2,270
Views
95
CrossRef citations to date
0
Altmetric
Articles

Mercury methylation by anaerobic microorganisms: A review

, &
Pages 1893-1936 | Published online: 16 Apr 2019

References

  • Abelson, P. H. (1970). Methyl mercury. Science, 169(3942), 237. doi:10.1126/science.169.3942.237
  • Acha, D., Hintelmann, H., & Yee, J. (2011). Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region. Chemosphere, 82, 911–916. doi:10.1016/j.chemosphere.2010.10.050
  • Acha, D., Iniguez, V., Roulet, M., Guimaraes, J., Luna, R., Alanoca, L., & Sanchez, S. (2005). Sulfate-reducing bacteria in floating macrophyte rhizospheres from an Amazonian Floodplain Lake in Bolivia and their association with Hg methylation. Applied and Environmental Microbiology, 71(11), 7531–7535. doi:10.1128/AEM.71.11.7531–7535.2005
  • Aiken, G. R., Gilmour, C. C., Krabbenhoft, D. P., & Orem, W. (2011). Dissolved organic matter in the Florida everglades: Implications for ecosystem restoration. Critical Reviews in Environmental Science and Technology, 41(sup1), 217–248. doi:10.1080/10643389.2010.530934
  • Avramescu, M. L., Yumvihoze, E., Hintelmann, H., Ridal, J., Fortin, D., & Lean, D. R. S. (2011). Biogeochemicalfactors influencing net mercury methylation in contaminated freshwater sediments from the St. Lawrence River in Cornwall, Ontario, Canada. Science of the Total Environment, 409(5), 968–978. doi:10.1016/j.scitotenv.2010.11.016
  • Barkay, T., Gillman, M., & Turner, R. R. (1997). Effects of dissolved organic carbon and salinity on bioavailability of mercury. Applied and Environmental Microbiology, 63(11), 4267–4271.
  • Barkay, T., Miller, S. M., & Summers, A. O. (2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, 27(2–3), 355–384. doi:10.1016/S0168-6445(03)00046-9
  • Beckers, F., & Rinklebe, J. (2017). Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47(9), 693–794. doi:10.1080/10643389.2017.1326277
  • Benoit, J. M., Gilmour, C. C., Heyes, A., Mason, R. P., & Miller, C. L. (2003). Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In Y. Chai & O. C. Braids (Eds.), Biogeochemistry of environmentally important trace elements (pp. 262–297). Washington, DC: American Chemical Society.
  • Benoit, J. M., Gilmour, C. C., Mason, R. P., & Heyes, A. (1999). Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environmental Science & Technology, 33(6), 951–957. doi:10.1021/es992007q
  • Benoit, J. M., Gilmour, C. C., & Mason, R. P. (2001a). Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3). Applied and Environmental Microbiology, 67(1), 51–58. doi:10.1128/AEM.67.1.51-58.2001
  • Benoit, J. M., Gilmour, C. C., & Mason, R. P. (2001b). The influence of sulfide on solid-phase mercury bioavailability for methylation by pure cultures of Desulfobulbus propionicus (1pr3). Environmental Science & Technology, 35(1), 127–132. doi:10.1021/es001415n
  • Benoit, J. M., Gilmour, C. C., Mason, R. P., Riedel, G. S., & Riedel, G. F. (1998). Behavior of mercury in the patuxent river estuary. Biogeochemistry, 40(2/3), 249–265. doi:10.1023/A:1005905700864
  • Benoit, J. M., Mason, R. P., & Gilmour, C. C. (1999). Estimation of mercury‐sulfide speciation in sediment pore waters using octanol-water partitioning and implications for availability to methylating bacteria. Environmental Toxicology and Chemistry, 18, 2138–2141. doi:10.1897/1551-5028(1999)018 < 2138:EOMSSI
  • Bentley, R., & Chasteen, T. G. (2004). Environmental VOSCs-formation and degradation of dimethyl sulfide, methanethiol and related materials. Chemosphere, 55(3), 291–317. doi:10.1016/j.chemosphere.2003.12.017
  • Berman, M., & Bartha, R. (1986). Levels of chemical versus biological methylation of mercury in sediments. Bulletin of Environmental Contamination and Toxicology, 36(1), 401–404. doi:10.1007/BF01623527
  • Berman, M., Theodore, C., & Bartha, R. (1990). Carbon flow in mercury biomethylation by Desulfovibrio desulfuricans. Applied and Environmental Microbiology, 56, 298–300.
  • Birgersson, B., Drakenberg, T., & Neville, G. A. (1973). Mercury(II) complexes of methionine. Acta Chemica Scandinavica, 27(10), 3953–3960.
  • Blum, P. W., Hershey, A. E., Tsui, T. K., Hammerschmidt, C. R., & Agather, A. M. (2017). Methylmercury and methane production potentials in North Carolina Piedmont stream sediments. Biogeochemistry, 137, 1–15. doi:10.1007/s10533-017-0408-8
  • Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: A general review. Chemosphere, 40(12), 1335–1351. doi:10.1016/S0045-6535(99)00283-0
  • Bonnissel-Gissinger, P., Alnot, M., Lickes, J. P., Ehrhardt, J. J., & Behra, P. (1999). Modeling the adsorption of mercury(II) on (Hydr)oxides II: α-FeOOH (Goethite) and amorphous silica. Journal of Colloid and Interface Science, 215, 313–322. doi:10.1006/jcis.1999.6263
  • Bravo, A. G., Bouchet, S., Tolu, J., Björn, E., Mateos-Rivera, A., & Bertilsson, S. (2017). Molecular composition of organic matter controls methylmercury formation in boreal lakes. Nature Communications, 8, 14255. doi:10.1038/ncomms14255
  • Bridou, R., Monperrus, M., Gonzalez, P. R., Guyoneaud, R., & Amouroux, D. (2011). Simultaneous determination of mercury methylation and demethylation capacities of various sulfate‐reducing bacteria using species‐specific isotopic tracers. Environmental Toxicology and Chemistry, 30(2), 337–344. doi:10.1002/etc.395
  • Brown, S. D., Wall, J. D., Kucken, A. M., Gilmour, C. C., Podar, M., Brandt, C. C., … Elias, D. A. (2011). Genome sequence of the mercury-methylating and pleomorphic Desulfovibrio africanus Strain Walvis Bay. Journal of Bacteriology, 193(15), 4037–4038. doi:10.1128/JB.05223-11
  • Browne, P., Tamaki, H., Kyrpides, N., Woyke, T., Goodwin, L., Imachi, H., … Cadillo-Quiroz, H. (2017). Genomic composition and dynamics among Methanomicrobiales predict adaptation to contrasting environments. The ISME Journal, 11(1), 87–99. doi:10.1038/ismej.2016.104
  • Celo, V., Lean, D. R. S., & Scott, S. L. (2006). Abiotic methylation of mercury in the aquatic environment. Science of the Total Environment, 368(1), 126–137. doi:10.1016/j.scitotenv.2005.09.043
  • Chiassongould, S. A., Blais, J. M., & Poulain, A. J. (2014). Dissolved organic matter kinetically controls mercury bioavailability to bacteria. Environmental Science & Technology, 48, 3153–3161. doi:10.1021/es4038484
  • Choi, S. C., & Bartha, R. (1993). Cobalamin-mediated mercury methylation by Desulfovibrio desulfuricans LS. Applied and Environmental Microbiology, 59(1), 290–295.
