1,429
Views
46
CrossRef citations to date
0
Altmetric
Original Articles

Aptamer based tools for environmental and therapeutic monitoring: A review of developments, applications, future perspectives

ORCID Icon & ORCID Icon
Pages 816-867 | Published online: 03 Jul 2019

References

  • Abnous, K., Danesh, N. M., Ramezani, M., Alibolandi, M., & Taghdisi, S. M. (2018). A novel electrochemical sensor for bisphenol A detection based on nontarget-induced extension of aptamer length and formation of a physical barrier. Biosensors and Bioelectronics, 119, 204–208. doi:10.1016/j.bios.2018.08.024
  • Actis, P., Rogers, A., Nivala, J., Vilozny, B., Seger, R. A., Jejelowo, O., & Pourmand, N. (2011). Reversible thrombin detection by aptamer functionalized STING sensors. Biosensors and Bioelectronics, 26(11), 4503–4507. doi:10.1016/j.bios.2011.05.010
  • Akki, S. U., & Werth, C. J. (2018). Critical Review: DNA aptasensors, Are they ready for monitoring organic pollutants in natural and treated water sources? Environmental Science & Technology, 52(16), 8989–9007. doi:10.1021/acs.est.8b00558
  • Aksel, E., & Jones, J. L. (2010). Advances in lead-free piezoelectric materials for sensors and actuators. Sensors (Basel, Switzerland), 10(3), 1935–1954. doi:10.3390/s100301935
  • Alhadrami, H. A., Chinnappan, R., Eissa, S., Rahamn, A. A., & Zourob, M. (2017). High affinity truncated DNA aptamers for the development of fluorescence based progesterone biosensors. Analytical Biochemistry, 525, 78–84. doi:10.1016/j.ab.2017.02.014
  • Ali, A., Qadir, J., Ur Rasool, R., Sathiaseelan, A., Zwitter, A., & Crowcroft, J. (2016). Big data for development: Applications and techniques. Big Data Analytics, 1(1), 2. doi:10.1186/s41044-016-0002-4
  • AlphaScreen®. (2018). Retrieved from http://www.perkinelmer.com/Content/RelatedMaterials/Brochures/BRO_AlphaScreen2004.pdf
  • Alvarez-Risco, A., Del-Aguila-Arcentales, S., Delgado-Zegarra, J., Yáñez, J. A., & Diaz-Risco, S. (2019). Doping in sports: Findings of the analytical test and its interpretation by the public. Sport Sciences for Health, 15(1), 255–257. doi:10.1007/s11332-018-0484-8
  • Amiri, S., Navaee, A., Salimi, A., & Ahmadi, R. (2017). Zeptomolar detection of hg2+ based on label-free electrochemical aptasensor: One step closer to the dream of single atom detection. Electrochemistry Communications, 78, 21–25. doi:10.1016/j.elecom.2017.03.014
  • Andreu-Perez, J., Poon, C. C. Y., Merrifield, R. D., Wong, S. T. C., & Yang, G.-Z. (2015). Big Data for health. Ieee Journal of Biomedical and Health Informatics, 19(4), 1193–1208. doi:10.1109/JBHI.2015.2450362
  • Antunes, D., Jorge, N. A., Caffarena, E. R., & Passetti, F. (2018). Using RNA sequence and structure for the prediction of riboswitch aptamer: A comprehensive review of available software and tools. Frontiers in Genetics, 8, 231. doi:10.3389/fgene.2017.00231
  • Aptagen LLC. (2019). Retrieved from https://www.aptagen.com/
  • AptaMatrix Inc. (2019). Retrieved from http://www.aptamatrix.com/
  • Arroyo-Currás, N., Somerson, J., Vieira, P. A., Ploense, K. L., Kippin, T. E., & Plaxco, K. W. (2017). Real-time measurement of small molecules directly in awake, ambulatory animals. Proceedings of the National Academy of Sciences, 114(4), 645–650. doi:10.1073/pnas.1613458114
  • Avtonomov, P., & Kornienko, V. (2015). Integrated System for Detection of Dangerous Materials and Illicit Objects in Cargoes. Procedia - Social and Behavioral Sciences, 195, 2777–2785. doi:10.1016/j.sbspro.2015.06.393
  • Ayotte, C., Miller, J., & Thevis, M. (2017). Challenges in modern anti-doping analytical science. In O. Rabin, & Y. Pitsiladis (Eds.), Acute topics in anti-doping. Medicine and Sport Science (Vol. 62, pp. 68–76). Basel, Switzerland: Karger. doi:10.1159/000460701
  • Babendure, J. R., Adams, S. R., & Tsien, R. Y. (2003). Aptamers switch on fluorescence of triphenylmethane dyes. Journal of the American Chemical Society, 125(48), 14716–14717. doi:10.1021/ja037994o
  • Bae, H., Ren, S., Kang, J., Kim, M., Jiang, Y., Yuanyuan, J., … Kim, S. (2013). Sol-gel SELEX circumventing chemical conjugation of low molecular weight metabolites discovers aptamers selective to xanthine. Nucleic Acid Therapeutics, 23(6), 443–449. doi:10.1089/nat.2013.0437
  • Bagalkot, V., Zhang, L., Levy-Nissenbaum, E., Jon, S., Kantoff, P. W., Langer, R., & Farokhzad, O. C. (2007). Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Letters, 7(10), 3065–3070. doi:10.1021/nl071546n
  • Bahadır, E. B., & Sezgintürk, M. K. (2016). Lateral flow assays: Principles, designs and labels. TrAC Trends in Analytical Chemistry, 82, 286–306. doi:10.1016/j.trac.2016.06.006
  • Bai, C., Lu, Z., Jiang, H., Yang, Z., Liu, X., Ding, H., … Shao, N. (2018). Aptamer selection and application in multivalent binding-based electrical impedance detection of inactivated H1N1 virus. Biosensors and Bioelectronics, 110, 162–167. doi:10.1016/j.bios.2018.03.047
  • Bala, R., Dhingra, S., Kumar, M., Bansal, K., Mittal, S., Sharma, R. K., & Wangoo, N. (2017). Detection of organophosphorus pesticide–Malathion in environmental samples using peptide and aptamer based nanoprobes. Chemical Engineering Journal, 311, 111–116. doi:10.1016/j.cej.2016.11.070
  • Bardos, P., Bone, B., Černík, M., Elliott, D. W., Jones, S., & Merly, C. (2015). Nanoremediation and international environmental restoration markets. Remediation Journal, 25(2), 83–94. doi:10.1002/rem.21426
  • Barthelmebs, L., Jonca, J., Hayat, A., Prieto-Simon, B., & Marty, J. L. (2011). Enzyme-linked aptamer assays (ELAAs), based on a competition format for a rapid and sensitive detection of ochratoxin A in wine. Food Control, 22(5), 737–743. doi:10.1016/j.foodcont.2010.11.005
  • BasePair Biotechnologies Inc. (2019). Retrieved from https://www.basepairbio.com/
  • Battig, M. R., & Wang, Y. (2014). Nucleic acid aptamers for biomaterials development. In S. Kumbar, C. Laurencin, & M. Deng (Eds.), Natural and synthetic biomedical polymers (pp. 287–299). New York, NY: Elsevier Science.
  • Bellinger, C., Jabbar, M. S. M., Zaïane, O., & Osornio-Vargas, A. (2017). A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Health, 17(1), 907. doi:10.1186/s12889-017-4914-3
  • Bendahan, J. (2017). Vehicle and cargo scanning for contraband. Physics Procedia, 90, 242–255. doi:10.1016/j.phpro.2017.09.003
  • Berezovski, M., Drabovich, A., Krylova, S. M., Musheev, M., Okhonin, V., Petrov, A., & Krylov, S. N. (2005). Nonequilibrium capillary electrophoresis of equilibrium mixtures: A universal tool for development of aptamers. Journal of the American Chemical Society, 127(9), 3165–3171. doi:10.1021/ja042394q
  • Berezovski, M., Musheev, M., Drabovich, A., & Krylov, S. N. (2006). Non-SELEX selection of aptamers. Journal of the American Chemical Society, 128(5), 1410–1411. doi:10.1021/ja056943j
  • Biroccio, A., Hamm, J., Incitti, I., De Francesco, R., & Tomei, L. (2002). Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase. Journal of Virology, 76(8), 3688–3696. doi:10.1128/jvi.76.8.3688-3696.2002
  • Bruno, J. G. (2015). Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules, 20(4), 6866–6887. doi:10.3390/molecules20046866
  • Bruno, J. G. (2017). Aptamers: Scope, limitations, and future prospects. In R. N. Veedu (Ed.), Aptamers: Tools for nanotherapy and molecular imaging (pp. 335). Boca Raton, FL: CRC Press.
