792
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Fate of mercury from artisanal and small-scale gold mining in tropical rivers: Hydrological and biogeochemical controls. A critical review

, &
Pages 437-475 | Published online: 07 Jul 2019

References

  • Aastrup, M., Johnson, J., Bringmark, E., Bringmark, L., & Iverfeldt, Å. (1991). Occurence and transport of mercury within a small catchment area. Water Air & Soil Pollution, 56(1), 155–167. doi: 10.1007/BF00342269
  • Achá, D., Hintelmann, H., & Yee, J. (2011). Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region. Chemosphere, 82(6), 911–916. doi: 10.1016/j.chemosphere.2010.10.050
  • Achá, D., Pabón, C. A., & Hintelmann, H. (2012). Mercury methylation and hydrogen sulfide production among unexpected strains isolated from periphyton of two macrophytes of the Amazon. FEMS Microbiology Ecology, 80(3), 637–645. doi: 10.1111/j.1574-6941.2012.01333.x
  • AMAP/UNEP. (2013). Technical background report for the Global Mercury Assessment 2013, Arctic Monitoring and Assessment Programme. Geneva, Switzerland. Oslo, Norway/UNEP Chemicals Branch.
  • Appleton, J. D., Weeks, J. M., Calvez, J. P. S., & Beinhoff, C. (2006). Impacts of mercury contaminated mining waste on soil quality, crops, bivalves, and fish in the Naboc River area, Philippines. Science of the Total Environment, 354(2–3), 198–211. doi: 10.1016/j.scitotenv.2005.01.042
  • Appleton, J. D., Williams, T. M., Breward, N., Apostol, A., Miguel, J., & Miranda, C. (1999). Mercury contamination associated with artisanal gold mining on the island of Mindanao, the Philippines. Science of the Total Environment, 228(2–3), 95–109. doi: 10.1016/S0048-9697(99)00016-9
  • Ariya, P. A., Amyot, M., Dastoor, A., Deeds, D., Feinberg, A., Kos, G., … Toyota, K. (2015). Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: A review and future directions. Chemical Reviews, 115(10), 3760–3802. doi: 10.1021/cr500667e
  • Aula, I., Braunschweiler, H., Leino, T., Malin, I., Porvari, P., Hatanaka, T., … Juras, A. (1994). Levels of mercury in the Tucuruí reservoir and its surrounding area in Pará, Brazil. In C. J. Watras, & J. W. Huckabee (Eds.), Mercury pollution: Integration and synthesis (pp. 21–40). Boca Raton, FL: Lewis Publishers.
  • Baptista-Salazar, C., Richard, J. H., Horf, M., Rejc, M., Gosar, M., & Biester, H. (2017). Grain-size dependence of mercury speciation in river suspended matter, sediments and soils in a mercury mining area at varying hydrological conditions. Applied Geochemistry, 81, 132–142. doi: 10.1016/j.apgeochem.2017.04.006
  • Baptista-Salazar, C., Hintelmann, H., & Biester, H. (2018). Distribution of mercury species and mercury isotope ratios in soils and river suspended matter of a mercury mining area. Environmental Science: Processes & Impacts, 20(4), 621–631. doi: 10.1039/C7EM00443E
  • Barbosa, A. C., Souza, J. D., Dórea, J. G., Jardim, W. F., & Fadini, P. S. (2003). Mercury biomagnification in a tropical black water, Rio Negro, Brazil. Archives of Environmental Contamination and Toxicology, 45(2), 235–246. doi: 10.1007/s00244-003-0207-1
  • Barkay, T., Gillman, M., & Turner, R. R. (1997). Effects of dissolved organic carbon and salinity on bioavailability of mercury. Applied and Environmental Microbiology, 63(11), 4267–4271.
  • Bastos, W. R., de Almeida, R., Dórea, J. G., & Barbosa, A. C. (2007). Annual flooding and fish-mercury bioaccumulation in the environmentally impacted Rio Madeira (Amazon). Ecotoxicology, 16(3), 341–346. doi: 10.1007/s10646-007-0138-0
  • Bastos, W. R., Gomes, J. P. O., Oliveira, R. C., Almeida, R., Nascimento, E. L., Bernardi, J. V. E., … Pfeiffer, W. C. (2006). Mercury in the environment and riverside population in the Madeira River Basin, Amazon, Brazil. Science of the Total Environment, 368(1), 344–351. doi: 10.1016/j.scitotenv.2005.09.048
  • Béliveau, A., Lucotte, M., Davidson, R., do Canto Lopes, L. O., & Paquet, S. (2009). Early Hg mobility in cultivated tropical soils one year after slash-and-burn of the primary forest, in the Brazilian Amazon. Science of the Total Environment, 407(15), 4480–4489. doi: 10.1016/j.scitotenv.2009.04.012
  • Berman, M., & Bartha, R. (1986). Levels of chemical versus biological methylation of mercury in sediments. Bulletin of Environmental Contamination and Toxicology, 36(1), 401–404. doi: 10.1007/BF01623527
  • Bergquist, B. A., & Blum, J. D. (2009). The odds and evens of mercury isotopes: Applications of mass-dependent and mass-independent isotope fractionation. Elements, 5(6), 353–357. doi: 10.2113/gselements.5.6.353
  • Bindler, R., Renberg, I., Appleby, P. G., Anderson, N. J., & Rose, N. L. (2001). Mercury accumulation rates and spatial patterns in lake sediments from west Greenland: A coast to ice margin transect. Environmental Science Technology, 35(9), 1736–1741. doi: 10.1021/es0002868
  • Boszke, L., Kowalski, A., & Siepak, J. (2004). Grain Size Partitioning of Mercury in Sediments of the Middle Odra River (Germany/Poland). Water, Air, & Soil Pollution, 159(1), 125–138. doi: 10.1023/B:WATE.0000049171.22781.bd.
