9,611
Views
137
CrossRef citations to date
0
Altmetric
Original Articles

Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 903-978 | Published online: 06 Aug 2019

References

  • Abbas, T., Rizwan, M., Ali, S., Zia-Ur-Rehman, M., Farooq Qayyum, M., Abbas, F., … Ok, Y. S. (2017). Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicology and Environmental Safety, 140, 37–47.
  • Abdu, N., Abdullahi, A., & Abdulkadir, A. (2017). Heavy metals and soil microbes. Environmental Chemistry Letters, 15(1), 65–84. doi:10.1007/s10311-016-0587-x
  • Abiven, S., Schmidt, M. W. I., & Lehmann, J. (2014). Biochar by design. Nature Geoscience, 7(5), 326–327. doi:10.1038/ngeo2154
  • Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122(2–4), 121–142. doi:10.1016/j.geoderma.2004.01.003
  • Ahmad, M., Lee, S. S., Lim, J. E., Lee, S.-E., Cho, J. S., Moon, D. H., … Ok, Y. S. (2014). Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere, 95, 433–441. doi:10.1016/j.chemosphere.2013.09.077
  • Ahmad, M., Lee, S. S., Yang, J. E., Ro, H.-M., Lee, Y. H., & Ok, Y. S. (2012). Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and Environmental Safety, 79, 225–231.
  • Ahmad, M., Lee, S., Lee, S., Al-Wabel, M., Tsang, D., & Ok, Y. (2017). Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. Journal of Soils and Sediments, 17(3), 717–730. doi:10.1007/s11368-015-1339-4
  • Ahmad, M., Ok, Y. S., Kim, B.-Y., Ahn, J.-H., Lee, Y. H., Zhang, M., … Lee, S. S. (2016). Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. Journal of Environmental Management, 166, 131–139. doi:10.1016/j.jenvman.2015.10.006
  • Ahmad, M., Ok, Y. S., Rajapaksha, A. U., Lim, J. E., Kim, B.-Y., Ahn, J.-H., … Lee, S. S. (2016). Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. Journal of Hazardous Materials, 301, 179–186. doi:10.1016/j.jhazmat.2015.08.029
  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., … Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33. doi:10.1016/j.chemosphere.2013.10.071
  • Ali, A., Guo, D., Zhang, Y., Sun, X., Jiang, S., Guo, Z., … Zhang, Z. (2017). Using bamboo biochar with compost for the stabilization and phytotoxicity reduction of heavy metals in mine-contaminated soils of China. Scientific Reports, 7(1), 2690. doi:10.1038/s41598-017-03045-9
  • Alkurdi, S. S. A., Herath, I., Bundschuh, J., Al-Juboori, R. A., Vithanage, M., & Mohan, D. (2019). Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research? Environment International, 127, 52–69. doi:10.1016/j.envint.2019.03.012
  • Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379. doi:10.1016/j.biortech.2012.12.165
  • Ameloot, N., De Neve, E. R., Graber, F. G. A., & Verheijen, S. (2013). Interactions between biochar stability and soil organisms: Review and research needs. European Journal of Soil Science, 64(4), 379–390.
  • Amin, F., Huang, Y., He, Y., Zhang, R., Liu, G., & Chen, C. (2016). Biochar applications and modern techniques for characterization. Clean Technologies and Environmental Policy, 18(5), 1457–1473. doi:10.1007/s10098-016-1218-8
  • An, Q., Jiang, Y.-Q., Nan, H.-Y., Yu, Y., & Jiang, J.-N. (2019). Unraveling sorption of nickel from aqueous solution by KMnO4 and KOH-modified peanut shell biochar: Implicit mechanism. Chemosphere, 214, 846–854. doi:10.1016/j.chemosphere.2018.10.007
  • Antal, M., & Gronli, M. (2003). The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research, 42(8), 1619–1640. doi:10.1021/ie0207919
  • Arabyarmohammadi, H., Darban, A. K., Abdollahy, M., Yong, R., Ayati, B., Zirakjou, A., & van der Zee, S. E. (2018). Utilization of a novel chitosan/clay/Biochar Nanobiocomposite for immobilization of heavy metals in acid soil environment. Journal of Polymers and the Environment, 26(5), 2107–2119. doi:10.1007/s10924-017-1102-6
  • Arán, D., Antelo, J., Fiol, S., & Macías, F. (2016). Influence of feedstock on the copper removal capacity of waste-derived biochars. Bioresource Technology, 212, 199–206. doi:10.1016/j.biortech.2016.04.043
  • Arshad, M., Khan, A. H. A., Hussain, I., Anees, M., Iqbal, M., Soja, G., … Yousaf, S. (2017). The reduction of chromium (VI) phytotoxicity and phytoavailability to wheat (Triticum aestivum L.) using biochar and bacteria. Applied Soil Ecology, 114, 90–98.
