4,930
Views
132
CrossRef citations to date
0
Altmetric
Original Articles

Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: A review

ORCID Icon, , , , , , , , & ORCID Icon show all
Pages 549-611 | Published online: 26 Jun 2019

References

  • Abraham, M. R., & Susan, T. B. (2017). Water contamination with heavy metals and trace elements from Kilembe copper mine and tailing sites in Western Uganda; implications for domestic water quality. Chemosphere, 169, 281–287. doi:10.1016/j.chemosphere.2016.11.077
  • Adler, I., Hudson-Edwards, K. A., & Campos, L. (2011). Converting rain into drinking water: quality issues and technological advances. Water Science and Technology: Water Supply, 11(6), 659–667. doi:10.2166/ws.2011.117
  • Afrooz, A. N., & Boehm, A. B. (2017). Effects of submerged zone, media aging, and antecedent dry period on the performance of biochar-amended biofilters in removing fecal indicators and nutrients from natural stormwater. Ecological Engineering, 102, 320–330.
  • Agyemang, A., Beauty, A., Nandi, A., Luffman, I., & Joyner, A. (2019). Groundwater nitrate concentrations and its relation to Landcover, Buncombe County, NC. In IAEG/AEG Annual Meeting Proceedings, San Francisco, California, 2018 - Volume 2, 2019// (pp. 91–98). Cham: Springer International Publishing.
  • Ahmad, J. U., & Goni, M. A. (2010). Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environmental Monitoring and Assessment, 166(1–4), 347–357. doi:10.1007/s10661-009-1006-6
  • Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J.-K., Yang, J. E., & Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544.
  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., … Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19–33. doi:10.1016/j.chemosphere.2013.10.071
  • Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Johir, M. A. H., & Sornalingam, K. (2017). Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water. Chemical Engineering Journal, 311, 348–358. doi:10.1016/j.cej.2016.11.106
  • Aksu, Z., & Tunç, Ö. (2005). Application of biosorption for penicillin G removal: comparison with activated carbon. Process Biochemistry, 40(2), 831–847. doi:10.1016/j.procbio.2004.02.014
  • Al-Otoum, F., Al-Ghouti, M. A., Ahmed, T. A., Abu-Dieyeh, M., & Ali, M. (2016). Disinfection by-products of chlorine dioxide (chlorite, chlorate, and trihalomethanes): Occurrence in drinking water in Qatar. Chemosphere, 164, 649–656. doi:10.1016/j.chemosphere.2016.09.008
  • Altmann, J., Rehfeld, D., Träder, K., Sperlich, A., & Jekel, M. (2016). Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal. Water Research, 92, 131–139. doi:10.1016/j.watres.2016.01.051
  • Ang, W. L., Mohammad, A. W., Hilal, N., & Leo, C. P. (2015). A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination, 363, 2–18. doi:10.1016/j.desal.2014.03.008
  • Antonopoulou, M., Evgenidou, E., Lambropoulou, D., & Konstantinou, I. (2014). A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media. Water Research, 53, 215–234. doi:10.1016/j.watres.2014.01.028
  • Antony, A., Low, J. H., Gray, S., Childress, A. E., Le-Clech, P., & Leslie, G. (2011). Scale formation and control in high pressure membrane water treatment systems: a review. Journal of Membrane Science, 383(1–2), 1–16. doi:10.1016/j.memsci.2011.08.054
  • Aqueous Solutions. (2010). Retrieved from http://www.aqsolutions.org/?page_id=1218. Accessed 27 November 2017.
  • Archer, E., Petrie, B., Kasprzyk-Hordern, B., & Wolfaardt, G. M. (2017). The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere, 174, 437–446. doi:10.1016/j.chemosphere.2017.01.101
  • Arshad, N., & Imran, S. (2017). Assessment of arsenic, fluoride, bacteria, and other contaminants in drinking water sources for rural communities of Kasur and other districts in Punjab, Pakistan. Environmental Science and Pollution Research, 24(3), 2449–2463. doi:10.1007/s11356-016-7948-7
  • Ashbolt, N. J. (2004). Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology, 198(1–3), 229–238. doi:10.1016/j.tox.2004.01.030
  • Azlan, A., Khoo, H. E., Idris, M. A., Ismail, A., & Razman, M. R. (2011). Evaluation of selected metal elements in commercial drinking water and tap water in peninsular Malaysia. Jurnal Sains Kesihatan Malaysia, 9(1), 5–11. doi:10.1100/2012/403574
  • Azzeh, J., Taylor-Edmonds, L., & Andrews, R. C. (2015). Engineered biofiltration for ultrafiltration fouling mitigation and disinfection by-product precursor control. Water Science and Technology: Water Supply, 15(1), 124–133. doi:10.2166/ws.2014.091
  • Azzouz, A., & Ballesteros, E. (2013). Influence of seasonal climate differences on the pharmaceutical, hormone and personal care product removal efficiency of a drinking water treatment plant. Chemosphere, 93(9), 2046–2054. doi:10.1016/j.chemosphere.2013.07.037
  • Bagheri, H., Afkhami, A., Saber-Tehrani, M., & Khoshsafar, H. (2012). Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry. Talanta, 97, 87–95. doi:10.1016/j.talanta.2012.03.066
  • Bahnmueller, S., Loi, C. H., Linge, K. L., Von Gunten, U., & Canonica, S. (2015). Degradation rates of benzotriazoles and benzothiazoles under UV-C irradiation and the advanced oxidation process UV/H 2 O 2. Water Research, 74, 143–154. doi:10.1016/j.watres.2014.12.039
  • Bain, R., Cronk, R., Hossain, R., Bonjour, S., Onda, K., Wright, J., … Prüss‐Ustün, A. (2014a). Global assessment of exposure to faecal contamination through drinking water based on a systematic review. Tropical Medicine & International Health, 19(8), 917–927. doi:10.1111/tmi.12334
  • Bain, R., Cronk, R., Wright, J., Yang, H., Slaymaker, T., & Bartram, J. (2014b). Fecal contamination of drinking-water in low-and middle-income countries: a systematic review and meta-analysis. PLoS Medicine, 11(5), e1001644. doi:10.1371/journal.pmed.1001644
  • Beiyuan, J., Tsang, D. C., Yip, A. C., Zhang, W., Ok, Y. S., & Li, X.-D. (2017). Risk mitigation by waste-based permeable reactive barriers for groundwater pollution control at e-waste recycling sites. Environmental Geochemistry and Health, 39(1), 75–88. doi:10.1007/s10653-016-9808-2
  • Bergeron, S., Boopathy, R., Nathaniel, R., Corbin, A., & LaFleur, G. (2015). Presence of antibiotic resistant bacteria and antibiotic resistance genes in raw source water and treated drinking water. International Biodeterioration & Biodegradation, 102, 370–374. doi:10.1016/j.ibiod.2015.04.017
  • Bergeron, S., Raj, B., Nathaniel, R., Corbin, A., & LaFleur, G. (2017). Presence of antibiotic resistance genes in raw source water of a drinking water treatment plant in a rural community of USA. International Biodeterioration & Biodegradation, 124, 3–9.