  • Boulton, A. J., Boyero, L., Covich, A. P., Dobson, M., Lake, S., & Pearson, R. (2008). Are tropical streams ecologically different from temperate streams? In D. Dudgeoun (Ed.), Tropical stream ecology (pp. 257–284). San Diego, CA: Academic Press. doi: 10.1021/es0002868
  • Brabo, E. S., Angélica, R. S., Silva, A. P., Faial, K. R. F., Mascarenhas, A. F. S., Santos, E. C. O., … Loureiro, E. C. B. (2003). Assessment of mercury levels in soils, waters, bottom sediments and fishes of Acre State in Brazilian amazon. Water, Air, and Soil Pollution, 147(1/4), 61–77. doi: 10.1023/A:1024510312250
  • Brigham, M. E., Wentz, D. A., Aiken, G. R., & Krabbenhoft, D. P. (2009). Mercury cycling in stream ecosystems. 1. Water column chemistry and transport. Environmental Science & Technology, 43(8), 2720–2725. doi: 10.1021/es802694n
  • Bushey, J. T., Driscoll, C. T., Mitchell, M. J., Selvendiran, P., & Montesdeoca, M. R. (2008). Mercury transport in response to storm events from a northern forest landscape. Hydrological Processes, 22(25), 4813–4826. doi: 10.1002/hyp.7091
  • Callister, S., & Winfrey, M. (1986). Microbial methylation of mercury in upper Wisconsin river sediments. Water, Air, and Soil Pollution, 29, 453–465. doi: 10.1007/BF00283450
  • Campbell, L. M., Hecky, R. E., Nyaundi, J., Muggide, R., & Dixon, D. G. (2003). Distribution and food-web transfer of mercury in Napoleon and Winam Gulfs, Lake Victoria, East Africa. Journal of Great Lakes Research, 29, 267–282. doi: 10.1016/S0380-1330(03)70554-1
  • CCME. (1999). Canadian sediment quality guidelines for the protection of aquatic life: Mercury, Canadian environmental quality guidelines, 1999. Winnipeg, Canada: Canadian Council of Ministers of the Environment.
  • Cesar, R., Egler, S., Polivanov, H., Castilhos, Z., & Rodrigues, A. P. (2011). Mercury, copper and zinc contamination in soils and fluvial sediments from an abandoned gold mining area in southern Minas Gerais State, Brazil. Environmental Earth Sciences, 64(1), 211–222. doi: 10.1007/s12665-010-0840-8
  • Choe, K. Y., Gill, G. A., & Lehman, R. (2003). Distribution of particulate, colloidal, and dissolved mercury in San Francisco Bay estuary. 1. Total mercury. Limnology and Oceanography, 48(4), 1535–1546. doi: 10.4319/lo.2003.48.4.1535.
  • CONAMA (2004).  Resolução 344. Conselho Nacional de Meio Ambiente. Available via 3C%-2004.pdf3E%. Accessed 3 October 2018
  • Cordy, P., Veiga, M. M., Salih, I., Al-Saadi, S., Console, S., Garcia, O., … Roeser, M. (2011). Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world’s highest per capita mercury pollution. Science of the Total Environment, 410–411, 154–160. doi: 10.1016/j.scitotenv.2011.09.006
  • Dai, A., & Trenberth, K. E. (2002). Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. Journal of Hydrometeorology, 3(6), 660–687. > 2.0.CO;2 doi: 10.1175/1525-7541(2002)003 < 0660:EOFDFC
  • De Oliveira, S. M. B., Melfi, A. J., Fostier, A. H., Forti, M. C., Fávaro, D. I. T., & Boulet, R. (2001). Soils as an important sink for mercury in the Amazon. Water, Air, and Soil Pollution, 26, 321–337. doi: 10.1023/A:1005239627632
  • de Deckere, E., De Cooman, W., Leloup, V., Meire, P., Schmitt, C., & Peter, C. (2011). Development of sediment quality guidelines for freshwater ecosystems. Journal of Soils and Sediments, 11(3), 504–517. doi: 10.1007/s11368-010-0328-x
  • Diringer, S. E., Feingold, B. J., Ortiz, E. J., Gallis, J. A., Araújo-Flores, J. M., Berky, A., … Hsu-Kim, H. (2015). River transport of mercury from artisanal and small-scale gold mining and risks for dietary mercury exposure in Madre de Dios, Peru. Environmental Science: Processes & Impacts, 17(2), 478–487. doi: 10.1039/C4EM00567H
  • Dittman, J. A., Shanley, J. B., Driscoll, C. T., Aiken, G. R., Chalmers, A. T., Towse, J. E., & Selvendiran, P. (2010). Mercury dynamics in relation to dissolved organic carbon concentration and quality during high flow events in three northeastern US streams. Water Resources Research, 46, W07522. doi: 10.1029/2009WR008351
  • do Valle, C. M., Santana, G. P., Augusti, R., Egreja-Filho, F. B., & Windmöller, C. C. (2005). Speciation and quantification of mercury in Oxisol, Ultisol, and Spodosol from Amazon (Manaus, Brazil). Chemosphere, 58(6), 779–792. doi: 10.1016/j.chemosphere.2004.09.005
  • Dominique, Y., Muresan, B., Duran, R., Richard, S., & Boudou, A. (2007). Simulation of the chemical fate and bioavailability of liquid elemental mercury drops from gold mining in Amazonian freshwater systems. Environmental Science & Technology, 41(21), 7322–7329. doi: 10.1021/es070268r
  • Donovan, P. M., Blum, J. D., Singer, M. B., Marvin-Dipasquale, M., & Tsui, M. T. K. (2016). Isotopic composition of inorganic mercury and methylmercury downstream of a historical gold mining region. Environmental Science & Technology, 50(4), 1691–1702. doi: 10.1021/acs.est.5b04413.
