6,102
Views
156
CrossRef citations to date
0
Altmetric
Original Articles

Production technologies, current role, and future prospects of biofuels feedstocks: A state-of-the-art review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 384-436 | Published online: 25 Jun 2019

References

  • Achten, W. M. J., Verchot, L., Franken, Y. J., Mathijs, E., Singh, V. P., Aerts, R., & Muys, B. (2008). Jatropha bio-diesel production and use. Biomass and Bioenergy, 32(12), 1063–1084. doi:10.1016/j.biombioe.2008.03.003
  • Adeniyi, O. M., Azimov, U., & Burluka, A. (2018). Algae biofuel: Current status and future applications. Renewable and Sustainable Energy Reviews, 90, 316–335. doi:10.1016/j.rser.2018.03.067
  • Agarwal, A. K. (2007). Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science, 33(3), 233–271. doi:10.1016/j.pecs.2006.08.003
  • Agarwal, A. K., Agarwal, R. A., Gupta, T., & Gurjar, B. R. (Eds.). (2017). Biofuels. Singapore. Springer. doi:10.1007/978-981-10-3791-7
  • Al-Mashhadani, H., & Fernando, S. (2017). Properties, performance, and applications of biofuel blends: A review. AIMS Energy, 5(4), 735–767. doi:10.3934/energy.2017.4.735
  • Albarelli, J. Q., Santos, D. T., Ensinas, A. V., Marechal, F., Cocero, M. J., & Meireles, M. A. A. (2018). Product diversification in the sugarcane biorefinery through algae growth and supercritical CO2 extraction: Thermal and economic analysis. Renewable Energy, 129, 776–785. doi:10.1016/j.renene.2017.05.022
  • Alonso-Gutierrez, J., Kim, E.-M., Batth, T. S., Cho, N., Hu, Q., Chan, L. J. G., … Lee, T. S. (2015). Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering. Metabolic Engineering, 28, 123–133. doi:10.1016/j.ymben.2014.11.011
  • Amorim, H. V., Lopes, M. L., de Castro Oliveira, J. V., Buckeridge, M. S., & Goldman, G. H. (2011). Scientific challenges of bioethanol production in Brazil. Applied Microbiology and Biotechnology, 91(5), 1267–1275. doi:10.1007/s00253-011-3437-6
  • Appels, L., Lauwers, J., Degrève, J., Helsen, L., Lievens, B., Willems, K., … Dewil, R. (2011). Anaerobic digestion in global bio-energy production: Potential and research challenges. Renewable and Sustainable Energy Reviews, 15(9), 4295–4301. doi:10.1016/j.rser.2011.07.121
  • Arens, M., Worrell, E., Eichhammer, W., Hasanbeigi, A., & Zhang, Q. (2017). Pathways to a low-carbon iron and steel industry in the medium-term – The case of Germany. Journal of Cleaner Production, 163, 84–98. doi:10.1016/j.jclepro.2015.12.097
  • Argyros, D. A., Nicky, C., Barrett, T. F., & Warner, A. K. (2017). US 9598689B2. U.S. Patent. doi:10.1038/incomms1464
  • Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F., & Lens, P. N. L. (2014). Pretreatment methods to enhance anaerobic digestion of organic solid waste. Applied Energy, 123, 143–156. doi:10.1016/j.apenergy.2014.02.035
  • Asad, M., Menana, Z., Ziegler-Devin, I., Bert, V., Chalot, M., Herzig, R., … Brosse, N. (2017). Pretreatment of trace element-enriched biomasses grown on phytomanaged soils for bioethanol production. Industrial Crops and Products, 107, 63–72. doi:10.1016/j.indcrop.2017.05.028
  • Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H. H., & Mekhilef, S. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 16(4), 2070–2093. doi:10.1016/j.rser.2012.01.003
  • Atabani, A. E., Silitonga, A. S., Ong, H. C., Mahlia, T. M. I., Masjuki, H. H., Badruddin, I. A., & Fayaz, H. (2013). Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable and Sustainable Energy Reviews, 18, 211–245. doi:10.1016/j.rser.2012.10.013
  • Atadashi, I. M., Aroua, M. K., & Aziz, A. A. (2010). High quality biodiesel and its diesel engine application: A review. Renewable and Sustainable Energy Reviews, 14(7), 1999–2008. doi:10.1016/j.rser.2010.03.020
  • Augustus, G. D. P., Jayabalan, M., & Seiler, G. (2002). Evaluation and bioinduction of energy components of Jatropha curcas. Biomass and Bioenergy, 23(3), 161–164. doi:10.1016/S0961-9534(02)00044-2
  • Azad, A. K., Rasul, M. G., Khan, M. M. K., Sharma, S. C., & Hazrat, M. A. (2015). Prospect of biofuels as an alternative transport fuel in Australia. Renewable and Sustainable Energy Reviews, 43, 331–351. doi:10.1016/j.rser.2014.11.047
  • Balat, M. (2008). Experimental study on pyrolysis of black alder wood. Energy Exploration and Exploitation, 26(4), 209–220. doi:10.1260/014459808787548714
  • Balat, M., & Balat, H. (2010). Progress in biodiesel processing. Applied Energy, 87(6), 1815–1835. doi:10.1016/j.apenergy.2010.01.012
  • Balat, M., Balat, H., & Öz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34(5), 551–573. doi:10.1016/j.pecs.2007.11.001
  • Balat, M., & Balat, M. (2009). Political, economic and environmental impacts of biomass-based hydrogen. International Journal of Hydrogen Energy, 34(9), 3589–3603. doi:10.1016/j.ijhydene.2009.02.067
  • Bankar, S. B., Survase, S. A., Ojamo, H., & Granström, T. (2013). Biobutanol: The outlook of an academic and industrialist. RSC Advances, 3(47), 24734. doi:10.1039/c3ra43011a
  • Bardiya, N., & Gaur, A. (1997). Effects of carbon and nitrogen ratio on rice straw biomethanation. Journal of Rural Energy, 4(1–4), 1–16.
  • Baskar, G., & Aiswarya, R. (2016). Trends in catalytic production of biodiesel from various feedstocks. Renewable and Sustainable Energy Reviews, 57, 496–504. doi:10.1016/j.rser.2015.12.101
  • Bharathiraja, B., Jayamuthunagai, J., Sudharsanaa, T., Bharghavi, A., Praveenkumar, R., Chakravarthy, M., & Yuvaraj, D. (2017). Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques. Renewable and Sustainable Energy Reviews, 68, 788–807. doi:10.1016/j.rser.2016.10.017
  • Bharathiraja, B., Sudharsanaa, T., Bharghavi, A., Jayamuthunagai, J., & Praveenkumar, R. (2016). Biohydrogen and biogas – An overview on feedstocks and enhancement process. Fuel, 185, 810–828. doi:10.1016/j.fuel.2016.08.030
  • Bhatia, S. K., Kim, S. H., Yoon, J. J., & Yang, Y. H. (2017). Current status and strategies for second generation biofuel production using microbial systems. Energy Conversion and Management, 148, 1142–1156. doi:10.1016/j.enconman.2017.06.073
  • Bhuiya, M. M. K., Rasul, M. G., Khan, M. M. K., Ashwath, N., & Azad, A. K. (2016). Prospects of 2nd generation biodiesel as a sustainable fuel – Part: 1 Selection of feedstocks, oil extraction techniques and conversion technologies. Renewable and Sustainable Energy Reviews, 55, 1109–1128. doi:10.1016/j.rser.2015.04.163
  • Binod, P., Sindhu, R., Singhania, R. R., Vikram, S., Devi, L., Nagalakshmi, S., … Pandey, A. (2010). Bioethanol production from rice straw: An overview. Bioresource Technology, 101(13), 4767–4774. doi:10.1016/j.biortech.2009.10.079
  • Bomb, C., McCormick, K., Deurwaarder, E., & Kåberger, T. (2007). Biofuels for transport in Europe: Lessons from Germany and the UK. Energy Policy, 35(4), 2256–2267. doi:10.1016/j.enpol.2006.07.008
  • Boocock, D. G. B. (2004). US 6,712,867 B1. U.S. Patent.
