868
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Environmental impact and biological removal processes of pharmaceutically active compounds: The particular case of sulfonamides, anticonvulsants and steroid estrogens

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 698-742 | Published online: 27 Jul 2019

References

  • Adeel, M., Song, X., Wang, Y., Francis, D., & Yang, Y. (2017). Environmental impact of estrogens on human, animal and plant life: A critical review. Environment International, 99, 107. doi:10.1016/j.envint.2016.12.010
  • Afonso-Olivares, C., Sosa-Ferrera, Z., & Santana-Rodríguez, J. J. (2017). Occurrence and environmental impact of pharmaceutical residues from conventional and natural wastewater treatment plants in Gran Canaria (Spain). Science of the Total Environment, 599–600, 934–943. doi:10.1016/j.scitotenv.2017.05.058
  • Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Thomaidis, N. S., & Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. Journal of Hazardous Materials, 23, 274–298. doi:10.1016/j.jhazmat.2016.04.045
  • Ali, S. M. H. (2014). Degradation and biological assessment of aqueous micropollutant mixtures. MSc Thesis. University of Western Ontario, London, Canada.
  • Alvarino, T., Suárez, S., Garrido, M., Lema, J. M., & Omil, F. (2016). A UASB reactor coupled to a hybrid aerobic MBR as innovative plant configuration to enhance the removal of organic micropollutants. Chemosphere, 144, 452–458. doi:10.1016/j.chemosphere.2015.09.016
  • Anderson, J. C., Carlson, J. C., Low, J. E., Challis, J. K., Wong, C. S., Knapp, C. W., & Hanson, M. L. (2013). Performance of a constructed wetland in Grand Marais, Manitoba, Canada: Removal of nutrients, pharmaceuticals, and antibiotic resistance genes from municipal wastewater. Chemistry Central Journal, 7(1), 54–69. doi:10.1186/1752-153X-7-54
  • Anderson, P. D., Johnson, A. C., Pfeiffer, D., Caldwell, D. J., Hannah, R., Mastrocco, F., … Williams, R. J. (2012). Endocrine disruption due to estrogens derived from humans predicted to be low in the majority of U.S. surface waters. Environmental Toxicology and Chemistry, 31(6), 1407–1415. doi:10.1002/etc.1824
  • Andreozzi, R., Raffaele, M., & Nicklas, P. (2003). Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 50(10), 1319–1330. doi:10.1016/S0045-6535(02)00769-5
  • Arcand-Hoy, L. D., & Benson, W. H. (1998). Fish reproduction: An ecologically relevant indicator of endocrine disruption. Environmental Toxicology and Chemistry, 17(1), 49–57. doi:10.1897/1551-5028(1998)017<0049:FRAERI > 2.3.CO;2
  • Ashton, D., Hilton, M., & Thomas, K. V. (2004). Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Science of the Total Environment, 333(1–3), 167–184. doi:10.1016/j.scitotenv.2004.04.062
  • Aubenneau, M., Tahar, A., Casellas, C., & Wisniewski, C. (2010). Membrane bioreactor for pharmaceutically active compounds removal: Effects of carbamazepine on mixed microbial communities implied in the treatment. Process Biochemistry, 45(11), 1826–1831. doi:10.1016/j.procbio.2010.04.011
  • Aubertheau, E., Stalder, T., Mondamert, L., Ploy, M. C., Dagot, C., & Labanowski, J. (2017). Impact of wastewater treatment plant discharge on the contamination of river biofilms by pharmaceuticals and antibiotic resistance. Process Biochem, 579, 1387–1398. doi:10.1016/j.scitotenv.2016.11.136
  • Auger, J., Kunstmann, J. M., Czyglik, F., & Jouannet, P. (1995). Decline in semen quality among fertile men in Paris during the past 20 years. New England Journal of Medicine, 332(5), 281–285.
  • Auriol, M., Filali-Meknassi, Y., Tyagi, R. D., & Adams, C. D. (2007). Laccase-catalyzed conversion of natural and synthetic hormones from a municipal wastewater. Water Research, 41(15), 3281–3288. doi:10.1016/j.watres.2007.05.008
  • Avberšek, M., Šömen, J., & Heath, E. (2011). Dynamics of steroid estrogen daily concentrations in hospital effluent and connected waste water treatment plant. Journal of Environmental Monitoring, 13(8), 2221–2226. doi:10.1039/c1em10147a
  • Ba, S., Jones, J. P., & Cabana, H. (2014). Hybrid bioreactor (HBR) of hollow fiber microfilter membrane and cross-linked laccase aggregates eliminate aromatic pharmaceuticals in wastewaters. Journal of Hazardous Materials, 280, 662–670. doi:10.1016/j.jhazmat.2014.08.062
  • Badia-Fabregat, M., Oller, I., & Malato, S. (2017). Overview on pilot-scale treatments and new and innovative technologies for hospital effluent. In P. Verlicchi (Eds.), The handbook of environmental chemistry (pp. 1–22). Cham: Springer-Verlag.
  • Bahlmann, A., Brack, W., Schneider, R. J., & Krauss, M. (2014). Carbamazepine and its metabolites in wastewater: Analytical pitfalls and occurrence in Germany and Portugal. Water Research, 57, 104–114. doi:10.1016/j.watres.2014.03.022
  • Bahlmann, A., Weller, M. G., Panne, U., & Schneider, R. J. (2009). Monitoring carbamazepine in surface and wastewaters by an immunoassay based on a monoclonal antibody. Analytical and Bioanalytical Chemistry, 395(6), 1809–1820. doi:10.1007/s00216-009-2958-7
  • Baronti, C., Curini, R., D'Ascenzo, G., Di Corcia, A., Gentili, A., & Samperi, R. (2000) Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environmental Science & Technology, 34, 5059–5066.
  • Batt, A. L., Kim, S., & Aga, D. S. (2007). Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere, 68(3), 428–435. doi:10.1016/j.chemosphere.2007.01.008
  • Bennett, G. D., Amore, B. M., Finnell, R. H., Wlodarczyk, B., Kalhorn, T. F., Skiles, G. L., … Slattery, J. T. (1996). Teratogenicity of carbamazepine-10,11-epoxide and oxcarbazepine in the SWV mouse. Journal of Pharmacology and Experimental Therapeutics, 279(3), 1237–1242.
  • Bernhard, M., Müller, J., & Knepper, T. P. (2006). Biodegradation of persistent polar pollutants in wastewater: Comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment. Water Research, 40(18), 3419–3428. doi:10.1016/j.watres.2006.07.011
  • Besha, A. T., Gebreyohannes, A. Y., Tufa, R. A., Bekele, D. N., Curcio, E., & Giorno, L. (2017). Removal of emerging micropollutants by activated sludge process and membrane bioreactors and the effects of micropollutants on membrane fouling: A review. Journal of Environmental Chemical Engineering, 5(3), 2395–2414. doi:10.1016/j.jece.2017.04.027
  • Bila, D. M., & Dezotti, M. (2007). Desreguladores endócrinos no meio ambiente: Efeitos e consequências. Química Nova, 30(3), 651–666. doi:10.1590/S0100-40422007000300027
  • Birnbaum, L. S., & Fenton, S. E. (2003). Cancer and developmental exposure to endocrine disruptors. Environmental Health Perspectives, 111(4), 389–394. doi:10.1289/ehp.5686
  • Bonvin, F., Chevre, N., Rutler, R., & Kohn, T. (2012). Pharmaceuticals and their human metabolites in Lake Geneva: Occurrence, fate and ecotoxicological relevance. Archives of Science, 65, 143–156.
  • Braga, O., Smythe, G. A., Schäfer, A. I., & Feitz, A. J. (2005). Fate of steroid estrogens in Australian inland and coastal wastewater treatment plants. Environmental Science & Technology, 39(9), 3351–3358. doi:10.1021/es0501767
  • Brain, R. A., Ramirez, A. J., Fulton, B. A., Chambliss, C. K., & Brooks, B. W. (2008) Herbicidal effects of sulfamethoxazole in Lemna gibba: Using p-aminobenzoic acid as a biomarker of effect. Environmental Science & Technology, 42, 8965–8970.
