1,074
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Heterogeneous photocatalytic decomposition of per- and poly-fluoroalkyl substances: A review

, , , &
Pages 523-547 | Published online: 28 Jun 2019

References

  • Arias Espana, V. A., Mallavarapu, M., & Naidu, R. (2015). Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): A critical review with an emphasis on field testing. Environmental Technology & Innovation, 4, 168–181. doi: 10.1016/j.eti.2015.06.001
  • Barry, V., Winquist, A., & Steenland, K. (2013). Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environmental Health Perspective, 121(11–12), 1313–1318. doi: 10.1289/ehp.1306615
  • Benford, D., de Boer, J. G., Carere, A., di Domenico, A., Johansson, N., Schrenk, D., … Dellatte, E. (2008). Opinion of the scientific panel on contaminants in the food chain on perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. The EFSA Journal, 653, 1–131.
  • Beškoski, V. P., Yamamoto, A., Nakano, T., Yamamoto, K., Matsumura, C., Motegi, M., … Inui, H. (2018). Defluorination of perfluoroalkyl acids is followed by production of monofluorinated fatty acids. Science of the Total Environment, 636, 355–359. doi: 10.1016/j.scitotenv.2018.04.243
  • Boczkaj, G., & Fernandes, A. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chemical Engineering Journal, 320, 608–633. doi: 10.1016/j.cej.2017.03.084
  • Boczkaj, G., Przyjazny, A., & Kamiński, M. (2014). New procedures for control of industrial effluents treatment processes. Industrial & Engineering Chemistry Research, 53(4), 1503–1514. doi: 10.1021/ie402126d
  • Boczkaj, G., Makoś, P., & Przyjazny, A. (2016a). Application of dispersive liquid-liquid microextraction and gas chromatography with mass spectrometry for the determination of oxygenated volatile organic compounds in effluents from the production of petroleum bitumen. Journal of Separation Science, 39(13), 2604–2615. doi: 10.1002/jssc.201501355
  • Boczkaj, G., Makoś, P., & Przyjazny, A. (2016b). Application of dynamic headspace and gas chromatography coupled to mass spectrometry (DHS-GC-MS) for the determination of oxygenated volatile organic compounds in refinery effluents. Analytical Methods, 8(17), 3570–3577. doi: 10.1039/C5AY03043A
  • Brace, N. O. (1962). Long chain alkanoic and alkenoic acids with perfluoroalkyl terminal segments. The Journal of Organic Chemistry, 27(12), 4491–4498. doi: 10.1021/jo01059a090
  • Cao, M. H., Wang, B. B., Yu, H. S., Wang, L. L., Yuan, S. H., & Chen, J. (2010). Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation. Journal of Hazardous Materials, 179(1–3), 1143–1146. doi: 10.1016/j.jhazmat.2010.02.030
  • Chen, J., Zhang, P.-Y., & Liu, J. (2007). Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. Journal of Environmental Sciences, 19(4), 387–390. doi: 10.1016/S1001-0742(07)60064-3
  • Chen, M.-J., Lo, S.-L., Lee, Y.-C., & Huang, C.-C. (2015). Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide. Journal of Hazardous Materials, 288, 168–175. doi: 10.1016/j.jhazmat.2015.02.004
  • Chen, M.-J., Lo, S.-L., Lee, Y.-C., Kuo, J., & Wu, C.-H. (2016). Decomposition of perfluorooctanoic acid by ultraviolet light irradiation with Pb-modified titanium dioxide. Journal of Hazardous Materials, 303, 111–118. doi: 10.1016/j.jhazmat.2015.10.011
  • Chen, Y.-C., Lo, S.-L., & Kuo, J. (2011). Effects of titanate nanotubes synthesized by a microwave hydrothermal method on photocatalytic decomposition of perfluorooctanoic acid. Water Research, 45(14), 4131–4140. doi: 10.1016/j.watres.2011.05.020