  • Donovan, P. M., Blum, J. D., Demers, J. D., Gu, B., Brooks, S. C., & Peryam, J. (2014). Identification of multiple mercury sources to stream sediments near Oak Ridge, TN, USA. Environmental Science & Technology, 48(7), 3666–3674. doi: 10.1021/es4046549
  • Driscoll, C. T., Blette, V., Yan, C., Schofield, C. L., Munson, R., & Holsapple, J. (1995). The role of dissolved organic carbon in the chemistry and bioavailability of mercury in remote Adirondack lakes. Water, Air, & Soil Pollution, 80(1–4), 499–508. doi: 10.1007/BF01189700
  • Driscoll, C. T., Han, Y. J., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, T. M., … Munson, R. K. (2007). Mercury contamination in forest and freshwater ecosystems in the northeastern United States. BioScience, 57(1), 17–28. doi: 10.1641/B570106
  • Eckley, C. S., & Hintelmann, H. (2006). Determination of mercury methylation potentials in the water column of lakes across Canada. Science of the Total Environment, 368(1), 111–125. doi: 10.1016/j.scitotenv.2005.09.042
  • Fadini, P. S., & Jardim, W. F. (2001). Is the Negro River Basin (Amazon) impacted by naturally occurring mercury? Science of the Total Environment, 275(1–3), 71–82. doi: 10.1016/S0048-9697(00)00855-X
  • Farid, L. H., Machado, J. E. B., & da Silva, A. O. (1991). Controle da Emissão e Recuperação de Mercúrio em Rejeitos de Garimpo. In M. M. Veiga, & M. C. Fernandes (Eds.), Poconé: Um Campo de Estudos Do Impacto Ambiental Do Garimpo (pp. 27–44). Rio de Janeiro, Brazil: CETEM/CNPq.
  • Fostier, A. H., Forti, M. C., Guimarães, J. R. D., Melfi, A. J., Boulet, R., Espirito Santo, C. M., & Krug, F. J. (2000). Mercury fluxes in a natural forested Amazonian catchment (Serra do Navio, Amapa State, Brazil). Science of the Total Environment, 260(1–3), 201–211. doi: 10.1016/S0048-9697(00)00564-7
  • Gabriel, M. C., & Williamson, D. G. (2004). Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environmental Geochemistry and Health, 26(3–4), 421–434. doi: 10.1007/s10653-004-1308-0
  • Gammons, C. H., Slotton, D. G., Gerbrandt, B., Weight, W., Young, C. A., McNearny, R. L., … Tapia, H. (2006). Mercury concentrations of fish, river water, and sediment in the Río Ramis-Lake Titicaca watershed, Peru. Science of the Total Environment, 368(2–3), 637–648. doi: 10.1016/j.scitotenv.2005.09.076
  • Gao, N., Armatas, N. G., Shanley, J. B., Kamman, N. C., Miller, E. K., Keeler, G. J., … Drake, S. (2006). Mass balance assessment for mercury in Lake Champlain. Environmental Science & Technology, 40(1), 82–89. doi: 10.1021/es050513b
  • Gerson, J. R., Driscoll, C. T., Hsu-Kim, H., & Bernhardt, E. S. (2018). Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers. Elementa: Science of the Anthropocene, 6(1), 11. doi: 10.1525/elementa.274
  • Gilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D., Somenahally, A. C., … Elias, D. A. (2013). Mercury methylation by novel microorganisms from new environments. Environmental Science & Technology, 47(20), 11810–11820. doi: 10.1021/es403075t
  • Grigal, D. F. (2003). Mercury sequestration in forests and peatlands: A review. Journal of Environment Quality, 32(2), 393–405. doi: 10.2134/jeq2003.3930
  • Grigal, D. F., Nater, E. A., & Homann, P. S. (1994). Spatial distribution patterns of mercury in an east-central Minnesota landscape. In C. J. Watras, & J. W. Huckabee (Eds.), Mercury pollution: integration and synthesis (pp. 305–312). Boca Raton, FL: Lewis Publishers.
  • Grimaldi, C., Grimaldi, M., & Guedron, S. (2008). Mercury distribution in tropical soil profiles related to origin of mercury and soil processes. Science of the Total Environment, 401(1–3), 121–129. doi: 10.1016/j.scitotenv.2008.04.001
  • Guedron, S., Grangeon, S., Lanson, B., & Grimaldi, M. (2009). Mercury speciation in a tropical soil association; Consequence of gold mining on Hg distribution in French Guiana. Geoderma, 153(3–4), 331–346. doi: 10.1016/j.geoderma.2009.08.017
  • Guedron, S., Grimaldi, M., Grimaldi, C., Cossa, D., Tisserand, D., & Charlet, L. (2011). Amazonian former gold mined soils as a source of methylmercury: Evidence from a small scale watershed in French Guiana. Water Research, 45(8), 2659–2669. doi: 10.1016/j.watres.2011.02.022
  • Guimarães, J. R. D., Fostier, A. H., Forti, M. C., Melfi, J. A., Kehrig, H., Mauro, J. B. N., …Krug, J. F. (1999). Mercury in human and environmental samples from two lakes in Amapá, Brazilian Amazon. Ambio, 28(4), 296–301.
  • Guimarães, J. R. D., Malm, O., & Pfeiffer, W. C. (1995). A simplified radiochemical technique for measurements of net mercury methylation rates in aquatic systems near goldmining areas, Amazon, Brazil. Science of the Total Environment, 175(2), 151–162. doi: 10.1016/0048-9697(95)04911-8
  • Guimarães, J. R. D., Meili, M., Hylander, L. D., de Castro e Silva, E., Roulet, M., Mauro, J. B., & de Lemos, R. (2000). Mercury net methylation in five tropical flood plain regions of Brazil: High in the root zone of floating macrophyte mats but low in surface sediments and flooded soils. Science of the Total Environment, 261, 99–107. doi: 10.1016/S0048-9697(00)00628-8
  • Guimarães, J. R. D., Meili, M., Malm, O., & Maria De Souza Brito, E. (1998). Hg methylation in sediments and floating meadows of a tropical lake in the Pantanal floodplain, Brazil. Science of the Total Environment, 213(1–3), 165–175. doi: 10.1016/S0048-9697(98)00089-8
  • Haitzer, M., Aiken, G. R., & Ryan, J. N. (2003). Binding of mercury(II) to aquatic humic substances: Influence of pH and source of humic substances. Environmental Science & Technology, 37(11), 2436–2441. doi: 10.1021/es026291o.