  • Choi, S. C., Chase, T., & Bartha, R. (1994a). Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans LS. Applied and Environmental Microbiology, 60, 4072–4077.
  • Choi, S. C., Chase, T., & Bartha, R. (1994b). Enzymatic catalysis of mercury methylation by Desulfovibrio desulfuricans LS. Applied and Environmental Microbiology, 60, 1342–1346.
  • Christensen, G. A., Somenahally, A. C., Moberly, J. G., Miller, C. M., King, A. J., Gilmour, C. C., … Elias, D. A. (2018). Carbon Amendments Alter Microbial Community Structure and Net Mercury Methylation Potential in Sediments. Applied & Environmental Microbiology, 84(3), e01049-17. doi:10.1128/AEM.01049-17.
  • Clarkson, T. W. (1998). Human toxicology of mercury. The Journal of Trace Elements in Experimental Medicine, 11(2–3), 303–317. doi:10.1002/(SICI)1520-670X(1998)11:2/33.3.CO;2-C
  • Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36(8), 609–662. doi:10.1080/10408440600845619
  • Colin, Y., Gury, J., Monperrus, M., Gentes, S., Ayala Borda, P., Goni-Urriza, M., & Guyoneaud, R. (2018). Biosensor for screening bacterial mercury methylation: Example within the Desulfobulbaceae. Research in Microbiology, 169(1), 44–51. doi:10.1016/j.resmic.2017.09.005
  • Colombo, M. J., Ha, J., Reinfelder, J. R., Barkay, T., & Yee, N. (2013). Anaerobic oxidation of Hg(0) and methylmercury formation by Desulfovibrio desulfuricans ND132. Geochimica et Cosmochimica Acta, 112, 166–177. doi:10.1016/j.gca.2013.03.001
  • Committee on the Toxicological Effects of Methylmercury. (2000). Toxicological effect of methylmercury (pp. 5–24). Washington, DC: National Academy Press.
  • Compeau, G. C., & Bartha, R. (1985). Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology, 50(2), 498–502.
  • Corrales, J., Naja, G. M., Dziuba, C., Rivero, R. G., & Orem, W. (2011). Sulfate threshold target to controlmethylmercury levels in wetland ecosystems. Science of the Total Environment, 409(11), 2156–2162. doi:10.1016/j.scitotenv.2011.02.030
  • Desimone, R. E. (1972). Methylation of mercury by common nuclear magnetic resonance reference compounds. Journal of the Chemical Society, Chemical Communications, (13), 780–781. doi:10.1039/c39720000780
  • Douglas, T. A., Loseto, L. L., Macdonald, R. W., Outridge, P., Dommergue, A., Poulain, A., … Zdanowicz, C. M. (2012). The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review. Environmental Chemistry, 9(4), 321–355. doi:10.1071/EN11140
  • Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a global pollutant: Sources, pathways, and effects. Environmental Science & Technology, 47(10), 4967–4983. doi:10.1021/es305071v
  • Drott, A. (2009). Chemical speciation and transformation of mercury in contaminated sediments (pp. 51–57). Umea, Sweden: Swedish University of Agricultural Sciences.
  • Drott, A., Lambertsson, L., Bjorn, E., & Skyllberg, U. (2007). Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environmental Science & Technology, 41(7), 2270–2276. doi:10.1021/es061724z
  • Drott, A., Lambertsson, L., Björn, E., & Skyllberg, U. (2008). Do potential methylation rates reflect accumulated methyl mercury in contaminated sediments? Environmental Science & Technology, 42(1), 153–158. doi:10.1021/es0715851
  • Du, H., Igarashi, Y., & Wang, D. (2014). Transmembrane transport of inorganic mercury in microorganisms–a review. Acta Microbiologica Sinica (Chinese), 54, 1109–1115.
  • Dyrssen, D., & Wedborg, M. (1991). The sulphur-mercury(II) system in natural waters. Water Air & Soil Pollution, 56(1), 507–519. doi:10.1007/BF00342295
  • Ebinghaus, R., & Wilken, R. D. (1993). Transformations of mercury species in the presence of Elbe river bacteria. Applied Organometallic Chemistry, 7(2), 127–135. doi:10.1002/aoc.590070207
  • Eckley, C. S., & Hintelmann, H. (2006). Determination of mercury methylation potentials in the water column of lakes across Canada. Science of the Total Environment, 368(1), 111–125. doi:10.1016/j.scitotenv.2005.09.042
  • Eklöf, K., Bishop, K., Bertilsson, S., Björn, E., Buck, M., Skyllberg, U., … Bravo, A. G. (2018). Formation of mercury methylation hotspots as a consequence of forestry operations. Science of the Total Environment, 613–614, 1069–1078. doi:10.1016/j.scitotenv.2017.09.151
  • Ekstrom, E. B., & Morel, F. M. (2008). Cobalt limitation of growth and mercury methylation in sulfate-reducing bacteria. Environmental Science & Technology, 42(1), 93–99. doi:10.1021/es0705644
  • Ekstrom, E. B., Morel, F. M., & Benoit, J. M. (2003). Mercury methylation independent of the acetyl-coenzyme A pathway in sulfate-reducing bacteria. Applied and Environmental Microbiology, 69(9), 5414–5422. doi:10.1128/AEM.69.9.5414-5422.2003
  • Falter, R. (1999). Experimental study on the unintentional abiotic methylation of inorganic mercury during analysis: Part 1: Localisation of the compounds effecting the abiotic mercury methylation. Chemosphere, 39(7), 1051–1073. doi:10.1016/S0045-6535(99)00178-2
  • Fasching, C., Behounek, B., Singer, G. A., & Battin, T. J. (2014). Microbial degradation of terrigenous dissolved organic matter and potential consequences for carbon cycling in brown-water streams. Scientific Reports, 4, 4981.doi:10.1038/srep04981
  • Feng, X., Li, P., Qiu, G., Wang, S., Li, G., Shang, L., … Fu, X. (2008). Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou province, China. Environmental Science & Technology, 42(1), 326–332. doi:10.1021/es071948x
  • Feyte, S., Tessier, A., Gobeil, C., & Cossa, D. (2010). In situ adsorption of mercury, methylmercury and otherelements by iron oxyhydroxides and organic matter in lake sediments. Applied Geochemistry, 25(7), 984–995. doi:10.1016/j.apgeochem.2010.04.005
  • Fitzgerald, W. F., & Lamborg, C. H. (2013). Geochemistry of mercury in the environment. In Treatise on geochemistry (2nd ed., vol. 11, pp 91–129). Oxford, UK: Elsevier Inc.