  • Dillert, R., Bahnemann, D., & Hidaka, H. (2007). Light-induced degradation of perfluorocarboxylic acids in the presence of titanium dioxide. Chemosphere, 67(4), 785–792. doi: 10.1016/j.chemosphere.2006.10.023
  • Dombrowski, P. M., Kakarla, P., Caldicott, W., Chin, Y., Sadeghi, V., Bogdan, D., … Chiang, S.-Y. D. (2018). Technology review and evaluation of different chemical oxidation conditions on treatability of PFAS. Remediation Journal, 28(2), 135–150. doi: 10.1002/rem.21555
  • Ellis, D. A., Martin, J. W., Silva, A. O. D., Mabury, S. A., Hurley, M. D., Andersen, M. P. S., & Wallington, T. J. (2004). Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids. Environmental Science & Technology, 38(12), 3316–3321. doi: 10.1021/es049860w
  • Estrellan, C. R., Salim, C., & Hinode, H. (2010). Photocatalytic decomposition of perfluorooctanoic acid by iron and niobium co-doped titanium dioxide. Journal of Hazardous Materials, 179(1–3), 79–83. doi: 10.1016/j.jhazmat.2010.02.060
  • Gągol, M., Przyjazny, A., & Boczkaj, G. (2018). Wastewater treatment by means of advanced oxidation processes based on cavitation – A review. Chemical Engineering Journal, 338, 599–627. doi: 10.1016/j.cej.2018.01.049
  • Gatto, S., Sansotera, M., Persico, F., Gola, M., Pirola, C., Panzeri, W., … Bianchi, C. L. (2015). Surface fluorination on TiO2 catalyst induced by photodegradation of perfluorooctanoic acid. Catalysis Today, 241, 8–14. doi: 10.1016/j.cattod.2014.04.031
  • Gomez-Ruiz, B., Gómez-Lavín, S., Diban, N., Boiteux, V., Colin, A., Dauchy, X., & Urtiaga, A. (2017). Efficient electrochemical degradation of poly- and perfluoroalkyl substances (PFASs) from the effluents of an industrial wastewater treatment plant. Chemical Engineering Journal, 322, 196–204. doi: 10.1016/j.cej.2017.04.040
  • Gomez-Ruiz, B., Ribao, P., Diban, N., Rivero, M. J., Ortiz, I., & Urtiaga, A. (2018). Photocatalytic degradation and mineralization of perfluorooctanoicacid (PFOA) using a composite TiO2-rGO catalyst. Journal of Hazardous Materials, 344, 950–957. doi: 10.1016/j.jhazmat.2017.11.048
  • Goss, K.-U. (2008). The pKa values of PFOA and other highly fluorinated carboxylic acids. Environmental Science & Technology, 42(2), 456–458. doi: 10.1021/es702192c
  • Gratzel, M. (1989). Heterogeneous photochemical electron transfer. Boca Raton, FL: CRC Press. ISBN: 9781315894102
  • Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69–96. doi: 10.1021/cr00033a004
  • Houtz, E. F., & Sedlak, D. L. (2012). Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff. Environmental Science & Technology, 46(17), 9342–9349. doi: 10.1021/es302274g
  • https://www.arc.gov.au/news-publications/media/media-releases/new-research-program-tackle-pfas
  • https://www.canr.msu.edu/news/perfluorinated_chemicals_what_they_are_and_what_you_should_know_about_them
  • https://www.epa.gov/pfas
  • https://www.grants.gov.au/?event=public.FO.show&FOUUID=7F361450-BE46-18B4-7A113D38FA2EA993
  • http://www.h2o2.com/products-and-services/us-peroxide-technologies.aspx?pid=112&name=Hydrogen-Peroxide
  • Järnberg, U., Holmström, K., Bavel, B. V., & Kärrman, A. (2006). Perfluoroalkylated acids and related compounds (PFAS) in the Swedish environment. Chemistry Sources & Exposure, Report to Swedish Environment Protection Agency.