  • Burbelo, P. D., Ramanathan, R., Klion, A. D., Iadarola, M. J., & Nutman, T. B. (2008). Rapid, novel, specific, high-throughput assay for diagnosis of Loa loa infection. Journal of Clinical Microbiology, 46(7), 2298–2304. doi:10.1128/JCM.00490-08
  • Cao, X., Li, S., Chen, L., Ding, H., Xu, H., Huang, Y., … Shao, N. (2009). Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Research, 37(14), 4621–4628. doi:10.1093/nar/gkp489
  • Cao, X., Xia, J., Liu, H., Zhang, F., Wang, Z., & Lu, L. (2017). A new dual-signalling electrochemical aptasensor with the integration of “signal on/off” and “labeling/label-free” strategies. Sensors and Actuators B: Chemical, 239, 166–171. doi:10.1016/j.snb.2016.08.009
  • Caygill, J. S., Davis, F., & Higson, S. P. J. (2012). Current trends in explosive detection techniques. Talanta, 88, 14–29. doi:10.1016/j.talanta.2011.11.043
  • Chen, A., & Yang, S. (2015). Replacing antibodies with aptamers in lateral flow immunoassay. Biosensors &Amp; Bioelectronics, 71, 230–242. doi:10.1016/j.bios.2015.04.041
  • Chen, F., Chen, S. C., Zhou, J., Chen, Z. D., & Chen, F. (2015). Identification of aptamer-binding sites in Hepatitis C virus envelope glycoprotein E2. Iranian Journal of Medical Sciences, 40(1), 63.
  • Chen, X., Pan, Y., Liu, H., Bai, X., Wang, N., & Zhang, B. (2016). Label-free detection of liver cancer cells by aptamer-based microcantilever biosensor. Biosensors and Bioelectronics, 79, 353–358. doi:10.1016/j.bios.2015.12.060
  • Chen, Y., Li, H., Gao, T., Zhang, T., Xu, L., Wang, B., … Pei, R. (2018). Selection of DNA aptamers for the development of light-up biosensor to detect Pb (II). Sensors and Actuators B: Chemical, 254, 214–221. doi:10.1016/j.snb.2017.07.068
  • Cheng, C., Chen, Y. H., Lennox, K. A., Behlke, M. A., & Davidson, B. L. (2013). In vivo SELEX for Identification of Brain-penetrating Aptamers. Molecular Therapy-Nucleic Acids, 2, e67.
  • Cheng, R., Liu, S., Shi, H., & Zhao, G. (2018). A highly sensitive and selective aptamer-based colorimetric sensor for the rapid detection of PCB 77. Journal of Hazardous Materials, 341, 373–380. doi:10.1016/j.jhazmat.2017.07.057
  • Clark, L. C., Jr., & Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102(1), 29–45. doi:10.1111/j.1749-6632.1962.tb13623.x
  • Collins, M. L., & Kapucu, N. (2008). Early warning systems and disaster preparedness and response in local government. Disaster Prevention and Management: An International Journal, 17(5), 587–600. doi:10.1108/09653560810918621
  • Contreras Jiménez, G., Eissa, S., Ng, A., Alhadrami, H., Zourob, M., & Siaj, M. (2015). Aptamer-based label-free impedimetric biosensor for detection of progesterone. Analytical Chemistry, 87(2), 1075–1082. doi:10.1021/ac503639s
  • Costantini, F., Sberna, C., Petrucci, G., Reverberi, M., Domenici, F., Fanelli, C., … Caputo, D. (2016). Aptamer-based sandwich assay for on chip detection of Ochratoxin A by an array of amorphous silicon photosensors. Sensors and Actuators B: Chemical, 230, 31–39. doi:10.1016/j.snb.2016.02.036
  • Crivianu-Gaita, V., & Thompson, M. (2016). Aptamers, antibody scFv, and antibody Fab'fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosensors and Bioelectronics, 85, 32–45. doi:10.1016/j.bios.2016.04.091
  • Cruz-Aguado, J. A., & Penner, G. (2008). Determination of ochratoxin A with a DNA aptamer. Journal of Agricultural and Food Chemistry, 56(22), 10456–10461. doi:10.1021/jf801957h
  • Csuros, M. (2018). Environmental sampling and analysis for technicians. Boca Raton, FL: CRC Press.
  • Cui, H., Wu, J., Eda, S., Chen, J., Chen, W., & Zheng, L. (2015). Rapid capacitive detection of femtomolar levels of bisphenol A using an aptamer-modified disposable microelectrode array. Microchimica Acta, 182(13-14), 2361–2367. doi:10.1007/s00604-015-1556-y
  • Cui, L., Wu, J., & Ju, H. (2016). Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite. Biosensors and Bioelectronics, 79, 861–865. doi:10.1016/j.bios.2016.01.010
  • Cummins, L. L., Owens, S. R., Risen, L. M., Lesnik, E. A., Freier, S. M., McGee, D., … Cook, P. D. (1995). Characterization of fully 2′-modified oligoribonucleotide hetero-and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Research, 23(11), 2019–2024. doi:10.1093/nar/23.11.2019
  • Dalirirad, S., & Steckl, A. J. (2019). Aptamer-based lateral flow assay for point of care cortisol detection in sweat. Sensors and Actuators B: Chemical, 283, 79–86.
  • Daniel, C., Mélaïne, F., Roupioz, Y., Livache, T., & Buhot, A. (2013). Real time monitoring of thrombin interactions with its aptamers: Insights into the sandwich complex formation. Biosensors and Bioelectronics, 40(1), 186–192. doi:10.1016/j.bios.2012.07.016
  • Darmostuk, M., Rimpelova, S., Gbelcova, H., & Ruml, T. (2015). Current approaches in SELEX: An update to aptamer selection technology. Biotechnology Advances, 33(6), 1141–1161. doi:10.1016/j.biotechadv.2015.02.008
  • Dausse, E., Taouji, S., Evadé, L., Di Primo, C., Chevet, E., & Toulmé, J. J. (2011). HAPIscreen, a method for high-throughput aptamer identification. Journal of Nanobiotechnology, 9(1), 25. doi:10.1186/1477-3155-9-25
  • Debski, P. R., Sklodowska, K., Michalski, J. A., Korczyk, P. M., Dolata, M., & Jakiela, S. (2018). Continuous recirculation of microdroplets in a closed loop tailored for screening of bacteria cultures. Micromachines, 9(9), 469. doi:10.3390/mi9090469
  • Deng, B., Lin, Y., Wang, C., Li, F., Wang, Z., Zhang, H., … Le, X. C. (2014). Aptamer binding assays for proteins: The thrombin example — A review. Analytica Chimica Acta, 837, 1–15. doi:10.1016/j.aca.2014.04.055
  • Dhar, S., Gu, F. X., Langer, R., Farokhzad, O. C., & Lippard, S. J. (2008). Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA–PEG nanoparticles. Proceedings of the National Academy of Sciences, 105(45), 17356–17361. doi:10.1073/pnas.0809154105
  • Dhiman, A., Kalra, P., Bansal, V., Bruno, J. G., & Sharma, T. K. (2017). Aptamer-based point-of-care diagnostic platforms. Sensors and Actuators B: Chemical, 246, 535–553. doi:10.1016/j.snb.2017.02.060
  • Di, W. T., Du, X. W., Pan, M. F., & Wang, J. P. (2017). The SPR detection of Salmonella enteritidis in food using aptamers as recongnition elements. In IOP Conference Series: Materials Science and Engineering (Vol. 231, No. 1, p. 012114). Bristol, UK: IOP Publishing. doi:10.1088/1757-899X/231/1/012114
  • Djordjevic, M. (2007). SELEX experiments: New prospects, applications and data analysis in inferring regulatory pathways. Biomolecular Engineering, 24(2), 179–189. doi:10.1016/j.bioeng.2007.03.001
  • Drabovich, A. P., Berezovski, M. V., Musheev, M. U., & Krylov, S. N. (2009). Selection of smart small-molecule ligands: The proof of principle. Analytical Chemistry, 81(1), 490–494. doi:10.1021/ac8023813
  • Eissa, S., & Zourob, M. (2017). Selection and characterization of DNA aptamers for electrochemical biosensing of carbendazim. Analytical Chemistry, 89(5), 3138–3145. doi:10.1021/acs.analchem.6b04914
  • Ellington, A. D., & Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature, 346(6287), 818. doi:10.1038/346818a0
  • Elshafey, R., Siaj, M., & Zourob, M. (2014). In vitro selection, characterization, and biosensing application of high-affinity cylindrospermopsin-targeting aptamers. Analytical Chemistry, 86(18), 9196–9203. doi:10.1021/ac502157g
  • Elshafey, R., Siaj, M., & Zourob, M. (2015). DNA aptamers selection and characterization for development of label-free impedimetric aptasensor for neurotoxin anatoxin-a. Biosensors and Bioelectronics, 68, 295–302. doi:10.1016/j.bios.2015.01.002
  • Fan, L., Zhao, G., Shi, H., & Liu, M. (2015). A simple and label-free aptasensor based on nickel hexacyanoferrate nanoparticles as signal probe for highly sensitive detection of 17β-estradiol. Biosensors and Bioelectronics, 68, 303–309. doi:10.1016/j.bios.2015.01.015
  • Fang, S., Tian, H., Li, X., Jin, D., Li, X., Kong, J., … Liu, T. (2017). Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS ONE, 2017, 12, 1–13. doi:10.1371/journal.pone.0175050
  • Farzin, L., Shamsipur, M., & Sheibani, S. (2017). A review: Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta, 174, 619–627. doi:10.1016/j.talanta.2017.06.066
  • Farzin, L., Shamsipur, M., & Tabrizi, M. A. (2015). Biomagnetic separation and preconcentration of trace amounts of Hg2+ in biological samples based on T-rich oligonucleotides modified magnetic beads. Analytical Methods, 7(20), 8947–8953. doi:10.1039/C5AY01827G
  • Fei, A., Liu, Q., Huan, J., Qian, J., Dong, X., Qiu, B., … Wang, K. (2015). Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosensors and Bioelectronics, 70, 122–129. doi:10.1016/j.bios.2015.03.028
  • Feng, C., Dai, S., & Wang, L. (2014). Optical aptasensors for quantitative detection of small biomolecules: A review. Biosensors and Bioelectronics, 59, 64–74.
