1,202
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Validated innovative approaches for energy-efficient resource recovery and re-use from municipal wastewater: From anaerobic treatment systems to a biorefinery concept

, , , , , ORCID Icon & show all
Pages 869-902 | Published online: 03 Jul 2019

References

  • 3rd European Nutrient Event. (2018). ECOMONDO 8–9 November 2018, Rimini, Italy.
  • Agrawal, L. K., Harada, H., & Okui, H. (1997). Treatment of dilute wastewater in a UASB reactor at a moderate temperature: Performance aspects. Journal of Fermentation and Bioengineering, 83(2), 179–184. doi:10.1016/S0922-338X(97)83579-9
  • Álvarez, J. A., Armstrong, E., Gómez, M., & Soto, M. (2008). Anaerobic treatment of low-strength municipal wastewater by a two-stage pilot plant under psychrophilic conditions. Bioresource Technology, 99(15), 7051–7062. doi:10.1016/j.biortech.2008.01.013
  • Anderson, A. J., & Dawes, E. A. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological Reviews, 54(4), 450–472. doi:0146-0749/90/040450-23$02.00/0
  • Anjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum, M. N., & Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. International Journal of Biological Macromolecules, 89, 161–174. doi:10.1016/j.ijbiomac.2016.04.069
  • Ansari, A. J., Hai, F. I., Price, W. E., Drewes, J. E., & Nghiem, L. D. (2017). Forward osmosis as a platform for resource recovery from municipal wastewater – A critical assessment of the literature. Journal of Membrane Science, 529, 195–206. doi:10.1016/j.memsci.2017.01.054
  • Barbosa, R. A., & Sant'Anna, G. L. (1989). Treatment of raw domestic sewage in an UASB reactor. Water Research, 23(12), 1483–1490. doi:10.1016/0043-1354(89)90112-7
  • Batstone, D. J., Hülsen, T., Mehta, C. M., & Keller, J. (2015). Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere, 140, 2–11. doi:10.1016/j.chemosphere.2014.10.021
  • Batstone, D. J., & Virdis, B. (2014). The role of anaerobic digestion in the emerging energy economy. Current Opinion in Biotechnology, 27, 142–149. doi:10.1016/j.copbio.2014.01.013
  • Behera, C. R., Santoro, D., Gernaey, K. V., & Sin, G. (2018). Organic carbon recovery modeling for a rotating belt filter and its impact assessment on a plant-wide scale. Chemical Engineering Journal, 334, 1965–1976. doi:10.1016/j.cej.2017.11.091
  • Bourbonnais, R., & Marchessault, R. H. (2010). Application of polyhydroxyalkanoate granules for sizing of paper. Biomacromolecules, 11(4), 989–993. doi:10.1021/bm9014667
  • Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8(11), 791–808. doi:10.3144/expresspolymlett.2014.82
  • Carosio, F., Cuttica, F., Medina, L., & Berglund, L. A. (2016). Clay nanopaper as multifunctional brick and mortar fire protection coating – Wood case study. Materials & Design, 93, 357–363. doi:10.1016/j.matdes.2015.12.140
  • Carpenter, A. W., De Lannoy, C. F., & Wiesner, M. R. (2015). Cellulose nanomaterials in water treatment technologies. Environmental Science & Technology, 49(9), 5277–5287. doi:10.1021/es506351r
  • Chandran, P., & Das, N. (2011). Degradation of diesel oil by immobilized Candida tropicalis and biofilm formed on gravels. Biodegradation, 22(6), 1181–1189. doi:10.1007/s10532-011-9473-1
  • Chen, Y., Randall, A. A., & Mccue, T. (2004). The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid. Water Research, 38, 27–36. doi:10.1016/j.watres.2003.08.025
  • Cheng, Q., Ye, D., Yang, W., Zhang, S., Chen, H., Chang, C., & Zhang, L. (2018). Construction of transparent cellulose-based nanocomposite papers and potential application in flexible solar cells. ACS Sustainable Chemistry & Engineering, 6(6), 8040–8047. doi:10.1021/acssuschemeng.8b01599
  • Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production, 142, 1728–1740. doi:10.1016/j.jclepro.2016.11.116
  • Cookney, J., Mcleod, A., Mathioudakis, V., Ncube, P., Soares, A., Jefferson, B., & McAdam, E. J. (2016). Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. Journal of Membrane Science, 502, 141–150. doi:10.1016/j.memsci.2015.12.037
  • Cowie, J., Bilek, E. M. T., Wegner, T. H., & Shatkin, J. A. (2014). Market projections of cellulose nanomaterial-enabled products – Part 2: Volume estimates. Tappi Journal, 13, 57–69.