  • Awad, Y. M., Ok, Y. S., Abrigata, J., Beiyuan, J., Beckers, F., Tsang, D. C. W., & Rinklebe, J. (2018). Pine sawdust biomass and biochars at different pyrolysis temperatures change soil redox processes. Science of the Total Environment, 625, 147–154. doi:10.1016/j.scitotenv.2017.12.194
  • Azargohar, R., Nanda, S., Dalai, A. K., & Rao, A. K. (2013). Slow pyrolysis of deoiled canola meal: Product yields and characterization. Energy & Fuels, 27(9), 5268–5279. doi:10.1021/ef400941a
  • Bachmann, H. J., Bucheli, T. D., Dieguez-Alonso, A., Fabbri, D., Knicker, H., Schmidt, H.-P., … Zehetner, F. (2016). Toward the standardization of biochar analysis: The COST Action TD1107 Interlaboratory Comparison. Journal of Agricultural and Food Chemistry, 64(2), 513–527. doi:10.1021/acs.jafc.5b05055
  • Bakshi, S., He, Z. L., & Harris, W. G. (2014). Biochar amendment affects leaching potential of copper and nutrient release behavior in contaminated sandy soils. Journal of Environment Quality, 43(6), 1894–1902. doi:10.2134/jeq2014.05.0213
  • Bamminger, C., Poll, C., Sixt, C., Hogy, P., Wust, D., Kandeler, E., & Marhan, S. (2016). Short-term response of soil microorganisms to biochar addition in a temperate agroecosystem under soil warming. Agriculture, Ecosystems & Environment, 233, 308–317. doi:10.1016/j.agee.2016.09.016
  • Bandara, T., Herath, I., Kumarathilaka, P., Hseu, Z.-Y., Ok, Y., & Vithanage, M. (2017). Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil. Environmental Geochemistry and Health, 39,(2), 391–401. doi:10.1007/s10653-016-9842-0
  • Bandara, T., Herath, I., Kumarathilaka, P., Seneviratne, M., Seneviratne, G., Rajakaruna, N., … Ok, Y. S. (2017). Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil. Journal of Soils and Sediments, 17(3), 665–673. doi:10.1007/s11368-015-1243-y
  • Banik, C., Lawrinenko, M., Bakshi, S., & Laird, D. A. (2018). Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars. Journal of Environment Quality, 47(3), 452–461. doi:10.2134/jeq2017.11.0432
  • Bashir, S., Hussain, Q., Akmal, M., Riaz, M., Hu, H., Ijaz, S. S., … Ahmad, M. (2018). Sugarcane bagasse-derived biochar reduces the cadmium and chromium bioavailability to mash bean and enhances the microbial activity in contaminated soil. Journal of Soils and Sediments, 18(3), 874–886. doi:10.1007/s11368-017-1796-z
  • Bashir, S., Hussain, Q., Shaaban, M., & Hu, H. (2018). Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil. Chemosphere, 211, 632–639. doi:10.1016/j.chemosphere.2018.07.168
  • Beckers, F., Mothes, S., Abrigata, J., Zhao, J., Gao, Y., & Rinklebe, J. (2019). Mobilization of mercury species under dynamic laboratory redox conditions in a contaminated floodplain soil as affected by biochar and sugar beet factory lime. Science of the Total Environment, 672, 604–617. doi:10.1016/j.scitotenv.2019.03.401
  • Beesley, L., & Marmiroli, M. (2011). The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159(2), 474–480. doi:10.1016/j.envpol.2010.10.016
  • Beesley, L., Inneh, O. S., Norton, G. J., Moreno-Jimenez, E., Pardo, T., Clemente, R., & Dawson, J. J. C. (2014). Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environmental Pollution, 186, 195–202. doi:10.1016/j.envpol.2013.11.026
  • Beesley, L., Marmiroli, M., Pagano, L., Pigoni, V., Fellet, G., Fresno, T., … Marmiroli, N. (2013). Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Science of the Total Environment, 454–455, 598–603. doi:10.1016/j.scitotenv.2013.02.047
  • Beiyuan, J., Awad, Y. M., Beckers, F., Tsang, D. C. W., Ok, Y. S., & Rinklebe, J. (2017). Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere, 178, 110–118. doi:10.1016/j.chemosphere.2017.03.022
  • Bolan, N. S., Choppala, G., Kunhikrishnan, A., Park, J., & Naidu, R. (2013). Microbial transformation of trace elements in soils in relation to bioavailability and remediation. In D. M. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology (pp. 1–56). New York, NY: Springer New York.