  • van den Brandhof, E. J., & Montforts, M. (2010). Fish embryo toxicity of carbamazepine, diclofenac and metoprolol. Ecotoxicology and Environmental Safety, 73(8), 1862–1866. doi:10.1016/j.ecoenv.2010.08.031
  • Buttiglieri, G., & Knepper, T. P. (2008). Removal of emerging contaminants in wastewater treatment: Conventional activated sludge treatment. In Emerging contaminants from industrial and municipal waste. S2, No. November 2008, 5 (pp. 1–35).
  • Cajthaml, T., Křesinová, Z., Svobodová, K., Sigler, K., & Řezanka, T. (2009). Microbial transformation of synthetic estrogen 17α-ethinylestradiol. Environmental Pollution, 157(12), 3325–3335. doi:10.1016/j.envpol.2009.06.027
  • Calamari, D., Zuccato, E., Castiglioni, S., Bagnati, R., & Fanelli, R. (2003). Strategic survey of therapeutic drugs in the rivers Po and lambro in Northern Italy. Environmental Science & Technology, 37(7), 1241–1248. doi:10.1021/es020158e
  • Carabin, A., Drogui, P., & Robert, D. (2015). Photo-degradation of carbamazepine using TiO2 suspended photocatalysts. Journal of the Taiwan Institute of Chemical Engineers, 54, 109–117. doi:10.1016/j.jtice.2015.03.006
  • Carballa, M., Omil, F., Ternes, T., & Lema, J. M. (2007). Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Research, 41(10), 2139–2150. doi:10.1016/j.watres.2007.02.012
  • Caldwell, D. J., Mastrocco, F., Anderson, P. D., Lange, R., & Sumpter, J. P. (2012). Predicted-no-effect concentrations for the steroid estrogens estrone 17β-estradiol, estriol and 17α-ethinylestradiol. Environmental Toxicology and Chemistry, 31(6), 1396–1406. doi:10.1002/etc.1825
  • Cavallucci, S. (2007). What’s topping the charts in prescription drugs this year? Pharmacy Practice, 23, 25–32.
  • Celiz, M. D., Tso, J., & Aga, D. S. (2009). Pharmaceutical metabolites in the environment: Analytical challenges and ecological risks. Environmental Toxicology and Chemistry, 28(12), 2473–2484. doi:10.1897/09-173.1
  • Chen, X., & Hu, J. (2009). Degradation of 17β-estradiol and its conjugates: Effects of initial concentration and MLSS concentration. Process Biochemistry, 44(12), 1330–1334. doi:10.1016/j.procbio.2009.07.007
  • Choquet-Kastylevsky, G., Vial, T., & Descotes, J. (2002). Allergic adverse reactions to sulfonamides. Current Allergy and Asthma Reports, 2, (1), 16–25.
  • Christou, A., Kyriacou, M. C., Georgiadou, E. C., Papamarkou, R., Hapeshi, E., Karaolia, P., … Fatta-Kassinos, D. (2019). Uptake and bioaccumulation of three widely prescribed pharmaceutically active compounds in tomato fruits and mediated effects on fruit quality attributes. Science of the Total Environment, 647, 1169–1178. doi:10.1016/j.scitotenv.2018.08.053
  • Cirja, M., Ivashechkin, P., Schäffer, A., & Corvini, P. F. X. (2008). Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR). Reviews in Environmental Science and Bio/Technology, 7(1), 61–78. doi:10.1007/s11157-007-9121-8
  • Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., & Kroiss, H. (2005). Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Research, 39(19), 4797–4807. doi:10.1016/j.watres.2005.09.015
  • Clara, M., Kreuzinger, N., Strenn, B., Gans, O., & Kroiss, H. (2005). The solids retention time - A suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Research, 39(1), 97–106. doi:10.1016/j.watres.2004.08.036
  • Clara, M., Strenn, B., & Kreuzinger, N. (2004). Carbamazepine as a possible anthropogenic marker in the aquatic environment: Investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration. Water Research, 38(4), 947–954. doi:10.1016/j.watres.2003.10.058
  • Coleman, H. M., Abdullah, M. I., Eggins, B. R., & Palmer, F. L. (2005). Photocatalytic degradation of 17β-oestradiol, oestriol and 17α-ethynyloestradiol in water monitored using fluorescence spectroscopy. Applied Catalysis B, Environmental, 55(1), 23–30. doi:10.1016/j.apcatb.2004.07.004
  • Collado, N., Buttiglieri, G., Marti, E., Ferrando-Climent, L., Rodriguez-Mozaz, S., Barceló, D., … Rodriguez-Roda, I. (2013). Effects on activated sludge bacterial community exposed to sulfamethoxazole. Chemosphere, 93(1), 99–106. doi:10.1016/j.chemosphere.2013.04.094
  • Combalbert, S., & Hernandez-Raquet, G. (2010). Occurrence, fate, and biodegradation of estrogens in sewage and manure. Applied Microbiology and Biotechnology, 86(6), 1671–1692. doi:10.1007/s00253-010-2547-x
  • Cripe, G. M., Hemmer, B. L., Goodman, L. R., Fournie, J. W., Raimondo, S., Vennari, J. C., … Hemmer, M. J. (2009). Multigenerational Exposure of the Estuarine Sheepshead Minnow (_Cyprinodon variegatus_) to 17 β-Estradiol. I. organism-level effects over three generations. Environmental Toxicology and Chemistry, 28(11), 2397–2408. doi:10.1897/08-542.1
  • Cruz-Morató, C., Ferrando-Climent, L., Rodriguez-Mozaz, S., Barceló, D., Marco-Urrea, E., Vicent, T., & Sarrà, M. (2013). Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Research, 47(14), 5200–5210. doi:10.1016/j.watres.2013.06.007
  • Cui, C. W., Ji, S. L., & Ren, H. Y. (2006). Determination of steroid estrogens in wastewater treatment plant of a controceptives producing factory. Environmental Monitoring and Assessment, 121, 407–417.
  • Cydzik-Kwiatkowska, A., & Zielińska, M. (2016). Bacterial communities in full-scale wastewater treatment systems. World Journal of Microbiology and Biotechnology, 32, 1–8.
  • Danner, M.-C., Robertson, A., Behrends, V., & Reiss, J. (2019). Antibiotic pollution in surface fresh waters: Occurrence and effects. Science of the Total Environment, 664, 793–804. doi:10.1016/j.scitotenv.2019.01.406
  • Daston, G. P., Gooch, J. W., Breslin, W. J., Shuey, D. L., Nikiforov, A. I., Fico T. A., & Gorsuch, J. W. (1997) Environmental estrogens and reproductive health: a discussion of the human, environmental data. Reproductive Toxicology, 11(4), 465–481.
  • D’Ascenzo, G., Di Corcia, A., Gentili, A., Mancini, R., Mastropasqua, R., Nazzari, M., & Samperi, R. (2003). Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Science of the Total Environment, 302(1–3), 199–209. doi:10.1016/S0048-9697(02)00342-X
  • Demoling, L. A., Bååth, E., Greve, G., Wouterse, M., & Schmitt, H. (2009). Effects of sulfamethoxazole on soil microbial communities after adding substrate. Soil Biology and Biochemistry, 41(4), 840–848. doi:10.1016/j.soilbio.2009.02.001
  • Desbrow, C., Routledge, E. J., Brighty, G. C., Sumpter, J. P., & Waldock, M. (1998). Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environmental Science & Technology, 32(11), 1549–1558. doi:10.1021/es9707973
  • Donner, E., Kosjek, T., Qualmann, S., Kusk, K. O., Heath, E., Revitt, D. M., … Andersen, H. R. (2013). Ecotoxicity of carbamazepine and its UV photolysis transformation products. Science of the Total Environment, 443, 870–876. doi:10.1016/j.scitotenv.2012.11.059
  • Dray, J., Dray, T. F., & Ullmann, A. (1972). Hydrolysis of Urinary Metabolites of Different Steroid Hormones by -Glucuronidase From Escherichia Coli. Annales de l'Institut Pasteur (Paris), 123(6), 853–857.