  • Harris-Hellal, J., Grimaldi, M., Garnier-Zarli, E., & Bousserrhine, N. (2011). Mercury mobilization by chemical and microbial iron oxide reduction in soils of French Guyana. Biogeochemistry, 103(1–3), 223–234. doi: 10.1007/s10533-010-9457-y
  • Heaven, S., Ilyushenko, M. A., Tanton, T. W., Ullrich, S. M., & Yanin, E. P. (2000). Mercury in the River Nura and its foodplain, Central Kazakhstan: I. River sediments and water. Science of the Total Environment, 260(1–3), 35–44. doi: 10.1016/S0048-9697(00)00540-4
  • Heim, W. A., Coale, K. H., Stephenson, M., Choe, K. Y., Gill, G. A., & Foe, C. (2007). Spatial and habitat-rased variations in total and methyl mercury concentrations in surficial sediments in the San Francisco Bay-Delta. Environmental Science & Technology, 41(10), 3501–3507. doi: 10.1021/es0626483
  • Helgen, S. O., & Moore, J. N. (1996). Natural background determination and impact quantification in trace metal-contaminated river sediments. Environmental Science & Technology, 30(1), 129–135. doi: 10.1021/es950192b
  • Howari, F. M., & Banat, K. M. (2001). Assessment of Fe, Zn, Cd, Hg, and Pb in the Jordan and Yarmouk river sediments in relation to their physicochemical properties and sequential extraction characterization. Water, Air, and Soil Pollution, 132(1/2), 43–59. doi: 10.1023/A:1012062814873.
  • Hsu-Kim, H., Kucharzyk, K. H., Zhang, T., & Deshusses, M. A. (2013). Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environmental Science & Technology, 47(6), 2441–2456. doi: 10.1021/es304370g
  • Hylander, L. D., Silva, E. C., Oliveira, L. J., Silva, S. A., Kuntze, E. K., & Silva, D. X. (1994). Mercury levels in Alto Pantanal: A Screening Study. Ambio, 23, 478–484.
  • Kellman, M. C., & Tackaberry, R. (2005). Tropical environments: The functioning and management of tropical ecosystems. New York, NY: Routledge.
  • Kelly, C. A., Rudd, J. W. M., St.Louis, V. L., & Heyes, A. (1995). Is total mercury concentration a good predictor of methyl mercury concentration in aquatic systems? Water, Air, & Soil Pollution, 80(1–4), 715–724. doi: 10.1007/BF01189723
  • Konhauser, K. O., Fyfe, W. S., & Kronberg, B. I. (1994). Multi-element chemistry of some Amazonian waters and soils. Chemical Geology, 111(1–4), 155–175. doi: 10.1016/0009-2541(94)90088-4
  • Jønsson, J. B., Charles, E., & Kalvig, P. (2013). Toxic mercury versus appropriate technology: Artisanal gold miners’ retort aversion. Resources Policy, 38, 60–67. doi: 10.1016/j.resourpol.2012.09.001
  • Lacerda, L. D., Bastos, W. R., & Almeida, M. D. (2012). The impacts of land use changes in the mercury flux in the Madeira River, Western Amazon. The Anais da Academia Brasileira de Ciências, 84(1), 69–78.
  • Lacerda, L. D., De Souza, M., & Ribeiro, M. G. (2004). The effects of land use change on mercury distribution in soils of Alta Floresta, Southern Amazon. Environmental Pollution, 129(2), 247–255. doi: 10.1016/j.envpol.2003.10.013
  • Lacerda, L. D., & Salomons, W. (1998). Mercury from gold and silver mining: A chemical time bomb? Berlin, Germany: Springer-Verlag.
  • Landner, L., & Reuther, R. (2005). Speciation, mobility and bioavailability of metals in the environment. In Metals in society and in the environment. Environmental pollution (Vol. 8, pp. 139–274). Dordrecht, the Netherlands: Springer.
  • Laperche, V., Hellal, J., Maury-Brachet, R., Joseph, B., Laporte, P., Breeze, D., & Blanchard, F. (2014). Regional distribution of mercury in sediments of the main rivers of French Guiana (Amazonian basin) Springerplus, 3, 519–521. doi: 10.1186/2193-1801-3-322
  • Latrubesse, E. M., Stevaux, J. C., & Sinha, R. (2005). Tropical rivers. Geomorphology, 70(3–4), 187–206. doi: 10.1016/j.geomorph.2005.02.005
  • Lázaro, W. L., Díez, S., da Silva, C. J., Ignácio, Á. R., & Guimarães, J. R. (2016). Waterscape determinants of net mercury methylation in a tropical wetland. Environmental Research, 150, 438–445. doi: 10.1016/j.envres.2016.06.028
  • Lechler, P. J., Miller, J. R., Lacerda, L. D., Vinson, D., Bonzongo, J. C., Lyons, W. B., & Warwick, J. J. (2000). Elevated mercury concentrations in soils, sediments, water, and fish of the Madeira River basin, Brazilian Amazon: A function of natural enrichments? Science of the Total Environment, 260(1–3), 87–96. doi: 10.1016/S0048-9697(00)00543-X
  • Leopold, K., Foulkes, M., & Worsfold, P. (2010). Methods for the determination and speciation of mercury in natural waters—A review. Analytica Chimica Acta, 663(2), 127–138. doi: 10.1016/j.aca.2010.01.048
  • Liang, L., Luo, L., & Zhang, S. (2011). Adsorption and desorption of humic and fulvic acids on SiO2 particles at nano- and micro-scales. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384(1–3), 126–130. doi: 10.1016/j.colsurfa.2011.03.045
  • Limbong, D., Kumampung, J., Rimper, J., Arai, T., & Miyazaki, N. (2003). Emissions and environmental implications of mercury from artisanal gold mining in north Sulawesi, Indonesia. Science of the Total Environment, 302(1–3), 227–236. doi: 10.1016/S0048-9697(02)00397-2
  • López-Blanco, C., Collahuazo, L., Torres, S., Chinchay, L., Ayala, D., & Benítez, P. (2015). Mercury pollution in soils from the Yacuambi River (Ecuadorian Amazon) as a result of gold placer mining. Bulletin of Environmental Contamination and Toxicology, 95(3), 311–316. doi: 10.1007/s00128-015-1604-7
  • Lowe-McConnell, R. H. (1987). Ecological studies in tropical fish communities. Cambridge, UK: Cambridge University Press.