  • Bhatnagar, A., Hogland, W., Marques, M., & Sillanpää, M. (2013). An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 219, 499–511. doi:10.1016/j.cej.2012.12.038
  • Bhattacharjee, S., Zhao, Y., Hill, J. M., Percy, M. E., & Lukiw, W. J. (2014). Aluminum and its potential contribution to Alzheimer's disease (AD). Frontiers in Aging Neuroscience, 6(62), 1–3. doi:10.3389/fnagi.2014.00062
  • Bogusz, A., Oleszczuk, P., & Dobrowolski, R. (2015). Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Bioresource Technology, 196, 540–549. doi:10.1016/j.biortech.2015.08.006
  • Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H 2 O 2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135. doi:10.1016/j.jhazmat.2014.04.054
  • Boleda, M. R., Galceran, M. T., & Ventura, F. (2011). Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments. Environmental Pollution, 159(6), 1584–1591. doi:10.1016/j.envpol.2011.02.051
  • Bond, T., Huang, J., Templeton, M. R., & Graham, N. (2011). Occurrence and control of nitrogenous disinfection by-products in drinking water–a review. Water Research, 45(15), 4341–4354. doi:10.1016/j.watres.2011.05.034
  • Bradley, I., Straub, A., Maraccini, P., Markazi, S., & Nguyen, T. H. (2011). Iron oxide amended biosand filters for virus removal. Water Research, 45(15), 4501–4510. doi:10.1016/j.watres.2011.05.045
  • de Agua, C. (2017). Research to functionalized Biochars to remove arsenic and fluoride. Biochar Water Treatment. Retrieved from http://caminosdeagua.org/biochar-water-treatment/. Accessed 27 November 2017 or https://caminosdeagua.org/en/home
  • Carmona, E., Andreu, V., & Picó, Y. (2014). Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: from waste to drinking water. Science of the Total Environment, 484, 53–63. doi:10.1016/j.scitotenv.2014.02.085
  • Carra, I., Sánchez Pérez, J. A., Malato, S., Autin, O., Jefferson, B., & Jarvis, P. (2016). Performance of different advanced oxidation processes for tertiary wastewater treatment to remove the pesticide acetamiprid. Journal of Chemical Technology & Biotechnology, 91(1), 72–81. doi:10.1002/jctb.4577
  • Chakraborti, D., Rahman, M. M., Ahamed, S., Dutta, R. N., Pati, S., & Mukherjee, S. C. (2016). Arsenic groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle Ganga plain, India. Chemosphere, 152, 520–529. doi:10.1016/j.chemosphere.2016.02.119
  • Chaplin, B. P. (2014). Critical review of electrochemical advanced oxidation processes for water treatment applications. Environmental Science: Processes & Impacts, 16(6), 1182–1203. doi:10.1039/C3EM00679D
  • Chary, N. S., & Fernandez-Alba, A. R. (2012). Determination of volatile organic compounds in drinking and environmental waters. TrAC Trends in Analytical Chemistry, 32, 60–75. doi:10.1016/j.trac.2011.08.011
  • Chen, B., Chen, Z., & Lv, S. (2011). A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology, 102(2), 716–723. doi:10.1016/j.biortech.2010.08.067
  • Chen, G-J., Peng, C-y., Fang, J-y., Dong, Y-y., Zhu, X-h., & Cai, H-M. (2016). Biosorption of fluoride from drinking water using spent mushroom compost biochar coated with aluminum hydroxide. Desalination and Water Treatment, 57(26), 12385–12395. doi:10.1080/19443994.2015.1049959
  • Chen, G., & Walker, S. L. (2012). Fecal indicator bacteria transport and deposition in saturated and unsaturated porous media. Environmental Science & Technology, 46(16), 8782–8790. doi:10.1021/es301378q
  • Chen, H., Xie, A., & You, S. (2018). A review: Advances on absorption of heavy metals in the waste water by biochar. IOP Conference Series: Materials Science and Engineering (pp. 012160). Bristol, United Kingdom: IOP Publishing. doi:10.1088/1757-899X/301/1/012160
  • Chen, J., Wu, H., Qian, H., & Gao, Y. (2017). Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semiarid region of northwest China. Exposure and Health, 9(3), 183–195. doi:10.1007/s12403-016-0231-9
  • Chen, X., Luo, Q., Wang, D., Gao, J., Wei, Z., Wang, Z., … Mazumder, A. (2015). Simultaneous assessments of occurrence, ecological, human health, and organoleptic hazards for 77 VOCs in typical drinking water sources from 5 major river basins, China. Environmental Pollution, 206, 64–72. doi:10.1016/j.envpol.2015.06.027
  • Chen, X., Luo, Q., Yuan, S., Wei, Z., Song, H., Wang, D., & Wang, Z. (2013). Simultaneous determination of ten taste and odor compounds in drinking water by solid-phase microextraction combined with gas chromatography-mass spectrometry. Journal of Environmental Sciences, 25(11), 2313–2323. doi:10.1016/S1001-0742(12)60290-3
  • Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., & Liu, Y. (2016a). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chemical Engineering Journal, 284, 582–598.
  • Cheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H., & Yu, G. (2016b). Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnology Advances, 34(6), 1091–1102.
  • Chow, C. W., Fabris, R., Leeuwen, JV., Wang, D., & Drikas, M. (2008). Assessing natural organic matter treatability using high performance size exclusion chromatography. Environmental Science & Technology, 42(17), 6683–6689. doi:10.1021/es800794r
  • Chow, C. W., van Leeuwen, J. A., Fabris, R., & Drikas, M. (2009). Optimised coagulation using aluminium sulfate for the removal of dissolved organic carbon. Desalination, 245(1–3), 120–134. doi:10.1016/j.desal.2008.06.014
  • Chu, K. H., Shankar, V., Park, C. M., Sohn, J., Jang, A., & Yoon, Y. (2017). Evaluation of fouling mechanisms for humic acid molecules in an activated biochar-ultrafiltration hybrid system. Chemical Engineering Journal, 326, 240–248.
  • Cunha, D. G. F., Sabogal-Paz, L. P., & Dodds, W. K. (2016). Land use influence on raw surface water quality and treatment costs for drinking supply in São Paulo State (Brazil). Ecological Engineering, 94, 516–524. doi:10.1016/j.ecoleng.2016.06.063
  • De, D., Santosha, S., Aniya, V., Sreeramoju, A., & Satyavathi, B. (2018). Assessing the applicability of an agro-industrial waste to Engineered Bio-char as a dynamic adsorbent for Fluoride Sorption. Journal of Environmental Chemical Engineering, 6(2), 2998–3009. doi:10.1016/j.jece.2018.04.021
  • de Oliveira, P. R., Kalinke, C., Gogola, J. L., Mangrich, A. S., Junior, L. H. M., & Bergamini, M. F. (2017). The use of activated biochar for development of a sensitive electrochemical sensor for determination of methyl parathion. Journal of Electroanalytical Chemistry, 799, 602–608.
  • Diersing, N., & Nancy, F. (2009). Water quality: Frequently asked questions. Florida Brooks National Marine Sanctuary. Key West, FL.
  • Dietrich, A. M., & Burlingame, G. A. (2015). Critical review and rethinking of USEPA secondary standards for maintaining organoleptic quality of drinking water. Environmental Science & Technology, 49(2), 708–720. doi:10.1021/es504403t
  • Donald, D. B., Cessna, A. J., Sverko, E., & Glozier, N. E. (2007). Pesticides in surface drinking-water supplies of the northern Great Plains. Environmental Health Perspectives, 115(8), 1183. doi:10.1289/ehp.9435
  • Dowhan, W., Bogdanov, M., Mileykovskaya, E., & Vitrac, H. (2017). Functional roles of individual membrane phospholipids in Escherichia coli and Saccharomyces cerevisiae. In O. Geiger (Eds.), Biogenesis of fatty acids, lipids and membranes (pp. 1–22). Cham: Springer International Publishing.
  • Drikas, M., Dixon, M., & Morran, J. (2011). Long term case study of MIEX pre-treatment in drinking water; understanding NOM removal. Water Research, 45(4), 1539–1548. doi:10.1016/j.watres.2010.11.024
  • Edwards, T. M., Hamlin, H. J., Freymiller, H., Green, S., Thurman, J., & Guillette, L. J. (2018). Nitrate induces a type 1 diabetic profile in alligator hatchlings. Ecotoxicology and Environmental Safety, 147, 767–775. doi:10.1016/j.ecoenv.2017.09.052
  • Edzwald, J. K. (2010). Water Quality and Treatment A Handbook on Drinking Water. New York: McGrawHill.
  • Eichler, S., Christen, R., Höltje, C., Westphal, P., Bötel, J., Brettar, I., … Höfle, M. G. (2006). Composition and dynamics of bacterial communities of a drinking water supply system as assessed by RNA-and DNA-based 16S rRNA gene fingerprinting. Applied and Environmental Microbiology, 72(3), 1858–1872. doi:10.1128/AEM.72.3.1858-1872.2006
  • Elliott, M., Stauber, C., Koksal, F., DiGiano, F., & Sobsey, M. (2008). Reductions of E. coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter. Water Research, 42(10–11), 2662–2670. doi:10.1016/j.watres.2008.01.016
  • Essandoh, M., Kunwar, B., Pittman Jr, C. U., Mohan, D., & Mlsna, T. (2015). Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chemical Engineering Journal, 265, 219–227.
