
  • Yarahmadi, N., Jakubowicz, I., & Enebro, J. (2016). Polylactic acid and its blends with petroleum-based resins, Effects of reprocessing and recycling on properties. Journal of Applied Polymer Science, 133(36), 43916.
  • Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576–602. doi:10.1016/j.progpolymsci.2006.03.002
  • Zaverl, M., Seydibeyoglu, M. O., Misra, M., & Mohanty, A. (2012). Studies on recyclability of polyhydroxybutyrate-co-valerate bioplastic, multiple melt processing and performance evaluations. Journal of Applied Polymer Science, 125(Suppl. 2), 324–331.
  • Zembouai, I., Bruzaud, S., Kaci, M., Benhamida, A., Corre, Y. M., & Grohens, Y. (2014). Mechanical recycling of poly(3-hydroxybutyrate-co-3hydroxyvalerate)/polylactide based blends. Journal of Polymers and the Environment, 22(4), 449–459. doi:10.1007/s10924-014-0684-5
  • Zenkiewicz, M., Richert, J., Rytlewski, P., Moraczewski, K., Stepczynska, M., & Karasiewicz, T. (2009). Characterisation of multi-extruded poly(lactic acid). Polymer Testing, 28(4), 412–418. doi:10.1016/j.polymertesting.2009.01.012
  • Zero Waste Europe. (2017, September 14). 4 reasons why recycling is better than incineration. The Zero Waste Europe Movement. Retrieved from http://www.zerowasteeurope.eu/category/products/reuse/
  • Zhang, J. F., & Sun, X. (2004). Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate. Journal of Applied Polymer Science, 94(4), 1697–1704.
  • Zhang, L., Deng, X., & Huang, Z. (1997). Miscibility, thermal bahaviour and morphological structure of poly(3-hydroxybutyrate) and ethyl cellulose binary blends. Polymer, 38(21), 5379–5387. doi:10.1016/S0032-3861(97)84642-3
  • Zhang, L., Xiong, C., & Deng, X. (1996). Miscibility, crystallization and morphology of poly(b-hydroxybutyrate)/poly(D,L-lactide). Polymer, 37(2), 235–241. doi:10.1016/0032-3861(96)81093-7
  • Zhang, W., Heaven, S., & Banks, C. J. (2018). Degradation of some EN 13432 compliant plastics in simulated mesophilic anaerobic digestion of food waste. Polymer Degradation and Stability, 147, 76–88. doi:10.1016/j.polymdegradstab.2017.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.