  • Maia, P. D., Maurice, L., Tessier, E., Amouroux, D., Cossa, D., Pérez, M., … Rhéault, I. (2009). Mercury distribution and exchanges between the Amazon River and connected floodplain lakes. Science of the Total Environment, 407(23), 6073–6084. doi: 10.1016/j.scitotenv.2009.08.015
  • Mallas, J., & Benedicto, N. (1986). Mercury and goldmining in the Brazilian Amazon. Ambio, 15, 248–249.
  • Malm, O. (1998). Gold mining as a source of mercury exposure in the Brazilian Amazon. Environmental Research, 77(2), 73–78. doi: 10.1006/enrs.1998.3828
  • Malm, O., Castro, M. B., Bastos, W. R., Branches, F. J. P., Guimarães, J. R. D., Zuffo, C. E., & Pfeiffer, W. C. (1995). An assessment of Hg pollution in different goldming areas, Amazon Brazil. Science of the Total Environment, 175(2), 127–140. doi: 10.1016/0048-9697(95)04909-6
  • Malm, O., Pfeiffer, W. C., Souza, C. M. M., & Reuther, R. (1990). Mercury pollution due to gold mining in the Madeira River Basin, Brazil. Ambio, 19, 11–15.
  • Marrugo-Negrete, J., Benitez, L. N., & Olivero-Verbel, J. (2008). Distribution of mercury in several environmental compartments in an aquatic ecosystem impacted by gold mining in northern Colombia. Archives of Environmental Contamination and Toxicology, 55(2), 305–316. doi: 10.1007/s00244-007-9129-7
  • Marrugo-Negrete, J., Benitez, L. N., Olivero-Verbel, J., Lans, E., & Gutierrez, F. V. (2010). Spatial and seasonal mercury distribution in the Ayapel Marsh, Mojana region, Colombia. International Journal of Environmental Health Research, 20(6), 451–459. doi: 10.1080/09603123.2010.499451
  • Marshall, B. G., Veiga, M. M., Kaplan, R. J., Adler Miserendino, R., Schudul, G., Bergquist, B. A., … Gonzalez-Mueller, C. (2018). Evidence of transboundary mercury and other pollutants in the Puyango-Tumbes River basin, Ecuador-Peru. Environmental Science: Processes & Impacts, 20, 632–641. doi: 10.1039/C7EM00504K
  • Mason, R. P., & Sullivan, K. A. (1998). Mercury and methylmercury transport through an urban watershed. Water Research, 32(2), 321–330. doi: 10.1016/S0043-1354(97)00285-6
  • Maurice-Bourgoin, L., Aalto, R., & Guyot, J. L. (2002). Sediment-associated mercury distribution within a major Amazon tributary: Century-scale contamination history and importance of flood plain accumulation. In F. J. Dyer, M. C. Thoms, & J. M. Olley (Eds.), The structure, function and management implications of fluvial sedimentary systems (IAHS proceedings & reports) (pp. 161–168). Wallingford, UK: International Association of Hydrological Sciences Press.
  • Maurice-Bourgoin, L., Quemerais, B., Moreira-Turcq, P., & Seyler, P. (2003). Transport, distribution and speciation of mercury in the Amazon River at the confluence of black and white waters of the Negro and Solimoes Rivers. Hydrological Processes, 17(7), 1405–1417. doi: 10.1002/hyp.1292
  • Maurice-Bourgoin, L., Quiroga, I., Chincheros, J., & Courau, P. (2000). Mercury distribution in waters and fishes of the upper Madeira rivers and mercury exposure in riparian Amazonian populations. Science of the Total Environment, 260(1–3), 73–86. doi: 10.1016/S0048-9697(00)00542-8
  • Mauro, J. B. N., Guimarães, J. R. D., & Melamed, R. (1999). Mercury methylation in a tropical macrophyte: Influence of abiotic parameters. Applied Organometallic Chemistry, 13(9), 631–636. doi: 10.1002/(sici)1099-0739(199909)13:9 < 631::aid-aoc905 > 3.0.co;2-e
  • Meech, J. A., Veiga, M. M., & Tromans, D. (1998). Reactivity of mercury from gold mining activities in darkwater ecosystems. Ambio, 27, 92–98.
  • Meili, M. (1991a). The coupling of mercury and organic matter in the biogeochemical cycle – Towards a mechanistic model for the boreal forest zone. Water Air & Soil Pollution, 56(1), 333–347. doi: 10.1007/BF00342281
  • Meili, M. (1991b). Fluxes, pools, and turnover of mercury in Swedish forest lakes. Water Air & Soil Pollution, 56(1), 719–727. doi: 10.1007/BF00342312
  • Meili, M., Iverfeldt, Å., & Håkanson, L. (1991). Mercury in the surface water of Swedish forest lakes – Concentrations, speciation and controlling factors. Water Air & Soil Pollution, 56(1), 439–453. doi: 10.1007/BF00342290
  • Melamed, R., Trigueiro, F. E., & Villas Bôas, R. C. (2000). The effect of humic acid on mercury solubility and complexation. Applied Organometallic Chemistry, 14(9), 473–476. doi: 10.1002/1099-0739(200009)14:9 < 473::AID-AOC25 > 3.0.CO;2-W
  • Miller, C. L., Watson, D. B., Lester, B. P., Howe, J. Y., Phillips, D. H., He, F., … Pierce, E. M. (2015). Formation of soluble mercury oxide coatings: Transformation of elemental mercury in soils. Environmental Science & Technology, 49, 112111–120105. doi: 10.1021/acs.est.5b00263
  • Miller, W. J., Callahan, J. E., & Craig, J. R. (2002). Mercury interactions in a simulated gold placer. Applied Geochemistry, 17, 21–28. doi: 10.1016/S0883-2927(01)00094-4
  • Miranda, M. R., Coelho-Souza, S. A., Guimarães, J. R. D., Correia, R. R., & Oliveira, D. (2007). Mercury in aquatic systems: Environmental factors affecting mercury methylation. Oecologia Australis, 11, 240–251. (in Portuguese)
  • Miserendino, R. A., Guimarães, J. R. D., Schudel, G., Ghosh, S., Godoy, J. M., Silbergeld, E. K., … Bergquist, B. A. (2018). Mercury pollution in Amapá, Brazil: Mercury amalgamation in artisanal and small-scale gold mining or land-cover and land-use changes? ACS Earth and Space Chemistry, 2(5), 441–450. doi: 10.1021/acsearthspacechem.7b00089