  • Esplugas, S., Bila, D. M., Krause, L. G. T., & Dezotti, M. (2007). Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. Journal of Hazardous Materials, 149(3), 631–642. doi:10.1016/j.jhazmat.2007.07.073
  • Essandoh, M., Wolgemuth, D., Pittman, C. U., Mohan, D., & Mlsna, T. (2017a). Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents. Environmental Science and Pollution Research, 24(5), 4577–4590. doi:10.1007/s11356-016-8188-6
  • Essandoh, M., Wolgemuth, D., Pittman, C. U., Mohan, D., & Mlsna, T. (2017b). Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere, 174, 49–57. doi:10.1016/j.chemosphere.2017.01.105
  • Estrada, J. M., Hernández, S., Muñoz, R., & Revah, S. (2013). A comparative study of fungal and bacterial biofiltration treating a VOC mixture. Journal of Hazardous Materials, 250, 190–197. doi:10.1016/j.jhazmat.2013.01.064
  • European Union. (2017). Drinking water Legislation. Retrieved from http://ec.europa.eu/environment/water/water-drink/legislation_en.html Accessed 16 December 2017.
  • Fan, A. M., & Steinberg, V. E. (1996). Health implications of nitrate and nitrite in drinking water: an update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regulatory Toxicology and Pharmacology, 23(1), 35–43. doi:10.1006/rtph.1996.0006
  • Fan, X., Tao, Y., Wang, L., Zhang, X., Lei, Y., Wang, Z., & Noguchi, H. (2014). Performance of an integrated process combining ozonation with ceramic membrane ultra-filtration for advanced treatment of drinking water. Desalination, 335(1), 47–54. doi:10.1016/j.desal.2013.12.014
  • Fang, F., Kanan, S., Patterson, H. H., & Cronan, C. S. (1998). A spectrofluorimetric study of the binding of carbofuran, carbaryl, and aldicarb with dissolved organic matter. Analytica Chimica Acta, 373(2–3), 139–151. doi:10.1016/S0003-2670(98)00392-4
  • Fernández-Luqueño, F., López-Valdez, F., Gamero-Melo, P., Luna-Suárez, S., Aguilera-González, E., Martínez, A., … Álvarez-Garza, M. (2013). Heavy metal pollution in drinking water-a global risk for human health: A review. African Journal of Environmental Science and Technology, 7(7), 567–584.
  • Ford, L., Bharadwaj, L., McLeod, L., & Waldner, C. (2017). Human health risk assessment applied to rural populations dependent on unregulated drinking water sources: A scoping review. International Journal of Environmental Research and Public Health, 14(8), 846. doi:10.3390/ijerph14080846
  • Francis, M. R., Sarkar, R., Roy, S., Jaffar, S., Mohan, V. R., Kang, G., & Balraj, V. (2016). Effectiveness of membrane filtration to improve drinking water: A quasi-experimental study from rural Southern India. The American Journal of Tropical Medicine and Hygiene, 95(5), 1192–1200. doi:10.4269/ajtmh.15-0675
  • Fu, J., Lee, W.-N., Coleman, C., Meyer, M., Carter, J., Nowack, K., & Huang, C.-H. (2017). Pilot investigation of two-stage biofiltration for removal of natural organic matter in drinking water treatment. Chemosphere, 166, 311–322. doi:10.1016/j.chemosphere.2016.09.101
  • Gao, J., Liu, Q., Song, L., & Shi, B. (2019). Risk assessment of heavy metals in pipe scales and loose deposits formed in drinking water distribution systems. Science of the Total Environment, 652, 1387–1395.
  • Gao, W., Liang, H., Ma, J., Han, M., Chen, Z-L., Han, Z-S., & Li, G-B. (2011). Membrane fouling control in ultrafiltration technology for drinking water production: a review. Desalination, 272(1–3), 1–8. doi:10.1016/j.desal.2011.01.051
  • Garcia, J., Markovski, J., Gifford, J. M., Apul, O., & Hristovski, K. D. (2017). The effect of metal (hydr) oxide nano-enabling on intraparticle mass transport of organic contaminants in hybrid granular activated carbon. Science of the Total Environment, 586, 1219–1227. doi:10.1016/j.scitotenv.2017.02.115
  • Garfí, M., Cadena, E., Sanchez-Ramos, D., & Ferrer, I. (2016). Life cycle assessment of drinking water: comparing conventional water treatment, reverse osmosis and mineral water in glass and plastic bottles. Journal of Cleaner Production, 137, 997–1003. doi:10.1016/j.jclepro.2016.07.218
  • Gibert, O., Lefèvre, B., Fernández, M., Bernat, X., Paraira, M., Calderer, M., & Martínez-Lladó, X. (2013). Characterising biofilm development on granular activated carbon used for drinking water production. Water Research, 47(3), 1101–1110. doi:10.1016/j.watres.2012.11.026
  • Gundogdu, A., Duran, C., Senturk, H. B., Soylak, M., Ozdes, D., Serencam, H., & Imamoglu, M. (2012). Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: equilibrium, kinetic, and thermodynamic study. Journal of Chemical & Engineering Data, 57(10), 2733–2743. doi:10.1021/je300597u
  • Gwenzi, W., Chaukura, N., Mukome, F. N., Machado, S., & Nyamasoka, B. (2015). Biochar production and applications in sub-Saharan Africa: Opportunities, constraints, risks and uncertainties. Journal of Environmental Management, 150, 250–261. doi:10.1016/j.jenvman.2014.11.027
  • Gwenzi, W., Chaukura, N., Noubactep, C., & Mukome, F. N. (2017). Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. Journal of Environmental Management, 197, 732–749. doi:10.1016/j.jenvman.2017.03.087
  • Han, J., Zhang, X., Liu, J., Zhu, X., & Gong, T. (2017). Characterization of halogenated DBPs and identification of new DBPs trihalomethanols in chlorine dioxide treated drinking water with multiple extractions. Journal of Environmental Sciences, 58, 83–92.
  • Herath, I., Kumarathilaka, P., Al-Wabel, M. I., Abduljabbar, A., Ahmad, M., Usman, A. R., & Vithanage, M. (2016). Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar. Microporous and Mesoporous Materials, 225, 280–288.
  • He, J., Song, Y., & Chen, J. P. (2017). Development of a novel biochar/PSF mixed matrix membrane and study of key parameters in treatment of copper and lead contaminated water. Chemosphere, 186, 1033–1045. doi:10.1016/j.chemosphere.2017.07.028
  • Hou, D., Li, G., & Nathanail, P. (2018). An emerging market for groundwater remediation in China: Policies, statistics, and future outlook. Frontiers of Environmental Science & Engineering, 12(1), 16.
  • Hu, X., Ding, Z., Zimmerman, A. R., Wang, S., & Gao, B. (2015). Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research, 68, 206–216. doi:10.1016/j.watres.2014.10.009
  • Huerta-Fontela, M., Galceran, M. T., & Ventura, F. (2011). Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Research, 45(3), 1432–1442. doi:10.1016/j.watres.2010.10.036
  • Ifthikar, J., Wang, J., Wang, Q., Wang, T., Wang, H., Khan, A., … Chen, Z. (2017). Highly efficient lead distribution by magnetic sewage sludge biochar: sorption mechanisms and bench applications. Bioresource Technology, 238, 399–406. doi:10.1016/j.biortech.2017.03.133
  • Inyang, M., & Dickenson, E. (2015). The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere, 134, 232–240. doi:10.1016/j.chemosphere.2015.03.072
  • Inyang, M., Gao, B., Zimmerman, A., Zhou, Y., & Cao, X. (2015). Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars. Environmental Science and Pollution Research, 22(3), 1868–1876. doi:10.1007/s11356-014-2740-z
  • Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., … Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406–433. doi:10.1080/10643389.2015.1096880
  • Ishaq, M., Jan, F. A., Khan, M. A., Ihsanullah, I., Ahmad, I., & Shakirullah, M. (2013). Effect of mercury and arsenic from industrial effluents on the drinking water and comparison of the water quality of polluted and non-polluted areas: a case study of Peshawar and Lower Dir. Environmental Monitoring and Assessment, 185(2), 1483–1494.
  • Jang, H. M., & Kan, E. (2019). Engineered biochar from agricultural waste for removal of tetracycline in water. Bioresource Technology, 284, 437–447.