  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., … Scheckel, K. (2014). Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize? Journal of Hazardous Materials, 266, 141–166. doi:10.1016/j.jhazmat.2013.12.018
  • Boostani, H. R., Najafi-Ghiri, M., Hardie, A. G., & Khalili, D. (2019). Comparison of Pb stabilization in a contaminated calcareous soil by application of vermicompost and sheep manure and their biochars produced at two temperatures. Applied Geochemistry, 102, 121–128. doi:10.1016/j.apgeochem.2019.01.013
  • Bruun, E. W., Ambus, P., Egsgaard, H., & Hauggaard-Nielsen, H. (2012). Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology and Biochemistry, 46, 73–79. doi:10.1016/j.soilbio.2011.11.019
  • Bussan, D. D., Sessums, R. F., & Cizdziel, J. V. (2016). Activated carbon and biochar reduce mercury methylation potentials in aquatic sediments. Bulletin of Environmental Contamination and Toxicology, 96(4), 536–539. doi:10.1007/s00128-016-1734-6
  • Calugaru, I. L., Neculita, C. M., Genty, T., & Zagury, G. J. (2019). Removal efficiency of As(V) and Sb(III) in contaminated neutral drainage by Fe-loaded biochar. Environmental Science and Pollution Research, 26(9), 9322–9332. doi:10.1007/s11356-019-04381-1
  • Cao, X., Ma, L., Gao, B., & Harris, W. (2009). Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology, 43, 3285–3291.
  • Cao, X., Ma, L., Liang, Y., Gao, B., & Harris, W. (2011). Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science & Technology, 45, 4884–4889. doi:10.1021/es103752u
  • Cely, P., Tarquis, A. M., Paz-Ferreiro, J., Méndez, A., & Gascó, G. (2014). Factors driving the carbon mineralization priming effect in a sandy loam soil amended with different types of biochar. Solid Earth, 5(1), 585–594.