  • Montanher, O. C., Novo, E. M., Barbosa, C. C., Rennó, C. D., & Silva, T. S. (2014). Empirical models for estimating the suspended sediment concentration in Amazonian white water rivers using Landsat 5/TM. International Journal of Applied Earth Observation and Geoinformation, 29, 67–77. doi: 10.1016/j.jag.2014.01.001
  • Moraes Pinto, L. D. C., Dórea, J. G., Bernardi, J. V. E., & Gomes, L. F. (2019). Mapping the Evolution of Mercury (Hg) Research in the Amazon (1991–2017): A Scientometric Analysis. International Journal of Environmental Research and Public Health, 16(7), 1111. doi: 10.3390/ijerph16071111
  • Moreno-Brush, M., Rydberg, J., Gamboa, N., Storch, I., & Biester, H. (2016). Is mercury from small-scale gold mining prevalent in the southeastern Peruvian Amazon? Environmental Pollution, 218, 150–159. doi: 10.1016/j.envpol.2016.08.038
  • Muir, D. C. G., Wang, X., Yang, F., Nguyen, N., Jackson, T. A., Evans, M. S., … Dastoor, A. (2009). Spatial trends and historical deposition of mercury in eastern and northern Canada inferred from lake sediment cores. Environmental Science & Technology, 43(13), 4802–4809. doi: 10.1021/es8035412
  • Muntean, M., Janssens-Maenhout, G., Song, S., Selin, N. E., Olivier, J. G., Guizzardi, D., … Dentener, F. (2014). Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions. Science of the Total Environment, 494, 337–350. doi: 10.1016/j.scitotenv.2014.06.014
  • Nagase, H., Ose, Y., Sato, T., & Ishikawa, T. (1982). Methylation of mercury by humic substances in an aquatic environment. Science of the Total Environment, 25(2), 133–142. doi: 10.1016/0048-9697(82)90082-1
  • Nater, E. A., & Grigal, D. F. (1992). Regional trends in mercury distribution across the Great Lakes states, north central USA. Nature, 358(6382), 139–141. doi: 10.1038/358139a0
  • Odumo, B. O., Carbonell, G., Angeyo, H. K., Patel, J. P., Torrijos, M., & Rodríguez Martín, J. A. (2014). Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya. Environmental Science and Pollution Research, 21(21), 12426–12435. doi: 10.1007/s11356-014-3190-3
  • Olivero, J., & Solano, B. (1998). Mercury in environmental samples from a waterbody contaminated by gold mining in Colombia, South America. Science of the Total Environment, 217(1–2), 83–89. doi: 10.1016/S0048-9697(98)00175-2
  • Olson, B. H., & Cooper, R. C. (1976). Comparison of aerobic and anaerobic methylation of mercuric chloride by San Francisco Bay sediments. Water Research, 10(2), 113–116. doi: 10.1016/0043-1354(76)90108-1
  • Ouboter, P. E., Landburg, G. A., Quik, J. H. M., Mol, J. H. A., & van der Lugt, F. (2012). Mercury levels in pristine and gold mining impacted aquatic ecosystems of Suriname, South America. Ambio, 41(8), 873–882. doi: 10.1007/s13280-012-0299-9
  • Park, E., & Latrubesse, E. M. (2015). Surface water types and sediment distribution patterns at the confluence of mega rivers: The Solimões-Amazon and Negro Rivers junction. Water Resources Research, 51(8), 6197–6213. doi: 10.1002/2014WR016757.
  • Pataranawat, P., Parkpian, P., Polprasert, C., Delaune, R. D., & Jugsujinda, A. (2007). Mercury emission and distribution: Potential environmental risks at a small-scale gold mining operation, Phichit Province, Thailand. Journal of Environmental Science and Health, Part A. Toxic/Hazardous Substances and Environmental Engineering, 42(8), 1081–1093. doi: 10.1080/10934520701418573
  • Pfeiffer, W. C., & Lacerda, L. D. (1988). Mercury inputs into the Amazon Region, Brazil. Environmental Technology Letters, 9(4), 325–330. doi: 10.1080/09593338809384573
  • Pfeiffer, W. C., Lacerda, L. D., Malm, O., Souza, C. M., da Silveira, E. G., & Bastos, W. R. (1989). Mercury concentrations in inland waters of gold-mining areas in Rondônia, Brazil. Science of the Total Environment, 87–88, 233–240. doi: 10.1016/0048-9697(89)90238-6
  • Pfeiffer, W. C., Lacerda, L. D., Salomons, W., & Malm, O. (1993). Environmental fate of mercury from gold mining in the Brazilian Amazon. Environmental Reviews, 1(1), 26–37. doi: 10.1139/a93-004
  • Pinedo-Hernández, J., Marrugo-Negrete, J., & Díez, S. (2015). Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. Chemosphere, 119, 1289–1295. doi: 10.1016/j.chemosphere.2014.09.044
  • Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., … Telmer, K. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural souces. Atmospheric Chemistry and Physics, 10(13), 5951–5964. doi: 10.5194/acp-10-5951-2010
  • Rajaee, M., Obiri, S., Green, A., Long, R., Cobbina, S. J., Nartey, V., … Basu, N. (2015). Integrated assessment of artisanal and small-scale gold mining in Ghana — Part 2: Natural Sciences Review. International Journal of Environmental Research and Public Health, 12(8), 8971–9011. doi: 10.3390/ijerph120808971
  • Ramlal, P. S., Bugenyi, F. W. B., Kling, G. W., Nriagu, J. O., Rudd, J. W. M., & Campbell, L. M. (2003). Mercury concentrations in water, sediment, and biota from Lake Victoria, East Africa. Journal of Great Lakes Research, 29, 283–291. doi: 10.1016/S0380-1330(03)70555-3
  • Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter – A review. Chemosphere, 55(3), 319–331. doi: 10.1016/j.chemosphere.2003.11.011
  • Richard, S., Arnoux, A., Cerdan, P., Reynouard, C., & Horeau, V. (2000). Mercury levels of soils, sediments and fish in French Guiana, South America. Water, Air, and Soil Pollution, 124(3/4), 221–244. doi: 10.1023/A:1005251016314
  • Riscassi, A. L., Hokanson, K. J., & Scanlon, T. M. (2011). Streamwater Particulate Mercury and Suspended Sediment Dynamics in a Forested Headwater Catchment. Water, Air, & Soil Pollution, 220(1-4), 23–36. doi: 10.1007/s11270-010-0731-3.