  • Jenkins, M. W., Tiwari, S. K., & Darby, J. (2011). Bacterial, viral and turbidity removal by intermittent slow sand filtration for household use in developing countries: Experimental investigation and modeling. Water Research, 45(18), 6227–6239. doi:10.1016/j.watres.2011.09.022
  • Jeong, C. H., Postigo, C., Richardson, S. D., Simmons, J. E., Kimura, S. Y., Mariñas, B. J., … Plewa, M. J. (2015). Occurrence and comparative toxicity of haloacetaldehyde disinfection byproducts in drinking water. Environmental Science & Technology, 49(23), 13749–13759. doi:10.1021/es506358x
  • Jeong, C. H., Wagner, E. D., Siebert, V. R., Anduri, S., Richardson, S. D., Daiber, E. J., … Goslan, E. H. (2012). Occurrence and toxicity of disinfection byproducts in European drinking waters in relation with the HIWATE epidemiology study. Environmental Science & Technology, 46(21), 12120–12128. doi:10.1021/es3024226
  • Jiang, L., Hu, X., Xu, T., Zhang, H., Sheng, D., & Yin, D. (2013). Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China. Science of the Total Environment, 458, 267–272.
  • Jin, J., Sun, K., Wang, Z., Han, L., Du, P., Wang, X., & Xing, B. (2017). Effects of chemical oxidation on phenanthrene sorption by grass-and manure-derived biochars. Science of the Total Environment, 598, 789–796.
  • Jones, R. R., Weyer, P. J., Dellavalle, C. T., Inoue-Choi, M., Anderson, K. E., Cantor, K. P., … Silverman, D. T. (2016). Nitrate from drinking water and diet and bladder cancer among postmenopausal women in Iowa. Environmental Health Perspectives, 124(11), 1751. doi:10.1289/EHP191
  • Kaetzl, K., Lübken, M., Gehring, T. and Wichern, M., 2018. Efficient low-cost anaerobic treatment of wastewater using biochar and woodchip filters. Water, 10(7), p.818.
  • Karunanayake, A. G., Todd, O. A., Crowley, M., Ricchetti, L., Pittman, C. U., Jr, Anderson, R., … Mlsna, T. (2018). Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir. Chemical Engineering Journal, 331, 480–491. doi:10.1016/j.cej.2017.08.124
  • Karunanayake, A. G., Todd, O. A., Crowley, M. L., Ricchetti, L. B., Pittman, C. U., Anderson, R., & Mlsna, T. E. (2017). Rapid removal of salicylic acid, 4-nitroaniline, benzoic acid and phthalic acid from wastewater using magnetized fast pyrolysis biochar from waste Douglas fir. Chemical Engineering Journal, 319, 75–88. doi:10.1016/j.cej.2017.02.116
  • Kearns, J. P., Shimabuku, K. K., Mahoney, R. B., Knappe, D. R., & Summers, R. S. (2015). Meeting multiple water quality objectives through treatment using locally generated char: improving organoleptic properties and removing synthetic organic contaminants and disinfection by-products. Journal of Water, Sanitation and Hygiene for Development, 5(3), 359–372. doi:10.2166/washdev.2015.172
  • Khan, K., Lu, Y., Khan, H., Zakir, S., Khan, S., Khan, A. A., … Wang, T. (2013). Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan. Journal of Environmental Sciences, 25(10), 2003–2013.
  • Khan, S., Rauf, R., Muhammad, S., Qasim, M., & Din, I. (2016). Arsenic and heavy metals health risk assessment through drinking water consumption in the Peshawar District, Pakistan. Human and Ecological Risk Assessment: An International Journal, 22(3), 581–596. doi:10.1080/10807039.2015.1083845
  • Kim, S., Park, C. M., Jang, A., Jang, M., Hernández-Maldonado, A. J., Yu, M., … Yoon, Y. (2019). Removal of selected pharmaceuticals in an ultrafiltration-activated biochar hybrid system. Journal of Membrane Science, 570, 77–84. doi:10.1016/j.memsci.2018.10.036
  • Kırbıyık, Ç., Pütün, A. E., & Pütün, E. (2016). Comparative studies on adsorptive removal of heavy metal ions by biosorbent, bio-char and activated carbon obtained from low cost agro-residue. Water Science and Technology, 73(2), 423–436. doi:10.2166/wst.2015.504
  • Kirby, M. A., Nagel, C. L., Rosa, G., Iyakaremye, L., Zambrano, L. D., & Clasen, T. F. (2016). Faecal contamination of household drinking water in Rwanda: A national cross-sectional study. Science of the Total Environment, 571, 426–434. doi:10.1016/j.scitotenv.2016.06.226
  • Kong, H., He, J., Gao, Y., Wu, H., & Zhu, X. (2011). Cosorption of phenanthrene and mercury (II) from aqueous solution by soybean stalk-based biochar. Journal of Agricultural and Food Chemistry, 59(22), 12116–12123. doi:10.1021/jf202924a
  • Kostyla, C., Bain, R., Cronk, R., & Bartram, J. (2015). Seasonal variation of fecal contamination in drinking water sources in developing countries: A systematic review. Science of the Total Environment, 514, 333–343. doi:10.1016/j.scitotenv.2015.01.018
  • Kumar, A., Narang, S., Mehra, R., & Singh, S. (2017). Assessment of radon concentration and heavy metal contamination in groundwater samples from some areas of Fazilka district, Punjab, India. Indoor and Built Environment, 26(3), 368–374. doi:10.1177/1420326X15591639
  • Lau, A. Y., Tsang, D. C., Graham, N. J., Ok, Y. S., Yang, X., & Li, X-D. (2017). Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater. Chemosphere, 169, 89–98. doi:10.1016/j.chemosphere.2016.11.048
  • Lautenschlager, K., Hwang, C., Ling, F., Liu, W.-T., Boon, N., Köster, O., … Hammes, F. (2014). Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant. Water Research, 62, 40–52. doi:10.1016/j.watres.2014.05.035
  • Li, R., Deng, H., Zhang, X., Wang, J. J., Awasthi, M. K., Wang, Q., … Zhang, Z. (2018). High-efficiency removal of Pb (II) and humate by a CeO2–MoS2 hybrid magnetic biochar. Bioresource Technology, 273, 335–340.
  • Li, X., Zhao, C., & Zhang, M. (2019). Chapter 8 - Biochar for anionic contaminants removal from water. In Y. S. Ok, D. C. W. Tsang, N. Bolan, & J. M. Novak (Eds.), Biochar from Biomass and Waste (pp. 143–160). Amsterdam, Netherlands: Elsevier.
  • Li, Y., Shao, J., Wang, X., Deng, Y., Yang, H., & Chen, H. (2014a). Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy & Fuels, 28(8), 5119–5127. doi:10.1021/ef500725c
  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014b). A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment, 468, 843–853. doi:10.1016/j.scitotenv.2013.08.090
  • Lin, P., Zhang, X., Wang, J., Zeng, Y., Liu, S., & Chen, C. (2015). Comparison of different combined treatment processes to address the source water with high concentration of natural organic matter during snowmelt period. Journal of Environmental Sciences, 27, 51–58.
  • Lin, T., Yu, S., & Chen, W. (2016). Occurrence, removal and risk assessment of pharmaceutical and personal care products (PPCPs) in an advanced drinking water treatment plant (ADWTP) around Taihu Lake in China. Chemosphere, 152, 1–9. doi:10.1016/j.chemosphere.2016.02.109
  • Lisowski, P., Colmenares, J. C., MašEk, OE., Lisowski, W., Lisovytskiy, D., Kamińska, A., & Łomot, D., (2017). Dual functionality of TiO2/biochar hybrid materials: photocatalytic phenol degradation in the liquid phase and selective oxidation of methanol in the gas phase. ACS Sustainable Chemistry & Engineering, 5(7), 6274–6287. doi:10.1021/acssuschemeng.7b01251
  • Liu, F., Zuo, J., Chi, T., Wang, P., & Yang, B. (2015). Removing phosphorus from aqueous solutions by using iron-modified corn straw biochar. Frontiers of Environmental Science & Engineering, 9(6), 1066–1075. doi:10.1007/s11783-015-0769-y
  • Liu, G., Ji, J., Huang, H., Xie, R., Feng, Q., Shu, Y., … Liu, S. (2017). UV/H 2 O 2: An efficient aqueous advanced oxidation process for VOCs removal. Chemical Engineering Journal, 324, 44–50.