  • Crone, B. C., Garland, J. L., Sorial, G. A., & Vane, L. M. (2017). Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review. Water Research, 111, 420. doi:10.1016/j.watres.2017.01.035
  • Crutchik, D., Frison, N., Eusebi, A. L., & Fatone, F. (2018). Biorefinery of cellulosic primary sludge towards targeted short chain fatty acids, phosphorus and methane recovery. Water Research, 136, 112–119. doi:10.1016/j.watres.2018.02.047
  • Cuff, G., Turcios, A. E., Mohammad-Pajooh, E., Kujawski, O., Weichgrebe, D., & Rosenwinkel, K.-H. (2018). High-rate anaerobic treatment of wastewater from soft drink industry: Methods, performance and experiences. Journal of Environmental Management, 220, 8–15. doi:10.1016/j.jenvman.2018.05.015
  • De Vrieze, J., Smet, D., Klok, J., Colsen, J., Angenent, L. T., & Vlaeminck, S. E. (2016). Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants. Bioresource Technology, 218, 1237–1245. doi:10.1016/j.biortech.2016.06.119
  • Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W., … Meesschaert, B. (2015). Global phosphorus scarcity and full-scale P-recovery techniques: A review. Critical Reviews in Environmental Science and Technology, 45(4), 336–384. doi:10.1080/10643389.2013.866531
  • Draaijer, H., Maas, J. A. W., Schaapman, J. E., & Khan, A. (1992). Performance of the 5 MLD UASB reactor for sewage treatment at Kanpur, India. Water Science and Technology, 25(7), 123–133. doi:10.2166/wst.1992.0145
  • Elefsiniotis, P., & Wareham, D. G. (2007). Utilization patterns of volatile fatty acids in the denitrification reaction. Enzyme and Microbial Technology, 41(1–2), 92–97. doi:10.1016/j.enzmictec.2006.12.006
  • Frison, N., Katsou, E., Malamis, S., Oehmen, A., & Fatone, F. (2015). Development of a novel process integrating the treatment of sludge reject water and the production of polyhydroxyalkanoates (PHAs). Environmental Science & Technology, 49(18), 10877–10885. doi:10.1021/acs.est.5b01776
  • Gavrilescu, M. (2014). Biomass potential for sustainable environment, biorefinery products and energy. In I. Visa (Ed.), Sustainable energy in the built environment – Steps towards nZEB (pp. 169–194). Cham, Switzerland: Springer International Publishing.