  • Boocock, D. G. B., Konar, S. K., Mao, V., Lee, C., & Buligan, S. (1998). Fast formation of high-purity methyl esters from vegetable oils. Journal of the American Oil Chemists’ Society, 75(9), 1167–1172. doi:10.1007/s11746-998-0130-8
  • Borges, M. E., & Díaz, L. (2012). Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews, 16(5), 2839–2849. doi:10.1016/j.rser.2012.01.071
  • Borowitzka, M. A., & Moheimani, N. R. (2013). Open pond culture systems. In M. A. Borowitzka, & N. R. Moheimani (Eds.), Algae for biofuels and energy (pp. 133–152). Dordrecht, Netherlands: Springer. doi:10.1007/978-94-007-5479-9_8
  • Borugadda, V. B., & Goud, V. V. (2012). Biodiesel production from renewable feedstocks: Status and opportunities. Renewable and Sustainable Energy Reviews, 16(7), 4763–4784. doi:10.1016/j.rser.2012.04.010
  • Bozbas, K. (2008). Biodiesel as an alternative motor fuel: Production and policies in the European Union. Renewable and Sustainable Energy Reviews, 12(2), 542–552. doi:10.1016/j.rser.2005.06.001
  • BP. (2016). BP Statistical Review of World Energy 65th Edition, London.
  • Brassat, A., Thewes, M., Müther, M., & Pischinger, S. (2011). Tallor-made fuels from biomass for gasoline combustion systems. MTZ Worldwide, 72(12), 56–63. doi:10.1365/s38313-011-0124-z
  • Brennan, L., & Owende, P. (2010). Biofuels from microalgae – A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577. doi:10.1016/j.rser.2009.10.009
  • Budzianowski, W. M., Wylock, C. E., & Marciniak, P. A. (2017). Power requirements of biogas upgrading by water scrubbing and biomethane compression: Comparative analysis of various plant configurations. Energy Conversion and Management, 141, 2–19. doi:10.1016/j.enconman.2016.03.018
  • Butler, R. A., & Laurance, W. F. (2008). New strategies for conserving tropical forests. Trends in Ecology and Evolution, 23(9), 469–472. doi:10.1016/j.tree.2008.05.006
  • Callegari, A., Hlavinek, P., & Capodaglio, A. G. (2018). Production of energy (biodiesel) and recovery of materials (biochar) from pyrolysis of urban waste sludge. Revista Ambiente & Água, 13(2), e2128. doi:10.4136/ambi-agua.2128.
  • Callegari, A., & Capodaglio, A. G. (2018). Properties and beneficial uses of (bio)chars, with special attention to products from sewage sludge pyrolysis. Resources, 7(1), 20. doi:10.3390/resources7010020
  • Callegari, A., Cecconet, D., Molognoni, D., & Capodaglio, A. G. (2018). Sustainable processing of dairy wastewater: Long-term pilot application of a bio-electrochemical system. Journal of Cleaner Production, 189, 563–569. doi:10.1016/j.jclepro.2018.04.129
  • Canakci, M., & Van Gerpen, J. (1999). Biodiesel production via acid catalysis. American Society of Agricultural Engineers, 42(1984), 1203–1210.
  • Canesin, E. A., de Oliveira, C. C., Matsushita, M., Dias, L. F., Pedrão, M. R., & de Souza, N. E. (2014). Characterization of residual oils for biodiesel production. Electronic Journal of Biotechnology, 17(1), 39–45. doi:10.1016/j.ejbt.2013.12.007
  • Capodaglio, A. G., & Callegari, A. (2018). Feedstock and process influence on biodiesel produced from waste sewage sludge. Journal of Environmental Management, 216(2018), 176–182. doi:10.1016/j.jenvman.2017.03.089
  • Capodaglio, A. G., Callegari, A., Cecconet, D., & Molognoni, D. (2017). Sustainability of decentralized wastewater treatment technologies. Water Practice and Technology, 12(2), 463–477. doi:10.2166/wpt.2017.055
  • Capodaglio, A. G., Callegari, A., & Dondi, D. (2016). Microwave-induced pyrolysis for production of sustainable biodiesel from waste sludges. Waste and Biomass Valorization, 7(4), 703–709. doi:10.1007/s12649-016-9496-2
  • Capodaglio, A. G., Callegari, A., & Lopez, M. V. (2016). European framework for the diffusion of biogas uses: Emerging technologies, acceptance, incentive strategies, and institutional-regulatory support. Sustainability, 8, 298. doi:10.3390/su8040298
  • Capodaglio, A. G., Ranieri, E., & Torretta, V. (2016). Process enhancement for maximization of methane production in codigestion biogas plants. Management of Environmental Quality: An International Journal, 27(3), 289–298. doi:10.1108/MEQ-04-2015-0059
  • Cecconet, D., Callegari, A., & Capodaglio, A. G. (2018). Bioelectrochemical systems for removal of selected metals and perchlorate from groundwater: A review. Energies, 11(10), 2643. doi:10.3390/en11102643
  • Cecconet, D., Zou, S., Capodaglio, A. G., & He, Z. (2018). Evaluation of energy consumption of treating nitrate-contaminated groundwater by bioelectrochemical systems. Science of the Total Environment, 636, 881–890. doi:10.1016/j.scitotenv.2018.04.336
  • Chen, C.-Y., Zhao, X.-Q., Yen, H.-W., Ho, S.-H., Cheng, C.-L., Lee, D.-J., … Chang, J.-S. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1–10. doi:10.1016/j.bej.2013.03.006
  • Cheng, H.-H., Whang, L.-M., Chan, K.-C., Chung, M.-C., Wu, S.-H., Liu, C.-P., … Lee, W.-J. (2015). Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresource Technology, 184, 379–385. doi:10.1016/j.biortech.2014.11.017
  • Cheng, J. J., & Timilsina, G. R. (2011). Status and barriers of advanced biofuel technologies: A review. Renewable Energy, 36(12), 3541–3549. doi:10.1016/j.renene.2011.04.031
  • Cheng, K. Y., & Kaksonen, A. H. (2017). Integrating microbial electrochemical technologies with anaerobic digestion for waste treatment. In J. W.-C. Wong, R. D. Tyagi, & A. Pandey (Eds.), Current developments in biotechnology and bioengineering (pp. 191–221). Amsterdam, Netherlands: Elsevier. doi:10.1016/B978-0-444-63664-5.00009-5
  • Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., … Chang, J.-S. (2017). Microalgae biorefinery: High value products perspectives. Bioresource Technology, 229, 53–62. doi:10.1016/j.biortech.2017.01.006
  • Chi, N. T. L., Duc, P. A., Mathimani, T., & Pugazhendhi, A. (2019). Evaluating the potential of green alga Chlorella sp. for high biomass and lipid production in biodiesel viewpoint. Biocatalysis and Agricultural Biotechnology, 17, 184–188. doi:10.1016/j.bcab.2018.11.011
  • Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26(3), 126–131. doi:10.1016/j.tibtech.2007.12.002
  • Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294. doi:10.1038/nature11475
  • Chubukov, V., Mukhopadhyay, A., Petzold, C. J., Keasling, J. D., & Martín, H. G. (2016). Synthetic and systems biology for microbial production of commodity chemicals. Npj Systems Biology and Applications, 2(1), 16009. doi:10.1038/npjsba.2016.9
  • Claros Garcia, J. C., & Von Sperling, E. (2017). Greenhouse gas emissions from sugar cane ethanol: Estimate considering current different production scenarios in Minas Gerais, Brazil. Renewable and Sustainable Energy Reviews, 72, 1033–1049. doi:10.1016/j.rser.2017.01.046
  • Colling Klein, B., Bonomi, A., & Maciel Filho, R. (2018). Integration of microalgae production with industrial biofuel facilities: A critical review. Renewable and Sustainable Energy Reviews, 82, 1376–1392. doi:10.1016/j.rser.2017.04.063