  • Fitzgerald, W. F., Lamborg, C. H., & Hammerschmidt, C. R. (2007). Marine biogeochemical cycling of mercury. Chemical Reviews, 107, 641–662. doi:10.1021/cr050353m
  • Fleming, E. J., Mack, E. E., Green, P. G., & Nelson, D. C. (2006). Mercury methylation from unexpected sources: Molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Applied and Environmental Microbiology, 72(1), 457–464. doi:10.1128/AEM.72.1.457-464.2006
  • Franco, M. W., Mendes, L. A., Windmöller, C. C., Moura, K. A. F., & Oliveira, L. A. G. (2018). Mercury methylation capacity and removal of Hg species from aqueous medium by Cyanobacteria. Water, Air, & Soil Pollution 229, 127. doi:10.1007/s11270-018-3782-5
  • Frohne, T., Rinklebe, J., Langer, U., Laing, G. D., Mothes, S., & Wennrich, R. (2012). Biogeochemical factors affecting mercury methylation rate in two contaminated floodplain soils. Biogeosciences, 9(1), 493–507. doi:10.5194/bgd-8-8925-2011
  • Gentã, S. S., Taupiac, J., Colin, Y., Andrã, J. M., & Guyoneaud, R. (2017). Bacterial periphytic communities related to mercury methylation within aquatic plant roots from a temperate freshwater lake (South-Western France). Environmental Science and Pollution Research, 24, 19223–19233. doi:10.1007/s11356-017-9597-x
  • Gerbig, C., Kim, C., Stegemeier, J., Ryan, J., & Aiken, G. (2011). Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systems. Environmental Science & Technology, 45(21), 9180–9187. doi:10.1021/es201837h
  • Gerbig, C. A., Ryan, J. N., & Aiken, G. R. (2012). The effects of dissolved organic matter on mercury biogeochemistry. In G. Liu, Y. Cai, & N. O'Driscoll (Eds.), Environmental chemistry and toxicology of mercury (pp. 259–292). Hoboken, NJ: John Wiley & Sons, Inc.
  • Gilmour, C. C., Bell, J. T., Soren, A. B., Riedel, G., Riedel, G., Kopec, D., & Bodaly, R. A. (2018). Distribution and biogeochemical controls on net methylmercury production in Penobscot River marshes and sediment. Science of the Total Environment, 640–641, 555–569. doi:10.1016/j.scitotenv.2018.05.276
  • Gilmour, C. C., Bullock, A. L., Mcburney, A., Podar, M., & Da, E. (2018). Robust mercury methylation across diverse methanogenic archaea. Mbio, 9, e02403–e02417. doi:10.1128/mBio.02403-17
  • Gilmour, C. C., Elias, D. A., Kucken, A. M., Brown, S. D., Palumbo, A. V., Schadt, C. W., & Wall, J. D. (2011). Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Applied and Environmental Microbiology, 77(12), 3938–3951. doi:10.1128/AEM.02993-10
  • Gilmour, C. C., Henry, E. A., & Mitchell, R. (1992). Sulfate stimulation of mercury methylation in freshwater sediments. Environmental Science & Technology, 26(11), 2281–2287. doi:10.1021/es00035a029
  • Gilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D., Somenahally, A. C., … Elias, D. A. (2013). Mercury methylation by novel microorganisms from new environments. Environmental Science & Technology, 47(20), 11810–11820. doi:10.1021/es403075t
  • Gilmour, C. C., Riedel, G. S., Ederington, M. C., Bell, J. T., Benoit, J. M., Gill, G. A., & Stordal, M. C. (1998). Methylmercury concentrations and production rates across a trophic gradient in the northern everglades. Biogeochemistry, 40(2/3), 327–345. doi:10.1023/A:1005972708616
  • Graham, A. M., Aiken, G. R., & Gilmour, C. C. (2013). Effect of dissolved organic matter source and character on microbial Hg methylation in Hg-S-DOM solutions. Environmental Science & Technology, 47(11), 5746–5754. doi:10.1128/AEM.01792-12
  • Graham, A. M., Aiken, G. R., & Gilmour, C. C. (2012). Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environmental Science & Technology, 46(5), 2715–2723. doi:10.1021/es203658f
  • Graham, A. M., Bullock, A. L., Maizel, A. C., Elias, D. A., & Gilmour, C. C. (2012). Detailed assessment of the kinetics of hg-cell association, hg methylation, and methylmercury degradation in several desulfovibrio species. Applied and Environmental Microbiology, 78(20), 7337–7346. doi:10.1128/AEM.01792-12
  • Gu, B., Bian, Y., Miller, C. L., Dong, W., Jiang, X., & Liang, L. (2011). Mercury reduction and complexation by natural organic matter in anoxic environments. Proceedings of the National Academy of Sciences of the United States of America, 108(4), 1479–1483. doi:10.1073/pnas.1008747108
  • Hamelin, S., Amyot, M., Barkay, T., Wang, Y., & Planas, D. (2011). Methanogens: Principal methylators of mercury in lake periphyton. Environmental Science & Technology, 45(18), 7693–7700. doi:10.1021/es2010072
  • Hammerschmidt, C. R., Lamborg, C. H., & Fitzgerald, W. F. (2007). Aqueous phase methylation as a potential source of methylmercury in wet deposition. Atmospheric Environment, 41(8), 1663–1668. doi:10.1016/j.atmosenv.2006.10.032
  • Han, S., Obraztsova, A., Pretto, P., Choe, K. Y., Gieskes, J., Deheyn, D. D., & Tebo, B. M. (2007). Biogeochemical factors affecting mercury methylation in sediments of the Venice Lagoon, Italy. Environmental Toxicology and Chemistry, 26(4), 655. 663
  • Henry, E. A. (1992). The role of sulfate-reducing bacteria in environmental mercury methylation (pp. 15–30). Cambridge, MA: Harvard University.