  • Ghasimi, D. S. M., Zandvoort, M. H., Adriaanse, M., van Lier, J. B., & de Kreuk, M. (2016). Comparative analysis of the digestibility of sewage fine sieved fraction and hygiene paper produced from virgin fibers and recycled fibers. Waste Management, 53, 156–164. doi:10.1016/j.wasman.2016.04.034
  • Graupner, N., Herrmann, A. S., & Müssig, J. (2009). Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Composites Part A: Applied Science and Manufacturing, 40(6-7), 810–821. doi:10.1016/j.compositesa.2009.04.003
  • Guest, J. S., Skerlos, S. J., Barnard, J. L., Beck, M. B., Daigger, G. T., Hilger, H., … Love, N. G. (2009). New planning and design paradigm to achieve sustainable resource recovery from wastewater. Environmental Science & Technology, 43(16), 6126–6130. doi:10.1021/es9010515
  • Gu, Y., Li, Y., Li, X., Luo, P., Wang, H., Robinson, Z. P., … Li, F. (2017). The feasibility and challenges of energy self-sufficient wastewater treatment plants. Applied Energy, 204, 1463–1475. doi:10.1016/j.apenergy.2017.02.069
  • Guo, Z., Zhou, A., Yang, C., Liang, B., Sangeetha, T., He, Z., … Liu, W. (2015). Enhanced short chain fatty acids production from waste activated sludge conditioning with typical agricultural residues: Carbon source composition regulates community functions. Biotechnology for Biofuels, 8(1), 1–14. doi:10.1016/j.crad.2017.10.014
  • Han, D., Lee, C. Y., Chang, S. W., & Kim, D. J. (2017). Enhanced methane production and wastewater sludge stabilization of a continuous full scale thermal pretreatment and thermophilic anaerobic digestion. Bioresource Technology, 245, 1162–1167. doi:10.1016/j.biortech.2017.08.108
  • Hatamoto, M., Miyauchi, T., Kindaichi, T., Ozaki, N., & Ohashi, A. (2011). Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment. Bioresource Technology, 102(22), 10299–10304. doi:10.1016/j.biortech.2011.08.099
  • He, L., Du, P., Chen, Y., Lu, H., Cheng, X., Chang, B., & Wang, Z. (2017). Advances in microbial fuel cells for wastewater treatment. Renewable & Sustainable Energy Reviews, 71, 388–403. doi:10.1016/j.rser.2016.12.069
  • Hermassi, M., Dosta, J., Valderrama, C., Licon, E., Moreno, N., Querol, X., … Cortina, J. L. (2018). Simultaneous ammonium and phosphate recovery and stabilization from urban sewage sludge anaerobic digestates using reactive sorbents. Science of the Total Environment, 630, 781–789. doi:10.1016/j.scitotenv.2018.02.243
  • Hou, D., Lu, L., Sun, D., Ge, Z., Huang, X., Cath, T. Y., & Ren, Z. J. (2017). Microbial electrochemical nutrient recovery in anaerobic osmotic membrane bioreactors. Water Research, 114, 181–188. doi:10.1016/j.watres.2017.02.034
  • Huggins, T. M., Haeger, A., Biffinger, J. C., & Ren, Z. J. (2016). Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Research, 94, 225–232. doi:10.1016/j.watres.2016.02.059
  • Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552–571. doi:10.1111/j.1541-4337.2010.00126.x
  • Joo, J. Y., Park, C. H., & Han, G. B. (2016). Optimization of two-phased anaerobic sludge digestion using the pressurized ultra filtration membrane with a mesh screen (MS-PUFM). Chemical Engineering Journal, 300, 20–28. doi:10.1016/j.cej.2016.04.078
  • Kataki, S., West, H., Clarke, M., & Baruah, D. C. (2016). Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resources, Conservation and Recycling, 107, 142–156. doi:10.1016/j.resconrec.2015.12.009
  • Keijsers, E. R. P., Yilmaz, G., & Van Dam, J. E. G. (2013). The cellulose resource matrix. Carbohydrate Polymers, 93(1), 9–21. doi:10.1016/j.carbpol.2012.08.110
  • Kim, M., Lee, E.-K., & Choi, C.-J. (2017). Brick insulation composite and method for manufacturing same. US Pat 2017/0191264 A1. doi:10.1016/j.(73)
  • Kleerebezem, R., Joosse, B., Rozendal, R., & Van Loosdrecht, M. C. M. (2015). Anaerobic digestion without biogas? Reviews in Environmental Science and Bio/Technology, 14, 787–801. doi:10.1007/s11157-015-9374-6
  • Koller, M., Niebelschütz, H., & Braunegg, G. (2013). Strategies for recovery and purification of poly[(R)-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass. Engineering in Life Sciences, 13(6), 549–562. doi:10.1002/elsc.201300021