  • Ferreira, C. S., Cheung, M. C., Missailidis, S., Bisland, S., & Gariepy, J. (2009). Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Research, 37(3), 866–876. doi:10.1093/nar/gkn967
  • Frohnmeyer, E., Frisch, F., Falke, S., Betzel, C., & Fischer, M. (2018). Highly affine and selective aptamers against cholera toxin as capture elements in magnetic bead-based sandwich ELAA. Journal of Biotechnology, 269, 35–42. doi:10.1016/j.jbiotec.2018.01.012
  • Gao, F., Gao, C., He, S., Wang, Q., & Wu, A. (2016). Label-free electrochemical lead (II) aptasensor using thionine as the signaling molecule and graphene as signal-enhancing platform. Biosensors and Bioelectronics, 81, 15–22. doi:10.1016/j.bios.2016.01.096
  • García-Gutiérrez, Y. S., Huerta-Aguilar, C. A., Thangarasu, P., & Vázquez-Ramos, J. M. (2017). Ciprofloxacin as chemosensor for simultaneous recognition of Al3+ and Cu2+ by Logic Gates supported fluorescence: Application to bio-imaging for living cells. Sensors and Actuators B: Chemical, 248, 447–459. doi:10.1016/j.snb.2017.03.140
  • Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., & Fava, F. (2015). Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology, 32(1), 147–156. doi:10.1016/j.nbt.2014.01.001
  • Gawande, B. N., Rohloff, J. C., Carter, J. D., von Carlowitz, I., Zhang, C., Schneider, D. J., & Janjic, N. (2017). Selection of DNA aptamers with two modified bases. Proceedings of the National Academy of Sciences, 114(11), 2898–2903. doi:10.1073/pnas.1615475114
  • Golden, M. C., Collins, B. D., Willis, M. C., & Koch, T. H. (2000). Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. Journal of Biotechnology, 81(2-3), 167–178. doi:10.1016/S0168-1656(00)00290-X
  • Greenhalgh, T., Robert, G., Macfarlane, F., Bate, P., & Kyriakidou, O. (2004). Diffusion of innovations in service organizations: Systematic review and recommendations. The Milbank Quarterly, 82(4), 581–629. doi:10.1111/j.0887-378X.2004.00325.x
  • Groher, F., & Suess, B. (2016). In vitro selection of antibiotic-binding aptamers. Methods, 106, 42–50. doi:10.1016/j.ymeth.2016.05.008
  • Guo, L., Hu, Y., Zhang, Z., & Tang, Y. (2018). Universal fluorometric aptasensor platform based on water-soluble conjugated polymers/graphene oxide. Analytical and Bioanalytical Chemistry, 410(1), 287–295. doi:10.1007/s00216-017-0720-0
  • Guo, X. (2012). Surface plasmon resonance based biosensor technique: A review. Journal of Biophotonics, 5(7), 483–501. doi:10.1002/jbio.201200015
  • Hasegawa, H., Taira, K. I., Sode, K., & Ikebukuro, K. (2008). Improvement of aptamer affinity by dimerization. Sensors (Basel, Switzerland), 8(2), 1090–1098. doi:10.3390/s8021090
  • Hayat, A., & Marty, J. L. (2014). Aptamer based electrochemical sensors for emerging environmental pollutants. Frontiers in Chemistry, 2, 41. doi:10.3389/fchem.2014.00041
  • Her, J., Jo, H., & Ban, C. (2017). Enzyme-linked antibody aptamer assays based colorimetric detection of soluble fraction of activated leukocyte cell adhesion molecule. Sensors and Actuators B: Chemical, 242, 529–534. doi:10.1016/j.snb.2016.11.070
  • Hesterberg, L. K., & Crosby, M. A. (1996). An Overview of Rapid Immunoassays. Laboratory Medicine, 27(1), 41–47. doi:10.1093/labmed/27.1.41
  • Hicke, B. J., Marion, C., Chang, Y. F., Gould, T., Lynott, C. K., Parma, D., … Warren, S. (2001). Tenascin-C aptamers are generated using tumor cells and purified protein. Journal of Biological Chemistry, 276(52), 48644–48654. doi:10.1074/jbc.M104651200
  • Hicke, B. J., Stephens, A. W., Gould, T., Chang, Y. F., Lynott, C. K., Heil, J., … Schmidt, P. G. (2006). Tumor targeting by an aptamer. Journal of Nuclear Medicine, 47(4), 668–678.
  • Hoang, C. V., Oyama, M., Saito, O., Aono, M., & Nagao, T. (2013). Monitoring the presence of ionic mercury in environmental water by plasmon-enhanced infrared spectroscopy. Scientific Reports, 3(1), 1175. doi:10.1038/srep01175
  • Hsieh, H. V., Dantzler, J. L., & Weigl, B. H. (2017). Analytical Tools to Improve Optimization Procedures for Lateral Flow Assays. Diagnostics, 7, 29.
  • Hu, L. Y., Niu, C. G., Wang, X. Y., Huang, D. W., Zhang, L., & Zeng, G. M. (2017). Magnetic separate” turn-on” fluorescent biosensor for Bisphenol A based on magnetic oxidation graphene. Talanta, 168, 196–202. doi:10.1016/j.talanta.2017.03.055
  • Huang, K. J., Liu, Y. J., Zhang, J. Z., Cao, J. T., & Liu, Y. M. (2015). Aptamer/Au nanoparticles/cobalt sulfide nanosheets biosensor for 17β-estradiol detection using a guanine-rich complementary DNA sequence for signal amplification. Biosensors and Bioelectronics, 67, 184–191. doi:10.1016/j.bios.2014.08.010
  • Huang, Y., Chen, X., Duan, N., Wu, S., Wang, Z., Wei, X., & Wang, Y. (2015). Selection and characterization of DNA aptamers against Staphylococcus aureus enterotoxin C1. Food Chemistry, 166, 623–629. doi:10.1016/j.foodchem.2014.06.039
  • Istrate, A., Medvecky, M., & Leumann, C. J. (2015). 2′-Fluorination of tricyclo-DNA controls furanose conformation and increases RNA affinity. Organic Letters, 17(8), 1950–1953. doi:10.1021/acs.orglett.5b00662
  • Jalalian, S. H., Karimabadi, N., Ramezani, M., Abnous, K., & Taghdisi, S. M. (2018). Electrochemical and optical aptamer-based sensors for detection of tetracyclines. Trends in Food Science & Technology, 73, 45–57. doi:10.1016/j.tifs.2018.01.009
  • Jauset-Rubio, M., El-Shahawi, M. S., Bashammakh, A. S., Alyoubi, A. O., & O′Sullivan, C. K. (2017). Advances in aptamers-based lateral flow assays. TrAC Trends in Analytical Chemistry, 97, 385–398. doi:10.1016/j.trac.2017.10.010
  • Jeong, S., & Rhee Paeng, I. (2012). Sensitivity and selectivity on aptamer-based assay: The determination of tetracycline residue in bovine milk. The Scientific World Journal, 2012, 1. doi:10.1100/2012/159456
  • Jin, C., Qiu, L., Li, J., Fu, T., Zhang, X., & Tan, W. (2016). Cancer biomarker discovery using DNA aptamers. The Analyst, 141(2), 461–466. doi:10.1039/c5an01918d
  • Jo, H., & Ban, C. (2016). Aptamer–nanoparticle complexes as powerful diagnostic and therapeutic tools. Experimental & Molecular Medicine, 48(5), e230. doi:10.1038/emm.2016.44
  • Joshi, R., Janagama, H., Dwivedi, H. P., Kumar, T. S., Jaykus, L. A., Schefers, J., & Sreevatsan, S. (2009). Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Molecular and Cellular Probes, 23(1), 20–28. doi:10.1016/j.mcp.2008.10.006
  • Juraschek, M., Cerdas, F., Posselt, G., & Herrmann, C. (2017). Experiencing closed loop manufacturing in a learning environment. Procedia Manufacturing, 9, 57–64. doi:10.1016/j.promfg.2017.04.046
  • Justino, C. I., Duarte, A. C., & Rocha-Santos, T. A. (2017). Recent progress in biosensors for environmental monitoring: A review. Sensors, 17(12), 2918. doi:10.3390/s17122918
  • Kaisti, M. (2017). Detection principles of biological and chemical FET sensors. Biosensors &Amp; Bioelectronics, 98, 437–448. doi:10.1016/j.bios.2017.07.010
  • Kanoatov, M., Galievsky, V. A., Krylova, S. M., Cherney, L. T., Jankowski, H. K., & Krylov, S. N. (2015). Using nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) for simultaneous determination of concentration and equilibrium constant. Analytical Chemistry, 87(5), 3099–3106. doi:10.1021/acs.analchem.5b00171
  • Kaur, M., Rob, A., Caton-Williams, J., & Huang, Z. (2013). Biochemistry of nucleic acids functionalized with sulfur, selenium, and tellurium: Roles of the single-atom substitution. In J. L. Brumaghim, & C. A. Bayse (Eds.), Biochalcogen chemistry: The biological chemistry of sulfur, selenium, and tellurium (pp. 89–126). Washington, DC: American Chemical Society.