  • Kosmulski, M. (2001). Pristine points of zero charge of gallium and indium oxides. Journal of Colloid and Interface Science, 238(1), 225–227. doi: 10.1006/jcis.2001.7484
  • Kutsuna, S., & Hori, H. (2008). Experimental determination of Henry’s law constant of perfluorooctanoic acid (PFOA) at 298 K by means of an inert-gas stripping method with a helical plate. Atmospheric Environment, 42(39), 8883–8892. doi: 10.1016/j.atmosenv.2008.09.008
  • Kwon, B. G., Lim, H.-J., Na, S.-H., Choi, B.-I., Shin, D.-S., & Chung, S.-Y. (2014). Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant. Chemosphere, 109, 221–225. doi: 10.1016/j.chemosphere.2014.01.072
  • Lampert, D. J., Frisch, M. A., Asce, G. E., & Speitel, M. Jr. (2007). Removal of perfluorooctanoic acid and perfluorooctane sulfonate from wastewater by ion exchange. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 11(1), 60–68. doi: 10.1061/(ASCE)1090-025X(2007)11:1(60)
  • Li, M., Yu, Z., Liu, Q., Sun, L., & Huang, W. (2016). Photocatalytic decomposition of perfluorooctanoic acid by noble metallic nanoparticles modified TiO2. Chemical Engineering Journal, 286, 232–238. doi: 10.1016/j.cej.2015.10.037
  • Li, X., Zhang, P., Jin, L., Shao, T., Li, Z., & Cao, J. (2012a). Efficient photocatalytic decomposition of perfluorooctanoic acid by indium oxide and its mechanism. Environmental Science & Technology, 46(10), 5528–5534. doi: 10.1021/es204279u
  • Li, Z., Zhang, P., Li, J., Shao, T., & Jin, L. (2013a). Synthesis of In2O3-graphene composites and their photocatalytic performance towards perfluorooctanoic acid decomposition. Journal of Photochemistry and Photobiology A: Chemistry, 271, 111–116. doi: 10.1016/j.jphotochem.2013.08.012
  • Li, Z., Zhang, P., Shao, T., & Li, X. (2012b). In2O3 nanoporous nanosphere: A highly efficient photocatalyst for decomposition of perfluorooctanoic acid. Applied Catalysis B: Environmental, 125, 350–357. doi: 10.1016/j.apcatb.2012.06.017
  • Li, Z., Zhang, P., Shao, T., Wang, J., Jin, L., & Li, X. (2013b). Different nanostructured In2O3 for photocatalytic decomposition of perfluorooctanoic acid (PFOA). Journal of Hazardous Materials, 260, 40–46. doi: 10.1016/j.jhazmat.2013.04.042
  • Lin, A. Y.-C., Panchangam, S. C., Chang, C.-Y., Hong, P. K. A., & Hsueh, H.-F. (2012). Removal of perfluorooctanoic acid and perfluorooctane sulfonate via ozonation under alkaline condition. Journal of Hazardous Materials, 243, 272–277. doi: 10.1016/j.jhazmat.2012.10.029
  • Liu, C. S., Higgins, C. P., Wang, F., & Shih, K. (2012a). Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water. Separation and Purification Technology, 91, 46–51. doi: 10.1016/j.seppur.2011.09.047
  • Liu, C. S., Shih, K., & Wang, F. (2012b). Oxidative decomposition of perfluorooctanesulfonate in water by permanganate. Separation and Purification Technology, 87(5), 95–100. doi: 10.1016/j.seppur.2011.11.027
  • Liu, J., Van Hoomissen, D. J., Liu, T., Maizel, A., Huo, X., Fernández, S. R., … Strathmann, T. J. (2018). Reductive defluorination of branched per- and polyfluoroalkyl substances with cobalt complex catalysts. Environmental Science & Technology Letters, 5, 289–294. doi: 10.1021/acs.estlett.8b00122
  • Lopez-Espinosa, M.-J., Fletcher, T., Armstrong, B., Genser, B., Dhatariya, K., Mondal, D., … Leonardi, G. (2011). Association of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with age of puberty among children living near a chemical plant. Environmental Science & Technology, 45(19), 8160–8166. doi: 10.1021/es1038694
  • Makoś, P., Fernandes, A., & Boczkaj, G. (2017). Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography-mass spectrometry. Journal of Chromatography A, 1517, 26–34. doi: 10.1016/j.chroma.2017.08.045
  • Makoś, P., Fernandes, A., Przyjazny, A., & Boczkaj, G. (2018). Sample preparation procedure using extraction and derivatization of carboxylic acids from aqueous samples by means of deep eutectic solvents for gas chromatographic-mass spectrometric analysis. Journal of Chromatography A, 1555, 10–19. doi: 10.1016/j.chroma.2018.04.054
  • Makoś, P., Przyjazny, A., & Boczkaj, G. (2019). Methods of assaying volatile oxygenated organic compounds in effluent samples by gas chromatography – A review. Journal of Chromatography A, 1592, 143–160. doi: 10.1016/j.chroma.2019.01.045
  • Melzer, D., Rice, N., Depledge, M. H., Henley, W. E., & Galloway, T. S. (2010). Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. Environmental Health Perspective, 118(5), 686–692. doi: 10.1289/ehp.0901584
  • Ministry of the Environment of Japan. (2013). Summary of the guideline on the treatment of wastes containing perfluorooctane sulfonic acid (PFOS), and its salts in Japan.