  • Coronado, C. R., de Carvalho, J. A., & Silveira, J. L. (2009). Biodiesel CO2 emissions: A comparison with the main fuels in the Brazilian market. Fuel Processing Technology, 90(2), 204–211. doi:10.1016/j.fuproc.2008.09.006
  • Correa, D. F., Beyer, H. L., Possingham, H. P., Thomas-Hall, S. R., & Schenk, P. M. (2017). Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels. Renewable and Sustainable Energy Reviews, 74, 1131–1146. doi:10.1016/j.rser.2017.02.068
  • Cremiato, R., Mastellone, M. L., Tagliaferri, C., Zaccariello, L., & Lettieri, P. (2018). Environmental impact of municipal solid waste management using Life Cycle Assessment: The effect of anaerobic digestion, materials recovery and secondary fuels production. Renewable Energy, 124, 180–188. doi:10.1016/j.renene.2017.06.033
  • Cui, L. B., Fan, Y., Zhu, L., & Bi, Q. H. (2014). How will the emissions trading scheme save cost for achieving China’s 2020 carbon intensity reduction target? Applied Energy, 136, 1043–1052. doi:10.1016/j.apenergy.2014.05.021
  • Dalvand, K., Rubin, J., Gunukula, S., Clayton Wheeler, M., & Hunt, G. (2018). Economics of biofuels: Market potential of furfural and its derivatives. Biomass and Bioenergy, 115, 56–63. doi:10.1016/j.biombioe.2018.04.005
  • De Melo, M. M. R., Silvestre, A. J. D., & Silva, C. M. (2014). Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. Journal of Supercritical Fluids, 92, 115–176. doi:10.1016/j.supflu.2014.04.007
  • de Souza, S. P., Pacca, S., de Ávila, M. T., & Borges, J. L. B. (2010). Greenhouse gas emissions and energy balance of palm oil biofuel. Renewable Energy, 35(11), 2552–2561. doi:10.1016/j.renene.2010.03.028
  • De Vrieze, J., Arends, J. B. A., Verbeeck, K., Gildemyn, S., & Rabaey, K. (2018). Interfacing anaerobic digestion with (bio)electrochemical systems: Potentials and challenges. Water Research, 146, 244–255. doi:10.1016/j.watres.2018.08.045
  • Demirbaş, A. (2003). Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: A survey. Energy Conversion and Management, 44(13), 2093–2109. doi:10.1016/S0196-8904(02)00234-0
  • Demirbaş, A. (2007). Producing and using bioethanol as an automotive fuel. Energy Sources, Part B: Economics, Planning, and Policy, 2(4), 391–401. doi:10.1080/15567240600705466
  • Demirbaş, A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50(1), 14–34. doi:10.1016/j.enconman.2008.09.001
  • Dibenedetto, A., & Franck, D. (2015). Catalysis, growth, and society. In M. Aresta, A. Dibenedetto, & F. Dumeignil (Eds.), Biorefineries (pp. 5–12). Berlin, München, Boston: DE GRUYTER. doi:10.1515/9783110331585
  • Dincer, I. (2000). Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157–175. doi:10.1016/S1364-0321(99)00011-8
  • Ding, Y. L., Xu, C. G., Yu, Y. S., & Li, X-S. (2017). Methane recovery from natural gas hydrate with simulated IGCC syngas. Energy, 120, 192–198. doi:10.1016/j.energy.2016.12.129
  • Dong, T., Knoshaug, E. P., Pienkos, P. T., & Laurens, L. M. L. (2016). Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review. Applied Energy, 177, 879–895. doi:10.1016/j.apenergy.2016.06.002
  • Dorado, M. P., Cruz, F., Palomar, J. M., & López, F. J. (2006). An approach to the economics of two vegetable oil-based biofuels in Spain. Renewable Energy, 31(8), 1231–1237. doi:10.1016/j.renene.2005.06.010
  • Dragone, G., Fernandes, B., Vicente, A. A., & Teixeira, J. A. (2010). Third generation biofuels from microalgae. In A. Mendez-Vilas (Ed.), Current research, technology and education topics in applied microbiology and microbial biotechnology (Vol. 1, 1355–1366). Badajoz, Spain: Formatex Research Center.
  • Dry, M. E. (2002). The Fischer-Tropsch process: 1950-2000. Catalysis Today, 71(3–4), 227–241. doi:10.1016/S0920-5861(01)00453-9
  • E.Wyman, C. (1996). Handbook on bioethanol: Product and utilization. Boca Raton, FL: CRC Press.
  • Efremenko, E. N., Nikolskaya, A. B., Lyagin, I. V., Senko, O. V., Makhlis, T. A., Stepanov, N. A., … Varfolomeev, S. D. (2012). Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresource Technology, 114, 342–348. doi:10.1016/j.biortech.2012.03.049
  • Ellis, J. T., Hengge, N. N., Sims, R. C., & Miller, C. D. (2012). Acetone, butanol, and ethanol production from wastewater algae. Bioresource Technology, 111, 491–495. doi:10.1016/j.biortech.2012.02.002
  • European Environmental Agency (EEA). (2007). Estimating the environmentally compatible bioenergy potential from agriculture. Copenhagen: European Environment Agency. doi:10.2800/13734
  • European Environmental Agency (EEA). (2016). Primary energy consumption by fuel (CSI 029/ENER 026). Copenhagen: EEA. Retrieved from http://www.eea.europa.eu/data-and-maps/indicators/primary-energy-consumption-by-fuel/primary-energy-consumption-by-fuel-7#toc-1
  • Fallde, M., & Eklund, M. (2015). Towards a sustainable socio-technical system of biogas for transport: The case of the city of Linköping in Sweden. Journal of Cleaner Production, 98(4), 17–28. doi:10.1016/j.jclepro.2014.05.089
  • Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. Science, 319(5867), 1235–1238. doi:10.1126/science.1152747
  • Fivga, A., Galileu Speranza, L., Musse Branco, C., Ouadi, M., & Hornung, A. (2019). A review on the current state of the art for the production of advanced liquid biofuels. AIMS Energy, 7(1), 46–76. doi:10.3934/energy.2019.1.46
  • Galbe, M., Sassner, P., Wingren, A., & Zacchi, G. (2007). Process engineering economics of bioethanol production. In L. Olsson (Ed.), Biofuels (pp. 303–327). Berlin, Heidelberg: Springer. doi:10.1007/10_2007_063
  • Ganigué, R., Puig, S., Batlle-Vilanova, P., Balaguer, M. D., & Colprim, J. (2015). Microbial electrosynthesis of butyrate from carbon dioxide. Chemical Communications, 51(15), 3235–3238. doi:10.1039/C4CC10121A
  • Garcia, D. J., & You, F. (2018). Addressing global environmental impacts including land use change in life cycle optimization: Studies on biofuels. Journal of Cleaner Production, 182, 313–330. doi:10.1016/j.jclepro.2018.02.012
  • García, V., Päkkilä, J., Ojamo, H., Muurinen, E., & Keiski, R. L. (2011). Challenges in biobutanol production: How to improve the efficiency? Renewable and Sustainable Energy Reviews, 15(2), 964–980. doi:10.1016/j.rser.2010.11.008
  • Gelfand, I., Sahajpal, R., Zhang, X., Izaurralde, R. C., Gross, K. L., & Robertson, G. P. (2013). Sustainable bioenergy production from marginal lands in the US Midwest. Nature, 493(7433), 514–517. doi:10.1038/nature11811
  • George, K. W., Chen, A., Jain, A., Batth, T. S., Baidoo, E. E. K., Wang, G., … Lee, T. S. (2014). Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production. Biotechnology and Bioengineering, 111(8), 1648–1658. doi:10.1002/bit.25226
  • Gerbens-Leenes, P. W. (2017). Bioenergy water footprints, comparing first, second and third generation feedstocks for bioenergy supply in 2040. European Water, 59, 373–380.