  • Keefe, A. D., Pai, S., & Ellington, A. (2010). Aptamers as therapeutics. Nature Reviews. Drug Discovery, 9(7), 537doi:10.1038/nrd3141
  • Kiilerich-Pedersen, K., Daprà, J., Cherré, S., & Rozlosnik, N. (2013). High sensitivity point-of-care device for direct virus diagnostics. Biosensors and Bioelectronics, 49, 374–379. doi:10.1016/j.bios.2013.05.046
  • Kim, C. H., Lee, L. P., Min, J. R., Lim, M. W., & Jeong, S. H. (2014). An indirect competitive assay-based aptasensor for detection of oxytetracycline in milk. Biosensors and Bioelectronics, 51, 426–430. doi:10.1016/j.bios.2013.08.003
  • Klug, S. J., & Famulok, M. (1994). All you wanted to know about SELEX. Mol. Biol. Rep, 20(2), 97–107.
  • Klussmann, S., Nolte, A., Bald, R., Erdmann, V. A., & Fürste, J. P. (1996). Mirror-image RNA that binds D-adenosine. Nature Biotechnology, 14(9), 1112. doi:10.1038/nbt0996-1112
  • Koczula, K. M., & Gallotta, A. (2016). Lateral flow assays. Essays in Biochemistry, 60(1), 111–120. doi:10.1042/EBC20150012
  • Krylov, S. N. (2006). Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM): A novel method for biomolecular screening. Journal of Biomolecular Screening, 11(2), 115–122. doi:10.1177/1087057105284339
  • Lai, J. C., & Hong, C. Y. (2014). Magnetic-assisted rapid aptamer selection (MARAS) for generating high-affinity DNA aptamer using rotating magnetic fields. ACS Combinatorial Science, 16(7), 321–327. doi:10.1021/co5000272
  • Lee, H. J., Kim, B. C., Kim, K. W., Kim, Y. K., Kim, J., & Oh, M. K. (2009). A sensitive method to detect Escherichia coli based on immunomagnetic separation and real-time PCR amplification of aptamers. Biosensors and Bioelectronics, 24(12), 3550–3555. doi:10.1016/j.bios.2009.05.010
  • Lee, W. I., Shrivastava, S., Duy, L. T., Kim, B. Y., Son, Y. M., & Lee, N. E. (2017). A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy. Biosensors and Bioelectronics, 94, 643–650. doi:10.1016/j.bios.2017.03.061
  • Li, J., Jiang, H., Rao, X., Liu, Z., Zhu, H., & Xu, Y. (2019). Point-of-care testing of pathogenic bacteria at the single-colony level via gas pressure readout using aptamer-coated magnetic CuFe2O4 and vancomycin-capped platinum nanoparticles. Analytical Chemistry, 91(2), 1494–1500. doi:10.1021/acs.analchem.8b04584
  • Li, P., Ho, B., & Ding, J. L. (2015). Future perspectives on new approaches in pathogen detection. Biomedical Science Letters, 21(4), 165–171. doi:10.15616/BSL.2015.21.4.165
  • Li, P., Zhou, L., Wei, J., Yu, Y., Yang, M., Wei, S., & Qin, Q. (2016). Development and characterization of aptamer-based enzyme-linked aptasorbent assay for the detection of Singapore grouper iridovirus infection. Journal of Applied Microbiology, 121(3), 634–643. doi:10.1111/jam.13161
  • Li, T., Dong, S., & Wang, E. (2009). Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Analytical Chemistry, 81(6), 2144–2149. doi:10.1021/ac900188y
  • Li, X., Cheng, R., Shi, H., Tang, B., Xiao, H., & Zhao, G. (2016). A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples. Journal of Hazardous Materials, 304, 474–480. doi:10.1016/j.jhazmat.2015.11.016
  • Liang, G., Man, Y., Jin, X., Pan, L., & Liu, X. (2016). Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy. Analytica Chimica Acta, 936, 222–228. doi:10.1016/j.aca.2016.06.056
  • Lim, Y. C., Kouzani, A. Z., & Duan, W. (2010). Aptasensors: A review. Journal of Biomedical Nanotechnology, 6(2), 93–105.
  • Lin, B., Yu, Y., Cao, Y., Guo, M., Zhu, D., Dai, J., & Zheng, M. (2018). Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosensors and Bioelectronics, 100, 482–489. doi:10.1016/j.bios.2017.09.028
  • Lin, B., Yu, Y., Li, R., Cao, Y., & Guo, M. (2016). Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer. Sensors and Actuators B: Chemical, 229, 100–109. doi:10.1016/j.snb.2016.01.114
  • Liu, D., Jia, S., Zhang, H., Ma, Y., Guan, Z., Li, J., & Yang, C. J. (2017). Integrating target-responsive hydrogel with pressuremeter readout enables simple, sensitive, user-friendly, quantitative point-of-care testing. ACS Applied Materials & Interfaces, 9(27), 22252–22258. doi:10.1021/acsami.7b05531
  • Liu, D., Luo, Q., Deng, F., Li, Z., Li, B., & Shen, Z. (2017). Ultrasensitive electrochemical biosensor based on the oligonucleotide self-assembled monolayer-mediated immunosensing interface. Analytica Chimica Acta, 971, 26–32. doi:10.1016/j.aca.2017.03.046
  • Liu, G. Q., Lian, Y. Q., Gao, C., Yu, X. F., Ming, Z. H. U., Zong, K., … Yan, Y. (2014). In vitro selection of DNA aptamers and fluorescence-based recognition for rapid detection Listeria monocytogenes. Journal of Integrative Agriculture, 13(5), 1121–1129. doi:10.1016/S2095-3119(14)60766-8
  • Liu, J., Morris, M. D., Macazo, F. C., Schoukroun-Barnes, L. R., & White, R. J. (2014). The current and future role of aptamers in electroanalysis. Journal of the Electrochemical Society, 161(5), H301–313. doi:10.1149/2.026405jes
  • Liu, S., Cheng, R., Chen, Y., Shi, H., & Zhao, G. (2018). A simple one-step pretreatment, highly sensitive and selective sensing of 17β-estradiol in environmental water samples using surface-enhanced Raman spectroscopy. Sensors and Actuators B: Chemical, 254, 1157–1164. doi:10.1016/j.snb.2017.08.003
  • Liu, W., Zhang, M., Liu, X., Sharma, A., & Ding, X. (2017). A point-of-need infrared mediated PCR platform with compatible lateral flow strip for HPV detection. Biosensors and Bioelectronics, 96, 213–219. doi:10.1016/j.bios.2017.04.047
  • Liu, Y., Lai, Y., Yang, G., Tang, C., Deng, Y., Li, S., & Wang, Z. (2017). Cd-aptamer electrochemical biosensor based on AuNPs/CS modified glass carbon electrode. Journal of Biomedical Nanotechnology, 13(10), 1253–1259. doi:10.1166/jbn.2017.2424
  • Liu, Y., Ouyang, Q., Li, H., Chen, M., Zhang, Z. Z., & Chen, Q. (2018). A turn-on fluoresence sensor for Hg2+ in food based on FRET between aptamers functionalized upconversion nanoparticles and gold nanoparticles. Journal of Agricultural and Food Chemistry, 6(24), 6188–6195. doi:10.1021/acs.jafc.8b00546
  • Lokers, R., Knapen, R., Janssen, S., van Randen, Y., & Jansen, J. (2016). Analysis of Big Data technologies for use in agro-environmental science. Environmental Modelling & Software, 84, 494–504. doi:10.1016/j.envsoft.2016.07.017
  • Long, F., Zhu, A., & Shi, H. (2013). Recent advances in optical biosensors for environmental monitoring and early warning. Sensors, 13(10), 13928–13948. doi:10.3390/s131013928
  • Long, F., Zhu, A., Shi, H., Wang, H., & Liu, J. (2013). Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Scientific Reports, 3(1), 2308. doi:10.1038/srep02308
  • Long, S. B., Long, M. B., White, R. R., & Sullenger, B. A. (2008). Crystal structure of an RNA aptamer bound to thrombin. Rna (New York, N.Y.), 14(12), 2504–2512. doi:10.1261/rna.1239308
  • Lu, C., Tang, Z., Liu, C., Kang, L., & Sun, F. (2015). Magnetic-nanobead-based competitive enzyme-linked aptamer assay for the analysis of oxytetracycline in food. Analytical and Bioanalytical Chemistry, 407(14), 4155–4163. doi:10.1007/s00216-015-8632-3
  • Lu, Y., Liu, Y., Zhang, S., Wang, S., Zhang, S., & Zhang, X. (2013). Aptamer-based plasmonic sensor array for discrimination of proteins and cells with the naked eye. Analytical Chemistry, 85(14), 6571–6574. doi:10.1021/ac4014594
  • Luo, Z., Wang, Y., Lu, X., Chen, J., Wei, F., Huang, Z., … Duan, Y. (2017). Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme. Analytica Chimica Acta, 984, 177–184. doi:10.1016/j.aca.2017.06.037
  • Ma, X., Gong, N., Zhong, L., Sun, J., & Liang, X. J. (2016). Future of nanotherapeutics: Targeting the cellular sub-organelles. Biomaterials, 97, 10–21. doi:10.1016/j.biomaterials.2016.04.026
  • Ma, X., Jiang, Y., Jia, F., Yu, Y., Chen, J., & Wang, Z. (2014). An aptamer-based electrochemical biosensor for the detection of Salmonella. Journal of Microbiological Methods, 98, 94–98.