  • Cha, J. S., Park, S. H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., & Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1–15. doi:10.1016/j.jiec.2016.06.002
  • Chang, J., Duan, Y., Dong, J., Shen, S., Si, G., He, F., … Chen, J. (2019). Bioremediation of Hg-contaminated soil by combining a novel Hg-volatilizing Lecythophora sp. fungus, DC-F1, with biochar: Performance and the response of soil fungal community. Science of the Total Environment, 671, 676–684. doi:10.1016/j.scitotenv.2019.03.409
  • Chen, B., Chen, Z., & Lv, S. (2011). A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology, 102(2), 716–723. doi:10.1016/j.biortech.2010.08.067
  • Chen, D., Guo, H., Li, R., Li, L., Pan, G., Chang, A., & Joseph, S. (2016). Low uptake affinity cultivars with biochar to tackle Cd-tainted rice — A field study over four rice seasons in Hunan, China. Science of the Total Environment, 541, 1489–1498. doi:10.1016/j.scitotenv.2015.10.052
  • Chen, D., Liu, X., Bian, R., Cheng, K., Zhang, X., Zheng, J., … Li, L. (2018). Effects of biochar on availability and plant uptake of heavy metals – A meta-analysis. Journal of Environmental Management, 222, 76–85. doi:10.1016/j.jenvman.2018.05.004
  • Chen, G., Zhang, Z., Zhang, Z., & Zhang, R. (2017). Influence of biochar addition on the denitrification process and N2O emission in Cd-contaminated soil. Water, Air, & Soil Pollution, 228, 47. doi:10.1007/s11270-016-3228-x
  • Chen, H., Yang, X., Gielen, G., Mandal, S., Xu, S., Guo, J., … Wang, H. (2019). Effect of biochars on the bioavailability of cadmium and di-(2-ethylhexyl) phthalate to Brassica chinensis L. in contaminated soils. Science of the Total Environment, 678, 43–52. doi:10.1016/j.scitotenv.2019.04.417
  • Chen, H., Zhang, J., Tang, L., Su, M., Tian, D., Zhang, L., … Hu, S. (2019). Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria. Environment International, 127, 395–401. doi:10.1016/j.envint.2019.03.068
  • Chen, L., Chen, X. L., Zhou, C. H., Yang, H. M., Ji, S. F., Tong, D. S., … Chu, M. Q. (2017). Environmental-friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate. Journal of Cleaner Production, 156, 648–659. doi:10.1016/j.jclepro.2017.04.050
  • Chen, Z., Wang, Y., Xia, D., Jiang, X., Fu, D., Shen, L., … Li, Q. B. (2016). Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition. Journal of Hazardous Materials, 311, 20–29. doi:10.1016/j.jhazmat.2016.02.069
  • Chen, Z., Zhang, J., Liu, M., Wu, Y., & Yuan, Z. (2018). Immobilization of metals in contaminated soil from E-waste recycling site by dairy-manure-derived biochar. Environmental Technology, 39(21), 2801–2809.
  • Cheng, B.-H., Zeng, R. J., & Jiang, H. (2017). Recent developments of post-modification of biochar for electrochemical energy storage. Bioresource Technology, 246, 224–233. doi:10.1016/j.biortech.2017.07.060
  • Cheng, C.-H., Lehmann, J., Thies, J. E., Burton, S. D., & Engelhard, M. H. (2006). Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 37(11), 1477–1488. doi:10.1016/j.orggeochem.2006.06.022
  • Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied and Environmental Soil Science, 2014, 1.
  • Choppala, G. K., Bolan, N. S., Megharaj, M., Chen, Z., & Naidu, R. (2012). The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. Journal of Environment Quality, 41(4), 1175–1184. doi:10.2134/jeq2011.0145
  • Choppala, G., Bolan, N., Kunhikrishnan, A., & Bush, R. (2016). Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Chemosphere, 144, 374–381. doi:10.1016/j.chemosphere.2015.08.043
  • Choppala, G., Bolan, N., Kunhikrishnan, A., Skinner, W., & Seshadri, B. (2015). Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Environmental Science and Pollution Research, 22(12), 8969–8978. doi:10.1007/s11356-013-1653-6
  • Cui, L., Noerpel, M. R., Scheckel, K. G., & Ippolito, J. A. (2019). Wheat straw biochar reduces environmental cadmium bioavailability. Environment International, 126, 69–75. doi:10.1016/j.envint.2019.02.022
  • Cui, L., Yan, J., Yang, Y., Li, L., Quan, G., Ding, C., … Chang, A. (2013). Influence of biochar on microbial activities of heavy metals contaminated paddy fields. BioResources, 8(4), 5536–5548. doi:10.15376/biores.8.4.5536-5548
  • Cui, X., Dai, X., Khan, K. Y., Li, T., Yang, X., & He, Z. (2016). Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata. Bioresource Technology, 218, 1123–1132. doi:10.1016/j.biortech.2016.07.072
  • Dai, Z., Barberán, A., Li, Y., Brookes, P. C., & Xu, J. (2017). Bacterial community composition associated with pyrogenic organic matter (biochar) varies with pyrolysis temperature and colonization environment. mSphere, 2(2), e00085-17. doi:10.1128/mSphere.00085-17
  • Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P. C., & Xu, J. (2017). Potential role of biochars in decreasing soil acidification - A critical review. Science of the Total Environment, 581–582, 601–611.