  • Liu, H., Pan, D., Zhu, M., & Zhang, D. (2016). Occurrence and emergency response of 2‐Methylisoborneol and Geosmin in a large shallow drinking water reservoir. CLEAN - Soil, Air, Water, 44(1), 63–71. doi:10.1002/clen.201500077
  • Liu, H., Wei, Y., Luo, J., Li, T., Wang, D., Luo, S., & Crittenden, J. C. (2019). 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water. Chemical Engineering Journal, 368, 639–648. doi:10.1016/j.cej.2019.03.007
  • Lou, K., Rajapaksha, A. U., Ok, Y. S., & Chang, S. X. (2016). Pyrolysis temperature and steam activation effects on sorption of phosphate on pine sawdust biochars in aqueous solutions. Chemical Speciation & Bioavailability, 28(1–4), 42–50. doi:10.1080/09542299.2016.1165080
  • Lu, S.-Y., Zhang, H.-M., Sojinu, S. O., Liu, G.-H., Zhang, J.-Q., & Ni, H.-G. (2015). Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China. Environmental Monitoring and Assessment, 187(1), 4220.
  • Lu, T., Yuan, H., Wang, Y., Huang, H., & Chen, Y. (2016). Characteristic of heavy metals in biochar derived from sewage sludge. Journal of Material Cycles and Waste Management, 18(4), 725–733. doi:10.1007/s10163-015-0366-y
  • Lyu, H., Tang, J., Shen, B., & Siddique, T. (2018). Development of a novel chem-bio hybrid process using biochar supported nanoscale iron sulfide composite and Corynebacterium variabile HRJ4 for enhanced trichloroethylene dechlorination. Water Research, 147, 132–141.
  • Maggioni, S., Balaguer, P., Chiozzotto, C., & Benfenati, E. (2013). Screening of endocrine-disrupting phenols, herbicides, steroid estrogens, and estrogenicity in drinking water from the waterworks of 35 Italian cities and from PET-bottled mineral water. Environmental Science and Pollution Research, 20(3), 1649–1660. doi:10.1007/s11356-012-1075-x
  • Malakar, S., Saha, P. D., Baskaran, D., & Rajamanickam, R. (2017). Comparative study of biofiltration process for treatment of VOCs emission from petroleum refinery wastewater—A review. Environmental Technology & Innovation, 8, 441–461.
  • Mandal, S., Sarkar, B., Bolan, N., Novak, J., Ok, Y. S., Van Zwieten, L., … Spokas, K. (2016). Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Critical Reviews in Environmental Science and Technology, 46(17), 1367–1401. doi:10.1080/10643389.2016.1239975
  • Matilainen, A., Gjessing, E. T., Lahtinen, T., Hed, L., Bhatnagar, A., & Sillanpää, M. (2011). An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere, 83(11), 1431–1442. doi:10.1016/j.chemosphere.2011.01.018
  • Matilainen, A., & Sillanpää, M. (2010). Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere, 80(4), 351–365. doi:10.1016/j.chemosphere.2010.04.067
  • Matilainen, A., Vepsäläinen, M., & Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: a review. Advances in Colloid and Interface Science, 159(2), 189–197. doi:10.1016/j.cis.2010.06.007
  • Mayakaduwa, S., Herath, I., Ok, Y. S., Mohan, D., & Vithanage, M. (2017). Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars. Environmental Science and Pollution Research, 24(29), 22755–22763. doi:10.1007/s11356-016-7430-6
  • Mayer, P., Hilber, I., Gouliarmou, V., Hale, S. E., Cornelissen, G., & Bucheli, T. D. (2016). How to determine the environmental exposure of PAHs originating from biochar. Environmental Science & Technology, 50(4), 1941–1948. doi:10.1021/acs.est.5b05603
  • McKie, M. J., Andrews, S. A., & Andrews, R. C. (2016). Conventional drinking water treatment and direct biofiltration for the removal of pharmaceuticals and artificial sweeteners: a pilot-scale approach. Science of the Total Environment, 544, 10–17. doi:10.1016/j.scitotenv.2015.11.145
  • Ministry of Communication and Information, S. (2017). TODAY Online - Operating cost of water system jumped S$0.8b in 15 years.
  • Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., & Chowdhary, P. (2019). Heavy metal contamination: An alarming threat to environment and human health. In R. C. Sobti, N. K. Arora, & R. Kothari (Eds.), Environmental biotechnology: For sustainable future (pp. 103–125). Singapore: Springer Singapore.
  • Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresource Technology, 160, 191–202.
  • Mohanty, S. K., & Boehm, A. B. (2015). Effect of weathering on mobilization of biochar particles and bacterial removal in a stormwater biofilter. Water Research, 85, 208–215. doi:10.1016/j.watres.2015.08.026
  • Mohanty, S. K., & Boehm, A. B. (2014). Escherichia coli removal in biochar-augmented biofilter: Effect of infiltration rate, initial bacterial concentration, biochar particle size, and presence of compost. Environmental Science & Technology, 48(19), 11535–11542. doi:10.1021/es5033162
  • Mohanty, S. K., Cantrell, K. B., Nelson, K. L., & Boehm, A. B. (2014). Efficacy of biochar to remove Escherichia coli from stormwater under steady and intermittent flow. Water Research, 61, 288–296. doi:10.1016/j.watres.2014.05.026
  • Mohod, C. V., & Dhote, J. (2013). Review of heavy metals in drinking water and their effect on human health. International Journal of Innovative Research in Science, Engineering and Technology, 2(7), 2992–2996.
  • Monis, P., Lau, M., Harris, M., Cook, D., & Drikas, M. (2017). Risk-based management of drinking water safety in Australia: Implementation of health based targets to determine water treatment requirements and identification of pathogen surrogates for validation of conventional filtration. Food and Waterborne Parasitology, 8–9, 64–74.
  • Mook, W., Chakrabarti, M., Aroua, M., Khan, G., Ali, B., Islam, M., & Hassan, M. A. (2012). Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination, 285, 1–13. doi:10.1016/j.desal.2011.09.029
  • Mu, R., Shi, H., Adams, C., Eichholz, T., & Ma, Y. (2017). Detection, occurrence, and removal of selected pharmaceuticals in Missouri source and finished drinking waters. Urban Water Journal, 14(7), 704–712. doi:10.1080/1573062X.2016.1240810
  • Mukundan, R., Pradhanang, S. M., Schneiderman, E. M., Pierson, D. C., Anandhi, A., Zion, M. S., … Steenhuis, T. S. (2013). Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA. Geomorphology, 183, 110–119. doi:10.1016/j.geomorph.2012.06.021
  • Nabeela, F., Azizullah, A., Bibi, R., Uzma, S., Murad, W., Shakir, S. K., … Häder, D.-P. (2014). Microbial contamination of drinking water in Pakistan—a review. Environmental Science and Pollution Research, 21(24), 13929–13942. doi:10.1007/s11356-014-3348-z
  • Nam, S.-W., Choi, D.-J., Kim, S.-K., Her, N., & Zoh, K.-D. (2014). Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon. Journal of Hazardous Materials, 270, 144–152. doi:10.1016/j.jhazmat.2014.01.037
  • Naushad, M., Khan, M. R., Alothman, Z. A., AlSohaimi, I., Rodriguez-Reinoso, F., Turki, T. M., & Ali, R. (2015). Removal of BrO3− from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry. Environmental Science and Pollution Research, 22(20), 15853–15865. doi:10.1007/s11356-015-4786-y
  • Ngeno, E., Orata, F., Lilechi, D., Shikuku, V. O., & Kimosop, S. (2016). Adsorption of caffeine and ciprofloxacin onto pyrolytically derived water hyacinth biochar: Isothermal, kinetics and thermodynamics. Journal of Chemistry and Chemical Engineering, 10, 185–194.
  • Niazi, N. K., Bibi, I., Shahid, M., Ok, Y. S., Burton, E. D., Wang, H., … Lüttge, A. (2018a). Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environmental Pollution, 232, 31–41.
  • Niazi, N. K., Bibi, I., Shahid, M., Ok, Y. S., Shaheen, S. M., Rinklebe, J., … Nawaz, M. F. (2018b). Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. Science of the Total Environment, 621, 1642–1651.