  • Ma, Y., Wang, S., & Wang, L. (2015). Nanomaterials for luminescence detection of nitroaromatic explosives. Trends in Analytical Chemistry, 65, 13–21. doi:10.1016/j.trac.2014.09.007
  • Macherera, M., & Chimbari, M. J. (2016). A review of studies on community based early warning systems. Jàmbá: Journal of Disaster Risk Studies, 8(1), a206. doi:10.4102/jamba.v8i1.206
  • Madianos, L., Tsekenis, G., Skotadis, E., Patsiouras, L., & Tsoukalas, D. (2018). A highly sensitive impedimetric aptasensor for the selective detection of acetamiprid and atrazine based on microwires formed by platinum nanoparticles. Biosensors and Bioelectronics, 101, 268–274. doi:10.1016/j.bios.2017.10.034
  • Marton, S., Reyes-Darias, J. A., Sánchez-Luque, F. J., Romero-López, C., & Berzal-Herranz, A. (2010). In vitro and ex vivo selection procedures for identifying potentially therapeutic DNA and RNA molecules. Molecules, 15(7), 4610–4638. doi:10.3390/molecules15074610
  • Mascini, M. (2009). Aptamers in bioanalysis. Hoboken, NJ: John Wiley & Sons.
  • McGown, L. B., Joseph, M. J., Pitner, J. B., Vonk, G. P., & Linn, C. P. (1995). The nucleic acid ligand. A new tool for molecular recognition. Analytical Chemistry, 67(21), 663A–668A. doi:10.1021/ac00117a002
  • McKeague, M., McConnell, E. M., Cruz-Toledo, J., Bernard, E. D., Pach, A., Mastronardi, E., … DeRosa, M. C. (2015). Analysis of in vitro aptamer selection parameters. Journal of Molecular Evolution, 81(5-6), 150–161. doi:10.1007/s00239-015-9708-6
  • Miranda-Castro, R., de-los-Santos-Álvarez, N., & Lobo-Castañón, M. J. (2017). Characterization of aptamer–ligand complexes. In Y. Dong (Ed.), Aptamers for analytical applications: Affinity acquisition and method design (pp. 109–110). Beijing, China: Wiley.
  • Mishra, G. K., Sharma, V., & Mishra, R. K. (2018). Electrochemical aptasensors for food and environmental safeguarding: A review. Biosensors, 8(2), 28. doi:10.3390/bios8020028
  • Misono, T. S., & Kumar, P. K. (2005). Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Analytical Biochemistry, 342(2), 312–317. doi:10.1016/j.ab.2005.04.013
  • Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H. L., … Caspia, A. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. PNAS, 108(7), 2693–2698. doi:10.1073/pnas.1010076108
  • Mujahid, A., & Dickert, F. (2017). Surface acoustic wave (SAW) for chemical sensing applications of recognition layers. Sensors, 17(12), 2716. doi:10.3390/s17122716
  • Mukherjee, M., Manonmani, H. K., & Bhatt, P. (2018). Aptamer as capture agent in enzyme-linked apta-sorbent assay (ELASA) for ultrasensitive detection of Aflatoxin B1. Toxicon, 158, 28–33. doi:10.1016/j.toxicon.2018.11.001
  • Muñoz, J., Montes, R., & Baeza, M. (2017). Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensing. TrAC Trends in Analytical Chemistry, 97, 201–215. doi:10.1016/j.trac.2017.08.012
  • Nawrot, B., & Sipa, K. (2006). Chemical and structural diversity of siRNA molecules. Current Topics in Medicinal Chemistry, 6(9), 913–925. doi:10.2174/156802606777303658
  • Neves, M. A., Blaszykowski, C., Bokhari, S., & Thompson, M. (2015). Ultra-high frequency piezoelectric aptasensor for the label-free detection of cocaine. Biosensors and Bioelectronics, 72, 383–392. doi:10.1016/j.bios.2015.05.038
  • Nezlin, R. (2014). Aptamers in immunological research. Immunology Letters, 162(2), 252–255. doi:10.1016/j.imlet.2014.10.001
  • Ng, E. W., Shima, D. T., Calias, P., Cunningham, E. T., Jr, Guyer, D. R., & Adamis, A. P. (2006). Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nature Reviews Drug Discovery, 5(2), 123. doi:10.1038/nrd1955
  • Nguyen, V. T., Kwon, Y. S., Kim, J. H., & Gu, M. B. (2014). Multiple GO-SELEX for efficient screening of flexible aptamers. Chemical Communications, 50(72), 10513–10516. doi:10.1039/C4CC03953J
  • Ni, X., Xia, B., Wang, L., Ye, J., Du, G., Feng, H., … Wang, W. (2017). Fluorescent aptasensor for 17β-estradiol determination based on gold nanoparticles quenching the fluorescence of rhodamine b. Analytical Biochemistry, 523, 17–23. doi:10.1016/j.ab.2017.01.021
  • Nitsche, A., Kurth, A., Dunkhorst, A., Pänke, O., Sielaff, H., Junge, W., … Kage, A. (2007). One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnology, 7(1), 48doi:10.1186/1472-6750-7-48
  • Ohuchi, S. P., Ohtsu, T., & Nakamura, Y. (2006). Selection of RNA aptamers against recombinant transforming growth factor-β type III receptor displayed on cell surface. Biochimie, 88(7), 897–904. doi:10.1016/j.biochi.2006.02.004
  • Østergaard, M. E., Dwight, T., Berdeja, A., Swayze, E. E., Jung, M. E., & Seth, P. P. (2014). Comparison of duplex stabilizing properties of 2′-fluorinated nucleic acid analogues with furanose and non-furanose sugar rings. The Journal of Organic Chemistry, 79(18), 8877–8881. doi:10.1021/jo501381q
  • Ozalp, V. C., Bayramoglu, G., Erdem, Z., & Arica, M. Y. (2015). Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core–shell type magnetic separation. Analytica Chimica Acta, 853, 533–540. doi:10.1016/j.aca.2014.10.010
  • Pai, N. P., Vadnais, C., Denkinger, C., Engel, N., & Pai, M. (2012). Point-of-care testing for infectious diseases: Diversity, complexity, and barriers in low-and middle-income countries. PLoS Medicine, 9(9), e1001306. doi:10.1371/journal.pmed.1001306
  • Palchetti, I., & Mascini, M. (2008). Nucleic acid biosensors for environmental pollution monitoring. The Analyst, 133(7), 846–854. doi:10.1039/b802920m
  • Park, H., & Paeng, I. R. (2011). Development of direct competitive enzyme-linked aptamer assay for determination of dopamine in serum. Analytica Chimica Acta, 685(1), 65–73. doi:10.1016/j.aca.2010.11.010
  • Pavski, V., & Le, X. C. (2001). Detection of human immunodeficiency virus type 1 reverse transcriptase using aptamers as probes in affinity capillary electrophoresis. Analytical Chemistry, 73(24), 6070–6076. doi:10.1021/ac0107305
  • Pereira, R. L., Nascimento, I. C., Santos, A. P., Ogusuku, I. E., Lameu, C., Mayer, G., & Ulrich, H. (2018). Aptamers: Novelty tools for cancer biology. Oncotarget, 9(42), 26934. doi:10.18632/oncotarget.25260
  • Pfeiffer, F., & Mayer, G. (2016). Selection and biosensor application of aptamers for small molecules. Frontiers in Chemistry, 4, 25.