  • Herrero Ortega, S., Catalán, N., Björn, E., Gröntoft, H., Hilmarsson, T. G., Bertilsson, S., … Bravo, A. G. (2018). High methylmercury formation in ponds fueled by fresh humic and algal derived organic matter. Limnology and Oceanography, 63(S1), S44–S53. doi:10.1002/lno.10722
  • Heyes, A., Mason, R. P., Kim, E., & Sunderland, E. (2006). Mercury methylation in estuaries: Insights from measuring rates using stable mercury isotopes. Marine Chemistry, 102(1–2), 134–147. doi:10.1016/j.marchem.2005.09.018
  • Hintelmann, H., Keppel-Jones, K., & Evans, R. D. (2000). Constants of mercury methylation and demethylation rates in sediments and comparison of tracer and ambient mercury availability. Environmental Toxicology and Chemistry, 19(9), 2204–2211. doi:10.1002/etc.5620190909
  • Holloway, J. A. M., Goldhaber, M. B., Scow, K. M., & Drenovsky, R. E. (2009). Spatial and seasonal variations in mercury methylation and microbial community structure in a historic mercury mining area, Yolo County, California. Chemical Geology, 267(1–2), 85–95. doi:10.1016/j.chemgeo.2009.03.031
  • Hsu-Kim, H., Kucharzyk, K. H., Zhang, T., & Deshusses, M. A. (2013). Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environmental Science & Technology, 47(6), 2441–2456. doi:10.1021/es304370g
  • Hu, H., Lin, H., Zheng, W., Tomanicek, S. J., Johs, A., Feng, X., … Gu, B. (2013). Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nature Geoscience, 6(9), 751–754. doi:10.1038/ngeo1894
  • Hudson, R. J. M., Gherini, S. A., Watras, C. J., & Porcella, D. B. (1994). Modeling the biogeochemical cycle of mercury in lakes: The mercury cycling model (MCM) and its application to the MTL study lakes. In C. J. Watras & J. W. Huckabee (Eds.), Mercury pollution-integration and synthesis (pp. 473–523). Boca Raton, FL: Lewis Publishers.
  • Jacobs, L. W., & Keeney, D. R. (1974). Methylmercury formation in mercury-treated river sediments during in situ equilibration. Journal of Environment Quality, 3(2), 121–126. doi:10.2134/jeq1974.00472425000300020006x
  • Jay, J. A., Morel, F. M. M., & Hemond, H. F. (2000). Mercury speciation in the presence of polysulfides. Environmental Science & Technology, 34(11), 2196–2200. doi:10.1021/es9911115
  • Jensen, S., & Jernelöv, A. (1969). Biological methylation of mercury in aquatic organisms. Nature, 223(5207), 753–754. doi:10.1038/223753a0
  • Jeong, H. Y., Sun, K., & Hayes, K. F. (2010). Microscopic and spectroscopic characterization of Hg(II) immobilization by mackinawite (FeS). Environmental Science & Technology, 44(19), 7476–7483. doi:10.1021/es100808y
  • Jiang, J., Bravo, A. G., Skyllberg, U., Bjorn, E., Wang, D., Yan, H., & Green, N. W. (2018). Influence of dissolved organic matter (DOM) characteristics on dissolved mercury (Hg) species composition in sediment porewater of lakes from southwest China. Water Research, 146, 146–158. doi:10.1016/j.watres.2018.08.054
  • Jiang, T., Chen, X., Wang, D., Liang, J., Bai, W., Zhang, C., … Wei, S. (2018). Dynamics of dissolved organic matter (DOM) in a typical inland lake of the Three Gorges Reservoir area: Fluorescent properties and their implications for dissolved mercury species. Journal of Environmental Management, 206, 418–429. doi:10.1016/j.jenvman.2017.10.048
  • Jiménez-Moreno, M., Perrot, V., Epov, V. N., Monperrus, M., & Amouroux, D. (2013). Chemical kinetic isotope fractionation of mercury during abiotic methylation of Hg(II) by methylcobalamin in aqueous chloride media. Chemical Geology, 336, 26–36. doi:10.1016/j.chemgeo.2012.08.02
  • Jonsson, S., Skyllberg, U., Nilsson, M. B., Westlund, P. O., Shchukarev, A., Lundberg, E., & Björn, E. (2012). Mercury methylation rates for geochemically relevant HgII species in sediments. Environmental Science & Technology, 46(21), 11653–11659. doi:10.1021/es3015327
  • Keating, M. H., Mahaffey, K. R., Schoeny, R., Rice, G., & Bullock, O. (1997). Mercury study report to congress: Executive summary (Vol. 1, pp 5–25). Washington, DC: EPA. https://www3.epa.gov/airtoxics/112nmerc/volume1.pdf.