  • Koller, M., Sandholzer, D., Salerno, A., Braunegg, G., & Narodoslawsky, M. (2013). Biopolymer from industrial residues: Life cycle assessment of poly(hydroxyalkanoates) from whey. Resources, Conservation and Recycling, 73, 64–71. doi:10.1016/j.resconrec.2013.01.017
  • Krzeminski, P., Leverette, L., Malamis, S., & Katsou, E. (2017). Membrane bioreactors – A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. Journal of Membrane Science, 527, 207–227. doi:10.1016/j.memsci.2016.12.010
  • Kumar, M., Ghosh, P., Khosla, K., & Thakur, I. S. (2018). Recovery of polyhydroxyalkanoates from municipal secondary wastewater sludge. Bioresource Technology, 255, 111–115. doi:10.1016/j.biortech.2018.01.031
  • Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus recovery from wastewater by struvite crystallization: A review. Critical Reviews in Environmental Science and Technology, 39(6), 433–477. doi:10.1080/10643380701640573
  • Leong, Y. K., Show, P. L., Lan, J. C.-W., Loh, H.-S., Lam, H. L., & Ling, T. C. (2017). Economic and environmental analysis of PHAs production process. Clean Technologies and Environmental Policy, 19(7), 1941–1953. doi:10.1007/s10098-017-1377-2
  • Li, O., Lu, C., Liu, A., Zhu, L., Wang, P.-M., Qian, C.-D., … Wu, X.-C. (2013). Optimization and characterization of polysaccharide-based bioflocculant produced by Paenibacillus elgii B69 and its application in wastewater treatment. Bioresource Technology, 134, 87–93. doi:10.1016/j.biortech.2013.02.013
  • Li, W., & Yu, H. (2011). From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: A future paradigm. Biotechnology Advances, 29(6), 972–982. doi:10.1016/j.biotechadv.2011.08.012
  • Li, W. W., & Yu, H. Q. (2016). Advances in energy-producing anaerobic biotechnologies for municipal wastewater treatment. Engineering, 2(4), 438–446. doi:10.1016/J.ENG.2016.04.017
  • Li, X., Chen, H., Hu, L., Yu, L., Chen, Y., & Gu, G. (2011). Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal. Environmental Science & Technology, 45(5), 1834–1839. doi:10.1021/es1031882
  • Lin, L., Li, R., & Li, X. (2018). Recovery of organic resources from sewage sludge of Al-enhanced primary sedimentation by alkali pretreatment and acidogenic fermentation. Journal of Cleaner Production, 172, 3334–3341. doi:10.1016/j.jclepro.2017.11.199
  • Liu, H., Han, P., Liu, H., Zhou, G., Fu, B., & Zheng, Z. (2018). Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Bioresource Technology, 260, 105–114. doi:10.1016/j.biortech.2018.03.105
  • Liu, H., Wang, J., Liu, X., Fu, B., Chen, J., & Yu, H.-Q. (2012). Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Water Research, 46(3), 799–807. doi:10.1016/j.watres.2011.11.047
  • Liu, W. J., Yuan, H. L., Yang, J. S., & Li, B. Z. (2009). Characterization of bioflocculants from biologically aerated filter backwashed sludge and its application in dying wastewater treatment. Bioresource Technology, 100(9), 2629–2632. doi:10.1016/j.biortech.2008.12.017
  • Liu, Y., Huang, L., Dong, G., Liu, G., Wu, X., Wang, C., … Wang, L. (2018). Enhanced granulation and methane recovery at low load by downflow sludge circulation in anaerobic treatment of domestic wastewater. Bioresource Technology, 249, 851–857. doi:10.1016/j.biortech.2017.10.091
  • Lohani, S. P., Wang, S., Lackner, S., Horn, H., Khanal, S. N., & Bakke, R. (2016). ADM1 modeling of UASB treating domestic wastewater in Nepal. Renewable Energy, 95, 263–268. doi:10.1016/j.renene.2016.04.014
  • Longo, S., Frison, N., Renzi, D., Fatone, F., & Hospido, A. (2017). Is SCENA a good approach for side-stream integrated treatment from an environmental and economic point of view? Water Research, 125, 478–489. doi:10.1016/j.watres.2017.09.006
  • Longo, S., Katsou, E., Malamis, S., Frison, N., Renzi, D., & Fatone, F. (2015). Recovery of volatile fatty acids from fermentation of sewage sludge in municipal wastewater treatment plants. Bioresource Technology, 175, 436–444. doi:10.1016/j.biortech.2014.09.107
  • Madison, L. L., & Huisman, G. W. (1999). Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiology and Molecular Biology Reviews, 63(1), 21–53.