  • Pilehvar, S., Reinemann, C., Bottari, F., Vanderleyden, E., Van Vlierberghe, S., Blust, R., … De Wael, K. (2017). A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin. Sensors and Actuators B: Chemical, 240, 1024–1035. doi:10.1016/j.snb.2016.09.075
  • PubChem. (2018). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/?term=aptamer
  • Qi, Y., Xiu, F. R., Yu, G., Huang, L., & Li, B. (2017). Simple and rapid chemiluminescence aptasensor for Hg2+ in contaminated samples: A new signal amplification mechanism. Biosensors and Bioelectronics, 87, 439–446. doi:10.1016/j.bios.2016.08.022
  • Qian, Z. S., Shan, X. Y., Chai, L. J., Chen, J. R., & Feng, H. (2015). A fluorescent nanosensor based on graphene quantum dots–aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosensors and Bioelectronics, 68, 225–231. doi:10.1016/j.bios.2014.12.057
  • Qiao, Y., Li, J., Li, H., Fang, H., Fan, D., & Wang, W. (2016). A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized ZnO nanopencils. Biosensors and Bioelectronics, 86, 315–320. doi:10.1016/j.bios.2016.06.062
  • Radom, F., Jurek, P. M., Mazurek, M. P., Otlewski, J., & Jeleń, F. (2013). Aptamers: Molecules of great potential. Biotechnology Advances, 31(8), 1260–1274. doi:10.1016/j.biotechadv.2013.04.007
  • Ragavan, K. V., Selvakumar, L. S., & Thakur, M. S. (2013). Functionalized aptamers as nano-bioprobes for ultrasensitive detection of bisphenol-A. Chemical Communications, 49(53), 5960–5962. doi:10.1039/c3cc42002g
  • Rahman, M. M., Hussein, M. A., Aly, K. I., & Asiri, A. M. (2018). Thermally stable hybrid polyarylidene (azomethine-ether) s polymers (PAAP): An ultrasensitive arsenic (III) sensor approach. Designed Monomers and Polymers, 21(1), 82–98. doi:10.1080/15685551.2018.1471793
  • Ramos, E., Piñeiro, D., Soto, M., Abanades, D. R., Martín, M. E., Salinas, M., & González, V. M. (2007). A DNA aptamer population specifically detects Leishmania infantum H2A antigen. Laboratory Investigation, 87(5), 409. doi:10.1038/labinvest.3700535
  • Raston, N. H. A., Nguyen, V. T., & Gu, M. B. (2017). A new lateral flow strip assay (LFSA) using a pair of aptamers for the detection of Vaspin. Biosens Bioelectron, 93, 21–25. doi:10.1016/j.bios.2016.11.061
  • Ries, O., & Vogel, S. (2016). Aptamer–liposome conjugates: Current art and future prospects. In R. N. Veedu (Ed.). Aptamers: Tools for nanotherapy and molecular imaging (pp. 223–251). Boca Raton, FL: CRC Press.
  • Rimmele, M. (2003). Nucleic acid aptamers as tools and drugs: Recent developments. Chembiochem, 4(10), 963–971. doi:10.1002/cbic.200300648
  • Robati, R. Y., Arab, A., Ramezani, M., Langroodi, F. A., Abnous, K., & Taghdisi, S. M. (2016). Aptasensors for quantitative detection of kanamycin. Biosensors & Bioelectronics, 82, 162–172. doi:10.1016/j.bios.2016.04.011
  • Robertson, D. L., & Joyce, G. F. (1990). Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature, 344(6265), 467doi:10.1038/344467a0
  • Romero, J. M. P., Hallett, S. H., & Jude, S. (2017). Leveraging big data tools and technologies: Addressing the challenges of the water quality sector. Sustainability, 9, 2160. doi:10.3390/su9122160
  • Romig, T. S., Bell, C., & Drolet, D. W. (1999). Aptamer affinity chromatography: Combinatorial chemistry applied to protein purification. Journal of Chromatography B: Biomedical Sciences and Applications, 731(2), 275–284. doi:10.1016/S0378-4347(99)00243-1
  • Roushani, M., & Shahdost-Fard, F. (2015). A highly selective and sensitive cocaine aptasensor based on covalent attachment of the aptamer-functionalized AuNPs onto nanocomposite as the support platform. Analytica Chimica Acta, 853, 214–221. doi:10.1016/j.aca.2014.09.031
  • Scaggiante, B., Dapas, B., Farra, R., Grassi, M., Pozzato, G., Giansante, C., … Grassi, G. (2013). Aptamers as targeting delivery devices or anti-cancer drugs for fighting tumors. Current Drug Metabolism, 14(5), 565–582.
  • Schüling, T., Eilers, A., Scheper, T., & Walter, J. (2018). Aptamer-based lateral flow assays. Aims Bioengineering, 5(2), 78–102. doi:10.3934/bioeng.2018.2.78
  • Sefah, K., Shangguan, D., Xiong, X., O'donoghue, M. B., & Tan, W. (2010). Development of DNA aptamers using Cell-SELEX. Nature Protocols, 5(6), 1169doi:10.1038/nprot.2010.66
  • Selvakumar, L. S., & Thakur, M. S. (2012). Nano RNA aptamer wire for analysis of vitamin B12. Analytical Biochemistry, 427(2), 151–157. doi:10.1016/j.ab.2012.05.020
  • Sevcu, A., El-Temsah, Y. S., Filip, J., Joner, E. J., Bobčíková, K., & Černík, M. (2017). Zero-valent iron particles for PCB degradation and an evaluation of their effects on bacteria, plants, and soil organisms. Environmental Science and Pollution Research International, 24(26), 21191–21202. doi:10.1007/s11356-017-9699-5
  • Shamaileh, H. A., Xiang, D., Wang, T., Yin, W., Duan, W., & Shigdar, S. (2016). Stem-cell-specific aptamers for targeted cancer therapy. In Aptamers (pp. 127–164). Singapore: Pan Stanford.
  • Shamsipur, M., Farzin, L., Amouzadeh Tabrizi, M., & Sheibani, S. (2017). Functionalized Fe3O4/graphene oxide nanocomposites with hairpin aptamers for the separation and preconcentration of trace Pb2+ from biological samples prior to determination by ICP MS. Materials Science &Amp; Engineering. C, Materials for Biological Applications, 77, 459–469. doi:10.1016/j.msec.2017.03.262
  • Shi, S., Yu, X., Gao, Y., Xue, B., Wu, X., Wang, X., … Zhu, H. (2014). Inhibition of hepatitis C virus production by aptamers against the core protein. Journal of Virology, 88(4), 1990–1999. doi:10.1128/JVI.03312-13
  • Shin, S., Kim, I. H., Kang, W., Yang, J. K., & Hah, S. S. (2010). An alternative to Western blot analysis using RNA aptamer-functionalized quantum dots. Bioorganic & Medicinal Chemistry Letters, 20(11), 3322–3325. doi:10.1016/j.bmcl.2010.04.040
  • Shiratori, I., Akitomi, J., Boltz, D. A., Horii, K., Furuichi, M., & Waga, I. (2014). Selection of DNA aptamers that bind to influenza A viruses with high affinity and broad subtype specificity. Biochemical and Biophysical Research Communications, 443(1), 37–41. doi:10.1016/j.bbrc.2013.11.041
  • Singh, H., Graber, M. L., & Hofer, T. P. (2016). Measures to improve diagnostic safety in clinical practice. Journal of Patient Safety. doi:10.1097/PTS.0000000000000338
  • Smith, J. D., & Gold, L. (2004). U.S. Patent No. 6,706,482. Washington, DC: U.S. Patent and Trademark Office.
  • Somerson, J., & Plaxco, K. W. (2018). Electrochemical aptamer-based sensors for rapid point-of-use monitoring of the mycotoxin ochratoxin a directly in a food stream. Molecules, 23(4), 912. doi:10.3390/molecules23040912
  • Someya, T., Baba, S., Fujimoto, M., Kawai, G., Kumasaka, T., & Nakamura, K. (2012). Crystal structure of Hfq from Bacillus subtilis in complex with SELEX-derived RNA aptamer: Insight into RNA-binding properties of bacterial Hfq. Nucleic Acids Research, 40(4), 1856–1867. doi:10.1093/nar/gkr892
  • Song, K. M., Lee, S., & Ban, C. (2012). Aptamers and their biological applications. Sensors (Basel, Switzerland), 12(1), 612–631. doi:10.3390/s120100612
  • Song, M. Y., Jurng, J., Park, Y. K., & Kim, B. C. (2016). An aptamer cocktail-functionalized photocatalyst with enhanced antibacterial efficiency towards target bacteria. Journal of Hazardous Materials, 318, 247–254. doi:10.1016/j.jhazmat.2016.07.016
  • Song, S., Wang, L., Li, J., Fan, C., & Zhao, J. (2008). Aptamer-based biosensors. TrAC Trends in Analytical Chemistry, 27(2), 108–117. doi:10.1016/j.trac.2007.12.004
  • Song, Y., Zhang, H., Zhu, Z., & Yang, C. (2015). The clinical application of aptamers: Future challenges and prospects. In T. Weihong, & X. Fang (Eds.), Aptamers selected by cell-SELEX for theranostics (pp. 339–352). Heidelberg, Germany: Springer.
  • Stein, C. A., & Castanotto, D. (2017). FDA-approved oligonucleotide therapies in 2017. Molecular Therapy, 25(5), 1069–1075. doi:10.1016/j.ymthe.2017.03.023
  • Stojanovic, M. N., De Prada, P., & Landry, D. W. (2001). Aptamer-based folding fluorescent sensor for cocaine. Journal of the American Chemical Society, 123(21), 4928–4931. doi:10.1021/ja0038171
  • Su, L., Fong, C. C., Cheung, P. Y., & Yang, M. (2017). Development of novel piezoelectric biosensor using pzt ceramic resonator for detection of cancer markers. In A. Rasooly, & K. E. Herold (Eds.), Biosensors and biodetection (pp. 277–291). New York, NY. Humana Press.