  • Oh, S., Hammes, F., & Liu, W.-T. (2018). Metagenomic characterization of biofilter microbial communities in a full-scale drinking water treatment plant. Water Research, 128, 278–285. doi:10.1016/j.watres.2017.10.054
  • Oladoja, N. A., Unuabonah, E. I., Amuda, O. S., & Kolawole, O. M. (2017). Operational principles and material requirements for coagulation/flocculation and adsorption-based water treatment operations. In Polysaccharides as a Green and Sustainable Resources for Water and Wastewater Treatment (1–11). Cham, Switzerland: Springer.
  • Oturan, M. A., & Aaron, J.-J. (2014). Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Critical Reviews in Environmental Science and Technology, 44(23), 2577–2641. doi:10.1080/10643389.2013.829765
  • Padaki, M., Murali, R. S., Abdullah, M., Misdan, N., Moslehyani, A., Kassim, M., … Ismail, A. (2015). Membrane technology enhancement in oil–water separation. A review. Desalination, 357, 197–207. doi:10.1016/j.desal.2014.11.023
  • Padhye, L. P., Yao, H., Kung'u, F. T., & Huang, C.-H. (2014). Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Research, 51, 266–276. doi:10.1016/j.watres.2013.10.070
  • Palansooriya, K. N., Ok, Y. S., Awad, Y. M., Lee, S. S., Sung, J.-K., Koutsospyros, A., & Moon, D. H. (2019a). Impacts of biochar application on upland agriculture: A review. Journal of Environmental Management, 234, 52–64. doi:10.1016/j.jenvman.2018.12.085
  • Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., … Ok, Y. S. (2019b). Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1(1), 3.
  • Papageorgiou, A., Papadakis, N., & Voutsa, D. (2016). Fate of natural organic matter at a full-scale Drinking Water Treatment Plant in Greece. Environmental Science and Pollution Research, 23(2), 1841–1851. doi:10.1007/s11356-015-5433-3
  • Pastor, M. M., Schatz, T., Traverso, M., Wagner, V., & Hinrichsen, O. (2018). Social aspects of water consumption: risk of access to unimproved drinking water and to unimproved sanitation facilities—an example from the automobile industry. The International Journal of Life Cycle Assessment, 23(4):940–956.
  • Pinto, A. J., Xi, C., & Raskin, L. (2012). Bacterial community structure in the drinking water microbiome is governed by filtration processes. Environmental Science & Technology, 46(16), 8851–8859. doi:10.1021/es302042t
  • Planning Commission India (2008). Report of the steering committee on urban development for eleventh five year plan (2007-2012). New Delhi, India: Government of India.
  • Plewa, M. J., Simmons, J. E., Richardson, S. D., & Wagner, E. D. (2010). Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection by‐products. Environmental and Molecular Mutagenesis, 51(8–9), 871–878. doi:10.1002/em.20585
  • Postigo, C., & Richardson, S. D. (2014). Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment. Journal of Hazardous Materials, 279, 461–475. doi:10.1016/j.jhazmat.2014.07.029
  • Pressman, J. G., Richardson, S. D., Speth, T. F., Miltner, R. J., Narotsky, M. G., Hunter, I., Sidney, E., … Parvez, S. (2010). Concentration, chlorination, and chemical analysis of drinking water for disinfection byproduct mixtures health effects research: US EPA’s four lab study. Environmental Science & Technology, 44(19), 7184–7192. doi:10.1021/es9039314
  • PTPC. (2017). Port Townsend Paper Company, Mill Works With Innovative Scientists to Develop New Stormwater Filtration Methods. Retrieved from http://www.ptpc.com/?p=1484. Accessed 26 November 2017.
  • PUB. (2017). Singapore's National Water Agency. Retrieved from https://www.pub.gov.sg/. Accessed 20 December 2017.
  • Qambrani, N. A., Rahman, M. M., Won, S., Shim, S., & Ra, C. (2017). Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 79, 255–273. doi:10.1016/j.rser.2017.05.057
  • Qiao, T., Yu, Z., Zhang, X., & Au, D. W. (2011). Occurrence and fate of pharmaceuticals and personal care products in drinking water in southern China. Journal of Environmental Monitoring, 13(11), 3097–3103. doi:10.1039/c1em10318k
  • Rahman, M. F., Peldszus, S., & Anderson, W. B. (2014). Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Research, 50, 318–340. doi:10.1016/j.watres.2013.10.045
  • Rajapaksha, A. U., Chen, S. S., Tsang, D. C., Zhang, M., Vithanage, M., Mandal, S., … Ok, Y. S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere, 148(27), 276–291. doi:10.1016/j.chemosphere.2016.01.043
  • Rajapaksha, A. U., Vithanage, M., Zhang, M., Ahmad, M., Mohan, D., Chang, S. X., & Ok, Y. S. (2014). Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresource Technology, 166, 303–308. doi:10.1016/j.biortech.2014.05.029
  • Rana, D., Narbaitz, R. M., Garand-Sheridan, A.-M., Westgate, A., Matsuura, T., Tabe, S., & Jasim, S. Y. (2014). Development of novel charged surface modifying macromolecule blended PES membranes to remove EDCs and PPCPs from drinking water sources. Journal of Materials Chemistry A, 2(26), 10059–10072. doi:10.1039/C4TA01530D
  • Rao, M.A., Simeone, G.D.R., Scelza, R. and Conte, P., 2017. Biochar based remediation of water and soil contaminated by phenanthrene and pentachlorophenol. Chemosphere, 186, pp.193-201.
  • Ravindra, K., & Mor, S. (2019). Distribution and health risk assessment of arsenic and selected heavy metals in Groundwater of Chandigarh, India. Environmental Pollution, 250, 820–830.
  • Reddy, K. R., Xie, T., & Dastgheibi, S. (2014). Evaluation of biochar as a potential filter media for the removal of mixed contaminants from urban storm water runoff. Journal of Environmental Engineering, 140(12), 04014043. doi:10.1061/(ASCE)EE.1943-7870.0000872
  • Regkouzas, P., & Diamadopoulos, E. (2019). Adsorption of selected organic micro-pollutants on sewage sludge biochar. Chemosphere, 224, 840–851. doi:10.1016/j.chemosphere.2019.02.165
  • Rene, E. R., Kar, S., Krishnan, J., Pakshirajan, K., López, M. E., Murthy, D., & Swaminathan, T. (2015). Start-up, performance and optimization of a compost biofilter treating gas-phase mixture of benzene and toluene. Bioresource Technology, 190, 529–535. doi:10.1016/j.biortech.2015.03.049
  • Ribeiro, A. R., Nunes, O. C., Pereira, M. F., & Silva, A. M. (2015). An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environment International, 75, 33–51. doi:10.1016/j.envint.2014.10.027
  • Richardson, S. D., Fasano, F., Ellington, J. J., Crumley, F. G., Buettner, K. M., Evans, J. J., … Luther, G. W. (2008). Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water. Environmental Science & Technology, 42(22), 8330–8338. doi:10.1021/es801169k
  • Richardson, S. D., & Postigo, C. (2011). Drinking water disinfection by-products. In Emerging organic contaminants and human health (pp. 93–137). Springer.
  • Rodriguez, O., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. (2017). Treatment Technologies for Emerging Contaminants in water: A review. Chemical Engineering Journal, 323, 361–380.
  • Rostvall, A., Zhang, W., Dürig, W., Renman, G., Wiberg, K., Ahrens, L., & Gago-Ferrero, P. (2018). Removal of pharmaceuticals, perfluoroalkyl substances and other micropollutants from wastewater using lignite, Xylit, sand, granular activated carbon (GAC) and GAC + Polonite® in column tests–Role of physicochemical properties. Water Research, 137, 97–106. doi:10.1016/j.watres.2018.03.008
  • Said, M., & Machunda, R. L. (2014). Defluoridation of water supplies using coconut shells activated carbon: batch studies. International Journal of Science and Research (IJSR), 3(7), 2327–2331.