  • Kerin, E. J., Gilmour, C. C., Roden, E., Suzuki, M. T., Coates, J. D., & Mason, P. R. (2006). Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology, 72(12), 7919–7921. doi:10.1128/AEM.01602-06
  • Kim, C. S., Rytuba, J. J., & Brown, G. E. J. (2004). EXAFS study of mercury(II) sorption to Fe- and Al-(hydr)oxides. I. Effects of pH. Journal of Colloid and Interface Science, 271(1), 1. 15. doi:10.1016/S0021-9797(03)00330-8
  • Kim, M., Han, S., Gieskes, J., & Deheyn, D. (2011). Importance of organic matter lability for monomethylmercury production in sulfate-rich marine sediments. Science of the Total Environment, 409(4), 778–784. doi:10.1016/j.scitotenv.2010.10.050
  • King, J. K., Kostka, J. E., Frischer, M. E., & Saunders, F. M. (2000). Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Applied and Environmental Microbiology, 66(6), 2430–2437. doi:10.1128/AEM.66.6.2430-2437.2000
  • King, J. K., Kostka, J. E., Frischer, M. E., Saunders, F. M., & Jahnke, R. A. A. (2001). Quantitative relationship that remonstrates mercury methylation rates in marine sediments are based on the community composition and activity of sulfate-reducing bacteria. Environmental Science & Technology, 35(12), 2491–2496. doi:10.1021/es001813q
  • King, J. K., Saunders, F. M., Lee, R. F., & Jahnke, R. A. (1999). Coupling mercury methylation rates to sulfate reduction rates in marine sediments. Environmental Toxicology and Chemistry, 18(7), 1362–1369. doi:10.1002/etc.5620180704
  • Klapstein, S. J., & O’Driscoll, N. J. (2018). Methylmercury biogeochemistry in freshwater ecosystems: A review focusing on DOM and photodemethylation. Bulletin of Environmental Contamination and Toxicology, 100(1), 14–25. doi:10.1007/s00128-017-2236-x
  • Landner, L. (1971). Biochemical model for the biological methylation of mercury suggested from methylation studies in vivo with Neurospora crassa. Nature, 230(5294), 452–454. doi:10.1038/230452a0
  • Larose, C., Dommergue, A., De Angelis, M., Cossa, D., Averty, B., Marusczak, N., … Ferrari, C. (2010). Springtime changes in snow chemistry lead to new insights into mercury methylation in the Arctic. Geochimica et Cosmochimica Acta, 74(22), 6263–6275. doi:10.1016/j.gca.2010.08.043
  • Lázaro, W. L., Díez, S., Silva, C. J. D., Ignácio, Á. R. A., & Guimarães, J. R. D. (2018). Seasonal changes in peryphytic microbial metabolism determining mercury methylation in a tropical wetland. Science of the Total Environment, 627, 1345–1352. doi:10.1016/j.scitotenv.2018.01.186
  • Lee, S., Kim, D. H., & Kim, K. W. (2018). The enhancement and inhibition of mercury reduction by natural organic matter in the presence of Shewanella oneidensis MR-1. Chemosphere, 194, 515–522. doi:10.1016/j.chemosphere.2017.12.007
  • Leloup, J., Fossing, H., Kohls, K., Holmkvist, L., Borowski, C., & Jørgensen, B. B. (2009). Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): Abundance and diversity related to geochemical zonation. Environmental Microbiology, 11(5), 1278–1291. doi:10.1111/j.1462-2920.2008.01855.x
  • Lescord, G. L., Emilson, E. J. S., Johnston, T. A., Branfireun, B. A., & Gunn, J. M. (2018). Optical properties of dissolved organic matter and their relation to mercury concentrations in water and biota across a remote freshwater drainage basin. Environmental Science & Technology, 52(6), 3344–3353. doi:10.1021/acs.est.7b05348
  • Li, Y., & Cai, Y. (2013). Progress in the study of mercury methylation and demethylation in aquatic environments. Chinese Science Bulletin, 58(2), 177–185. doi:10.1007/s11434-012-5416-4
  • Li, Y.-F., Zhao, J., Li, Y., Li, H., Zhang, J., Li, B., … Li, J. (2015). The concentration of selenium matters: A field study on mercury accumulation in rice by selenite treatment in qingzhen, Guizhou, China. Plant and Soil, 391(1–2), 195–205. doi:10.1007/s11104-015-2418-4
  • Limper, U., Knopf, B., & Konig, H. (2008). Production of methyl mercury in the gut of the Australian termite Mastotermes darwiniensis. Journal of Applied Entomology, 132(2), 168–176. doi:10.1111/j.1439-0418.2007.01236.x
  • Lin, C., & Jay, J. A. (2007). Mercury methylation by planktonic and biofilm cultures of Desulfovibrio desulfuricans. Environmental Science & Technology, 41(19), 6691–6697. doi:10.1021/es062304c
  • Lin, C., Yee, N., & Barkay, T. (2012). Microbial transformations in the mercury cycle. In G. Liu, Y. Cai, & N. O'Driscoll (Eds.), Environmental chemistry and toxicology of mercury (pp. 155–191). Hoboken, NJ: John Wiley & Sons, Inc.
  • Lindberg, S., Andren, A., & Harriss, R. (1975). Geochemistry of mercury in the estuarine environment. In E. L. Cronin (Ed.), Estuarine research: Chemistry, biology and the estuarine system (Vol. 1, pp. 64–107). New York, NY: Academic Press.
  • Liu, Y., Wang, J., Zheng, Y., Zhang, L., & He, J. (2014). Patterns of bacterial diversity along a long-term mercury-contaminated gradient in the paddy soils. Microbial Ecology, 68(3), 575–583. doi:10.1007/s00248-014-0430-5
  • Liu, Y., Yu, R., Zheng, Y., & He, J. (2014). Analysis of the microbial community structure by monitoring an Hg methylation gene (hgcA) in paddy soils along an Hg gradient. Applied and Environmental Microbiology, 80(9), 2874–2879. doi:10.1128/AEM.04225-13
  • Liu, J., Valsaraj, K. T., & Delaune, R. D. (2009). Inhibition of mercury methylation by iron sulfides in an anoxic sediment. Environmental Engineering Science, 26(4), 833–840. doi:10.1089/ees.2008.0243
  • Liu, X., Ma, A., Zhuang, G., & Zhuang, X. (2018). Diversity of microbial communities potentially involved in mercury methylation in rice paddies surrounding typical mercury mining areas in China. Microbiologyopen, 7(4), e00577. doi:10.1002/mbo3.577
  • Loseto, L. L., Lean, D. R., & Siciliano, S. D. (2004). Snowmelt sources of methylmercury to high arctic ecosystems. Environmental Science & Technology, 38(11), 3004–3010. doi:10.1021/es035146n
  • Loseto, L. L., Siciliano, S. D., & Lean, D. R. (2004). Methylmercury production in High Arctic wetlands. Environmental Toxicology and Chemistry, 23(1), 17. 23. doi:10.1897/02-644