  • Svobodová, M., Pinto, A., Nadal, P., & O’ Sullivan, C. K. (2012). Comparison of different methods for generation of single-stranded DNA for SELEX processes. Analytical and Bioanalytical Chemistry, 404(3), 835–842. doi:10.1007/s00216-012-6183-4
  • Sypabekova, M., Bekmurzayeva, A., Wang, R., Li, Y., Nogues, C., & Kanayeva, D. (2017). Selection, characterization, and application of DNA aptamers for detection of Mycobacterium tuberculosis secreted protein MPT64. Tuberculosis, 104, 70–78. doi:10.1016/j.tube.2017.03.004
  • Szczepańska, N., Kudłak, B., & Namieśnik, J. (2018). Recent advances in assessing xenobiotics migrating from packaging material – A review. Analytica Chimica Acta, 1023, 1–21. doi:10.1016/j.aca.2018.03.045
  • Szeto, K., Latulippe, D. R., Ozer, A., Pagano, J. M., White, B. S., Shalloway, D., … Craighead, H. G. (2013). Rapid-SELEX for RNA aptamers. PloS One, 8(12), e82667–11. doi:10.1371/journal.pone.0082667
  • Taghdisi, S. M., Danesh, N. M., Emrani, A. S., Ramezani, M., & Abnous, K. (2015). A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine. Biosensors and Bioelectronics, 73, 245–250. doi:10.1016/j.bios.2015.05.065
  • Taghdisi, S. M., Danesh, N. M., Ramezani, M., Emrani, A. S., & Abnous, K. (2018). A simple and rapid fluorescent aptasensor for ultrasensitive detection of arsenic based on target-induced conformational change of complementary strand of aptamer and silica nanoparticles. Sensors and Actuators B: Chemical, 256, 472–478. doi:10.1016/j.snb.2017.10.129
  • Tan, B., Zhao, H., Du, L., Gan, X., & Quan, X. (2016). A versatile fluorescent biosensor based on target-responsive graphene oxide hydrogel for antibiotic detection. Biosensors and Bioelectronics, 83, 267–273. doi:10.1016/j.bios.2016.04.065
  • Tang, W., Wang, Z., Yu, J., Zhang, F., & He, P. (2018). Internal Calibration Potentiometric Aptasensors for Simultaneous Detection of Hg2+, Cd2+, and As3+ Based on a Screen-Printed Carbon Electrodes Array. Analytical Chemistry, 90(14), 8337–8344. doi:10.1021/acs.analchem.7b04150
  • Tao, Y. U. A. N., Zhong-Yuan, L. I. U., Lian-Zhe, H. U., & Guo-Bao, X. U. (2011). Electrochemical and Electrochemiluminescent Aptasensors. Chinese Journal of Analytical Chemistry, 39(7), 972–977. doi:10.1016/S1872-2040(10)60451-3
  • Tereshko, V., Skripkin, E., & Patel, D. J. (2003). Encapsulating streptomycin within a small 40-mer RNA. Chemistry & Biology, 10(2), 175–187. doi:10.1016/S1074-5521(03)00024-3
  • Thevis, M., Kuuranne, T., Geyer, H., & Schänzer, W. (2017). Annual banned-substance review: Analytical approaches in human sports drug testing. Drug Testing and Analysis, 9(1), 6–29. doi:10.1002/dta.1928
  • Toh, S. Y., Citartan, M., Gopinath, S. C., & Tang, T. H. (2015). Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosensors and Bioelectronics, 64, 392–403. doi:10.1016/j.bios.2014.09.026
  • Tombelli, S., Minunni, M., Luzi, E., & Mascini, M. (2005). Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry, 67(2), 135–141. doi:10.1016/j.bioelechem.2004.04.011
  • Tombelli, S., Minunni, M., & Mascini, M. (2005). Analytical applications of aptamers. Biosens Bioelectron, 20(12), 2424–2434. doi:10.1016/j.bios.2004.11.006
  • Tong, R., Yala, L., Fan, T. M., & Cheng, J. (2010). The formulation of aptamer-coated paclitaxel–polylactide nanoconjugates and their targeting to cancer cells. Biomaterials, 31(11), 3043–3053. doi:10.1016/j.biomaterials.2010.01.009
  • Tuerk, C., & Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249(4968), 505–510. doi:10.1126/science.2200121
  • Umrao, S., Anusha, S., Jain, V., Chakraborty, B., & Roy, R. (2019). Smartphone-based kanamycin sensing with ratiometric FRET. RSC Advances, 9(11), 6143–6151. doi:10.1039/C8RA10035G
  • van den Kieboom, C. H., van der Beek, S. L., Mészáros, T., Gyurcsányi, R. E., Ferwerda, G., & de Jonge, M. I. (2015). Aptasensors for viral diagnostics. TrAC Trends in Analytical Chemistry, 74, 58–67. doi:10.1016/j.trac.2015.05.012
  • Vashist, S. K., Luppa, P. B., Yeo, L. Y., Ozcan, A., & Luong, J. H. (2015). Emerging technologies for next-generation point-of-care testing. Trends in Biotechnology, 33(11), 692–705. doi:10.1016/j.tibtech.2015.09.001
  • Vater, A., Jarosch, F., Buchner, K., & Klussmann, S. (2003). Short bioactive Spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach: Tailored-SELEX. Nucleic Acids Research, 31(21), 130e. doi:10.1093/nar/gng130
  • Verma, N., & Bhardwaj, A. (2015). Biosensor technology for pesticides—a review. Applied Biochemistry and Biotechnology, 175(6), 3093–3119.
  • Vivekananda, J., & Kiel, J. L. (2006). Anti-Francisella tularensis DNA aptamers detect tularemia antigen from different subspecies by Aptamer-Linked Immobilized Sorbent Assay. Laboratory Investigation, 86(6), 610. doi:10.1038/labinvest.3700417
  • Walter, J. G., Heilkenbrinker, A., Austerjost, J., Timur, S., Stahl, F., & Schepe, T. (2012). Aptasensors for small molecule detection. Zeitschrift Für Naturforschung B, 67(10), 976–986. doi:10.5560/znb.2012-0147
  • Wang, A., Zhao, H., Chen, X., Tan, B., Zhang, Y., & Quan, X. (2017). A colorimetric aptasensor for sulfadimethoxine detection based on peroxidase-like activity of graphene/nickel@ palladium hybrids. Analytical Biochemistry, 525, 92–99. doi:10.1016/j.ab.2017.03.006
  • Wang, D., Wang, J., Liu, Z. E., Yang, X., Hu, X., Deng, J., … Yuan, Q. (2015). High-performance electrochemical catalysts based on three-dimensional porous architecture with conductive interconnected networks. ACS Applied Materials & Interfaces, 8(42), 28265–28273. doi:10.1021/acsami.5b08294
  • Wang, R., Xiang, Y., Zhou, X., Liu, L. H., & Shi, H. (2015). A reusable aptamer-based evanescent wave all-fiber biosensor for highly sensitive detection of Ochratoxin A. Biosensors and Bioelectronics, 66, 11–18. doi:10.1016/j.bios.2014.10.079
  • Wang, W., Wong, N. K., Sun, M., Yan, C., Ma, S., Yang, Q., & Li, Y. (2015). Regenerable fluorescent nanosensors for monitoring and recovering metal ions based on photoactivatable monolayer self-assembly and host–guest interactions. ACS Applied Materials & Interfaces, 7(16), 8868–8875. doi:10.1021/acsami.5b01509
  • Wang, Y. K., Zou, Q., Sun, J. H., Wang, H. A., Sun, X., Chen, Z. F., & Yan, Y. X. (2015). Screening of single-stranded DNA (ssDNA) aptamers against a zearalenone monoclonal antibody and development of a ssDNA-based enzyme-linked oligonucleotide assay for determination of zearalenone in corn. Journal of Agricultural and Food Chemistry, 63(1), 136–141. doi:10.1021/jf503733g
  • Wei, W. A. N. G., & Ling-Yun, J. I. A. (2009). Progress in aptamer screening methods. Chinese Journal of Analytical Chemistry, 37(3), 454–460.