  • Gerbens-Leenes, P. W., & Hoekstra, A. Y. (2011). The water footprint of biofuel-based transport. Energy & Environmental Science, 4(8), 2658. doi:10.1039/c1ee01187a
  • Ghadge, S. V., & Raheman, H. (2005). Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass and Bioenergy, 28(6), 601–605. doi:10.1016/j.biombioe.2004.11.009
  • Gnansounou, E., Dauriat, A., & Wyman, C. E. (2005). Refining sweet sorghum to ethanol and sugar: Economic trade-offs in the context of North China. Bioresource Technology, 96(9), 985–1002. doi:10.1016/j.biortech.2004.09.015
  • Göransson, K., Söderlind, U., He, J., & Zhang, W. (2011). Review of syngas production via biomass DFBGs. Renewable and Sustainable Energy Reviews, 15(1), 482–492. doi:10.1016/j.rser.2010.09.032
  • Grahn, M., Azar, C., & Lindgren, K. (2009). The role of biofuels for transportation in CO2 emission reduction scenarios with global versus regional carbon caps. Biomass and Bioenergy, 33(3), 360–371. doi:10.1016/j.biombioe.2008.08.019
  • Gui, M. M., Lee, K. T., & Bhatia, S. (2008). Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy, 33(11), 1646–1653. doi:10.1016/j.energy.2008.06.002
  • Guo, M., Song, W., & Buhain, J. (2015). Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews, 42, 712–725. doi:10.1016/j.rser.2014.10.013
  • Gustavsson, L., Börjesson, P., Johansson, B., & Svenningsson, P. (1995). Reducing CO2 emissions by substituting biomass for fossil fuels. Energy, 20(11), 1097–1113. doi:10.1016/0360-5442(95)00065-O
  • Hansen, K. H., Angelidaki, I., & Ahring, B. K. (1998). Anaerobic digestion of swine manure: Inhibition by ammonia. Water Research, 32(1), 5–12. doi:10.1016/S0043-1354(97)00201-7
  • Hao, J. y., Han, W., Huang, S. d., Xue, B. y., & Deng, X. (2002). Microwave-assisted extraction of artemisinin from Artemisia annua L. Separation and Purification Technology, 28(3), 191–196. doi:10.1016/S1383-5866(02)00043-6
  • Hasheminejad, M., Tabatabaei, M., Mansourpanah, Y., Far, M. K., & Javani, A. (2011). Upstream and downstream strategies to economize biodiesel production. Bioresource, 102(2), 461–468. doi:10.1016/j.biortech.2010.09.094
  • Hill, J. (2009). Environmental costs and benefits of transportation biofuel production from food- and lignocellulose-based energy crops: A review. In E. Lichtfouse, M. Navarrete, P. Debaeke, S. Véronique, & C. Alberola (Eds.), Sustainable agriculture (pp. 125–139). Dordrecht, Netherlands: Springer. doi:10.1007/978-90-481-2666-8_10
  • Hirani, A. H., Javed, N., Asif, M., Basu, S. K., & Kumar, A. (2018). A review on first- and second-generation biofuel productions. In A. Kumar, S. Ogita, & Y.-Y. Yau (Eds.), Biofuels: Greenhouse gas mitigation and global warming: Next generation biofuels and role of biotechnology (pp. 141–154). New Delhi, India: Springer. doi:10.1007/978-81-322-3763-1_8
  • Ho, D. P., Ngo, H. H., & Guo, W. (2014). A mini review on renewable sources for biofuel. Bioresource Technology, 169, 742–749. doi:10.1016/j.biortech.2014.07.022
  • Ho, S.-H., Huang, S.-W., Chen, C.-Y., Hasunuma, T., Kondo, A., & Chang, J.-S. (2013). Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresource Technology, 135, 157–165. doi:10.1016/j.biortech.2012.10.100
  • Hoekman, S. K., & Robbins, C. (2012). Review of the effects of biodiesel on NOx emissions. Fuel Processing Technology, 96, 237–249. doi:10.1016/j.fuproc.2011.12.036
  • Jacobsson, S., & Lauber, V. (2006). The politics and policy of energy system transformation – Explaining the German diffusion of renewable energy technology. Energy Policy, 34(3), 256–276. doi:10.1016/j.enpol.2004.08.029
  • Jahirul, M. I., Brown, J. R., Senadeera, W., Ashwath, N., Laing, C., Leski-Taylor, J., & Rasul, M. G. (2013). Optimisation of bio-oil extraction process from Beauty Leaf (Calophyllum inophyllum) oil seed as a second generation biodiesel source. Procedia Engineering, 56, 619–624. doi:10.1016/j.proeng.2013.03.168
  • Jernigan, A., May, M., Potts, T., Rodgers, B., Hestekin, J., May, P. I., … Hestekin, C. (2013). Effects of drying and storage on year-round production of butanol and biodiesel from algal carbohydrates and lipids using algae from water remediation. Environmental Progress & Sustainable Energy, 32(4), 1013–1022. doi:10.1002/ep.11852
  • Jin, C., Yao, M., Liu, H., Lee, C. F., & Ji, J. (2011). Progress in the production and application of n-butanol as a biofuel. Renewable and Sustainable Energy Reviews, 15(8), 4080–4106. doi:10.1016/j.rser.2011.06.001
  • Jin, W., Xu, X., & Yang, F. (2018). Application of rumen microorganisms for enhancing biogas production of corn straw and livestock manure in a pilot-scale anaerobic digestion system: Performance and microbial community analysis. Energies, 11(4), 920. doi:10.3390/en11040920
  • Kaltschmitt, M., & Streicher, W. (2009). Energie aus Biomasse. In M. Kaltschmitt, & W. Streicher (Eds.), Regenerative Energien in Österreich: Grundlagen, Systemtechnik, Umweltaspekte, Kostenanalysen, Potenziale, Nutzung (pp. 339–532). Wiesbaden: Vieweg + Teubner. doi:10.1007/978-3-8348-9327-7_9
  • Kamarudin, M. Z. F., Kamarudin, S. K., Masdar, M. S., & Daud, W. R. W. (2013). Review: Direct ethanol fuel cells. International Journal of Hydrogen Energy, 38(22), 9438–9453. doi:10.1016/j.ijhydene.2012.07.059
  • Kanemoto, K., Moran, D., Lenzen, M., & Geschke, A. (2014). International trade undermines national emission reduction targets: New evidence from air pollution. Global Environmental Change, 24(1), 52–59. doi:10.1016/j.gloenvcha.2013.09.008
  • Karagiannidis, A., & Perkoulidis, G. (2009). A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes. Bioresource Technology, 100(8), 2355–2360. doi:10.1016/j.biortech.2008.11.033
  • Karam, R., Karboune, S., St-Louis, R., & Kermasha, S. (2009). Lipase-catalyzed acidolysis of fish liver oil with dihydroxyphenylacetic acid in organic solvent media. Process Biochemistry, 44(11), 1193–1199. doi:10.1016/j.procbio.2009.06.004
  • Karaosmanoǧlu, F., Kurt, G., & Özaktaş, T. (2000). Long term CI engine test of sunflower oil. Renewable Energy, 19(1-2), 219–221. doi:10.1016/S0960-1481(99)00034-8
  • Karmakar, A., Karmakar, S., & Mukherjee, S. (2010). Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology, 101(19), 7201–7210. doi:10.1016/j.biortech.2010.04.079
  • Kasmuri, N. H., Kamarudin, S. K., Abdullah, S. R. S., Hasan, H. A., & Som, A. M. (2017). Process system engineering aspect of bio-alcohol fuel production from biomass via pyrolysis: An overview. Renewable and Sustainable Energy Reviews, 79, 914–923. doi:10.1016/j.rser.2017.05.182
  • Khanna, M., Wang, W., Hudiburg, T. W., & Delucia, E. H. (2017). The social inefficiency of regulating indirect land use change due to biofuels. Nature Communications, 8, 15513–15519. doi:10.1038/ncomms15513
  • Khattab, R. Y., & Zeitoun, M. A. (2013). Quality evaluation of flaxseed oil obtained by different extraction techniques. LWT - Food Science and Technology, 53(1), 338–345. doi:10.1016/j.lwt.2013.01.004
  • Kim, H., Kim, S., & Dale, B. E. (2009). Biofuels, land use change, and greenhouse gas emissions: Some unexplored variables. Environmental Science & Technology, 43(3), 961–967. doi:10.1021/es802681k
  • Kim, M., Ahn, Y., & Speece, R. (2002). Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Research, 36(17), 4369–4385. doi:10.1016/S0043-1354(02)00147-1
  • Kim, S., & Dale, B. E. (2008). Life cycle assessment of fuel ethanol derived from corn grain via dry milling. Bioresource Technology, 99(12), 5250–5260. doi:10.1016/j.biortech.2007.09.034
  • Kim, T. S., & Kim, B. H. (1988). Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent. Biotechnology Letters, 10(2), 123–128. doi:10.1007/BF01024638
  • Kiss, A. A. (2010). Heat-integrated process for biodiesel by reactive absorption. In Computer aided chemical engineering (Vol. 28, pp. 1111–1116). Amsterdam, Netherlands: Elsevier. doi:10.1016/S1570-7946(10)28186-5
  • Klemenčič, A. K., & Griessler-Bulc, T. (2010). The efficiency of ultrasound on algal control in a closed loop water treatment system for cyprinid fish farms. Fresenius Environmental Bulletin, 19(5 A), 919–931.