  • Särkkä, H., Vepsäläinen, M., & Sillanpää, M. (2015). Natural organic matter (NOM) removal by electrochemical methods—A review. Journal of Electroanalytical Chemistry, 755, 100–108. doi:10.1016/j.jelechem.2015.07.029
  • Schaider, L. A., Rudel, R. A., Ackerman, J. M., Dunagan, S. C., & Brody, J. G. (2014). Pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer. Science of the Total Environment, 468, 384–393. doi:10.1016/j.scitotenv.2013.08.067
  • Shaheen, S. M., Niazi, N. K., Hassan, N. E., Bibi, I., Wang, H., Tsang, D. C., … Rinklebe, J. (2019). Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. International Materials Reviews, 64(4), 216–247.
  • Shakoor, M. B., Niazi, N. K., Bibi, I., Shahid, M., Saqib, Z. A., Nawaz, M. F., … Bundschuh, J. (2019). Exploring the arsenic removal potential of various biosorbents from water. Environment International, 123, 567–579.
  • Shang, Y., Wang, J., Liu, J., Jiang, D., Zhai, J., & Jiang, S. (2016). Suitability analysis of China's energy development strategy in the context of water resource management. Energy, 96, 286–293. doi:10.1016/j.energy.2015.12.079
  • Shankar, V., Heo, J., Al-Hamadani, Y. A., Park, C. M., Chu, K. H., & Yoon, Y. (2017). Evaluation of biochar-ultrafiltration membrane processes for humic acid removal under various hydrodynamic, pH, ionic strength, and pressure conditions. Journal of Environmental Management, 197, 610–618. doi:10.1016/j.jenvman.2017.04.040
  • Shields, K. F., Bain, R. E., Cronk, R., Wright, J. A., & Bartram, J. (2015). Association of supply type with fecal contamination of source water and household stored drinking water in developing countries: A bivariate meta-analysis. Environmental Health Perspectives, 123(12), 1222. doi:10.1289/ehp.1409002
  • Shrimali, M., & Singh, K. (2001). New methods of nitrate removal from water. Environmental Pollution, 112(3), 351–359. doi:10.1016/S0269-7491(00)00147-0
  • Sillanpää, M. (2014). Natural organic matter in water: Characterization and treatment methods Butterworth-Heinemann:.
  • Sindelar, H. R., Brown, M. T., & Boyer, T. H. (2014). Evaluating UV/H 2 O 2, UV/percarbonate, and UV/perborate for natural organic matter reduction from alternative water sources. Chemosphere, 105, 112–118. doi:10.1016/j.chemosphere.2013.12.040
  • Sizmur, T., Fresno, T., Akgül, G., Frost, H., & Moreno-Jiménez, E. (2017). Biochar modification to enhance sorption of inorganics from water. Bioresource Technology, 246, 34–47. doi:10.1016/j.biortech.2017.07.082
  • Soto, D. X., Koehler, G., Wassenaar, L. I., & Hobson, K. A. (2019). Spatio-temporal variation of nitrate sources to Lake Winnipeg using N and O isotope (δ15N, δ18O) analyses. Science of the Total Environment, 647, 486–493. doi:10.1016/j.scitotenv.2018.07.346
  • Stayner, L. T., Almberg, K., Jones, R., Graber, J., Pedersen, M., & Turyk, M. (2017). Atrazine and nitrate in drinking water and the risk of preterm delivery and low birth weight in four Midwestern states. Environmental Research, 152, 294–303. doi:10.1016/j.envres.2016.10.022
  • Stoquart, C., Servais, P., Bérubé, P. R., & Barbeau, B. (2012). Hybrid membrane processes using activated carbon treatment for drinking water: a review. Journal of Membrane Science, 411, 1–12. doi:10.1016/j.memsci.2012.04.012
  • Su, M., Yu, J., Zhang, J., Chen, H., An, W., Vogt, R. D., … Yang, M. (2015). MIB-producing cyanobacteria (Planktothrix sp.) in a drinking water reservoir: Distribution and odor producing potential. Water Research, 68, 444–453. doi:10.1016/j.watres.2014.09.038
  • Subedi, B., Codru, N., Dziewulski, D. M., Wilson, L. R., Xue, J., Yun, S., … Kannan, K. (2015). A pilot study on the assessment of trace organic contaminants including pharmaceuticals and personal care products from on-site wastewater treatment systems along Skaneateles Lake in New York State, USA. Water Research, 72, 28–39. doi:10.1016/j.watres.2014.10.049
  • Sun, Y., Xue, S., Li, L., Ding, W., Liu, J., & Han, Y. (2018). Sulfur dioxide and o-xylene co-treatment in biofilter: Performance, bacterial populations and bioaerosols emissions. Journal of Environmental Sciences, 69, 41–51.
  • Teixeira, M. R., Camacho, F. P., Sousa, V. S., & Bergamasco, R. (2017). Green technologies for cyanobacteria and natural organic matter water treatment using natural based products. Journal of Cleaner Production, 162, 484–490.
  • Terada, A., Okuyama, K., Nishikawa, M., Tsuneda, S., & Hosomi, M. (2012). The effect of surface charge property on Escherichia coli initial adhesion and subsequent biofilm formation. Biotechnology and Bioengineering, 109(7), 1745–1754. doi:10.1002/bit.24429
  • Tiwari, A. K., & De Maio, M. (2017). Assessment of risk to human health due to intake of chromium in the groundwater of the Aosta Valley region, Italy. Human and Ecological Risk Assessment: An International Journal, 23(5), 1153–1163. doi:10.1080/10807039.2017.1308813
  • Togola, A., & Budzinski, H. (2008). Multi-residue analysis of pharmaceutical compounds in aqueous samples. Journal of Chromatography A, 1177(1), 150–158. doi:10.1016/j.chroma.2007.10.105
  • Trellu, C., Péchaud, Y., Oturan, N., Mousset, E., Huguenot, D., Van Hullebusch, E. D., … Oturan, M. A. (2016). Comparative study on the removal of humic acids from drinking water by anodic oxidation and electro-Fenton processes: Mineralization efficiency and modelling. Applied Catalysis B: Environmental, 194, 32–41. doi:10.1016/j.apcatb.2016.04.039
  • Umar, M., Waseem, A., Sabir, M. A., Kassi, A. M., & Khan, A. S. (2013). The impact of geology of recharge areas on groundwater quality: a case study of Zhob River Basin, Pakistan. CLEAN - Soil, Air, Water, 41(2), 119–127. doi:10.1002/clen.201100581
  • United Nations. (2017). Sustainable development goals. Retrieved from http://www.un.org/sustainabledevelopment/sustainable-development-goals/. Accessed 12 December 2017.
  • University of Idaho. (2015). Greg Möller’s research and teaching efforts quench a global thirst for clean water and knowledge. UI Environmental Chemist Creating Sustainable Science. Retrieved from www.uidaho.edu/news/here-we-have-idaho-magazine/past-issues/2015-fall/greg-moller/ and http://www.uidaho.edu/news/news-articles/media-coverage/2017-fall/121517-mollerhonored. Accessed 27 November 2017.
  • USEPA. (2017). How much does it cost to treat and deliver drinking water? Retrieved from https://safewater.zendesk.com/hc/en-us/articles/211400478-How-much-does-it-cost-to-treat-and-deliver-drinking-water. Accessed 11 December 2017.
  • USEPA. (2012). United States Environmental Protection Agency, Edition of the Drinking Water Standards and Health Advisories. EP Agency (ed.).