  • Drugbank. (2016a). The drugbank database. Carbamazepine. Available: https://www.drugbank.ca/drugs/DB00564 [visited at 12/02/2016]
  • Drugbank. (2016b). The drugbank database. Sulfamethoxazole. Available: https://www.drugbank.ca/drugs/DB01015 [visited at 12/02/2016]
  • Drugbank. (2016c). The drugbank database. Estradiol. Available: https://www.drugbank.ca/drugs/DB00783 [visited at 12/02/2016]
  • Drugbank. (2016d). The drugbank database. Ethinyl Estradiol. Available: https://www.drugbank.ca/drugs/DB00977 [visited at 12/02/2016]
  • Escolà Casas, M., Chhetri, R. K., Ooi, G., Hansen, K. M. S., Litty, K., Christensson, M., … Bester, K. (2015). Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas). Science of the Total Environment, 530–531, 383–392. doi:10.1016/j.scitotenv.2015.05.099
  • Estrada-Arriaga, E. B., Cortés-Muñoz, J. E., González-Herrera, A., Calderón-Mólgora, C. G., Rivera-Huerta, M., de, L., Ramírez-Camperos, E., … García-Sánchez, L. (2016). Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico. Science of the Total Environment, 571, 1172–1182. doi:10.1016/j.scitotenv.2016.07.118
  • Falås, P., Longrée, P., La Cour Jansen, J., Siegrist, H., Hollender, J., & Joss, A. (2013). Micropollutant removal by attached and suspended growth in a hybrid biofilm-activated sludge process. Water Research, 47(13), 4498–4506. doi:10.1016/j.watres.2013.05.010
  • Fenet, H., Mathieu, O., Mahjoub, O., Li, Z., Hillaire-Buys, D., Casellas, C., & Gomez, E. (2012). Carbamazepine, carbamazepine epoxide and dihydroxycarbamazepine sorption to soil and occurrence in a wastewater reuse site in Tunisia. Chemosphere, 88(1), 49–54. doi:10.1016/j.chemosphere.2012.02.050
  • Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology (Amsterdam, Netherlands), 76(2), 122–159. doi:10.1016/j.aquatox.2005.09.009
  • Ferrari, B., Paxéus, N., Lo Giudice, R., Pollio, A., & Garric, J. (2003). Ecotoxicological impact of pharmaceuticals found in treated wastewaters: Study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicology and Environmental Safety, 55(3), 359–70.
  • Foolad, M., Hu, J., Tran, N. H., & Ong, S. L. (2016). Sorption and biodegradation characteristics of the selected pharmaceuticals and personal care products onto tropical soil. Water Science and Technology, 73(1), 51–59. doi:10.2166/wst.2015.461
  • Gao, P., Mao, D., Luo, Y., Wang, L., Xu, B., & Xu, L. (2012). Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Research, 46(7), 2355–2364. doi:10.1016/j.watres.2012.02.004
  • Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., Vander Ploeg, M., … Ritsema, C. J. (2015). Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3(1), 57–65. doi:10.1016/j.iswcr.2015.03.002
  • Göbel, A., McArdell, C. S., Joss, A., Siegrist, H., & Giger, W. (2007). Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Science Of the Total Environment, 372, 361–371. doi:10.1016/j.scitotenv.2006.07.039
  • Göbel, A., McArdell, C. S., Suter, M. J. F., & Giger, W. (2004). Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry. Analytical Chemistry, 76, 4756–4764.
  • Göbel, A., Thomsen, A., McArdell, C. S., Joss, A., & Giger, W. (2005). Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science & Technology, 39, (11), 3981–3989. doi:10.1021/es048550a
  • Golan-Rozen, N., Chefetz, B., Ben-Ari, J., Geva, J., & Hadar, Y. (2011). Transformation of the recalcitrant pharmaceutical compound carbamazepine by pleurotus ostreatus: Role of cytochrome P450 monooxygenase and manganese peroxidase. Environmental Science & Technology, 45(16), 6800–6805. doi:10.1021/es200298t [InsetedFromOnline]
  • Goldstein, M., Shenker, M., & Chefetz, B. (2014). Insights into the uptake processes of wastewater-borne pharmaceuticals by vegetables. Environmental Science & Technology, 48(10), 5593–5600. doi:10.1021/es5008615
  • Gray, L. E. Jr., (1998). Xenoendocrine disrupters: Laboratory studies on male reproductive effects. Toxicology Letters, 102–103, 331–335. doi:10.1016/S0378-4274(98)00327-0
  • Grandclément, C., Seyssiecq, I., Piram, A., Wong-Wah-Chung, P., Vanot, G., Tiliacos, N., … Doumenq, P. (2017). From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review. Water Research, 111, 297–317. doi:10.1016/j.watres.2017.01.005
  • Gros, M., Petrović, M., Ginebreda, A., & Barceló, D. (2010). Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environment International, 36(1), 15–26. doi:10.1016/j.envint.2009.09.002
  • Gross, B., Montgomery-Brown, J., Naumann, A., & Reinhard, M. (2004). Occurrence and fate of pharmaceuticals and alkylphenol ethoxylate metabolites in an effluent-dominated river and wetland. Environmental Toxicology and Chemistry, 23(9), 2074–2083. doi:10.1897/03-606
  • Guo, X., Pang, W., Dou, C., & Yin, D. (2017). Sulfamethoxazole and COD increase abundance of sulfonamide resistance genes and change bacterial community structures within sequencing batch reactors. Chemosphere, 175, 21–27. doi:10.1016/j.chemosphere.2017.01.134
  • Hamscher, G., Pawelzick, H. T., Sczesny, S., Nau, H., & Hartung, J. (2003). Antibiotics in dust originating from a pig fattening farm: A new source of health hazard for farmers?. Environmental Health Perspectives, 111(13), 1590–1594. doi:10.1289/ehp.6288
  • Hashimoto, T., & Murakami, T. (2009). Removal and degradation characteristics of natural and synthetic estrogens by activated sludge in batch experiments. Water Research, 43(3), 573–582. doi:10.1016/j.watres.2008.10.051
  • Heberer, T., Reddersen, K., & Mechlinski, A. (2002). From municipal sewage to drinking water: Fate and removal of pharmaceutical residues in the aquatic environment in urban areas. Water Science and Technology, 46(3), 81–88. doi:10.2166/wst.2002.0060
  • Heye, K., Becker, D., Eversloh, C. L., Durmaz, V., Ternes, T. A., Oetken, M., & Oehlmann, J. (2016). Effects of carbamazepine and two of its metabolites on the non-biting midge Chironomus riparius in a sediment full life cycle toxicity test. Water Research, 98, 19–27. doi:10.1016/j.watres.2016.03.071
  • Hijosa-Valsero, M., Matamoros, V., Martín-Villacorta, J., Bécares, E., & Bayona, J. M. (2010). Assessment of full-scale natural systems for the removal of PPCPs from wastewater in small communities. Water Research, 44(5), 1429–1439. doi:10.1016/j.watres.2009.10.032
  • Hirsch, R., Ternes, T., Haberer, K., & Kratz, K. L. (1999). Occurrence of antibiotics in the aquatic environment. Science of the Total Environment, 225(1–2), 109–118.
  • Hjorth, N., & Roed-Petersen, J. (1980). Allergic contact dermatitis in veterinary surgeons. Contact Dermatitis, 6(1), 27–29. doi:10.1111/j.1600-0536.1980.tb03885.x
  • Hruska, K., & Franek, M. (2012). Sulfonamides in the environment: A review and a case report. Veterinární Medicína, 57(1), 1–35. doi:10.17221/4969-VETMED
  • Huang, Q., Bu, Q., Zhong, W., Shi, K., Cao, Z., & Yu, G. (2018). Derivation of aquatic predicted no-effect concentration (PNEC) for ibuprofen and sulfamethoxazole based on various toxicity endpoints and the associated risks. Chemosphere, 193, 223–229. doi:10.1016/j.chemosphere.2017.11.029
  • Hyland, K. C., Dickenson, E. R. V., Drewes, J. E., & Higgins, C. P. (2012). Sorption of ionized and neutral emerging trace organic compounds onto activated sludge from different wastewater treatment configurations. Water Research, 46(6), 1958–1968. doi:10.1016/j.watres.2012.01.012
  • INCHEM. (2016). - International program on chemical safety. Carbamazepine. Available: http://www.inchem.org/documents/pims/pharm/pim100.htm [visited at 12/02/2016]
  • IWW. (2014). Pharmaceuticals in the environment: Occurrence, effects, and options for action. Research project funded by the German Federal Environment Agency (UBA) within the Environmental Research Plan No. 3712 65 408. http://www.pharmaceuticals-in-the-environment.org.