  • Kojima, M., & Johnson, T. (2006). Potential for Biofuels for Transport in Developing Countries. Energy Sector Management Assistance Programme (ESMAP) technical paper series; ESM 312/05. World Bank, Washington, DC. Retrieved from: https://openknowledge.worldbank.org/handle/10986/18007
  • Kopetz, H. (2013). Build a biomass energy market. Nature, 494(7435), 29. Retrieved from doi:10.1038/494029a
  • Koppolu, V., & Vasigala, V. K. (2016). Role of Escherichia coli in biofuel production. Microbiology Insights, 9, MBI.S10878. doi:10.4137/MBI.S10878
  • Kumar, G., Shobana, S., Nagarajan, D., Lee, D.-J., Lee, K.-S., Lin, C.-Y., … Chang, J.-S. (2018). Biomass based hydrogen production by dark fermentation—Recent trends and opportunities for greener processes. Current Opinion in Biotechnology, 50, 136–145. doi:10.1016/j.copbio.2017.12.024
  • Kumar, S., Singh, N., & Prasad, R. (2010). Anhydrous ethanol: A renewable source of energy. Renewable and Sustainable Energy Reviews, 14(7), 1830–1844. doi:10.1016/j.rser.2010.03.015
  • Kusdiana, D., & Saka, S. (2001). Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel, 80(5), 693–698. doi:10.1016/S0016-2361(00)00140-X
  • Lagrimini, L. M. (Ed.). (2018). Maize. Methods in molecular biology (Vol. 1676). New York, NY: Springer. doi:10.1007/978-1-4939-7315-6
  • Lakaniemi, A.-M., Tuovinen, O. H., & Puhakka, J. A. (2013). Anaerobic conversion of microalgal biomass to sustainable energy carriers – A review. Bioresource Technology, 135, 222–231. doi:10.1016/j.biortech.2012.08.096
  • Lange, J. P., Van Der Heide, E., Van Buijtenen, J., & Price, R. (2012). Furfural – A promising platform for lignocellulosic biofuels. ChemSusChem, 5(1), 150–166. doi:10.1002/cssc.201100648
  • Laopaiboon, L., Nuanpeng, S., Srinophakun, P., Klanrit, P., & Laopaiboon, P. (2009). Ethanol production from sweet sorghum juice using very high gravity technology: Effects of carbon and nitrogen supplementations. Bioresource Technology, 100(18), 4176–4182. doi:10.1016/j.biortech.2009.03.046
  • Lapuerta, M., Armas, O., & Rodriguez-Fernandez, J. (2008). Effect of biodiesel fuels on diesel engine emissions. Progress in Energy and Combustion Science, 34(2), 198–223. doi:10.1016/j.pecs.2007.07.001
  • Laurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution, 29(2), 107–116. doi:10.1016/j.tree.2013.12.001
  • Leung, D. Y. C., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083–1095. doi:10.1016/j.apenergy.2009.10.006
  • Li, X., Jia, P., & Wang, T. (2016). Furfural: A promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catalysis, 6(11), 7621–7640. doi:10.1021/acscatal.6b01838
  • Lin, L., Cunshan, Z., Vittayapadung, S., Xiangqian, S., & Mingdong, D. (2011). Opportunities and challenges for biodiesel fuel. Applied Energy, 88(4), 1020–1031. doi:10.1016/j.apenergy.2010.09.029
  • Lin, T., Rodríguez, L. F., Shastri, Y. N., Hansen, A. C., & Ting, K. C. (2014). Integrated strategic and tactical biomass-biofuel supply chain optimization. Bioresource Technology, 156, 256–266. doi:10.1016/j.biortech.2013.12.121
  • Lora Grando, R., de Souza Antune, A. M., da Fonseca, F. V., Sánchez, A., Barrena, R., & Font, X. (2017). Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development. Renewable and Sustainable Energy Reviews, 80, 44–53. doi:10.1016/j.rser.2017.05.079
  • M. Guldi, D. (2007). Alternative fuel technologies. Physical Chemistry Chemical Physics, 9(12), 1399. doi:10.1039/b702989f
  • Ma, F., & Hanna, M. A. (1999). Biodiesel production: A review. Bioresource Technology, 70(1), 1–15. doi:10.1201/b10383
  • Macias-Corral, M., Samani, Z., Hanson, A., Smith, G., Funk, P., Yu, H., & Longworth, J. (2008). Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresource Technology, 99(17), 8288–8293. doi:10.1016/j.biortech.2008.03.057
  • Mahapatra, M. K., & Kumar, A. (2017). A Short review on biobutanol, a second generation biofuel production from lignocellulosic biomass. Journal of Clean Energy Technologies, 5(1), 27–30. doi:10.18178/JOCET.2017.5.1.338
  • Mahinpey, N., & Gomez, A. (2016). Review of gasification fundamentals and new findings: Reactors, feedstock, and kinetic studies. Chemical Engineering Science, 148, 14–31. doi:10.1016/j.ces.2016.03.037
  • Maity, J. P., Bundschuh, J., Chen, C.-Y., & Bhattacharya, P. (2014). Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives – A mini review. Energy, 78, 104–113. doi:10.1016/j.energy.2014.04.003
  • Majidian, P., Tabatabaei, M., Zeinolabedini, M., Naghshbandi, M. P., & Chisti, Y. (2018). Metabolic engineering of microorganisms for biofuel production. Renewable and Sustainable Energy Reviews, 82(pt. 3), 3863–3885. doi:10.1016/j.rser.2017.10.085
  • Malça, J., & Freire, F. (2006). Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation. Energy, 31(15), 3362–3380. doi:10.1016/j.energy.2006.03.013
  • Manara, P., & Zabaniotou, A. (2012). Towards sewage sludge based biofuels via thermochemical conversion – A review. Renewable and Sustainable Energy Reviews, 16(5), 2566–2582. doi:10.1016/j.rser.2012.01.074
  • Manchanda, T., Tyagi, R., & Sharma, D. K. (2018). Comparison of fuel characteristics of green (renewable) diesel with biodiesel obtainable from algal oil and vegetable oil. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 40(1), 54–59. doi:10.1080/15567036.2017.1405109
  • Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555. doi:10.1016/j.rser.2015.02.032
  • Maragkaki, A. E., Vasileiadis, I., Fountoulakis, M., Kyriakou, A., Lasaridi, K., & Manios, T. (2018). Improving biogas production from anaerobic co-digestion of sewage sludge with a thermal dried mixture of food waste, cheese whey and olive mill wastewater. Waste Management, 71, 644–651. doi:10.1016/j.wasman.2017.08.016
  • Markou, G., Angelidaki, I., & Georgakakis, D. (2012). Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631–645. doi:10.1007/s00253-012-4398-0
  • Mathimani, T., Baldinelli, A., Rajendran, K., Prabakar, D., Matheswaran, M., Pieter van Leeuwen, R., & Pugazhendhi, A. (2019). Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: Process evaluation and knowledge gaps. Journal of Cleaner Production, 208, 1053–1064. doi:10.1016/j.jclepro.2018.10.096
  • Mathimani, T., & Pugazhendhi, A. (2019). Utilization of algae for biofuel, bio-products and bio-remediation. Biocatalysis and Agricultural Biotechnology, 17, 326–330. doi:10.1016/j.bcab.2018.12.007
  • Matsakas, L., Nitsos, C., Raghavendran, V., Yakimenko, O., Persson, G., Olsson, E., … Christakopoulos, P. (2018). A novel hybrid organosolv: Steam explosion method for the efficient fractionation and pretreatment of birch biomass. Biotechnology for Biofuels, 11(1), 160. doi:10.1186/s13068-018-1163-3
  • McMahon, K. D., Stroot, P. G., Mackie, R. I., & Raskin, L. (2001). Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions—II: Microbial population dynamics. Water Research, 35(7), 1817–1827. doi:10.1016/S0043-1354(00)00438-3
  • Meadowcroft, J. (2009). What about the politics? Sustainable development, transition management, and long term energy transitions. Policy Sciences, 42(4), 323–340. doi:10.1007/s11077-009-9097-z
  • Medema, M. H., Cimermancic, P., Sali, A., Takano, E., & Fischbach, M. A. (2014). A systematic computational analysis of biosynthetic gene cluster evolution: Lessons for engineering biosynthesis. PLoS Computational Biology, 10(12), e1004016. doi:10.1371/journal.pcbi.1004016
  • Meher, L. C., Vidya Sagar, D., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification – A review. Renewable and Sustainable Energy Reviews, 10(3), 248–268. doi:10.1016/j.rser.2004.09.002