  • Lu, X., Johs, A., Zhao, L., Wang, L., Pierce, E. M., & Gu, B. (2018). Nanomolar copper enhances mercury methylation by Desulfovibrio desulfuricans ND132. Environmental Science & Technology Letters, 5(6), 372–376. doi:10.1021/acs.estlett.8b00232
  • Lu, X., Liu, Y., Johs, A., Zhao, L., Wang, T., Yang, Z., … Gu, B. (2016). Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis Bem. Environmental Science & Technology, 50(8), 4366–4373. doi:10.1021/acs.est.6b00401
  • Ma, M., Du, H., Wang, D., Sun, T., An, S., & Yang, G. (2017). The fate of mercury and its relationship with carbon, nitrogen and bacterial communities during litter decomposing in two subtropical forests. Applied Geochemistry, 86, 26–35. doi:10.1016/j.apgeochem.2017.09.008
  • Macalady, J. L., Mack, E. E., Nelson, D. C., & Scow, K. M. (2000). Sediment microbial community structure and mercury methylation in mercury-polluted Clear Lake, California. Applied and Environmental Microbiology, 66(4), 1479–1488. doi:10.1128/AEM.66.4.1479-1488.2000
  • Mahalingam, R., George, R. A., Joseph, N. R., & Reddy, M. M. (1999). Inhibition of precipitation and aggregation of metacinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida everglades. Environmental Science & Technology, 33, 1418–1423. doi:10.1021/es9811187
  • Malcolm, E. G., Schaefer, J. K., Ekstrom, E. B., Tuit, C. B., Jayakumar, A., Park, H., … Morel, F. M. M. (2010). Mercury methylation in oxygen deficient zones of the oceans: No evidence for the predominance of anaerobes. Marine Chemistry, 122(1–4), 11–19. doi:10.1016/j.marchem.2010.08.004
  • Mallory, M. L., O'Driscoll, N. J., Klapstein, S., Varela, J. L., Ceapa, C., & Stokesbury, M. J. (2018). Methylmercury in tissues of Atlantic sturgeon (Acipenser oxyrhynchus) from the Saint John River, New Brunswick, Canada. Marine Pollution Bulletin, 126, 250–254. doi:10.1016/j.marpolbul.2017.11.024
  • Martin-Doimeadios, R., Tessier, E., Amouroux, D., Guyoneaud, R., Duran, R., Caumette, P., & Donard, O. F. E. (2004). Mercury methylation/demethylation and volatilization pathways in estuarine sediment slurries using species-specific enriched stable isotopes. Marine Chemistry, 90, 107–123. doi:10.1016/j.marchem.2004.02.022
  • Mason, R. P., Abbott, M. L., Bodaly, R. A., Bullock, O. R.,  Jr, J., Driscoll, C. T., … Swain, E. B. (2005). Monitoring the response to changing mercury deposition. Environmental Science & Technology, 39(1), 14A–22A. doi:10.1021/es053155l
  • Mason, R. P., Reinfelder, J. R., & Morel, F. M. M. (1996). Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environmental Science & Technology, 30(6), 1835–1845. doi:10.1021/es950373d
  • Mehrotra, A. S., & Sedlak, D. L. (2005). Decrease in net mercury methylation rates following iron amendment to anoxic wetland sediment slurries. Environmental Science & Technology, 39(8), 2564–2570. doi:10.1021/es049096d
  • Meng, B., Feng, X., Qiu, G., Liang, P., Li, P., Chen, C., & Shang, L. (2011). The process of methylmercury accumulation in rice (Oryza sativa L.). Environmental Science & Technology, 45(7), 2711–2717. doi:10.1021/es103384v
  • Merritt, K. A., & Amirbahman, A. (2009). Mercury methylation dynamics in estuarine and coastal marine environments – A critical review. Earth-Science Reviews, 96(1–2), 54–66. doi:10.1016/j.earscirev.2009.06.002
  • Moberly, J. G., Miller, C. L., Brown, S. D., Biswas, A., Brandt, C. C., Palumbo, A. V., & Elias, D. A. (2012). Role of morphological growth state and gene expression in Desulfovibrio africanus strain walvis bay mercury methylation. Environmental Science & Technology, 46(9), 4926–4932. doi:10.1021/es3000933
  • Morel, F. M. M., Kraepiel, A. M. L., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29(1), 543–566. doi:10.1146/annurev.ecolsys.29.1.543
  • Morse, J. W., & Luther, G. W. (1999). Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta, 63(19–20), 3373–3378. doi:10.1016/S0016-7037(99)00258-6
  • Nagase, H., Ose, Y., & Sato, T. (1988). Possible methylation of inorganic mercury by silicones in the environment. Science of the Total Environment, 73(1–2), 29–38. doi:10.1016/0048-9697(88)90184-2
  • Najera, I., Lin, C. C., Kohbodi, G. A., & Jay, J. A. (2005). Effect of chemical speciation on toxicity of mercury to Escherichia coli biofilms and planktonic cells. Environmental Science & Technology, 39(9), 3116–3120. doi:10.1021/es048549b
  • Nevin, K. P., Holmes, D. E., Woodard, T. L., Hinlein, E. S., Ostendorf, D. W., & Lovley, D. R. (2005). Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates. International Journal of Systematic and Evolutionary Microbiology, 55(4), 1667–1674. doi:10.1099/ijs.0.63417-0
  • Noh, S., Kim, J., Hur, J., Hong, Y., & Han, S. (2018). Potential contributions of dissolved organic matter to monomethylmercury distributions in temperate reservoirs as revealed by fluorescence spectroscopy. Environmental Science and Pollution Research, 25(7), 6474–6486. doi:10.1007/s11356-017-0913-2
  • Orem, W., Gilmour, C., Axelrad, D., Krabbenhoft, D., Scheidt, D., Kalla, P., … Aiken, G. (2011). Sulfur in the south Florida ecosystem: Distribution, sources, biogeochemistry, impacts, and management for restoration. Critical Reviews in Environmental Science and Technology, 41(sup1), 249–288. doi:10.1080/10643389.2010.531201
  • Oremland, R. S., Culbertson, C. W., & Winfrey, M. R. (1991). Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation. Applied and Environmental Microbiology, 57(1), 130–137.
  • Pacyna, E. G., Pacyna, J. M., Fudala, J., Strzelecka-Jastrzab, E., Hlawiczka, S., & Panasiuk, D. (2006). Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Science of the Total Environment, 370(1), 147–156. doi:10.1016/j.scitotenv.2006.06.023
  • Pak, K. R., & Bartha, R. (1998). Mercury methylation and demethylation in anoxic lake sediments and by strictly anaerobic bacteria. Applied and Environmental Microbiology, 64(3), 1013–1017.