  • Jelic, A., Cruz-Morató, C., Marco-Urrea, E., Sarrà, M., Perez, S., Vicent, T., … Barcelo, D. (2012). Degradation of carbamazepine by Trametes versicolor in an air pulsed fluidized bed bioreactor and identification of intermediates. Water Research, 46(4), 955–964. doi:10.1016/j.watres.2011.11.063
  • de Jesus Gaffney, V., Cardoso, V. V., Cardoso, E., Teixeira, A. P., Martins, J., Benoliel, M. J., & Almeida, C. M. M. (2017). Occurrence and behaviour of pharmaceutical compounds in a Portuguese wastewater treatment plant: Removal efficiency through conventional treatment processes. Environmental Science and Pollution Research, 24(17), 14717–14734. doi:10.1007/s11356-017-9012-7
  • Ji, C., Hou, J., Wang, K., Zhang, Y., & Chen, V. (2016). Biocatalytic degradation of carbamazepine with immobilized laccase-mediator membrane hybrid reactor. Journal of Membrane Science, 502, 11–20. doi:10.1016/j.memsci.2015.12.043
  • Johnson, A. C., Aerni, H.-R., Gerritsen, A., Gibert, M., Giger, W., Hyllan, K., … Wettstein, F. E. (2005). Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices. Water Research, 39(1), 47–58. doi:10.1016/j.watres.2004.07.025
  • Johnson, A. C., Belfroid, A., & Di Corcia, A. (2000). Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Science of the Total Environment, 256(2–3), 163–173. doi:10.1016/S0048-9697(00)00481-2
  • Johnson, A. C., & Sumpter, J. P. (2001). Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environmental Science & Technology, 35(24), 4697–4703. doi:10.1021/es010171j
  • Johnson, A. C., & Williams, R. J. (2004). A model to estimate influent and effluent concentrations of estradiol sewage treatment works. Environmental Science & Technology, 38(13), 3649–3658. doi:10.1021/es035342u
  • Jones, O. A. H., Voulvoulis, N., & Lester, J. N. (2002). Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Research, 36(20), 5013–5022. doi:10.1016/S0043-1354(02)00227-0
  • Jos, A., Repetto, G., Rios, J. C., Hazen, M. J., Molero, M. L., del Peso, A., … Cameán, A. (2003). Ecotoxicological evaluation of carbamazepine using six different model systems with eighteen endpoints. Toxicology in Vitro, 17(5–6), 525–532. doi:10.1016/S0887-2333(03)00119-X
  • Joss, A., Zabczynski, S., Göbel, A., Hoffmann, B., Loffler, D., Mcardell, C. S., … Siegrist, H. (2006). Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Research, 40(8), 1686–1696. doi:10.1016/j.watres.2006.02.014
  • Joss, A., Andersen, H., Ternes, T., Richle, P. R., & Siegrist, H. (2004). Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: Consequences for plant optimization. Environmental Science & Technology, 38(11), 3047–3055. doi:10.1021/es0351488
  • Ju, C., & Uetrecht, J. P. (1999). Detection of 2-hydroxyiminostilbene in the urine of patients taking carbamazepine and its oxidation to a reactive iminoquinone intermediate. Journal of Pharmacology and Experimental Therapeutics, 288, 51–56.
  • Kidd, K. A., Blanchfield, P. J., Mills, K. H., Palace, V. P., Evans, R. E., Lazorchak, J. M., & Flick, R. W. (2007). Collapse of a fish population after exposure to a synthetic estrogen. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 8897–8901. doi:10.1073/pnas.0609568104
  • Kim, M., Guerra, P., Shah, A., Parsa, M., Alaee, M., & Smyth, S. A. (2014). Removal of pharmaceuticals and personal care products in a membrane bioreactor wastewater treatment plant. Water Science and Technology, 69(11), 2221–2229. doi:10.2166/wst.2014.145
  • Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J., & Snyder, S. A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, 41(5), 1013–1021. doi:10.1016/j.watres.2006.06.034
  • Kimura, K., Hara, H., & Watanabe, Y. (2007). Elimination of selected acidic pharmaceuticals from municipal wastewater by an activated sludge system and membrane bioreactors. Environmental Science & Technology, 41(10), 3708–3714. doi:10.1021/es061684z
  • Klein, E. Y., Van Boeckel, T. P., Martinez, E. M., Pant, S., Gandra, S., Levin, S. A., … Laxminarayan, R. (2018). Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings of the National Academy of Sciences, 115(15), E3463–E3470. doi:10.1073/pnas.1717295115
  • Koczura, R., Mokracka, J., Taraszewska, A., & Łopacinska, N. (2016). Abundance of Class 1 integron-integrase and sulfonamide resistance genes in river water and sediment is affected by anthropogenic pressure and environmental factors. Microbial Ecology, 72(4), 909–916. doi:10.1007/s00248-016-0843-4
  • Koh, Y. K. K., Chiu, T. W., Boobis, A. R., Scrimshaw, M. D., Bagnall, J. P., Soares, A., Pollard, S., Lester, E. … (2009). Influence of operating parameters on the biodegradation of steroid estrogens and nonylphenolic compounds during biological wastewater treatment processes. Environmental Science & Technology, 43(17), 6646–6654. doi:10.1021/es901612v
  • Kolpin, D., Furlong, E., Meyer, M., Thurman, E. M., Zaugg, S., Barber, L., & Buxton, H. (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999‐2000: A National Reconnaissance USGS Staff – Published Research. 68.
  • Kolodziej, E. P., Harter, T., & Sedlak, D. L. (2004). Dairy wastewater, aquaculture, and spawning fish as sources of steroid hormones in the aquatic environment. Environmental Science & Technology, 38(23), 6377–6384. doi:10.1021/es049585d
  • Kruglova, A., Ahlgren, P., Korhonen, N., Rantanen, P., Mikola, A., & Vahala, R. (2014). Biodegradation of ibuprofen, diclofenac and carbamazepine in nitrifying activated sludge under 12 °C temperature conditions. Science of the Total Environment, 499, 394–401. doi:10.1016/j.scitotenv.2014.08.069
  • Kruglova, A., Gonzalez-Martinez, A., Matilda Kråkström, M., Mikola, A., & Vahala, R. (2017). Bacterial diversity and population shifts driven by spotlight wastewater micropollutants in low-temperature highly nitrifying activated sludge. Science of the Total Environment, 605–606, 291–299. doi:10.1016/j.scitotenv.2017.06.191
  • Kümmerer, K. (2003). Significance of antibiotics in the environment. The Journal of Antimicrobial Chemotherapy, 52(1), 5–7. doi:10.1093/jac/dkg293
  • de la Torre, T., Alonso, E., Santos, J. L., Rodríguez, C., Gómez, M. A., & Malfeito, J. J. (2015). Trace organics removal using three membrane bioreactor configurations: MBR, IFAS-MBR and MBMBR. Water Science and Technology, 71(5), 761–768. doi:10.2166/wst.2015.028
  • Lamichhane, K., Garcia, S. N., Huggett, D. B., Deangelis, D. L., & La Point, T. W. (2013). Chronic effects of carbamazepine on life-history strategies of Ceriodaphnia dubia in three successive generations. Archives of Environmental Contamination and Toxicology, 64(3), 427–438. doi:10.1007/s00244-012-9845-5
  • Laurenson, J. P., Bloom, R. A., Page, S., & Sadrieh, N. (2014). Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment: A review of recent risk assessment data. The AAPS Journal, 16(2), 299–310. doi:10.1208/s12248-014-9561-3
  • Lee, E., Lee, S., Park, J., Kim, Y., & Cho, J. (2013). Removal and transformation of pharmaceuticals in wastewater treatment plants and constructed wetlands. Drinking Water Engineering and Science, 6(2), 89–98. doi:10.5194/dwes-6-89-2013
  • Leung, H. W., Jin, L., Wei, S., Tsui, M. M. P., Zhou, B., Jiao, L., … Lam, P. K. S. (2013). Pharmaceuticals in tap water: human health risk assessment and proposed monitoring framework in China. Environmental Health Perspectives, 121(7), 839–846. doi:10.1289/ehp.1206244
  • Li, B., & Zhang, T. (2010). Biodegradation and adsorption of antibiotics in the activated sludge process. Environmental Science &Amp; Technology, 44(9), 3468–3473. doi:10.1021/es903490h
  • Li, F., Yuasa, A., Obara, A., & Mathews, A. P. (2005). Aerobic batch degradation of 17-β estradiol (E2) by activated sludge: Effects of spiking E2 concentrations, MLVSS and temperatures. Water Research, 39(10), 2065–2075. doi:10.1016/j.watres.2005.02.009
  • Lin, T., Chen, Y., & Chen, W. (2013). Impact of toxicological properties of sulfonamides on the growth of zebrafish embryos in the water. Environmental Toxicology and Pharmacology, 36(3), 1068–1076. doi:10.1016/j.etap.2013.09.009
  • Lipman, A. G. (1993). Martindale — the Extra Pharmacopoeia (30th ed). Eds: Reynolds, JEF. London: The Pharmaceutical Press.