  • Moriwaki, H., Takagi, Y., Tanaka, M., Tsuruho, K., Okitsu, K., & Maeda, Y. (2005). Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic Acid. Environmental Science & Technology, 39(9), 3388–3392. doi: 10.1021/es040342v
  • Ochoa-Herrera, V., Sierra-Alvarez, R., Somogyi, A., Jacobsen, N. E., Wysochi, V. H., & Field, J. A. (2008). Reductive defluorination of perfluorooctane sulfonate. Environmental Science & Technology, 42(9), 3260–3264. doi: 10.1021/es702842q
  • Olsen, G. W., Burris, J. M., Ehresman, D. J., Froehlich, J. W., Seacat, A. M., Butenhoff, J. L., & Zobel, L. R. (2007). Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environmental Health Perspectives, 115(9), 1298–1305. doi: 10.1289/ehp.10009
  • Panchangam, S. C., Lin, A. Y.-C., Shaik, K. L., & Lin, C.-F. (2009). Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium. Chemosphere, 77(2), 242–248. doi: 10.1016/j.chemosphere.2009.07.003
  • Panchangam, S. C., Lin, A. Y.-C., Tsai, J.-H., & Lin, C.-F. (2009). Sonication-assisted photocatalytic decomposition of perfluorooctanoic acid. Chemosphere, 75(5), 654–660. doi: 10.1016/j.chemosphere.2008.12.065
  • Parks, G. A. (1965). The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chemical Reviews, 65(2), 177–198. doi: 10.1021/cr60234a002
  • Park, H., Kim, H.-I., Moon, G.-H., & Choi, W. (2016). Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy & Environmental Science, 9, 411–433. doi: 10.1039/C5EE02575C
  • Qu, R., Liu, J., Li, C., Wang, L., Wang, Z., & Wu, J. (2016). Experimental and theoretical insights into the photochemical decomposition of environmentally persistent perfluorocarboxylic acids. Water Research, 104(1), 34–43. doi: 10.1016/j.watres.2016.07.071
  • Qu, Y., Zhang, C., Li, F., Chen, J., & Zhou, Q. (2010). Photo-reductive defluorination of perfluorooctanoic acid in water. Water Research, 44(9), 2939–2947. doi: 10.1016/j.watres.2010.02.019
  • Rayne, S., & Forest, K. (2009). Perfluoroalkyl sulfonic and carboxylic acids: A critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 44(12), 1145–1199. doi: 10.1080/10934520903139811
  • Rayne, S., & Forest, K. (2010). Theoretical studies on the pKa values of perfluoroalkyl carboxylic acids. Journal of Molecular Structure: THEOCHEM, 949(1–3), 60–69. doi: 10.1016/j.theochem.2010.03.003
  • Ritscher, A., Wang, Z., Scheringer, M., Boucher, J. M., Ahrens, L., Berger, U., … Vierke, L. (2018). Zürich statement on future actions on per- and polyfluoroalkyl substances (PFASs). Environmental Health Perspectives, 126(8), 084502. doi: 10.1289/EHP4158
  • Ross, I., McDonough, J., Miles, J., Storch, P., Thelakkat Kochunarayanan, P., Kalve, E., … Burdick, J. (2018). A review of emerging technologies for remediation of PFASs. Remediation Journal, 28(2), 101–126. doi: 10.1002/rem.21553
  • Sahu, S. P., Qanbarzadeh, M., Ateia, M., Torkzadeh, H., Maroli, A. S., & Cates, E. L. (2018). Rapid degradation and mineralization of perfluorooctanoic acid by a new petitjeanite Bi3O(OH)(PO4)2 microparticle ultraviolet photocatalyst. Environmental Science & Technology Letters, 5(8), 533–538. doi: 10.1021/acs.estlett.8b00395
  • Sansotera, M., Persico, F., Pirola, C., Navarrini, W., Michele, A. D., & Bianchi, C. L. (2014). Decomposition of perfluorooctanoic acid photocatalyzed by titanium dioxide: Chemical modification of the catalyst surface induced by fluoride ions. Applied Catalysis B: Environmental, 148-149, 29–35. doi: 10.1016/j.apcatb.2013.10.038
  • Sansotera, M., Persico, F., Rizzi, V., Panzeri, W., Pirola, C., Bianchi, C. L., … Navarrini, W. (2015). The effect of oxygen in the photocatalytic oxidation pathways of perfluorooctanoic acid. Journal of Fluorine Chemistry, 179, 159–168. doi: 10.1016/j.jfluchem.2015.06.019