  • Rolfhus, K. R., & Fitzgerald, W. F. (2001). The evasion and spatial/temporal distribution of mercury species in Long Island Sound, CT-NY. Geochimica et Cosmochimica Acta, 65(3), 407–418. doi: 10.1016/S0016-7037(00)00519-6
  • Roulet, M., Guimarães, J. R., & Lucotte, M. (2001). Methylmercury production and accumulation in sediments and soils of an Amazonian floodplain–effect of seasonal inundation. Water, Air, and Soil Pollution, 128(1/2), 41–60. doi: 10.1023/A:1010379103335
  • Roulet, M., & Lucotte, M. (1995). Geochemistry of mercury in pristine and flooded ferralitic soils of a tropical rain forest in French Guiana, South America. Water, Air, & Soil Pollution, 80(1–4), 1079–1088. doi: 10.1007/BF01189768
  • Roulet, M., Lucotte, M., Canuel, R., Farella, N., Courcelles, M., Guimarães, J. R. D., … Amorim, M. (2000). Increase in mercury contamination recorded in lacustrine sediments following deforestation in the central Amazon. Chemical Geology, 165(3–4), 243–266. doi: 10.1016/S0009-2541(99)00172-2
  • Roulet, M., Lucotte, M., Canuel, R., Farella, N., De Freitos Goch, Y. G., Pacheco Peleja, J. R., … Amorim, M. (2001). Spatio-temporal geochemistry of mercury in waters of the Tapajós and Amazon rivers, Brazil. Limnology and Oceanography, 46(5), 1141–1157. doi: 10.4319/lo.2001.46.5.1141
  • Roulet, M., Lucotte, M., Canuel, R., Rheault, I., Tran, S., De Freitos Gog, Y. G., … Amorim, M. (1998). Distribution and partition of total mercury in waters of the Tapajós River Basin, Brazilian Amazon. Science of the Total Environment, 213(1–3), 203–211. doi: 10.1016/S0048-9697(98)00093-X
  • Roulet, M., Lucotte, M., Farella, N., Serique, G., Coelho, H., Sousa Passos, C. J., … Amorim, M. (1999). Effects of recent human colonization on the presence of Hg in Amazonian ecosystems. Water, Air, and Soil Pollution, 112(3/4), 297–313. doi: 10.1023/A:1005073432015
  • Roulet, M., Lucotte, M., Saint-Aubin, A., Tran, S., Rhéault, I., Farella, N., … Guimarães, J. R. D. (1998). The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chão formation of the lower Tapajós River Valley, Pará state, Brazil. Science of the Total Environment, 223(1), 1–24. doi: 10.1016/S0048-9697(98)00265-4
  • Rúa, A., Liebezeit, G., & Palacio-Baena, J. (2014). Mercury colonial footprint in Darién Gulf sediments, Colombia. Environmental Earth Sciences, 71(4), 1781–1789. doi: 10.1007/s12665-013-2583-9
  • Sanei, H., & Goodarzi, F. (2006). Relationship between organic matter and mercury in recent lake sediment: The physical–geochemical aspects. Applied Geochemistry, 21(11), 1900–1912. doi: 10.1016/j.apgeochem.2006.08.015
  • Santos-Francés, F., García-Sánchez, A., Alonso-Rojo, P., Contreras, F., & Adams, M. (2011). Distribution and mobility of mercury in soils of a gold mining region, Cuyuni river basin, Venezuela. Journal of Environmental Management, 92(4), 1268–1276. doi: 10.1016/j.jenvman.2010.12.003
  • Schudel, G., Miserendino, R. A., Veiga, M. M., Velasquez-López, P. C., Lees, P. S. J., Winland-Gaetz, S., … Bergquist, B. A. (2018). An investigation of mercury sources in the Puyango-Tumbes River: Using stable Hg isotopes to characterize transboundary Hg pollution. Chemosphere, 202, 777–787. doi: 10.1016/j.chemosphere.2018.03.081
  • Schuster, P. F., Shanley, J. B., Marvin-Dipasquale, M., Reddy, M. M., Aiken, G. R., Roth, D. A., …Dewild, J. F. (2008). Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed. Water, Air, and Soil Pollution, 187(1-4), 89–108. doi: 10.1007/s11270-007-9500-3
  • Silva-Forsberg, M. C., Forsberg, B. R., & Zeidemann, V. K. (1999). Mercury contamination in humans linked to river chemistry in the Amazon basin. Ambio, 28, 519–521.
  • Simpson, S. L., Batley, G. E., Hamilton, I. L., & Spadaro, D. A. (2011). Guidelines for copper in sediments with varying properties. Chemosphere, 85(9), 1487–1495. doi: 10.1016/j.chemosphere.2011.08.044
  • Singh, A. K., Hasnain, S. I., & Banerjee, D. K. (1999). Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River – A tributary of the lower Ganga, India. Environmental Geology, 39(1), 90–98. doi: 10.1007/s002540050439
  • Sioli, H. (Ed.). (1984). The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin. Dordrecht, the Netherlands: Dr W. Junk Publishers.
  • Sousa, R. N., & Veiga, M. M. (2009). Using performance indicators to evaluate an environmental education program in artisanal gold mining communities in the Brazilian Amazon. Ambio, 38(1), 40–46. doi: 10.1579/0044-7447-38.1.40
  • Stallard, R. F. (1988). Weathering and erosion in the humid tropics. In A. Lerman, & M. Meybeck (Eds.), Physical and chemical weathering in geochemical cycles (pp. 225–246). Dordrecht, the Netherlands: Springer.