  • Liu, Z.-H., Lu, G.-N., Yin, H., Dang, Z., & Rittmann, B. (2015). Removal of natural estrogens and their conjugates in municipal wastewater treatment plants: A critical review. Environmental Science & Technology, 49(9), 5288–5300. doi:10.1021/acs.est.5b00399
  • Liu, F., Ying, G.-G., Tao, R., Zhao, J.-L., Yang, J.-F., & Zhao, L.-F. (2009). Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environmental Pollution, 157(5), 1636–1642.
  • Loos, R., Locoro, G., Comero, S., Contini, S., Schwesig, D., Werres, F., … Gawlik, B. M. (2010). Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Research, 44(14), 4115–4126. doi:10.1016/j.watres.2010.05.032
  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Kang, J., … Price, W. E. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473–474, 619–641. doi:10.1016/j.scitotenv.2013.12.065
  • Luo, Y., Jiang, Q., Ngo, H. H., Nghiem, L. D., Hai, F. I., Price, W. E., … Guo, W. (2015). Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor-membrane bioreactor system. Bioresource Technology, 191, 355–359. doi:10.1016/j.biortech.2015.05.073
  • Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Kang, J., … Price, W. E. (2014). Removal and fate of micropollutants in a sponge-based moving bed bioreactor. Bioresource Technology, 159, 311–319. doi:10.1016/j.biortech.2014.02.107
  • Luo, Y., Mao, D., Rysz, M., Zhou, Q., Zhang, H., Xu, L., & J. J. Alvarez, P. (2010). Trends in antibiotic resistance genes occurrence in the Haihe River. Environmental Science & Technology, 44(19), 7220–7225. doi:10.1021/es100233w
  • Ma, L., & Yates, S. R. (2018). Degradation and metabolite formation of 17ß-estradiol-3-glucuronide and 17ß-estradiol-3-sulphate in river water and sediment. Water Research, 139, 1–9. doi:10.1016/j.watres.2018.03.071
  • Madureira, T. V., Rocha, M. J., Cruzeiro, C., Rodrigues, I., Monteiro, R. A. F., & Rocha, E. (2012). The toxicity potential of pharmaceuticals found in the Douro River estuary (Portugal): Evaluation of impacts on fish liver, by histopathology, stereology, vitellogenin and CYP1A immunohistochemistry, after sub-acute exposures of the zebrafish model. Environmental Toxicology and Pharmacology, 34(1), 34–45. doi:10.1016/j.etap.2012.02.007
  • Maeng, S. K., Choi, B. G., Lee, K. T., & Song, K. G. (2013). Influences of solid retention time, nitrification and microbial activity on the attenuation of pharmaceuticals and estrogens in membrane bioreactors. Water Research, 47(9), 3151–3162. doi:10.1016/j.watres.2013.03.014
  • Magurran, A. E. (2004). Measuring biological diversity. Oxford: Blackwell Publishing.
  • Majewsky, M., Wagner, D., Delay, M., Bräse, S., Yargeau, V., & Horn, H. (2014). Antibacterial activity of sulfamethoxazole transformation products (TPs): General relevance for sulfonamide TPs modified at the para position. Chemical Research in Toxicology, 27(10), 1821–1828. doi:10.1021/tx500267x
  • Manickum, T., & John, W. (2014). Occurrence, fate and environmental risk assessment of endocrine disrupting compounds at the wastewater treatment works in Pietermaritzburg (South Africa). Science of the Total Environment, 468–469, 584–597. doi:10.1016/j.scitotenv.2013.08.041
  • Martínez-Alcalà, I., Guillén-Navarro, J. M., & Fernández-López, C. (2017). Pharmaceutical biological degradation, sorption and mass balance determination in a conventional activated-sludge wastewater treatment plant from Murcia. Spain. Chemical Engineering Journal, 316, 332–340. doi:10.1016/j.cej.2017.01.048
  • Martín, J., Camacho-Muñoz, D., Santos, J. L., Aparicio, I., & Alonso, E. (2012). Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposal. Journal of Hazardous. Materials, 239–240, 40–47. doi:10.1016/j.jhazmat.2012.04.068
  • Martinez, J. L. (2008). Antibiotics and antibiotic resistance genes in natural environments. Science, 321(5887), 365–367. doi:10.1126/science.1159483
  • Matamoros, V., García, J., & Bayona, J. M. (2008). Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent. Water Research, 42(3), 653–660. doi:10.1016/j.watres.2007.08.016
  • Matamoros, V., Rodríguez, Y., & Albaigés, J. (2016). A comparative assessment of intensive and extensive wastewater treatment technologies for removing emerging contaminants in small communities. Water Research, 88, 777–785. doi:10.1016/j.watres.2015.10.058
  • Matejicek, D., Houserova, P., & Kuban, V. (2007). Combined isolation and purification procedures prior to the high-performance liquid chromatographic–ion-trap tandem mass spectrometric determination of estrogens and their conjugates in river sediments. Journal of Chromatography A, 1171, 80–89.
  • McAdam, E. J., Bagnall, J. P., Koh, Y. K. K., Chiu, T. Y., Pollard, S., Scrimshaw, M. D., … Cartmell, E. (2010). Removal of steroid estrogens in carbonaceous and nitrifying activated sludge processes. Chemosphere, 81(1), 1–6. doi:10.1016/j.chemosphere.2010.07.057
  • McAvoy, K. (2008). Occurrence of estrogen in wastewater treatment plant and waste disposal site water samples. Clearwaters: Contaminants of Emerging Concern, 38, 28–34.
  • Metcalfe, C. D., Koenig, B. G., Bennie, D. T., Servos, M., Ternes, T. A., & Hirsch, R. (2003). Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants. Environmental Toxicology and Chemistry, 22(12), 2872–2880. doi:10.1897/02-469
  • Metcalfe, C. D., Miao, X. S., Koenig, B. G., & Struger, J. (2003). Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes. Environmental Toxicology and Chemistry, 22(12), 2881–2889. doi:10.1897/02-627
  • Miao, X. S., & Metcalfe, C. D. (2003). Determination of carbamazepine and its metabolites in aqueous samples using liquid chromatography–electrospray tandem mass spectrometry. Analytical Chemistry, 75(15), 3731–3738. doi:10.1021/ac030082k
  • Michael, I., Rizzo, L., McArdell, C. S., Manaia, C. M., Merlin, C., Schwartz, T., … Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 47(3), 957–995. doi:10.1016/j.watres.2012.11.027
  • Miège, C., Choubert, J. M., Ribeiro, L., Eusèbe, M., & Coquery, M. (2009). Fate of pharmaceuticals and personal care products in wastewater treatment plants - Conception of a database and first results. Environmental Pollution, 157(5), 1721–1726. doi:10.1016/j.envpol.2008.11.045
  • Mohapatra, D. P., Brar, S. K., Tyagi, R. D., Picard, P., & Surampalli, R. Y. (2014). Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine. Science of the Total Environment, 470–471, 58–75. doi:10.1016/j.scitotenv.2013.09.034
  • Mückter, H. (2006). Antibiotika-Rückstände im Trinkwasser. 47. Arbeitstagung des Arbeitsgebiets Lebensmittelhygiene, Garmisch-Partenkirchen.