  • Melillo, J. M., Reilly, J. M., Kicklighter, D. W., Gurgel, A. C., Cronin, T. W., Paltsev, S., … Schlosser, C. A. (2009). Indirect emissions from biofuels: How important? Science, 326(5958), 1397–1399. doi:10.1126/science.1180251
  • Miao, X., Li, R., & Yao, H. (2009). Effective acid-catalyzed transesterification for biodiesel production. Energy Conversion and Management, 50(10), 2680–2684. doi:10.1016/j.enconman.2009.06.021
  • Michalak, I., & Chojnacka, K. (2015). Algae as production systems of bioactive compounds. Engineering in Life Sciences, 15(2), 160–176. doi:10.1002/elsc.201400191
  • Milledge, J. J., & Heaven, S. (2014). Methods of energy extraction from microalgal biomass: A review. Reviews in Environmental Science and Bio/Technology, 13(3), 301–320. doi:10.1007/s11157-014-9339-1
  • Miravete, E. J., Moral, M. J., & Thurk, J. (2018). Fuel taxation, emissions policy, and competitive advantage in the diffusion of European diesel automobiles. The RAND Journal of Economics, 49(3), 504–540. doi:10.1111/1756-2171.12243
  • Molino, A., Larocca, V., Chianese, S., & Musmarra, D. (2018). Biofuels production by biomass gasification: A review. Energies, 11(4), 1–31. doi:10.3390/en11040811
  • Molognoni, D., Chiarolla, S., Cecconet, D., Callegari, A., & Capodaglio, A. G. (2018). Industrial wastewater treatment with a bioelectrochemical process: Assessment of depuration efficiency and energy production. Water Science and Technology, 77(1), 134–144. doi:10.2166/wst.2017.532
  • Mondal, P., Dang, G. S., & Garg, M. O. (2011). Syngas production through gasification and cleanup for downstream applications – Recent developments. Fuel Processing Technology, 92(8), 1395–1410. doi:10.1016/j.fuproc.2011.03.021
  • Moraes, B. S., Zaiat, M., & Bonomi, A. (2015). Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives. Renewable and Sustainable Energy Reviews, 44, 888–903. doi:10.1016/j.rser.2015.01.023
  • Mourao, P. R. (2018). Smoking gentlemen – How Formula One Has Controlled CO2 Emissions. Sustainability (Switzerland), 10(6), 1841. doi:10.3390/su10061841
  • Muller, E. E. L., Sheik, A. R., & Wilmes, P. (2014). Lipid-based biofuel production from wastewater. Current Opinion in Biotechnology, 30, 9–16. doi:10.1016/j.copbio.2014.03.007
  • Munasinghe, P. C., & Khanal, S. K. (2010). Biomass-derived syngas fermentation into biofuels: Opportunities and challenges. Bioresource Technology, 101(13), 5013–5022. doi:10.1016/j.biortech.2009.12.098
  • Mussatto, S. I., Dragone, G., Guimarães, P. M. R., Silva, J. P. A., Carneiro, L. M., Roberto, I. C., … Teixeira, J. A. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 28(6), 817–830. doi:10.1016/j.biotechadv.2010.07.001
  • Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597. doi:10.1016/j.rser.2009.10.003
  • Nakanishi, A., Bae, J. G., Fukai, K., Tokumoto, N., Kuroda, K., Ogawa, J., … Ueda, M. (2012). Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation. Applied Microbiology and Biotechnology, 94(4), 939–948. doi:10.1007/s00253-012-3876-8
  • Nakata, K., Utsumi, S., Ota, A., Kawatake, K., Kawai, T., & Tsunooka, T. (2006). The effect of ethanol fuel on a spark ignition engine. In SAE Technical Paper. Warrendale, PA: SAE International. doi:10.4271/2006-01-3380
  • Namasivayam, A. M., Korakianitis, T., Crookes, R. J., Bob-Manuel, K. D. H., & Olsen, J. (2010). Biodiesel, emulsified biodiesel and dimethyl ether as pilot fuels for natural gas fuelled engines. Applied Energy, 87(3), 769–778. doi:10.1016/j.apenergy.2009.09.014
  • Nanaki, E. A., & Koroneos, C. J. (2012). Comparative LCA of the use of biodiesel, diesel and gasoline for transportation. Journal of Cleaner Production, 20(1), 14–19. doi:10.1016/j.jclepro.2011.07.026
  • Nazimudheen, G., Roy, K., Sivasankar, T., & Moholkar, V. S. (2018). Mechanistic investigations in ultrasonic pretreatment and anaerobic digestion of landfill leachates. Journal of Environmental Chemical Engineering, 6(2), 1690–1701. doi:10.1016/j.jece.2018.02.001
  • Noparat, P., Prasertsan, P., O-Thong, S., & Pan, X. (2017). Sulfite pretreatment to overcome recalcitrance of lignocellulose for enzymatic hydrolysis of oil palm trunk. Energy Procedia, 138, 1122–1127. doi:10.1016/j.egypro.2017.10.209
  • Nurfitri, I., Maniam, G. P., Hindryawati, N., Yusoff, M. M., & Ganesan, S. (2013). Potential of feedstock and catalysts from waste in biodiesel preparation: A review. Energy Conversion and Management, 74, 395–402. doi:10.1016/j.enconman.2013.04.042
  • Ogg, C. W. (2009). Avoiding more biofuel surprises: The fuel, food and forest trade-offs. Journal of Development and Agricultural Economics, 1(1), 6. Retrieved from http://acadjourn.org/JDAE/PDF/Pdf2009/Apr/Ogg.pdf
  • Pandey, A. (Ed.). (2008). Handbook of Plant-Based Biofuels. Boca Raton, FL: CRC Press. doi:10.1201/9780789038746
  • Pandey, V. C., Singh, K., Singh, J. S., Kumar, A., Singh, B., & Singh, R. P. (2012). Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renewable and Sustainable Energy Reviews, 16(5), 2870–2883. doi:10.1016/j.rser.2012.02.004
  • Paolini, V., Petracchini, F., Carnevale, M., Gallucci, F., Perilli, M., Esposito, G., … Frattoni, M. (2018). Characterisation and cleaning of biogas from sewage sludge for biomethane production. Journal of Environmental Management, 217, 288–296. doi:10.1016/j.jenvman.2018.03.113
  • Park, S., Mannaa, O., Khaled, F., Bougacha, R., Mansour, M. S., Farooq, A., … Sarathy, S. M. (2015). A comprehensive experimental and modeling study of 2-methylbutanol combustion. Combustion and Flame, 162(5), 2166–2176. doi:10.1016/j.combustflame.2015.01.014
  • Parkin, G. F., & Owen, W. F. (1986). Fundamentals of Anaerobic Digestion of Wastewater Sludges. Journal of Environmental Engineering, 112(5), 867–920. doi:10.1061/(ASCE)0733-9372(1986)112:5(867)
  • Patterson, T., Esteves, S., Dinsdale, R., & Guwy, A. (2011). An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy, 39(3), 1806–1816. doi:10.1016/j.enpol.2011.01.017
  • Peterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal, M. J., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy and Energy & Environmental Science, 1(1), 32–65. doi:10.1039/b810100k
  • Pimentel, D. (2003). Ethanol fuels: Energy balance, economics, and environmental impacts are negative. Natural Resources Research, 12(2), 127–134. [Mismatch] doi:10.1023/A:1024214812527
  • Pous, N., Puig, S., Balaguer, M. D., & Colprim, J. (2017). Effect of hydraulic retention time and substrate availability in denitrifying bioelectrochemical systems. Environmental Science: Water Research & Technology, 3, 922–929. doi:10.1039/C7EW00145B
  • Prabakar, D., Manimudi, V. T., Suvetha K, S., Sampath, S., Mahapatra, D. M., Rajendran, K., & Pugazhendhi, A. (2018). Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects. Renewable and Sustainable Energy Reviews, 96, 306–324. doi:10.1016/j.rser.2018.08.006
  • Raboni, M., & Urbini, G. (2014). Production and use of biogas in Europe: A survey of current status and perspectives. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 9(2), 191–202. doi:10.4136/ambi-agua.1324
  • Raboni, M., Viotti, P., & Capodaglio, A. G. (2015). A comprehensive analysis of the current and future role of biofuels for transport in the European Union (EU). Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 10(1), 10–21. doi:10.4136/ambi-agua.1492
  • Ramanavicius, A., Kausaite, A., & Ramanaviciene, A. (2008). Enzymatic biofuel cell based on anode and cathode powered by ethanol. Biosensors and Bioelectronics, 24(4), 761–766. doi:10.1016/j.bios.2008.06.048