  • Usman, A. R., Ahmad, M., El-Mahrouky, M., Al-Omran, A., Ok, Y. S., Sallam, A. S., … Al-Wabel, M. I. (2016). Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environmental Geochemistry and Health, 38(2), 511–521. doi:10.1007/s10653-015-9736-6
  • Uyguner, C., Bekbolet, M., & Selcuk, H. (2007). A comparative approach to the application of a physico‐chemical and advanced oxidation combined system to natural water samples. Separation Science and Technology, 42(7), 1405–1419. doi:10.1080/01496390701289807
  • Van Toan, P., Sebesvari, Z., Bläsing, M., Rosendahl, I., & Renaud, F. G. (2013). Pesticide management and their residues in sediments and surface and drinking water in the Mekong Delta, Vietnam. Science of the Total Environment, 452, 28–39. doi:10.1016/j.scitotenv.2013.02.026
  • Vingerhoeds, M. H., Nijenhuis-de Vries, M. A., Ruepert, N., van der Laan, H., Bredie, W. L., & Kremer, S. (2016). Sensory quality of drinking water produced by reverse osmosis membrane filtration followed by remineralisation. Water Research, 94, 42–51. doi:10.1016/j.watres.2016.02.043
  • Vithanage, M., Mayakaduwa, S., Herath, I., Ok, Y. S., & Mohan, D. (2016). Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks. Chemosphere, 150, 781–789. doi:10.1016/j.chemosphere.2015.11.002
  • Vulliet, E., Cren-Olivé, C., & Grenier-Loustalot, M.-F. (2011). Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters. Environmental Chemistry Letters, 9(1), 103–114. doi:10.1007/s10311-009-0253-7
  • Wang, C., Wang, T., Li, W., Yan, J., Li, Z., Ahmad, R., … Zhu, N. (2014). Adsorption of deoxyribonucleic acid (DNA) by willow wood biochars produced at different pyrolysis temperatures. Biology and Fertility of Soils, 50(1), 87–94. doi:10.1007/s00374-013-0836-0
  • Wang, H., Zhu, Y., & Hu, C. (2017). Impacts of bacteria and corrosion on removal of natural organic matter and disinfection byproducts in different drinking water distribution systems. International Biodeterioration & Biodegradation, 117, 52–59. doi:10.1016/j.ibiod.2016.11.023
  • Wang, S., Zhao, M., Zhou, M., Li, Y. C., Wang, J., Gao, B., … Igalavithana, A. D. (2019a). Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review. Journal of Hazardous Materials, 373, 820–834.
  • Wang, X., Li, C., Li, Z., Yu, G., & Wang, Y. (2019). Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Ecotoxicology and Environmental Safety, 168, 45–52. doi:10.1016/j.ecoenv.2018.10.022
  • Water Partnership Program. (2009). Financing water & sanitation infrastructure for economic growth and development. In Proceedings: 2nd African Water Week, Johannesburg, South Africa.
  • Whelton, A. J., McMillan, L., Connell, M., Kelley, K. M., Gill, J. P., White, K. D., … Novy, C. (2015). Residential tap water contamination following the Freedom Industries chemical spill: perceptions, water quality, and health impacts. Environmental Science & Technology, 49(2), 813–823. doi:10.1021/es5040969
  • WHO. (2017a). Guidelines for drinking-water quality: Fourth edition incorporating the first addendum. Geneva: World Health Organization. Retrieved from https://apps.who.int/iris/handle/10665/254637 (Licence: CC BY-NC-SA 3.0 IGO). Accessed May 2017.
  • WHO. (2017b). World Health Organization, Media centre,The cost of a polluted environment: 1.7 million child deaths a year, says WHO. Retrieved from http://www.who.int/mediacentre/news/releases/2017/pollution-child-death/en/.
  • WHO. (2017c). World Health Organization, Water quality and health-review of turbidity: information for regulators and water suppliers. Retrieved from https://apps.who.int/iris/handle/10665/254631. Accessed July 2017.
  • WHO and UNICEF. (2017). World Health Organization. Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. Geneva, Switzerland: World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF). Retrieved from www.unicef.org/publications/index_96611.html Accessed 22 November 2017.
  • Wilson, J. M., Wang, Y., & VanBriesen, J. M. (2014). Sources of high total dissolved solids to drinking water supply in southwestern Pennsylvania. Journal of Environmental Engineering, 140(5), B4014003. doi:10.1061/(ASCE)EE.1943-7870.0000733
  • Wilson, W. W., Wade, M. M., Holman, S. C., & Champlin, F. R. (2001). Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. Journal of Microbiological Methods, 43(3), 153–164. doi:10.1016/S0167-7012(00)00224-4
  • Wongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. (2014). Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environmental Geochemistry and Health, 36(1), 169–182.
  • World Bank. (2007). Stepping up: improving the performance of China's urban water utilities (English). Washington, DC: World Bank.
  • Wu, E. L., Fleming, P. J., Yeom, M. S., Widmalm, G., Klauda, J. B., Fleming, K. G., & Im, W. (2014). E. coli outer membrane and interactions with OmpLA. Biophysical Journal, 106(11), 2493–2502. doi:10.1016/j.bpj.2014.04.024
  • Wu, Q., Leung, J. Y., Geng, X., Chen, S., Huang, X., Li, H., … Lu, Y. (2015). Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals. Science of the Total Environment, 506, 217–225.
  • Xiao, J., Yue, Q., Gao, B., Sun, Y., Kong, J., Gao, Y., … Wang, Y. (2014). Performance of activated carbon/nanoscale zero-valent iron for removal of trihalomethanes (THMs) at infinitesimal concentration in drinking water. Chemical Engineering Journal, 253, 63–72. doi:10.1016/j.cej.2014.05.030
  • Xie, Y. (2016). Disinfection byproducts in drinking water: Formation, analysis, and control. Boca Raton, FL: CRC press.
  • Xu, G., Lv, Y., Sun, J., Shao, H., & Wei, L. (2012). Recent advances in biochar applications in agricultural soils: benefits and environmental implications. CLEAN - Soil, Air, Water, 40(10), 1093–1098. doi:10.1002/clen.201100738
  • Xu, J., Tang, W., Ma, J., & Wang, H. (2017). Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes. Applied Microbiology and Biotechnology, 101(13), 5531–5541. doi:10.1007/s00253-017-8258-9
  • Yang, H. I., Lou, K., Rajapaksha, A. U., Ok, Y. S., Anyia, A. O., & Chang, S. X. (2017a). Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars. Environmental Science and Pollution Research, 25, 25638–25647.
  • Yang, X., Ng, W., Wong, B. S. E., Baeg, G. H., Wang, C.-H., & Ok, Y. S. (2019). Characterization and ecotoxicological investigation of biochar produced via slow pyrolysis: Effect of feedstock composition and pyrolysis conditions. Journal of Hazardous Materials, 365, 178–185. doi:10.1016/j.jhazmat.2018.10.047
  • Yang, Y., Ok, Y. S., Kim, K.-H., Kwon, E. E., & Tsang, Y. F. (2017b). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of the Total Environment, 596, 303–320. doi:10.1016/j.scitotenv.2017.04.102
  • Yousefi, M., Ghoochani, M., & Mahvi, A. H. (2018). Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran. Ecotoxicology and Environmental Safety, 148, 426–430.
  • Yu, J., Wang, D., Yan, M., Ye, C., Yang, M., & Ge, X. (2007). Optimized coagulation of high alkalinity, low temperature and particle water: pH adjustment and polyelectrolytes as coagulant aids. Environmental Monitoring and Assessment, 131(1–3), 377–386. doi:10.1007/s10661-006-9483-3
  • Zamyadi, A., Henderson, R., Stuetz, R., Hofmann, R., Ho, L., & Newcombe, G. (2015). Fate of geosmin and 2-methylisoborneol in full-scale water treatment plants. Water Research, 83, 171–183. doi:10.1016/j.watres.2015.06.038
  • Zhang, F., Wang, X., Xionghui, J., & Ma, L. (2016). Efficient arsenate removal by magnetite-modified water hyacinth biochar. Environmental Pollution, 216, 575–583. doi:10.1016/j.envpol.2016.06.013
  • Zhao, H-T., Ma, S., Zheng, S-y., Han, S-W., Yao, F-X., Wang, X-Z., … Feng, K. (2019). β–cyclodextrin functionalized biochars as novel sorbents for high-performance of Pb2+ removal. Journal of Hazardous Materials, 362, 206–213.
  • Zhao, Y., Qin, F., Boyd, J. M., Anichina, J., & Li, X.-F. (2010). Characterization and determination of chloro-and bromo-benzoquinones as new chlorination disinfection byproducts in drinking water. Analytical Chemistry, 82(11), 4599–4605. doi:10.1021/ac100708u
  • Zhou, Y., Gao, B., Zimmerman, A. R., & Cao, X. (2014). Biochar-supported zerovalent iron reclaims silver from aqueous solution to form antimicrobial nanocomposite. Chemosphere, 117, 801–805.
  • Zhou, Z., Liu, Y-G., Liu, S-B., Liu, H-y., Zeng, G-M., Tan, X-F., … Cai, X-X. (2017). Sorption performance and mechanisms of arsenic (V) removal by magnetic gelatin-modified biochar. Chemical Engineering Journal, 314, 223–231.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.