  • Melia, P. M., Cundy, A. B., Sohi, S. P., Hooda, P. S., & Busquets, R. (2017). Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere, 186, 381–395. doi:10.1016/j.chemosphere.2017.07.089
  • Mikutta, R., Baumgärtner, A., Schippers, A., Haumaier, L., & Guggenberger, G. (2012). Extracellular polymeric substances from bacillus subtilis associated with minerals modify the extent and rate of heavy metal sorption. Environmental Science & Technology, 46(7), 3866–3873. doi:10.1021/es204471x
  • Molinos-Senante, M., Hernández-Sancho, F., Sala-Garrido, R., & Garrido-Baserba, M. (2011). Economic feasibility study for phosphorus recovery processes. Ambio, 40(4), 408–416. doi:10.1007/s13280-010-0101-9
  • More, T. T., Yadav, J. S. S., Yan, S., Tyagi, R. D., & Surampalli, R. Y. (2014). Extracellular polymeric substances of bacteria and their potential environmental applications. Journal of Environmental Management, 144, 1–25. doi:10.1016/j.jenvman.2014.05.010
  • Morgan-Sagastume, F., Hjort, M., Cirne, D., Gérardin, F., Lacroix, S., Gaval, G., … Werker, A. (2015). Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresource Technology, 181, 78–89. doi:10.1016/j.biortech.2015.01.046
  • Możejko-Ciesielska, J., & Kiewisz, R. (2016). Bacterial polyhydroxyalkanoates: Still fabulous? Microbiological Research, 192, 271–282. doi:10.1016/j.micres.2016.07.010
  • Muhammadi, S., Afzal, M., & Hameed, S. (2015). Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications. Green Chemistry Letters and Reviews, 8, 56–77. doi:10.1080/17518253.2015.1109715
  • Nechyporchuk, O., Belgacem, M. N., & Bras, J. (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 93, 2–25. doi:10.1016/j.indcrop.2016.02.016
  • Nghiem, L. D., Koch, K., Bolzonella, D., & Drewes, J. E. (2017). Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities. Renewable & Sustainable Energy Reviews, 72, 354–362. doi:10.1016/j.rser.2017.01.062
  • Niwa, T., Hatamoto, M., Yamashita, T., Noguchi, H., Takase, O., Kekre, K. A., … Yamaguchi, T. (2016). Demonstration of a full-scale plant using an UASB followed by a ceramic MBR for the reclamation of industrial wastewater. Bioresource Technology, 218, 1–8. doi:10.1016/j.biortech.2016.06.036
  • Pakalapati, H., Chang, C.-K., Show, P. L., Arumugasamy, S. K., & Lan, J. C.-W. (2018). Development of polyhydroxyalkanoates production from waste feedstocks and applications. Journal of Bioscience and Bioengineering, 126(3), 282–292. doi:10.1016/j.jbiosc.2018.03.016
  • Pan, X.-R., Li, W.-W., Huang, L., Liu, H.-Q., Wang, Y.-K., Geng, Y.-K., … Yu, H.-Q. (2018). Recovery of high-concentration volatile fatty acids from wastewater using an acidogenesis-electrodialysis integrated system. Bioresource Technology, 260, 61–67. doi:10.1016/j.biortech.2018.03.083
  • Papa, M., Foladori, P., Guglielmi, L., & Bertanza, G. (2017). How far are we from closing the loop of sewage resource recovery? A real picture of municipal wastewater treatment plants in Italy. Journal of Environmental Management, 198, 9–15. doi:10.1016/j.jenvman.2017.04.061
  • Peces, M., Astals, S., Clarke, W. P., & Jensen, P. D. (2016). Semi-aerobic fermentation as a novel pre-treatment to obtain VFA and increase methane yield from primary sludge. Bioresource Technology, 200, 631–638. doi:10.1016/j.biortech.2015.10.085
  • Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, 197, 768–781. doi:10.1016/j.chemosphere.2018.01.098
  • Point, S., Kemp, J., & Marten, B. (2017). Current trends in biosolids management & treatment. Paper presented at the 35th Annual Spring Biosolids Symposium Wisconsin.