  • Rastogi, M., & Shrivastava, S. (2017). Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renewable and Sustainable Energy Reviews, 80, 330–340. doi:10.1016/j.rser.2017.05.225
  • Rathmann, R., Szklo, A., & Schaeffer, R. (2010). Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate. Renewable Energy, 35(1), 14–22. doi:10.1016/j.renene.2009.02.025
  • Renzaho, A. M. N., Kamara, J. K., & Toole, M. (2017). Biofuel production and its impact on food security in low and middle income countries: Implications for the post-2015 sustainable development goals. Renewable and Sustainable Energy Reviews, 78, 503–516. doi:10.1016/j.rser.2017.04.072
  • Rosenthal, A., Pyle, D. L., Niranjan, K., Gilmour, S., & Trinca, L. (2001). Combined effect of operational variables and enzyme activity on aqueous enzymatic extraction of oil and protein from soybean. Enzyme and Microbial Technology, 28(6), 499–509. doi:10.1016/S0141-0229(00)00351-3
  • Ruffino, B., Campo, G., Genon, G., Lorenzi, E., Novarino, D., Scibilia, G., & Zanetti, M. (2015). Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment. Bioresource Technology, 175, 298–308. doi:10.1016/j.biortech.2014.10.071
  • Ryckebosch, E., Drouillon, M., & Vervaeren, H. (2011). Techniques for transformation of biogas to biomethane. Biomass and Bioenergy, 35(5), 1633–1645. doi:10.1016/j.biombioe.2011.02.033
  • Salminen, E., & Rintala, J. (2002). Anaerobic digestion of organic solid poultry slaughterhouse waste – a review. Bioresource Technology, 83(1), 13–26. doi:10.1016/S0960-8524(01)00199-7
  • Santana, H., Cereijo, C. R., Teles, V. C., Nascimento, R. C., Fernandes, M. S., Brunale, P., … Brasil, B. S. A. F. (2017). Microalgae cultivation in sugarcane vinasse: Selection, growth and biochemical characterization. Bioresource Technology, 228, 133–140. doi:10.1016/j.biortech.2016.12.075
  • Saravanan, A. P., Mathimani, T., Deviram, G., Rajendran, K., & Pugazhendhi, A. (2018). Biofuel policy in India: A review of policy barriers in sustainable marketing of biofuel. Journal of Cleaner Production, 193, 734–747. doi:10.1016/j.jclepro.2018.05.033
  • Sawangkeaw, R., & Ngamprasertsith, S. (2013). A review of lipid-based biomasses as feedstocks for biofuels production. Renewable and Sustainable Energy Reviews, 25, 97–108. doi:10.1016/j.rser.2013.04.007
  • Scaglione, D., Lotti, T., Ficara, E., & Malpei, F. (2017). Inhibition on anammox bacteria upon exposure to digestates from biogas plants treating the organic fraction of municipal solid waste and the role of conductivity. Waste Management, 61, 213–219. doi:10.1016/j.wasman.2016.11.014
  • Scarlat, N., Dallemand, J. F., & Fahl, F. (2018). Biogas: Developments and perspectives in Europe. Renewable Energy, 129, 457–472. doi:10.1016/j.renene.2018.03.006
  • Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., & Smith, A. G. (2010). Biodiesel from algae: Challenges and prospects. Current Opinion in Biotechnology, 21(3), 277–286. doi:10.1016/j.copbio.2010.03.005
  • Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., … Yu, T.-H. (2008). Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867), 1238–1240. doi:10.1126/science.1151861
  • Serna-Saldivar, S. O. (Ed.). (2019). Corn. Cambridge, MA: Woodhead Publishing Limited. doi:10.1016/C2016-0-01986-1
  • Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181–189. doi:10.1016/j.enpol.2008.08.016
  • Shah, S., Sharma, A., & Gupta, M. N. (2005). Extraction of oil from Jatropha curcas L. seed kernels by combination of ultrasonication and aqueous enzymatic oil extraction. Bioresource Technology, 96(1), 121–123. doi:10.1016/j.biortech.2004.02.026
  • Shahid, E. M., & Jamal, Y. (2011). Production of biodiesel: A technical review. Renewable and Sustainable Energy Reviews, 15(9), 4732–4745. doi:10.1016/j.rser.2011.07.079
  • Sharma, H. K., Xu, C., & Qin, W. (2017). Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: An overview. Waste and Biomass Valorization, 10(2), 235–251. doi:10.1007/s12649-017-0059-y
  • Shi, A. Z., Koh, L. P., & Tan, H. T. W. (2009). The biofuel potential of municipal solid waste. GCB Bioenergy, 1(5), 317–320. doi:10.1111/j.1757-1707.2009.01024.x
  • Shrirame, H. Y., Panwar, N. L., & Bamniya, B. R. (2011). Bio diesel from castor oil – A green energy option. Low Carbon Economy, 2(1), 1–6. doi:10.4236/lce.2011.21001
  • Singh, S. P., & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14(1), 200–216. doi:10.1016/j.rser.2009.07.017
  • Siwale, L., Kristóf, L., Adam, T., Bereczky, A., Mbarawa, M., Penninger, A., & Kolesnikov, A. (2013). Combustion and emission characteristics of n-butanol/diesel fuel blend in a turbo-charged compression ignition engine. Fuel, 107, 409–418. doi:10.1016/j.fuel.2012.11.083
  • Smith, G. A., Bagby, M. O., Lewellan, R. T., Doney, D. L., Moore, P. H., Hills, F. J., … Freeman, K. (1987). Evaluation of sweet sorghum for fermentable sugar production potential. Crop Science, 27(4), 788. doi:10.2135/cropsci1987.0011183X002700040037x
  • Somavat, P., Kumar, D., & Singh, V. (2018). Techno-economic feasibility analysis of blue and purple corn processing for anthocyanin extraction and ethanol production using modified dry grind process. Industrial Crops and Products, 115, 78–87. doi:10.1016/j.indcrop.2018.02.015
  • Somavat, P., Li, Q., Kumar, D., de Mejia, E. G., Liu, W., Rausch, K. D., … Singh, V. (2017). A new lab scale corn dry milling protocol generating commercial sized flaking grits for quick estimation of coproduct yield and composition. Industrial Crops and Products, 109, 92–100. doi:10.1016/j.indcrop.2017.08.013
  • Sorda, G., Banse, M., & Kemfert, C. (2010). An overview of biofuel policies across the world. Energy Policy, 38(11), 6977–6988. doi:10.1016/j.enpol.2010.06.066
  • Speers, A. M., Young, J. M., & Reguera, G. (2014). Fermentation of glycerol into ethanol in a microbial electrolysis cell driven by a customized consortium. Environmental Science & Technology, 48(11), 6350–6358. doi:10.1021/es500690a
  • Spivey, J. J., & Egbebi, A. (2007). Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chemical Society Reviews, 36(9), 1514–1528. doi:10.1039/b414039g
  • Steinman, A. D., Leavitt, P. R., & Uzarski, D. G. (2017). Biomass and pigments of benthic algae. Methods in Stream Ecology, Volume, 1, 223–241. doi:10.1016/B978-0-12-416558-8.00012-3
  • Stroot, P. G., McMahon, K. D., Mackie, R. I., & Raskin, L. (2001). Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions—I. digester performance. Water Research, 35(7), 1804–1816. doi:10.1016/S0043-1354(00)00439-5
  • Su, S., Cheng, H., Zhu, T., Wang, H., & Wang, A. (2019). A novel bioelectrochemical method for real-time nitrate monitoring. Bioelectrochemistry, 125, 33–37. doi:10.1016/j.bioelechem.2018.09.002
  • Talebnia, F., Karakashev, D., & Angelidaki, I. (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101(13), 4744–4753. doi:10.1016/j.biortech.2009.11.080
  • Tang, X., Feng, H., Zhang, J., & Chen, W. N. (2013). Comparative proteomics analysis of engineered Saccharomyces cerevisiae with enhanced biofuel precursor production. PLoS ONE, 8(12), 1–10. doi:10.1371/journal.pone.0084661
  • Tashiro, Y., Yoshida, T., Noguchi, T., & Sonomoto, K. (2013). Recent advances and future prospects for increased butanol production by acetone-butanol-ethanol fermentation. Engineering in Life Sciences, 13(5), 432–445. doi:10.1002/elsc.201200128
  • Torella, J. P., Gagliardi, C. J., Chen, J. S., Bediako, D. K., Colón, B., Way, J. C., … Nocera, D. G. (2015). Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. Proceedings of the National Academy of Sciences, 112(8), 2337–2342. doi:10.1073/pnas.1424872112