  • Syvitski, J. P. M., Cohen, S., Kettner, A. J., & Brakenridge, G. R. (2014). How important and different are tropical rivers? – An overview. Geomorphology, 227, 5–17. doi: 10.1016/j.geomorph.2014.02.029
  • Taylor, H., Appleton, J. D., Lister, R., Smith, B., Chitamweba, D., Mkumbo, O., … Beinhoff, C. (2005). Environmental assessment of mercury contamination from the Rwamagasa artisanal gold mining centre, Geita District, Tanzania. Science of the Total Environment, 343(1–3), 111–133. doi: 10.1016/j.scitotenv.2004.09.042
  • Telmer, K., Costa, M., Angélica, R. S., Araujo, E. S., & Maurice, Y. (2006). The source and fate of sediment and mercury in the Tapajós River, Pará, Brazilian Amazon: Ground- and space-based evidence. Journal of Environmental Management, 81(2), 101–113. doi: 10.1016/j.jenvman.2005.09.027
  • Telmer, K. H., & Veiga, M. M. (2009). World emissions of mercury from artisanal and small-scale gold mining. In R. Mason, & N. Pirrone (Eds.), Mercury fate and transport in the global atmosphere: Emissions, measurements and models (pp. 131–172). Boston, MA: Springer-Verlag.
  • Thieme, M., Lehner, B., Abell, R., Hamilton, S. K., Kellndorfer, J., Powell, G., & Riveros, J. C. (2007). Freshwater conservation planning in data-poor areas: An example from a remote Amazonian basin (Madre de Dios River, Peru and Bolivia). Biological Conservation, 135, 500–517. doi: 10.1016/j.biocon.2006.10.054
  • Tomiyasu, T., Kodamatani, H., Hamada, Y. K., Matsuyama, A., Imura, R., Taniguchi, Y., … Rahajoe, J. S. (2017). Distribution of total mercury and methylmercury around the small-scale gold mining area along the Cikaniki River, Bogor, Indonesia. Environmental Science and Pollution Research, 24(3), 2643–2652. doi: 10.1007/s11356-016-7998-x
  • Tomiyasu, T., Kono, Y., Kodamatani, H., Hidayati, N., & Rahajoe, J. S. (2013). The distribution of mercury around the small-scale gold mining area along the Cikaniki river, Bogor, Indonesia. Environmental Research, 125, 12–19. doi: 10.1016/j.envres.2013.03.015
  • Ujević, I., Odžak, N., & Barić, A. (2000). Trace metal accumulation in different grain size fractions of the sediments from a semi- enclosed bay heavily contaminated by urban and industrial wastewaters. Water Research, 34, 3055–3061. doi: 10.1016/S0043-1354(99)00376-0
  • Ullrich, S. M., Tanton, T. W., & Abdrashitova, S. A. (2001). Mercury in the aquatic environment: A review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31(3), 241–293. doi: 10.1080/20016491089226
  • Umar, M., Rhoads, B. L., & Greenberg, J. A. (2018). Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences. Journal of Hydrology, 556, 325–338. doi: 10.1016/j.jhydrol.2017.11.026
  • UNEP. (2013). Global mercury assessment 2013: Sources, emissions, releases, and environmental transport. Geneva, Switzerland: UNEP Chemical Branch.
  • UNEP. (2014). UNEP 2013 annual report. UNEP Chemical Branch, Geneva, Switzerland.
  • van Straaten, P. (2000). Mercury contamination associated with small-scale gold mining in Tanzania and Zimbabwe. Science of the Total Environment, 259(1–3), 105–113. doi: 10.1016/S0048-9697(00)00553-2
  • Veiga, M. M. (1997). Introducing new technologies for abatement of global mercury pollution in Latin America, United Nations Industrial Development Organization (UNIDO). Rio de Janeiro, Brazil: University of British Columbia (UBC), Center of Mineral Technology (CETEM).
  • Veiga, M. M., & Hinton, J. J. (2002). Abandoned artisanal gold mines in the Brazilian Amazon: A legacy of mercury pollution. Natural Resources Forum, 26(1), 15–26. doi: 10.1111/1477-8947.00003
  • Veiga, M. M., Meech, J. A., & Hypolito, R. (1995). Educational measures to address mercury pollution from gold-mining activities in the Amazon. Ambio, 24, 216–220.
  • Wasserman, J. C., Hacon, S., & Wasserman, M. A. (2003). Biogeochemistry of mercury in the Amazonian environment. Ambio, 32(5), 336–342. doi: 10.1579/0044-7447-32.5.336
  • Weber, J. H. (1993). Review of possible paths for abiotic methylation of mercury (II) in the aquatic environment. Chemosphere, 26(11), 2063–2077. doi: 10.1016/0045-6535(93)90032-Z
  • WHO. (2016). Environmental and occupational health hazards associated with artisanal and small-scale gold mining. Geneva, Switzerland. World Health Organization.
  • Wiederhold, J. G., Skyllberg, U., Drott, A., Jiskra, M., Jonsson, S., Björn, E., … Kretzschmar, R. (2015). Mercury isotope signatures in contaminated sediments as a tracer for local industrial pollution sources. Environmental Science & Technology, 49(1), 177–185. doi: 10.1021/es5044358
  • Wohl, E., Barros, A., Brunsell, N., Chappell, N. A., Coe, M., Giambelluca, T., … Ogden, F. (2012). The hydrology of the humid tropics. Nature Climate Change, 2(9), 655–662. doi: 10.1038/nclimate1556
  • Yu, K. C., Tsai, L. J., Chen, S. H., & Ho, S. T. (2001). Correlation analyses on binding behavior of heavy metals with sediment matrices. Water Research, 35(10), 2417–2428. doi: 10.1016/S0043-1354(00)00518-2
  • Zhang, X., Stavn, R. H., Falster, A. U., Gray, D., & Gould, R. W. (2014). New insight into particulate mineral and organic matter in coastal ocean waters through optical inversion. Estuarine, Coastal and Shelf Science, 149, 1–12. doi: 10.1016/j.ecss.2014.06.003
  • Zhang, X., Stavn, R. H., Falster, A. U., Rick, J. J., Gray, D., & Gould Jr, R. W. (2017). Size distributions of coastal ocean suspended particulate inorganic matter: Amorphous silica and clay minerals and their dynamics. Estuarine, Coastal and Shelf Science, 189, 243–251. doi: 10.1016/j.ecss.2017.03.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.