  • Parks, J. M., Johs, A., Podar, M., Bridou, R., Hurt, R. A., Smith, S. D., … Liang, L. (2013). The genetic basis for bacterial mercury methylation. Science, 339(6125), 1332–1335. doi:10.1126/science.1230667
  • Pedrero, Z. O., Bridou, R., Mounicou, S., Guyoneaud, R., Monperrus, M., & Amouroux, D. O. (2012). Transformation, localization, and biomolecular binding of Hg species at subcellular level in methylating and nonmethylating sulfate-reducing bacteria. Environmental Science & Technology, 46(21), 11744–11751. doi:10.1021/es302412q
  • Peretyazhko, T., Charlet, L., & Grimaldi, M. (2006). Production of gaseous mercury in tropical hydromorphicsoils in the presence of ferrous iron: A laboratory study. European Journal of Soil Science, 57(2), 190–199. doi:10.1111/j.1365-2389.2005.00729.x
  • Podar, M., Gilmour, C. C., Brandt, C. C., Soren, A., Brown, S. D., Crable, B. R., … Elias, D. A. (2015). Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Science Advances, 1(9), e1500675. doi:10.1126/sciadv.1500675
  • Prakash, O., Gihring, T. M., Dalton, D. D., Chin, K.-J., Green, S. J., Akob, D. M., … Kostka, J. E. (2010). Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. International Journal of Systematic and Evolutionary Microbiology, 60(3), 546–553. doi:10.1099/ijs.0.010843-0
  • Qian, C., Johs, A., Chen, H., Mann, B. F., Lu, X., Abraham, P. E., … Gu, B. (2016). Global proteome response to deletion of genes related to mercury methylation and dissimilatory metal reduction reveals changes in respiratory metabolism in Geobacter sulfurreducens PCA. Journal of Proteome Research, 15(10), 3540–3549. doi:10.1021/acs.jproteome.6b00263
  • Ranchoupeyruse, M., Monperrus, M., Bridou, R., Duran, R., Amouroux, D., Salvado, J. C., & Guyoneaud, R. (2009). Overview of mercury methylation capacities among anaerobic bacteria including representatives of the sulphate-reducers: Implications for environmental studies. Geomicrobiology Journal, 26, 1–8. doi:10.1080/01490450802599227
  • Raposo, J. C., Ozamiz, G., Etxebarria, N., Tueros, I., Muñoz, C., Muela, A., … Barcina, I. (2008). Mercury biomethylation assessment in the estuary of Bilbao (North of Spain). Environmental Pollution, 156(2), 482–488. doi:10.1016/j.envpol.2008.01.017
  • Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter-a review. Chemosphere, 55(3), 319–331. doi:10.1016/j.chemosphere.2003.11.011
  • Reisch, C. R., Moran, M. A., & Whitman, W. B. (2008). Dimethylsulfoniopropionate-dependent demethylase (DmdA) from pelagibacter ubique and silicibacter pomeroyi. Journal of Bacteriology, 190(24), 8018–8024. doi:10.1128/JB.00770-08
  • Ridley, W. P., Dizikes, L. J., & Wood, J. M. (1977). Biomethylation of toxic elements in the environment. Science, 197(4301), 329–332. doi:10.1126/science.877556
  • Robinson, J. B., & Tuovinen, O. H. (1984). Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: Physiological, biochemical, and genetic analyses. Microbiological Reviews, 48(2), 95–124.
  • Rodionov, D. A., Vitreschak, A. G., Mironov, A. A., & Gelfand, M. S. (2004). Comparative genomics of the methionine metabolism in Gram-positive bacteria: A variety of regulatory systems. Nucleic Acids Research, 32(11), 3340–3353. doi:10.1093/nar/gkh659
  • Rodriguez-Gonzalez, P., Epov, V. N., & Bridoue, R. (2009). Species-specific stable isotope fractionation of mercury during Hg(II) methylation by an anaerobic bacteria (Desulfobulbus propionicus) under dark conditions. Environmental Science & Technology, 43, 9183–9188. doi:10.1021/es902206j
  • Schaefer, J. K., & Morel, F. M. M. (2009). High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nature Geoscience, 2(2), 123–126. doi:10.1038/ngeo412
  • Schaefer, J. K., Rocks, S. S., Zheng, W., Liang, L., Gu, B., & Morel, F. M. M. (2011). Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 108(21), 8714–8719. doi:10.1073/pnas.1105781108
  • Schartup, A. T., Mason, R. P., Balcom, P. H., Hollweg, T. A., & Chen, C. Y. (2013). Methylmercury production in estuarine sediments: Role of organic matter. Environmental Science & Technology, 47(2), 695–700. doi:10.1021/es302566w
  • Si, Y., Sun, L., & Wang, H. (2015). Effects of dissimilatory reduction of goethite on mercury methylation by Shewanella oneidensis MR-1. Huan jing ke xue = Huanjing kexue, 36(6), 2252–2258.
  • Si, Y., Zou, Y., Liu, X., Si, X., & Mao, J. (2015). Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria. Chemosphere, 122, 206–212. doi:10.1016/j.chemosphere.2014.11.054
  • Siciliano, S. D., O'Driscoll, N. J., Tordon, R., Hill, J., Beauchamp, S., & Lean, D. R. (2005). Abiotic production of methylmercury by solar radiation. Environmental Science & Technology, 39(4), 1071–1077. doi:10.1021/es048707z
  • Silver, S., & Hobman, J. L. (2007). Mercury microbiology: Resistance systems, environmental aspects, methylation, and human health. In D. H. Nies & S. Silver (Eds.), Molecular microbiology of heavy metals (pp. 357–370). Berlin, Heidelberg: Springer-Verlag.
  • Skyllberg, U. (2008). Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHgin wetland soilsand sediments under suboxic conditions: Illumination of controversies and implicationsfor MeHg net production. JGR: Biogeosciences 113, G00C03. doi:10.1029/2008JG000745
  • Skyllberg, U. (2012). Chemical speciation of mercury in soil and sediment. In G. Liu, Y. Cai, & N. O'Driscoll (Eds.), Environmental chemistry and toxicology of mercury (pp. 219–258). Hoboken, NJ: John Wiley & Sons, Inc.
  • Skyllberg, U., & Drott, R. (2010). Competition between disordered iron sulfide and natural organic matter associated thiols for mercury(II)-an EXAFS study. Environmental Science & Technology, 44(4), 1254–1259. doi:10.1021/es902091w
  • Slowey, A. J., & Brown, G. E. J. (2007). Transformations of mercury, iron, and sulfur during the reductivedissolution of iron oxyhydroxide by sulfide. Geochimica et Cosmochimica Acta, 71(4), 877–894. doi:10.1016/j.gca.2006.11.011
  • Smith, S. D. (2015). Protein components of the microbial mercury methylation pathway (pp. 89–108). Columbia, MO: University of Missouri.
  • Smith, T., Pitts, K., Mcgarvey, J. A., & Summers, A. O. (1998). Bacterial oxidation of mercury metal vapor, Hg(0). Applied and Environmental Microbiology, 64(4), 1328–1332.
  • Steele, R. A., & Opella, S. J. (1997). Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. Biochemistry, 36(23), 6885–6895. doi:10.1021/bi9631632
  • Stein, E. D., Cohen, Y., & Winer, A. M. (1996). Environmental distribution and transformation of mercury compounds. Critical Reviews in Environmental Science and Technology, 26(1), 1–43. doi:10.1080/1064338960938848
  • Strickman, R. J., & Mitchell, C. P. J. (2017). Accumulation and translocation of methylmercury and inorganic mercury in Oryza sativa: An enriched isotope tracer study. Science of the Total Environment, 574, 1415–1423. doi:10.1016/j.scitotenv.2016.08.068
  • Su, Y., Chang, W., Hsi, H. C., & Lin, C. (2016). Investigation of biogeochemical controls on the formation, uptake and accumulation of methylmercury in rice paddies in the vicinity of a coal-fired power plant and a municipal solid waste incinerator in Taiwan. Chemosphere, 154, 375–384. doi:10.1016/j.chemosphere.2016.03.087
  • Susana, S., Dias, T., & Ramalhosa, E. (2011). Mercury methylation versus demethylation: Main processes involved. In A. P. Clampet (Ed.), Methylmercury: Formation, sources and health effects (pp. 1–24). New York, NY: Nova Science Publishers.