  • Puchongkawarin, C., Gomez-Mont, C., Stuckey, D. C., & Chachuat, B. (2015). Optimization-based methodology for the development of wastewater facilities for energy and nutrient recovery. Chemosphere, 140, 150–158. doi:10.1016/j.chemosphere.2014.08.061
  • Puyol, D., Batstone, D. J., Hülsen, T., Astals, S., Peces, M., & Krömer, J. O. (2017). Resource recovery from wastewater by biological technologies: Opportunities, challenges, and prospects. Frontiers in Microbiology, 7, 1–23. doi:10.3389/fmicb.2016.02106
  • Raheem, A., Sikarwar, V. S., He, J., Dastyar, W., Dionysiou, D. D., Wang, W., & Zhao, M. (2018). Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chemical Engineering Journal, 337, 616–641. doi:10.1016/j.cej.2017.12.149
  • Rahman, N. S. A., Yhaya, M. F., Azahari, B., & Ismail, W. R. (2018). Utilisation of natural cellulose fibres in wastewater treatment. Cellulose, 25(9), 4887–4903. doi:10.1007/s10570-018-1935-8
  • Raza, Z. A., Abid, S., & Banat, I. M. (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration & Biodegradation, 126, 45–56. doi:10.1016/j.ibiod.2017.10.001
  • Reddy, C. S. K., Ghai, R., Rashmi, & Kalia, V. C. (2003). Polyhydroxyalkanoates: An overview. Bioresource Technology, 87, 137–146. doi:10.1016/S0960-8524(02)00212-2
  • Reyhanitash, E., Kersten, S. R. A., & Schuur, B. (2017). Recovery of Volatile Fatty Acids from Fermented Wastewater by Adsorption. ACS Sustainable Chemistry & Engineering, 5(10), 9176–9184. doi:10.1021/acssuschemeng.7b02095
  • Rosa, A. P., Chernicharo, C. A. L., Lobato, L. C. S., Silva, R. V., Padilha, R. F., & Borges, J. M. (2018). Assessing the potential of renewable energy sources (biogas and sludge) in a full-scale UASB-based treatment plant. Renewable Energy, 124, 21–26. doi:10.1016/j.renene.2017.09.025
  • Ruiken, C. J., Breuer, G., Klaversma, E., Santiago, T., & van Loosdrecht, M. C. M. (2013). Sieving wastewater – Cellulose recovery, economic and energy evaluation. Water Research, 47(1), 43–48. doi:10.1016/j.watres.2012.08.023
  • Ruiz-Martinez, A., Martin Garcia, N., Romero, I., Seco, A., & Ferrer, J. (2012). Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology, 126, 247–253. doi:10.1016/j.biortech.2012.09.022
  • Septevani, A. A., Evans, D. A. C., Annamalai, P. K., & Martin, D. J. (2017). The use of cellulose nanocrystals to enhance the thermal insulation properties and sustainability of rigid polyurethane foam. Industrial Crops and Products, 107, 114–121. doi:10.1016/j.indcrop.2017.05.039
  • Shen, L., Hu, H., Ji, H., Cai, J., He, N., Li, Q., & Wang, Y. (2014). Production of poly(hydroxybutyrate-hydroxyvalerate) from waste organics by the two-stage process: Focus on the intermediate volatile fatty acids. Bioresource Technology, 166, 194–200. doi:10.1016/j.biortech.2014.05.038
  • Shin, C., & Bae, J. (2018). Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: A critical review. Bioresource Technology, 247, 1038–1046. doi:10.1016/j.biortech.2017.09.002
  • Song, X., Luo, W., & McDonald, J. (2018). An anaerobic membrane bioreactor – Membrane distillation hybrid system for energy recovery and water reuse: Removal performance of organic carbon, nutrients, and trace organic contaminants. Science of the Total Environment, 628–629, 358–365. doi:10.1016/j.scitotenv.2018.02.057