  • Schaefer, C. E., Andaya, C., Burant, A., Condee, C. W., Urtiaga, A., Strathmann, T. J., & Higgins, C. P. (2017). Electrochemical treatment of perfluorooctanoic acid and perfluorooctane sulfonate: Insights into mechanisms and application to groundwater treatment. Chemical Engineering Journal, 317, 424–432. doi: 10.1016/j.cej.2017.02.107
  • Shah, N. S., Khan, J. A., Nawaz, S., & Khan, H. M. (2014). Role of aqueous electron and hydroxyl radical in the removal of endosulfan from aqueous solution using gamma irradiation. Journal of Hazardous Materials, 278, 40–48. doi: 10.1016/j.jhazmat.2014.05.073
  • Shao, T., Zhang, P., Jin, L., & Li, Z. (2013). Photocatalytic decomposition of perfluorooctanoic acid in pure water and sewage water by nanostructured gallium oxide. Applied Catalysis B: Environmental, 142-143, 654–661. doi: 10.1016/j.apcatb.2013.05.074
  • Song, C., Chen, P., Wang, C., & Zhu, L. (2012). Photodegradation of perfluorooctanoic acid by synthesized TiO2-MWCNT composites under 365 nm UV irradiation. Chemosphere, 86(8), 853–859. doi: 10.1016/j.chemosphere.2011.11.034
  • Soriano, Á., Gorri, D., & Urtiaga, A. (2017). Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical degradation of the NF concentrate. Water Research, 112, 147–156. doi: 10.1016/j.watres.2017.01.043
  • Sun, Q., Cortie, D., Zhang, S., Frankcombe, T. J., She, G., Gao, J., … Liu, Y. (2017). The formation of defect-pairs for highly efficient visible-light catalysts. Advanced Materials, 29(11), 1605123. doi: 10.1002/adma.201605123
  • Sun, Q., McBride, B. R., & Liu, Y. (2017). (N3−, M5+) co-doping strategies for the development of TiO2-based visible light catalysts. Research and Reviews in Electrochemistry, 8(1), 106.
  • Sun, Q., Zhang, S., Cortie, D., Langley, J., Cox, N., Frankcombe, T. J., … Liu, Y. (2019). Highly efficient visible light catalysts driven by Ti3+-VO-2Ti4+-N3− defect clusters. ChemNanoMat, 5(2), 169–174. doi: 10.1002/cnma.201800400
  • Surdhar, P. S., Mezyk, S. P., & Armstrong, D. A. (1989). Reduction potential of the CO2•− radical anion in aqueous solutions. The Journal of Physical Chemistry, 93(8), 3360–3363. doi: 10.1021/j100345a094
  • Tang, C. Y., Fu, Q. S., Robertson, A. P., Criddle, C. S., & Leckie, J. O. (2006). Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environmental Science & Technology, 40(23), 7343–7349. doi: 10.1021/es060831q
  • Tang, H., Xiang, Q., Lei, M., Yan, J., Zhu, L., & Zou, J. (2012). Efficient degradation of perfluorooctanoic acid by UV-Fenton process. Chemical Engineering Journal, 184, 156–162. doi: 10.1016/j.cej.2012.01.020
  • Trojanowicz, M., Bartosiewicz, I., Bojanowska-Czajka, A., Kulisa, K., Szreder, T., Bobrowski, K., … Kisała, J. (2019). Application of ionizing radiation in decomposition of perfluorooctanoate (PFOA) in waters. Chemical Engineering Journal, 357, 698–714. doi: 10.1016/j.cej.2018.09.065
  • Trojanowicz, M., Bojanowska-Czajka, A., Bartosiewicz, I., & Kulisa, K. (2018). Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) – A review of recent advances. Chemical Engineering Journal, 336, 170–199. doi: 10.1016/j.cej.2017.10.153
  • Urtiaga, A., Fernández-González, C., Gómez-Lavín, S., & Ortiz, I. (2015). Kinetics of the electrochemical mineralization of perfluorooctanoic acid on ultrananocrystalline boron doped conductive diamond electrodes. Chemosphere, 129, 20–26. doi: 10.1016/j.chemosphere.2014.05.090
  • Vecitis, C. D., Park, H., Cheng, J., Mader, B. T., & Hoffmann, M. R. (2009). Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Frontiers of Environmental Science & Engineering in China, 3(2), 129–151. doi: 10.1007/s11783-009-0022-7
  • Vierke, L., Berger, U., & Cousins, I. T. (2013). Estimation of the acid dissociation constant of perfluoroalkyl carboxylic acids through an experimental investigation of their water-to-air transport. Environmental Science & Technology, 47(19), 11032–11039. doi: 10.1021/es402691z
  • Voogt, P. D. (2010). Perfluorinated alkylated substances. New York, NY: Springer.