  • Wells, K., & Bradley, D. A. (2012). A review of X-ray explosives detection techniques for checked baggage. Applied Radiation and Isotopes, 70(8), 1729–1746. doi:10.1016/j.apradiso.2012.01.011
  • Wieczerzak, M., Namieśnik, J., & Kudłak, B. (2016). Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review. Environment International, 94, 341–361. doi:10.1016/j.envint.2016.05.017
  • Wiedman, G. R., Zhao, Y., Mustaev, A., Ping, J., Vishnubhotla, R., Johnson, A. C., & Perlin, D. S. (2017). An aptamer-based biosensor for the azole class of antifungal drugs. mSphere, 2(4), e00274–17. doi:10.1128/mSphere.00274-17
  • Wondergem, J. A. J., Schiessel, H., & Tompitak, M. (2017). Performing SELEX experiments in silico. The Journal of Chemical Physics, 147(17), 174101doi:10.1063/1.5001394
  • Wood, M., Maynard, P., Spindler, X., Lennard, C., & Roux, C. (2012). Visualization of Latent Fingermarks Using an Aptamer-Based Reagent. Angewandte Chemie International Edition, 51(49), 12272–12274. doi:10.1002/anie.201207394
  • Wu, Z., Shen, H., Hu, J., Fu, Q., Yao, C., Yu, S., … Tang, Y. (2017). Aptamer-based fluorescence-quenching lateral flow strip for rapid detection of mercury (II) ion in water samples. Analytical and Bioanalytical Chemistry, 409(22), 5209–5216. doi:10.1007/s00216-017-0491-7
  • Wu, L., Lu, X., Fu, X., Wu, L., & Liu, H. (2017). Gold nanoparticles dotted reduction graphene oxide nanocomposite based electrochemical aptasensor for selective, rapid, sensitive and congener-specific PCB77 detection. Scientific Reports, 7(1), 5191. doi:10.1038/s41598-017-05352-7
  • Wu, L., Qi, P., Fu, X., Liu, H., Li, J., Wang, Q., & Fan, H. (2016). A novel electrochemical PCB77-binding DNA aptamer biosensor for selective detection of PCB77. Journal of Electroanalytical Chemistry, 771, 45–49. doi:10.1016/j.jelechem.2016.04.003
  • Wu, W., Zhao, S., Mao, Y., Fang, Z., Lu, X., & Zeng, L. (2015). A sensitive lateral flow biosensor for Escherichia coli O157: H7 detection based on aptamer mediated strand displacement amplification. Analytica Chimica Acta, 861, 62–68. doi:10.1016/j.aca.2014.12.041
  • Wu, Y., Liu, L., Zhan, S., Wang, F., & Zhou, P. (2012). Ultrasensitive aptamer biosensor for arsenic (III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. The Analyst, 137(18), 4171–4178. doi:10.1039/c2an35711a
  • Xu, Y., Yang, L., Ye, X., He, P., & Fang, Y. (2006). An aptamer based protein biosensor by detecting the amplified impedance signal. Electroanalysis, 18(15), 1449–1456. doi:10.1002/elan.200603566
  • Yan, C., Zhang, J., Yao, L., Xue, F., Lu, J., Li, B., & Chen, W. (2018). Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food. Food Chemistry, 260, 208–212. doi:10.1016/j.foodchem.2018.04.014
  • Yan, X. R., Gao, X. W., Yao, L. H., & Zhang, Z. Q. (2004). Novel methods to detect cytokines by enzyme-linked oligonucleotide assay. Sheng wu Gong Cheng Xue ba Chinese Journal of Biotechnology, 20(5), 679–682.
  • Yáñez-Sedeño, P., Agüí, L., Villalonga, R., & Pingarrón, J. M. (2014). Biosensors in forensic analysis. A review. Analytica Chimica Acta, 823, 1–19. doi:10.1016/j.aca.2014.03.011
  • Yang, X., Yang, M., Pang, B., Vara, M., & Xia, Y. (2015). Gold nanomaterials at work in biomedicine. Chemical Reviews, 115(19), 10410–10488. doi:10.1021/acs.chemrev.5b00193
  • Yang, Y., Kang, M., Fang, S., Wang, M., He, L., Zhao, J., … Zhang, Z. (2015). Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions. Sensors and Actuators B: Chemical, 214, 63–69. doi:10.1016/j.snb.2015.02.127
  • Yang, Y., Yin, S., Li, Y., Lu, D., Zhang, J., & Sun, C. (2017). Application of aptamers in detection and chromatographic purification of antibiotics in different matrices. TrAC Trends in Analytical Chemistry, 95, 1–22. doi:10.1016/j.trac.2017.07.023
  • Yang, Z., Qian, J., Yang, X., Jiang, D., Du, X., Wang, K., … Wang, K. (2015). A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide. Biosensors and Bioelectronics, 65, 39–46. doi:10.1016/j.bios.2014.10.004
  • Yildirim, N., Long, F., He, M., Shi, H. C., & Gu, A. Z. (2014). A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples. Environmental Science: Processes & Impacts, 16(6), 1379–1386. doi:10.1039/C4EM00046C
  • Yuan, F., Zhao, H., Wang, X., & Quan, X. (2017). Determination of oxytetracycline by a graphene—Gold nanoparticle-based colorimetric aptamer sensor. Analytical Letters, 50(3), 544–553. doi:10.1080/00032719.2016.1187160
  • Yuan, M., Song, Z., Fei, J., Wang, X., Xu, F., Cao, H., & Yu, J. (2017). Aptasensor for lead (II) based on the use of a quartz crystal microbalance modified with gold nanoparticles. Microchimica Acta, 184(5), 1397–1403. doi:10.1007/s00604-017-2135-1
  • Zal, T., & Gascoigne, N. R. (2004). Photobleaching-corrected FRET efficiency imaging of live cells. Biophysical Journal, 86(6), 3923–3393.
  • Zeng, G., Zhang, C., Huang, D., Lai, C., Tang, L., Zhou, Y., … Cheng, M. (2017). Practical and regenerable electrochemical aptasensor based on nanoporous gold and thymine-Hg2+-thymine base pairs for Hg2+ detection. Biosensors and Bioelectronics, 90, 542–548. doi:10.1016/j.bios.2016.10.018
  • Zhan, X., Hu, G., Wagberg, T., Zhan, S., Xu, H., & Zhou, P. (2015). Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe 3 O 4) nanoparticles. Microchimica Acta, 183(2), 723–729. doi:10.1007/s00604-015-1718-y
  • Zhang, G., Li, T., Zhang, J., & Chen, A. (2018). A simple FRET-based turn-on fluorescent aptasensor for 17β-estradiol determination in environmental water, urine and milk samples. Sensors and Actuators B: Chemical, 273, 1648–1653. doi:10.1016/j.snb.2018.07.066
  • Zhang, J., Li, S., Liu, F., Zhou, L., Shao, N., & Zhao, X. (2015). SELEX aptamer used as a probe to detect circulating tumor cells in peripheral blood of pancreatic cancer patients. PLoS One, 10(3), e0121920. doi:10.1371/journal.pone.0121920
  • Zhang, W., Liu, Q. X., Guo, Z. H., & Lin, J. S. (2018). Practical application of aptamer-based biosensors in detection of low molecular weight pollutants in water sources. Molecules, 23(2), 344.
  • Zhang, Y., Wang, Y., Zhu, W., Wang, J., Yue, X., Liu, W., … Wang, J. (2017). Simultaneous colorimetric determination of bisphenol A and bisphenol S via a multi-level DNA circuit mediated by aptamers and gold nanoparticles. Microchimica Acta, 184(3), 951–959. doi:10.1007/s00604-017-2092-8
  • Zhao, R., Jia, D., Wen, Y., & Yu, X. (2017). Cantilever-based aptasensor for trace level detection of nerve agent simulant in aqueous matrices. Sensors and Actuators B: Chemical, 238, 1231–1239. doi:10.1016/j.snb.2016.09.089
  • Zhao, Z., Chen, H., Ma, L., Liu, D., & Wang, Z. (2015). A label-free electrochemical impedance aptasensor for cylindrospermopsin detection based on thionine–graphene nanocomposites. The Analyst, 140(16), 5570–5577. doi:10.1039/C5AN00704F
  • Zhou, G., Wilson, G., Hebbard, L., Duan, W., Liddle, C., George, J., & Qiao, L. (2016). Aptamers: A promising chemical antibody for cancer therapy. Oncotarget, 7(12), 13446. doi:10.18632/oncotarget.7178
  • Zhu, H., Suter, J., White, I., & Fan, X. (2006). Aptamer based microsphere biosensor for thrombin detection. Sensors, 6(8), 785–795. doi:10.3390/s6080785
  • Zhu, Y., Zeng, G. M., Zhang, Y., Tang, L., Chen, J., Cheng, M., … He, Y. B. (2014). Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead (II) detection based on Pb 2+-induced G-rich DNA conformation. The Analyst, 139(19), 5014–5020. doi:10.1039/C4AN00874J
  • Zhu, Z., Song, Y., Li, C., Zou, Y., Zhu, L., An, Y., & Yang, C. J. (2014). Monoclonal surface display SELEX for simple, rapid, efficient, and cost-effective aptamer enrichment and identification. Analytical Chemistry, 86(12), 5881–5888. doi:10.1021/ac501423g
  • Zhuang, Y., Deng, H., Su, Y., He, L., Wang, R., Tong, G., … Zhu, X. (2016). Aptamer-functionalized and backbone redox-responsive hyperbranched polymer for targeted drug delivery in cancer therapy. Biomacromolecules, 17(6), 2050–2062. doi:10.1021/acs.biomac.6b00262
  • Zimmermann, B., Bilusic, I., Lorenz, C., & Schroeder, R. (2010). Genomic SELEX: A discovery tool for genomic aptamers. Methods (San Diego, Calif.), 52(2), 125–132. doi:10.1016/j.ymeth.2010.06.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.