  • Souza, C. L., Chernicharo, C. A. L., & Aquino, S. F. (2011). Quantification of dissolved methane in UASB reactors treating domestic wastewater under different operating conditions. Water Science and Technology, 64(11), 2259–2264. doi:10.2166/wst.2011.695
  • Srithep, Y., Ellingham, T., Peng, J., Sabo, R., Clemons, C., Turng, L.-S., & Pilla, S. (2013). Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polymer Degradation and Stability, 98(8), 1439–1449. doi:10.1016/j.polymdegradstab.2013.05.006
  • Stazi, V., & Tomei, M. C. (2018). Enhancing anaerobic treatment of domestic wastewater: State of the art, innovative technologies and future perspectives. Science of the Total Environment, 635, 78–91. doi:10.1016/j.scitotenv.2018.04.071
  • Sun, Y., Chen, Z., Wu, G., Wu, Q., Zhang, F., Niu, Z., & Hu, H.-Y. (2016). Characteristics of water quality of municipal wastewater treatment plants in China: Implications for resources utilization and management. Journal of Cleaner Production, 131, 1–9. doi:10.1016/j.jclepro.2016.05.068
  • Tamis, J., Marang, L., Jiang, Y., van Loosdrecht, M. C. M., & Kleerebezem, R. (2014). Modeling PHA-producing microbial enrichment cultures-towards a generalized model with predictive power. New Biotechnology, 31(4), 324–334. doi:10.1016/j.nbt.2013.11.007
  • Teng, S.-X., Tong, Z.-H., Li, W.-W., Wang, S.-G., Sheng, G.-P., Shi, X.-Y., … Yu, H.-Q. (2010). Electricity generation from mixed volatile fatty acids using microbial fuel cells. Applied Microbiology and Biotechnology, 87(6), 2365–2372. doi:10.1007/s00253-010-2746-5
  • Traversi, D., Romanazzi, V., Degan, R., Lorenzi, E., Carraro, E., & Gilli, G. (2015). Microbial-chemical indicator for anaerobic digester performance assessment in full-scale wastewater treatment plants for biogas production. Bioresource Technology, 186, 179–191. doi:10.1016/j.biortech.2015.03.042
  • Uemura, S., & Harada, H. (2000). Treatment of sewage by a UASB reactor under moderate to low temperature conditions. Bioresource Technology, 72(3), 275–282. doi:10.1016/S0960-8524(99)00118-2
  • Valentino, F., Morgan-Sagastume, F., Campanari, S., Villano, M., Werker, A., & Majone, M. (2017). Carbon recovery from wastewater through bioconversion into biodegradable polymers. New Biotechnology, 37, 9–23. doi:10.1016/j.nbt.2016.05.007
  • Van Der Hoek, J. P., De Fooij, H., & Struker, A. (2016). Wastewater as a resource: Strategies to recover resources from Amsterdam’s wastewater. Resources, Conservation and Recycling, 113, 53–64. doi:10.1016/j.resconrec.2016.05.012
  • Verstraete, W., Van de Caveye, P., & Diamantis, V. (2009). Maximum use of resources present in domestic “used water.” Bioresource Technology, 100(23), 5537–5545. doi:10.1016/j.biortech.2009.05.047
  • Viruela, A., Murgui, M., Gómez-Gil, T., Durán, F., Robles, Á., Ruano, M. V., … Seco, A. (2016). Water resource recovery by means of microalgae cultivation in outdoor photobioreactors using the effluent from an anaerobic membrane bioreactor fed with pre-treated sewage. Bioresource Technology, 218, 447–454. doi:10.1016/j.biortech.2016.06.116