  • Mugdal, S., De Toni, A., Lockwood, S., Salès, K., Backhaus, T., & Sorensen, B. H. (2013). Study on the environmental risks of medicinal products. Final Report prepared by BIO Intelligent Service for Executive Agency for Health and Consumers.
  • Muter, O., P\Erkons, I., Selga, T., Berzins, A., Gudra, D., Radovica-Spalvina, I., … Bartkevics, V. (2017). Removal of pharmaceuticals from municipal wastewaters at laboratory scale by treatment with activated sludge and biostimulation. Science of the Total Environment, 584–585, 402–413. doi:10.1016/j.scitotenv.2017.01.023
  • Nakada, N., Yasojima, M., Okayasu, Y., Komori, K., Tanaka, H., & Suzuki, Y. (2006). Fate of oestrogenic compounds and identification of oestrogenicity in a wastewater treatment process. Water Science and Technology, 53(11), 51–63. doi:10.2166/wst.2006.337
  • National Center for Biotechnology Information. “National Center for Biotechnology Information. PubChem Compound Database; CID = 5329, https://pubchem.ncbi.nlm.nih.gov/compound/5329 (accessed May 23, 2017).
  • Navon, R., Hernandez-Ruiz, S., Chorover, J., & Chefetz, B. (2011). Interactions of carbamazepine in soil: Effects of dissolved organic matter. Journal of Environmental Quality, 40(3), 942–948. doi:10.2134/jeq2010.0446
  • Nentwig, J., Oetken, M., & Oehlmann, J. (2004). Effects of pharmaceuticals on aquatic invertebrates — the example of carbamazepine and clofibric acid. In Pharmaceuticals in the environment. source, fate, effects and risks (pp. 195–208). Berlin, Heidelberg: Springer-Verlag.
  • Nguyen, L. N., Hai, F. I., Dosseto, A., Richardson, C., Price, W. E., & Nghiem, L. D. (2016). Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor. Bioresource Technology, 210, 108–116. doi:10.1016/j.biortech.2016.01.014
  • Nguyen, L. N., Hai, F. I., Price, W. E., Kang, J., Leusch, F. D. L., Roddick, F., … Nghiem, L. D. (2015). Degradation of a broad spectrum of trace organic contaminants by an enzymatic membrane reactor: Complementary role of membrane retention and enzymatic degradation. International Biodeterioration & Biodegradation, 99, 115–122. doi:10.1016/j.ibiod.2014.12.004
  • Nguyen, L. N., Hai, F. I., Kang, J., Price, W. E., & Nghiem, L. D. (2013). Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes. International Biodeterioration & Biodegradation, 85, 474–482. doi:10.1016/j.ibiod.2013.03.014
  • Nguyen, L. N., Hai, F. I., Price, W. E., Leusch, F. D. L., Roddick, F., Ngo, H. H., … Nghiem, L. D. (2014). The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor. Bioresource Technology, 167, 169–177. doi:10.1016/j.biortech.2014.05.125
  • Novo, A., André, S., Viana, P., Nunes, O. C., & Manaia, C. M. (2013). Antibiotic resistance, Antimicrobial residues and bacterial community composition in urban wastewater. Water Research, 47(5), 1875–1887. doi:10.1016/j.watres.2013.01.010
  • Odize, V., Rahman, A., Jones, K., Khunjar, W., & Murthy, S. (2017). Removal of 17α-ethinylestradiol, salicylic acid, trimethoprim, carbamazepine and nonylphenol through biological carbon and nitrogen removal processes. Water and Environment Journal, 31(3), 440–449.
  • Osorio, V., Sanchís, J., Abad, J. L., Ginebreda, A., Farré, M., Pérez, S., & Barceló, D. (2016). Investigating the formation and toxicity of nitrogen transformation products of diclofenac and sulfamethoxazole in wastewater treatment plants. Journal of Hazardous Materials, 309, 157–164. doi:10.1016/j.jhazmat.2016.02.013
  • Pal, A., Gin, K. Y.-H., Lin, A. Y.-C., & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24), 6062–6069. doi:10.1016/j.scitotenv.2010.09.026
  • Panter, G. H., Thompson, R. S., Beresford, N., & Sumpter, J. P. (1999). Transformation of a non-oestrogenic steroid metabolite to an oestrogenically active substance by minimal bacterial activity. Chemosphere, 38(15), 3579–3596. doi:10.1016/S0045-6535(98)00572-4
  • Pawlowski, S., Van Aerle, R., Tyler, C. R., & Braunbeck, T. (2004). Effects of 17α-ethinylestradiol in a fathead minnow (Pimephales promelas) gonadal recrudescence assay. Ecotoxicology and Environmental Safety, 57(3), 330–345. doi:10.1016/j.ecoenv.2003.07.019
  • Paz, A., Tadmor, G., Malchi, T., Blotevogel, J., Borch, T., Polubesova, T., & Chefetz, B. (2016). Fate of carbamazepine, its metabolites, and lamotrigine in soils irrigated with reclaimed wastewater: Sorption, leaching and plant uptake. Chemosphere, 160, 22–29. doi:10.1016/j.chemosphere.2016.06.048
  • Pérez, S., Eichhorn, P., & Aga, D. S. (2005). Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environmental Toxicology and Chemistry, 24(6), 1361–1367. doi:10.1897/04-211R.1
  • Petrie, B., McAdam, E. J., Hassard, F., Stephenson, T., Lester, J. N., & Cartmell, E. (2014). Diagnostic investigation of steroid estrogen removal by activated sludge at varying solids retention time. Chemosphere, 113, 101–108. doi:10.1016/j.chemosphere.2014.04.051
  • Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3–27. doi:10.1016/j.watres.2014.08.053
  • Pholcan, M. K., Baptista, J. D C., Davenport, R. J., Sloan, W. T., & Curtis, T. P. (2013). Microbial community assembly, theory and rare functions. Frontiers in Microbiology, 4, 68. doi:10.3389/fmicb.2013.00068
  • Polesel, F., Andersen, H. R., Trapp, S., & Plósz, B. G. (2016). Removal of antibiotics in biological wastewater treatment systems – A critical assessment using the Activated Sludge Modelling framework for Xenobiotics (ASM-X). Environmental Science & Technology, 50(19), 10316–10334. doi:10.1021/acs.est.6b01899
  • Pomati, F., Castiglioni, S., Zuccato, E., Fanelli, R., Vigetti, D., Rossetti, C., & Calamari, D. (2006). Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells. Environmental Science & Technology, 40(7), 2442–2447. doi:10.1021/es051715a
  • Racz, L., & Goel, R. K. (2010). Fate and removal of estrogens in municipal wastewater. Journal of Environmental Monitoring, 12(1), 58–70. doi:10.1039/b917298j
  • Radjenović, J., Petrovic, M., & Barceló, D. (2007). Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Analytical and Bioanalytical Chemistry, 387(4), 1365–1377. doi:10.1007/s00216-006-0883-6
  • Radjenović, J., Petrović, M., & Barceló, D. (2009). Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research, 43(3), 831–841. doi:10.1016/j.watres.2008.11.043
  • Radke, M., Lauwigi, C., Heinkele, G., MüRdter, T. E., & Letzel, M. (2009). Fate of the antibiotic sulfamethoxazole and its two major human metabolites in a water sediment test. Environmental Science & Technology, 43(9), 3135–3141. doi:10.1021/es900300u
  • Rodarte-Morales, A. I., Feijoo, G., Moreira, M. T., & Lema, J. M. (2011). Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World Journal of Microbiology and Biotechnology, 27(8), 1839–1846. doi:10.1007/s11274-010-0642-x
  • Rogers, H. R. (1996). Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges. Science of the Total Environment, 185(1–3), 3–26. doi:10.1016/0048-9697(96)05039-5
  • RxList. (2016a). The Internet Drug Index. Tegretol (carbamazepine). Available: https://www.rxlist.com/tegretol-drug.htm [visited at 12/02/2016]
  • RxList. (2016b). The Internet Drug Index. Gantanol (sulfamethoxazole). Available: https://www.rxlist.com/gantanol-drug.htm [visited at 12/02/2016]
  • Sacher, F., Lange, F. T., Brauch, H.-J., & Blankenhorn, I. (2001). Pharmaceuticals in groundwaters: Analytical methods and resultsof a monitoring program in Baden Wurttemberg, Germany. Journal of Chromatography A, 938(1/2), 199–210. doi:10.1016/S0021-9673(01)01266-3
  • Salgado, R., Marques, R., Noronha, J. P., Carvalho, G., Oehmen, A., & Reis, M. A. M. (2012). Assessing the removal of pharmaceuticals and personal care products in a full-scale activated sludge plant. Environmental Science and Pollution Research, 19(5), 1818–1827. doi:10.1007/s11356-011-0693-z
  • Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759. doi:10.1016/j.chemosphere.2006.03.026
  • Sarmah, A. K., Northcott, G. L., Leusch, F. D. L., & Tremblay, L. A. (2006). A survey of endocrine disrupting chemicals (EDCs) in municipal sewage and animal waste effluents in the Waikato region of New Zealand. Science of the Total Environment, 355(1–3), 135–144. doi:10.1016/j.scitotenv.2005.02.027
  • Schröder, H. F., Tambosi, J. L., Sena, R. F., Moreira, R. F. P. M., José, H. J., & Pinnekamp, J. (2012). The removal and degradation of pharmaceutical compounds during membrane bioreactor treatment. Water Science and Technology, 65(5), 833–839. doi:10.2166/wst.2012.828
  • Seki, M., Fujishima, S., Nozaka, T., Maeda, M., & Kobayashi, K. (2006). Comparison of response to 17 beta-estradiol and 17 beta-trenbolone among three small fish species. Environmental Toxicology and Chemistry, 25(10), 2742–2752. doi:10.1897/05-647R.1
  • Sodré, F., Locatelli, M., Montagner, C., & Jardim, W. (2007). Origem e destino de interferentes endócrinos em águas naturais. Caderno Temático: Universidade Estadual de Campinas, Campinas.