  • Trindade, W. R. d. S., & Santos, R. G. D. (2017). Review on the characteristics of butanol, its production and use as fuel in internal combustion engines. Renewable and Sustainable Energy Reviews, 69, 642–651. doi:10.1016/j.rser.2016.11.213
  • Tyagi, V. K., Fdez-Güelfo, L. A., Zhou, Y., Álvarez-Gallego, C. J., Garcia, L. I. R., & Ng, W. J. (2018). Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renewable and Sustainable Energy Reviews, 93, 380–399. doi:10.1016/j.rser.2018.05.051
  • Tyndall, J. C., Berg, E. J., & Colletti, J. P. (2011). Corn stover as a biofuel feedstock in Iowa’s bio-economy: An Iowa farmer survey. Biomass and Bioenergy, 35(4), 1485–1495. doi:10.1016/j.biombioe.2010.08.049
  • Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99(10), 4021–4028. doi:10.1016/j.biortech.2007.01.046
  • University of Nebraska Lincoln – Institute of Agriculture and Natural resources – Cropwatch. (2019). Retrieved from https://cropwatch.unl.edu/
  • van den Wall Bake, J. D., Junginger, M., Faaij, A., Poot, T., & Walter, A. (2009). Explaining the experience curve: Cost reductions of Brazilian ethanol from sugarcane. Biomass and Bioenergy, 33(4), 644–658. doi:10.1016/j.biombioe.2008.10.006
  • Van Eerten-Jansen, M. C. A. A., Heijne, A. T., Buisman, C. J. N., & Hamelers, H. V. M. (2012). Microbial electrolysis cells for production of methane from CO2: Long-term performance and perspectives. International Journal of Energy Research, 36(6), 809–819. doi:10.1002/er.1954
  • Van Foreest, F. (2012). Perspectives for biogas in Europe. Oxford, UK: Oxford Institute for Energy Studies. doi:3693691
  • Van Gerpen, J., Shanks, B., Pruszko, R., Clements, D., & Knothe, G. (2004). Biodiesel production technology: August 2002-January 2004. United States. doi: 10.2172/1500881
  • Vasudevan, P. T., & Fu, B. (2010). Environmentally sustainable biofuels: Advances in biodiesel research. Waste and Biomass Valorization, 1(1), 47–63. doi:10.1007/s12649-009-9002-1
  • Verdugo, C., Luna, D., Posadillo, A., Sancho, E. D., Rodríguez, S., Bautista, F., … Romero, A. A. (2011). Production of a new second generation biodiesel with a low cost lipase derived from Thermomyces lanuginosus: Optimization by response surface methodology. Catalysis Today, 167(1), 107–112. doi:10.1016/j.cattod.2010.12.028
  • Virdis, B., Freguia, S., Rozendal, R. A., Rabaey, K., Yuan, Z., & Keller, J. (2011). Microbial fuel cells. In Treatise on water science (Vol. 4, pp. 641–665). Amsterdam, Netherlands: Elsevier. doi:10.1016/B978-0-444-53199-5.00098-1
  • Vohra, M., Manwar, J., Manmode, R., Padgilwar, S., & Patil, S. (2014). Bioethanol production: Feedstock and current technologies. Journal of Environmental Chemical Engineering, 2(1), 573–584. doi:10.1016/j.jece.2013.10.013
  • Wainaina, S., Horváth, I. S., & Taherzadeh, M. J. (2018). Biochemicals from food waste and recalcitrant biomass via syngas fermentation: A review. Bioresource Technology, 248, 113–121. doi:10.1016/j.biortech.2017.06.075
  • Wakamura, Y. (2003). Utilization of bagasse energy in Thailand. Mitigation and Adaptation Strategies for Global Change, 8(3), 253–260. doi:10.1023/B:MITI.0000005642.56625.9a
  • Wang, H. M. D., Chen, C. C., Huynh, P., & Chang, J. S. (2015). Exploring the potential of using algae in cosmetics. Bioresource Technology, 184, 355–362. doi:10.1016/j.biortech.2014.12.001
  • Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., … Ruan, R. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology, 162(4), 1174–1186. doi:10.1007/s12010-009-8866-7
  • Wang, W. G., Lyons, D. W., Clark, N. N., Gautam, M., & Norton, P. M. (2000). Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification. Environmental Science & Technology, 34(6), 933–939. doi:10.1021/es981329b
  • Wang, Y., Ho, S.-H., Cheng, C.-L., Nagarajan, D., Guo, W.-Q., Lin, C., … Chang, J.-S. (2017). Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production. Bioresource Technology, 242, 7–14. doi:10.1016/j.biortech.2017.03.122
  • Wang, Y., Ho, S.-H., Yen, H.-W., Nagarajan, D., Ren, N.-Q., Li, S., … Chang, J.-S. (2017). Current advances on fermentative biobutanol production using third generation feedstock. Biotechnology Advances, 35(8), 1049–1059. doi:10.1016/j.biotechadv.2017.06.001
  • Weber, T., Charusanti, P., Musiol-Kroll, E. M., Jiang, X., Tong, Y., Kim, H. U., & Lee, S. Y. (2015). Metabolic engineering of antibiotic factories: New tools for antibiotic production in actinomycetes. Trends in Biotechnology, 33(1), 15. doi:10.1016/j.tibtech.2014.10.009
  • Wiesenthal, T., Leduc, G., Christidis, P., Schade, B., Pelkmans, L., Govaerts, L., & Georgopoulos, P. (2009). Biofuel support policies in Europe: Lessons learnt for the long way ahead. Renewable and Sustainable Energy Reviews, 13(4), 789–800. doi:10.1016/j.rser.2008.01.011
  • Wijffels, R. H., & Barbosa, M. J. (2010). An outlook on microalgal biofuels. Science, 329(5993), 796–799. doi:10.1126/science.1189003
  • Woolcock, P. J., & Brown, R. C. (2013). A review of cleaning technologies for biomass-derived syngas. Biomass and Bioenergy, 52, 54–84. doi:10.1016/j.biombioe.2013.02.036
  • Wu, S. G., Wang, Y., Jiang, W., Oyetunde, T., Yao, R., Zhang, X., … Bao, F. S. (2016). Rapid prediction of bacterial heterotrophic fluxomics using machine learning and constraint programming. PLoS Computational Biology, 12(4), e1004838. doi:10.1371/journal.pcbi.1004838
  • Xu, F., Li, Y., Ge, X., Yang, L., & Li, Y. (2018). Anaerobic digestion of food waste – Challenges and opportunities. Bioresource Technology, 247, 1047–1058. doi:10.1016/j.biortech.2017.09.020
  • Yang, B., & Wyman, C. E. (2008). Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2(1), 26–40. doi:10.1002/bbb.49
  • Yang, C., Ma, Z., Zhao, N., Wei, W., Hu, T., & Sun, Y. (2006). Methanol synthesis from CO2-rich syngas over a ZrO2 doped CuZnO catalyst. Catalysis Today, 115(1-4), 222–227. doi:10.1016/j.cattod.2006.02.077
  • Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M., & Chen, Y. (2011). Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresource Technology, 102(1), 159–165. doi:10.1016/j.biortech.2010.07.017
  • Yang, Y., Nie, X., Jiang, Y., Yang, C., Gu, Y., & Jiang, W. (2018). Metabolic regulation in solventogenic clostridia: Regulators, mechanisms and engineering. Biotechnology Advances, 36(4), 905–914. doi:10.1016/j.biotechadv.2018.02.012
  • You, S., Ok, Y. S., Tsang, D. C. W., Kwon, E. E., & Wang, C.-H. (2018). Towards practical application of gasification: A critical review from syngas and biochar perspectives. Critical Reviews in Environmental Science and Technology, 48(22-24), 1165–1213. doi:10.1080/10643389.2018.1518860
  • You, Y., Li, P., Lei, F., Xing, Y., & Jiang, J. (2017). Enhancement of ethanol production from green liquor–ethanol-pretreated sugarcane bagasse by glucose–xylose cofermentation at high solid loadings with mixed Saccharomyces cerevisiae strains. Biotechnology for Biofuels, 10, 92. doi:10.1186/s13068-017-0771-7
  • Yusuf, F., & Gaur, N. A. (2017). Engineering Saccharomyces cerevisiae for C5 Fermentation: A Step Towards Second-Generation Biofuel Production. In V. C. Kalia, & A. K. Saini (Eds.), Metabolic Engineering for Bioactive Compounds: Strategies and Processes (pp. 157–172). Singapore: Springer. doi:10.1007/978-981-10-5511-9_8
  • Zaybak, Z., Pisciotta, J. M., Tokash, J. C., & Logan, B. E. (2013). Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems. Journal of Biotechnology, 168(4), 478–485. doi:10.1016/j.jbiotec.2013.10.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.