  • Wang, Q., Cai, J., Chen, K., Liu, X., & Zhang, L. (2016). Construction of fluorescent cellulose biobased plastics and their potential application in anti-counterfeiting banknotes. Macromolecular Materials and Engineering, 301(4), 377–382. doi:10.1002/mame.201500364
  • Wang, Z., Hessler, C. M., Xue, Z., & Seo, Y. (2012). The role of extracellular polymeric substances on the sorption of natural organic matter. Water Research, 46(4), 1052–1060. doi:10.1016/j.watres.2011.11.077
  • Xie, M., Shon, H. K., Gray, S. R., & Elimelech, M. (2016). Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. Water Research, 89, 210–221. doi:10.1016/j.watres.2015.11.045
  • Yang, Q., Luo, K., Liao, D-X., Li, X-M., Wang, D-B., Liu, X., … Li, X. (2012). A novel bioflocculant produced by Klebsiella sp. and its application to sludge dewatering. Water and Environment Journal, 26(4), 560–566. doi:10.1111/j.1747-6593.2012.00319.x
  • Yeo, H., & Lee, H.-S. (2013). The effect of solids retention time on dissolved methane concentration in anaerobic membrane bioreactors. Environmental Technology, 34(13-14), 2105–2112. doi:10.1080/09593330.2013.808675
  • Yetilmezsoy, K., Ilhan, F., Kocak, E., & Akbin, H. M. (2017). Feasibility of struvite recovery process for fertilizer industry: A study of financial and economic analysis. Journal of Cleaner Production, 152, 88–102. doi:10.1016/j.jclepro.2017.03.106
  • Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., & Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable & Sustainable Energy Reviews, 71, 475–501. doi:10.1016/j.rser.2016.12.076
  • Zacharof, M. P., & Lovitt, R. W. (2013). Complex effluent streams as a potential source of volatile fatty acids. Waste and Biomass Valorization, 4(3), 557–581. doi:10.1007/s12649-013-9202-6
  • Zhang, J., Shishatskaya, E. I., Volova, T. G., da Silva, L. F., & Chen, G.-Q. (2018). Polyhydroxyalkanoates (PHA) for therapeutic applications. Materials Science and Engineering C, 86, 144–150. doi:10.1016/j.msec.2017.12.035
  • Zhang, Y., Wang, F., Yang, X., Gu, C., Kengara, F. O., Hong, Q., … Jiang, X. (2011). Extracellular polymeric substances enhanced mass transfer of polycyclic aromatic hydrocarbons in the two-liquid-phase system for biodegradation. Applied Microbiology and Biotechnology, 90(3), 1063–1071. doi:10.1007/s00253-011-3134-5
  • Zhou, M., Yan, B., Wong, J. W. C., & Zhang, Y. (2018). Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Bioresource Technology, 248, 68–78. doi:10.1016/j.biortech.2017.06.121
  • Zijp, M. C., Waaijers-van der Loop, S. L., Heijungs, R., Broeren, M. L. M., Peeters, R., Van Nieuwenhuijzen, A., … Posthuma, L. (2017). Method selection for sustainability assessments: The case of recovery of resources from waste water. Journal of Environmental Management, 197, 221–230. doi:10.1016/j.jenvman.2017.04.006
  • Zouboulis, A. I., Chai, X. L., & Katsoyiannis, I. A. (2004). The application of bioflocculant for the removal of humic acids from stabilized landfill leachates. Journal of Environmental Management, 70, 35–41. doi:10.1016/j.jenvman.2003.10.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.