  • Tamashiro, H., Akagi, H., Arakaki, M., Futatsuka, M., & Roht, L. H. (1984). Causes of death in Minamata disease: Analysis of death certificates. International Archives of Occupational and Environmental Health, 54(2), 135–146. doi:10.1007/BF00378516
  • Tanner, K. C., Windham-Myers, L., Marvin-DiPasquale, M., Fleck, J. A., & Linquist, B. A. (2018). Alternate wetting and drying decreases methylmercury in flooded rice (Oryza sativa) systems. Soil Science Society of America Journal, 82(1), 115–125. doi:10.2136/sssaj2017.05.0158
  • Ullrich, S. M., Tanton, T. W., & Abdrashitova, S. A. (2001). Mercury in the aquatic environment: A review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31(3), 241–293. doi:10.1080/20016491089226
  • Ulrich, P. D., & Sedlak, D. L. (2010). Impact of iron amendment on net methylmercury export from tidal wetland microcosms. Environmental Science & Technology, 44(19), 7659–7665. doi:10.1021/es1018256
  • Vonk, J. W., & Sijpesteijn, A. K. (1973). Studies on the methylation of mercuric chloride by pure cultures of bacteria and fungi. Antonie van Leeuwenhoek, 39(1), 505–513. doi:10.1007/BF02578894
  • Wang, Y. (2015). The impact of mercury on antioxidant defenses in Shewanella oneidensis MR-1 and characterization of chromosomal mer operons in Xanthobacter autotrophicus Py2 (pp. 1–17). Worcester, MA: Clark University.
  • Watanabe, N., Nagase, H., Nakamura, T., Watanabe, E., & Ose, Y. (1986). Chemical methylation of mercury(II) salts by polydimethylsiloxanes in aqueous solution. Ecotoxicology and Environmental Safety, 11(2), 174–178. doi:10.1016/0147-6513(86)90061-8
  • Weber, J. H. (1993). Review of possible paths for abiotic methylation of mercury(II) in the aquatic environment. Chemosphere, 26(11), 2063–2077. doi:10.1016/0045-6535(93)90032-Z
  • Wiatowski, H. A., Das, S., Kukkadapu, R., Ilton, E. S., Barkay, T., & Yee, N. (2009). Reduction of Hg(II) to Hg(0) by magnetite. Environmental Science & Technology, 43, 5307–5313. doi:10.1021/es9003608
  • Wiatrowski, H. A., Ward, P. M., & Barkay, T. (2006). Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria. Environmental Science & Technology, 40(21), 6690–6696. doi:10.1021/es061046g
  • Wood, J. M., Kennedy, F. S., & Rosen, C. G. (1968). Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature, 220(5163), 173–174.
  • Wu, F., Takahito, Y., & Hiroshi, S. (2009). Dissolved organic matter in the aquatic environment. In F. Wu & B. Xing (Eds.), Natural organic matter and its significance in the environment (English edition) (pp. 5–15). Beijing, China: Science Press.
  • Xu, X., Lin, Y., Meng, B., Feng, X., Xu, Z., Jiang, Y., … Qiu, G. (2018). The impact of an abandoned mercury mine on the environment in the Xiushan region, Chongqing, southwestern China. Applied Geochemistry, 88, 267–275. doi:10.1016/j.apgeochem.2017.04.005
  • Yamada, M., & Tonomura, K. (1972). Formation of methylmercury compounds from inorganic mercury by Clostridium cochlearium. Journal of Fermentation Technology, 50, 159–166.
  • Yin, Y., Chen, B., Mao, Y., Wang, T., Liu, J., Cai, Y., & Jiang, G. (2012). Possible alkylation of inorganic Hg(II) by photochemical processes in the environment. Chemosphere, 88(1), 8–16. doi:10.1016/j.chemosphere.2012.01.006
  • Yu, R.-Q., Flanders, J. R., Mack, E. E., Turner, R., Mirza, M. B., & Barkay, T. (2012). Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments. Environmental Science & Technology, 46(5), 2684–2691. doi:10.1021/es2033718
  • Yu, R., Reinfelder, J. R., Hines, M. E., & Barkay, T. (2013). Mercury methylation by the methanogen Methanospirillum hungatei. Applied and Environmental Microbiology, 79(20), 6325–6330. doi:10.1128/AEM.01556-13
  • Yu, R., Reinfelder, J. R., Hines, M. E., & Barkay, T. (2018). Syntrophic pathways for microbial mercury methylation. The ISME Journal, 12(7), 1826–1835. doi:10.1038/s41396-018-0106-0
  • Zhang, H., Feng, X., Larssen, T., Qiu, G., & Vogt, R. D. (2010). In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environmental Health Perspectives, 118(9), 1183–1188. doi:10.1289/ehp.1001915
  • Zhang, Q., Pan, K., Kang, S., Zhu, A., & Wang, W. (2014). Mercury in wild fish from high-altitude aquatic ecosystems in the Tibetan Plateau. Environmental Science & Technology, 48(9), 5220–5228. doi:10.1021/es404275v
  • Zhang, T., Kim, B., Levard, C., Reinsch, B. C., Lowry, G. V., Deshusses, M. A., & Hsu-Kim, H. (2012). Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environmental Science & Technology, 46(13), 6950–6958. doi:10.1021/es203181m
  • Zhang, T., Kucharzyk, K. H., Kim, B., Deshusses, M. A., & Hsu-Kim, H. (2014). Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environmental Science & Technology, 48(16), 9133–9141. doi:10.1021/es500336j
  • Zhu, W., Song, Y., Adediran, G. A., Jiang, T., Reis, A. T., Pereira, E., … Bjorn, E. (2018). Mercury transformations in resuspended contaminated sediment controlled by redox conditions, chemical speciation and sources of organic matter. Geochimica et Cosmochimica Acta, 220, 158–179. doi:10.1016/j.gca.2017.09.045
  • Zou, Y., Si, Y., Yan, X., & Chen, Y. (2012). Research on mercury methylation by Geobacter sulfurreducens and its influencing factors. Environmental Science (Chinese), 33, 3247–3252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.