  • Solomon, G. M., & Schettler, T. (2000). Environment and health: Endocrine disruption and potential human health implications. Canadian Medical Association Journal, 163(11), 1471–1476.
  • Soto, A. M., Justicia, H., Wray, J. W., & Sonnenschein, C. (1991). p-Nonyl-phenol: An estrogenic xenobiotic released from modified polystyrene. Environmental Health Perspectives, 92, 167–173. doi:10.1289/ehp.9192167
  • Stein, K., Ramil, M., Fink, G., Sander, M., & Ternes, T. A. (2008). Analysis and sorption of psychoactive drugs onto sediment. Environmental Science & Technology, 42, (17), 6415–6423.
  • Stevens-Garmon, J., Drewes, J. E., Khan, S. J., McDonald, J. A., & Dickenson, E. R. V. (2011). Sorption of emerging trace organic compounds onto wastewater sludge solids. Water Research, 45(11), 3417–3426. doi:10.1016/j.watres.2011.03.056
  • Straub, J. O. (2016). Aquatic environmental risk assessment for human use of the old antibiotic sulfamethoxazole in Europe. Environmental Toxicology and Chemistry, 35(4), 767–779. doi:10.1002/etc.2945
  • Stumpe, B., & Marschner, B. (2009). Factors controlling the biodegradation of 17β-estradiol, estrone and 17α-ethinylestradiol in different natural soils. Chemosphere, 74(4), 556–562. doi:10.1016/j.chemosphere.2008.09.072
  • Stumpe, B., & Marschner, B. (2007). Long-term sewage sludge application and wastewater irrigation on the mineralization and sorption of 17β-estradiol and testosterone in soils. Science of the Total Environment, 374(2–3), 282–291. doi:10.1016/j.scitotenv.2006.12.025
  • Suárez, S., Reif, R., Lema, J. M., & Omil, F. (2012). Mass balance of pharmaceutical and personal care products in a pilot-scale single-sludge system: Influence of T, SRT and recirculation ratio. Chemosphere, 89(2), 164–171. doi:10.1016/j.chemosphere.2012.05.094
  • Suárez, S., Lema, J. M., & Omil, F. (2010). Removal of Pharmaceutical and Personal Care Products (PPCPs) under nitrifying and denitrifying conditions. Water Research, 44, 3214–3224. doi:10.1016/j.watres.2010.02.040
  • Suzuki, K., Hirai, H., Murata, H., & Nishida, T. (2003). Removal of estrogenic activities of 17beta-estradiol and ethinylestradiol by ligninolytic enzymes from white rot fungi . Water Research, 37(8), 1972–1975. doi:10.1016/S0043-1354(02)00533-X
  • Suzuki, Y., & Maruyama, T. (2006). Fate of natural estrogens in batch mixing experiments using municipal sewage and activated sludge. Water Research, 40(5), 1061–1069. doi:10.1016/j.watres.2005.12.043
  • Svenson, A., Allard, A. S., & Ek, M. (2003). Removal of estrogenicity in Swedish municipal sewage treatment plants. Water Research, 37(18), 4433–4443. doi:10.1016/S0043-1354(03)00395-6
  • Swan, S. H., Liu, F., Overstreet, J. W., Brazil, C., & Skakkebaek, N. E. (2007). Semen quality of fertile US males in relation to their mothers' beef consumption during pregnancy. Human Reproduction, 22(6), 1497–1502. doi:10.1093/humrep/dem068
  • Tadkaew, N., Sivakumar, M., Khan, S. J., McDonald, J. A., & Nghiem, L. D. (2010). Effect of mixed liquor pH on the removal of trace organic contaminants in a membrane bioreactor. Bioresource Technology, 101(5), 1494–1500. doi:10.1016/j.biortech.2009.09.082
  • Tambosi, J. L., de Sena, R. F., Favier, M., Gebhardt, W., José, H. J., Schröder, H. F., and … de, F. M. P. (2010). Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination, 261(1–2), 148–156. doi:10.1016/j.desal.2010.05.014
  • Tang, K., Ooi, G. T. H., Litty, K., Sundmark, K., Kaarsholm, K. M. S., Sund, C., … Andersen, H. R. (2017). Removal of pharmaceuticals in conventionally treated wastewater by a polishing moving bed biofilm reactor (MBBR) with intermittent feeding. Bioresource Technology, 236, 77–86. doi:10.1016/j.biortech.2017.03.159
  • Temes, T. A., Andersen, H., Gilberg, D., & Bonerz, M. (2002). Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS. Analytical Chemistry, 74(14), 3498–3504.
  • Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 32(11), 3245–3260. doi:10.1016/S0043-1354(98)00099-2
  • Ternes, T. A., Stumpf, M., Mueller, J., Haberer, K., Wilken, R. D., & Servos, M. (1999). Behavior and occurrence of estrogens in municipal sewage treatment plants - I. Investigations in Germany, Canada and Brazil. Science of the Total Environment, 225(1–2), 81–90. doi:10.1016/S0048-9697(98)00334-9
  • Ternes, T. A., Kreckel, P., & Mueller, J. (1999). Behaviour andoccurrence of estrogens in municipal sewage treatment plants—II. Aerobic batch experiments with activated sludge. Science of the Total Environment, 225(1–2), 91–99. doi:10.1016/S0048-9697(98)00335-0
  • Thill, A. E. (2005). Pharmaceutical data elude researchers. Environmental Science & Technology, 39(19), 193A–194A.
  • Ting, Y. F., & Praveena, S. M. (2017). Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: A mini review. Environmental Monitoring and Assessment, 189(178), 2.
  • Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R. D., & Buelna, G. (2017). Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technology, 224, 1–12. doi:10.1016/j.biortech.2016.11.042
  • Topp, E., Monteiro, S. C., Beck, A., Coelho, B. B., Boxall, A. B. A., Duenk, P. W., … Metcalfe, C. D. (2008). Runoff of pharmaceuticals and personal care products following application of biosolids to an agricultural field. Science of the Total Environment, 396(1), 52–59. doi:10.1016/j.scitotenv.2008.02.011
  • Toxnet. (2016). Toxicology Data Network. Carbamazepine. Available: https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO + 3019 [visited at 12/02/2016]
  • Toxnet. (2018). Toxicology Data Network. Sulfamethoxazole. Available https://toxnet.nlm.nih.gov/cgi- bin/sis/search/r?dbs + hsdb:@term+@rn+@rel + 723-46-6 [visited at 19/04/2018]
  • Tran, N. H., Urase, T., & Kusakabe, O. (2010). Biodegradation characteristics of pharmaceutical substances by whole fungal culture trametes versicolor and its laccase. Journal of Water and Environment Technology, 8(2), 125–140. doi:10.2965/jwet.2010.125
  • Uslu, M. O., Jasim, S., Arvai, A., Bewtra, J., & Biswas, N. (2013). A survey of occurrence and risk assessment of pharmaceutical substances in the Great Lakes Basin. Ozone: Science & Engineering, 35, 249–262. doi:10.1080/01919512.2013.793595
  • Verbinnen, R. T., Nunes, G. S., & Vieira, E. M. (2010). Determinação de hormonios estrógenos em água potável usando Clae-dad. Química Nova, 33(9), 1837–1842. doi:10.1590/S0100-40422010000900003
  • Vilchèze, C., & Jacobs, W. R. (2012). The combination of sulfamethoxazole, trimethoprim, and isoniazid or rifampin is bactericidal and prevents the emergence of drug resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 56(10), 5142–5148. doi:10.1128/AAC.00832-12
  • Wang, J., Lin, H., Sun, W., Xia, Y., Ma, J., Fu, J., … Quian, M. (2016). Variations in the fate and biological effects of sulfamethoxazole, norfloxacin and doxycycline in different vegetable-soil systems following manure application. Journal of Hazardous Materials, 304, 49–57. doi:10.1016/j.jhazmat.2015.10.038
  • Wang, L. Y., Tam, N. F. Y., & Zhang, X. H. (2011). Assimilation of 17 α-ethinylestradiol by sludge and its stress on microbial communities under aerobic and anaerobic conditions. Journal of Environmental Science and Health, Part A. Toxic/Hazardous Substances and Environmental Engineering, 46, 242–247. doi:10.1080/10934529.2011.535411
  • Wang, N., Guo, X., Xu, J., Hao, L., Kong, D., & Gao, S. (2015). Sorption and transport of five sulfonamide antibiotics in agricultural soil and soil-manure systems. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 50(1), 23–33. doi:10.1080/03601234.2015.965612
  • Wang, S., & Gunsch, C. K. (2011). Effects of selected pharmaceutically active compounds on treatment performance in sequencing batch reactors mimicking wastewater treatment plants operations. Water Research, 45(11), 3398–3406. doi:10.1016/j.watres.2011.03.055
  • Wang, S., Holzem, R. M., & Gunsch, C. K. (2008). Effects of pharmaceutically active compounds on a mixed microbial community originating from a municipal wastewater treatment plant. Environmental Science & Technology, 42(4), 1091–1095. doi:10.1021/es072026x
  • Waring, R. H., & Harris, R. M. (2005) Endocrine disrupters: A human risk? Molecular and Cellular Endocrinology, 244, 2–9.
  • Watkinson, A. J., Murby, E. J., Kolpin, D. W., & Costanzo, S. D. (2009). The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. The Science of the Total Environment, 407(8), 2711–2723. doi:10.1016/j.scitotenv.2008.11.059
  • Watkinson, A. J., Murby, E. J., & Costanzo, S. D. (2007). Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Research, 41(18), 4164–4176. doi:10.1016/j.watres.2007.04.005
  • Wiegel, S., Aulinger, A., Brockmeyer, R., Harms, H., Loffler, J., Reincke, H., … Wanke, A. (2004). Pharmaceuticals in the river Elbe and its tributaries. Chemosphere, 57(2), 107–126. doi:10.1016/j.chemosphere.2004.05.017
  • Wise, A., O’Brien, K., & Woodruff, T. (2011). Are oral contraceptives a significant contributor to the estrogenicity of drinking water? Environmental Science & Technology, 45(1), 51–60. doi:10.1021/es1014482
  • Wu, X., Conkle, J. L., Ernst, F., & Gan, J. (2014). Treated wastewater irrigation: Uptake of pharmaceutical and personal care products by common vegetables under field conditions. Environmental Science & Technology, 48(19), 11286–11293. doi:10.1021/es502868k
  • Xia, S., Jia, R., Feng, F., Xie, K., Li, H., Jing, D., & Xu, X. (2012). Effect of solids retention time on antibiotics removal performance and microbial communities in an A/O-MBR process. Bioresource Technology, 106, 36–43. doi:10.1016/j.biortech.2011.11.112
  • Yan, Q., Gao, X., Chen, Y.-P., Peng, X.-Y., Zhang, Y.-X., Gan, X.-M., … Guo, J.-S. (2014). Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area. Science of the Total Environment, 470–471, 618–630. doi:10.1016/j.scitotenv.2013.09.032
  • Yang, S. F., Lin, C. F., Wu, C. J., Ng, K. K., Lin, A. Y., & Hong, P. K. (2012). Fate of sulfonamide antibiotics in contact with activated sludge - Sorption and biodegradation. Water Research, 46(4), 1301–1308. doi:10.1016/j.watres.2011.12.035
  • Yergeau, E., Lawrence, J. R., Waiser, M. J., Korber, D. R., & Greer, C. W. (2010). Meta-transcriptomic analysis of the response of river biofilms to pharmaceutical products, using anonymous DNA microarrays. Applied and Environmental Microbiology, 76(16), 5432–5439. doi:10.1128/AEM.00873-10
  • Yergeau, E., Sanschagrin, S., Waiser, M. J., Lawrence, J. R., & Greer, C. W. (2012). Sub-inhibitory concentrations of different pharmaceutical products affect the meta-transcriptome of river biofilm communities cultivated in rotating annular reactors. Environmental Microbiology Reports, 4(3), 350–359. doi:10.1111/j.1758-2229.2012.00341.x
  • Ying, G., Kookana, R. S., & Kumar, A. (2008). Fate of estrogens and xenoestrogens in four sewage treatment plants with different technologies. Environmental Toxicology and Chemistry, 27(1), 87–94. doi:10.1897/07-046.1
  • Ying, G. G., Kookana, R. S., & Ru, Y. J. (2002). Occurrence and fate of hormone steroids in the environment. Environment International, 28(6), 545–551.
  • Zhang, Y., & Geissen, S.-U. (2010). In vitro degradation of carbamazepine and diclofenac by crude lignin peroxidase. Journal of Hazardous Materials, 176(1–3), 1089–1092. doi:10.1016/j.jhazmat.2009.10.133
  • Zhang, Y., Geißen, S. U., & Gal, C. (2008). Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73(8), 1151–1161. doi:10.1016/j.chemosphere.2008.07.086
  • Zhang, K., Zhao, Y., & Fent, K. (2017). Occurrence and ecotoxicological effects of free, conjugated, and halogenated steroids including 17α-hydroxypregnanolone and pregnanediol in Swiss wastewater and surface water. Environmental Science & Technology, 51(11), 6498–6506. doi:10.1021/acs.est.7b01231
  • Zhou, Y., Zha, J., Xu, Y., Lei, B., & Wang, Z. (2012). Occurrences of six steroid estrogens from different effluents in Beijing. Environmental Monitoring and Assessment, 184(3), 1719–1729. doi:10.1007/s10661-011-2073-z
  • Zhu, Y., Wang, Y., Jiang, X., Zhou, S., Wu, M., Pan, M., & Chen, H. (2017). Microbial community compositional analysis for membrane bioreactor treating antibiotics containing wastewater. Chemical Engineering Journal, 325, 300–309. doi:10.1016/j.cej.2017.05.073
  • Ziels, R. M., Lust, M. J., Gough, H. L., Strand, S. E., & Stensel, H. D. (2014). Influence of bioselector processes on 17α-ethinylestradiol biodegradation in activated sludge wastewater treatment systems. Environmental Science & Technology, 48(11), 6160–6167. doi:10.1021/es405351b
  • Zuccato, E., Castiglioni, S., Bagnati, R., Melis, M., & Fanelli, R. (2010). Source, occurrence and fate of antibiotics in the Italian aquatic environment. Journal of Hazardous Materials, 179(1–3), 1042–1048. doi:10.1016/j.jhazmat.2010.03.110

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.