  • Wang, S., Yang, Q., Chen, F., Sun, J., Luo, K., Yao, F., … Zeng, G. (2017). Photocatalytic degradation of perfluorooctanoic acid and perfluorooctane sulfonate in water: A critical review. Chemical Engineering Journal, 328, 927–942. doi: 10.1016/j.cej.2017.07.076
  • Wang, Y., & Zhang, P. (2011). Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid. Journal of Hazardous Materials, 192(3), 1869–1875. doi: 10.1016/j.jhazmat.2011.07.026
  • Wu, D., Li, X., Tang, Y., Lu, P., Chen, W., Xu, X., & Li, L. (2017). Mechanism insight of PFOA degradation by ZnO assisted photocatalytic ozonation: Efficiency and intermediates. Chemosphere, 180, 247–252. doi: 10.1016/j.chemosphere.2017.03.127
  • Xiao, X., Ulrich, B. A., Chen, B., & Higgins, C. P. (2017). Sorption of poly- and perfluoroalkyl substances (PFASs) relevant to aqueous film-forming foam (AFFF)-impacted groundwater by biochars and activated carbon. Environmental Science & Technology, 51(11), 6342–6351. doi: 10.1021/acs.est.7b00970
  • Xiao, F., Simcik, M. F., & Gulliver, J. S. (2013). Mechanisms for removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from drinking water by conventional and enhanced coagulation. Water Research, 47(1), 49–56. doi: 10.1016/j.watres.2012.09.024
  • Yamashita, N., Kannan, K., Taniyasu, S., Horii, Y., Petrick, G., & Gamo, T. (2005). A global survey of perfluorinated acids in oceans. Marine Pollution Bulletin, 51(8–12), 658–668. doi: 10.1016/j.marpolbul.2005.04.026
  • Zareitalabad, P., Siemens, J., Hamer, M., & Amelung, W. (2013). Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater – A review on concentrations and distribution coefficients. Chemosphere, 91(6), 725–732. doi: 10.1016/j.chemosphere.2013.02.024
  • Zhang, Z., Chen, J.-J., Lyu, X.-J., Yin, H., & Sheng, G.-P. (2014). Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution. Scientific Reports, 4, 7418. doi: 10.1038/srep07418
  • Zhao, B., & Zhang, P. (2009). Photocatalytic decomposition of perfluorooctanoic acid with β-Ga2O3 wide bandgap photocatalyst. Catalysis Communications, 10(8), 1184–1187. doi: 10.1016/j.catcom.2009.01.017
  • Zhao, B., Li, X., Yang, L., Wang, F., Li, J., Xia, W., … Zhao, C. (2015). β-Ga2O3 nanorod synthesis with a one-step microwave irradiation hydrothermal method and its efficient photocatalytic degradation for perfluorooctanoic acid. Photochemistry and Photobiology, 91(1), 42–47. doi: 10.1111/php.12383
  • Zhao, B., Lv, M., & Zhou, L. (2012). Photocatalytic degradation of perfluorooctanoic acid with β-Ga2O3 in anoxic aqueous solution. Journal of Environmental Sciences, 24(4), 774–780. doi: 10.1016/S1001-0742(11)60818-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.