  • DeCiucies, S., Whitman, T., Woolf, D., Enders, A., & Lehmann, J. (2018). Priming mechanisms with additions of pyrogenic organic matter to soil. Geochimica et Cosmochimica Acta, 238, 329–342. doi:10.1016/j.gca.2018.07.004
  • Deng, J., Liu, Y., Liu, S., Zeng, G., Tan, X., Huang, B., … Yan, Z. (2017). Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of Colloid and Interface Science, 506, 355–364. doi:10.1016/j.jcis.2017.07.069
  • Diao, Z.-H., Du, J.-J., Jiang, D., Kong, L.-J., Huo, W.-Y., Liu, C.-M., … Xu, X.-R. (2018). Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron: Coexistence effect and mechanism. Science of the Total Environment, 642, 505–515. doi:10.1016/j.scitotenv.2018.06.093
  • Ding, W., Zeng, X., Wang, Y., Du, Y., & Zhu, Q. (2011). Characteristics and performances of biofilm carrier prepared from agro-based biochar. China Environmental Science, 31, 1451–1455.
  • Ding, Z., Hu, X., Wan, Y., Wang, S., & Gao, B. (2016). Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry, 33, 239–245. doi:10.1016/j.jiec.2015.10.007
  • Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U., Sahu, A., … Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 7, 2189–2212.
  • Dong, D., Feng, Q., McGrouther, K., Yang, M., Wang, H., & Wu, W. (2015). Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. Journal of Soils and Sediments, 15(1), 153–162. doi:10.1007/s11368-014-0984-3
  • Egene, C. E., Van Poucke, R., Ok, Y. S., Meers, E., & Tack, F. M. G. (2018). Impact of organic amendments (biochar, compost and peat) on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years. Science of the Total Environment, 626, 195–202. doi:10.1016/j.scitotenv.2018.01.054
  • El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., … Ok, Y. S. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536–554. doi:10.1016/j.geoderma.2018.09.034
  • El-Naggar, A., Shaheen, S. M., Hseu, Z.-Y., Wang, S.-L., Ok, Y. S., & Rinklebe, J. (2019). Release dynamics of As, Co, and Mo in a biochar treated soil under pre-definite redox conditions. Science of the Total Environment, 657, 686–695. doi:10.1016/j.scitotenv.2018.12.026
  • El-Naggar, A., Shaheen, S. M., Ok, Y. S., & Rinklebe, J. (2018). Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in a mining soil under dynamic redox-conditions. Science of the Total Environment, 624, 1059–1071. doi:10.1016/j.scitotenv.2017.12.190
  • Fang, J., Zhan, L., Ok, Y. S., & Gao, B. (2018). Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. Journal of Industrial and Engineering Chemistry, 57, 15–21. doi:10.1016/j.jiec.2017.08.026
  • Fang, S. E., Tsang, D. C. W., Zhou, F., Zhang, W., & Qiu, R. (2016). Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar. Chemosphere, 149, 263–271. doi:10.1016/j.chemosphere.2016.01.060
  • Frankel, M. L., Bhuiyan, T. I., Veksha, A., Demeter, M. A., Layzell, D. B., Helleur, R. J., … Turner, R. J. (2016). Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals. Bioresource Technology, 216, 352–361. doi:10.1016/j.biortech.2016.05.084
  • Fungo, B., Thiongo, M., Neufeldt, H., Guerena, D., Lehmann, J., & Kalbi, B. (2014). N2O and CH4 emission from soil amended with steam-activated biochar. Journal of Plant Nutrition and Soil Science, 177(1), 34–38. doi:10.1002/jpln.201300495
  • Gadd, G. M., Rhee, Y. J., Stephenson, K., & Wei, Z. (2012). Geomycology: Metals, actinides and biominerals. Environmental Microbiology Reports, 4, 270–296. doi:10.1111/j.1758-2229.2011.00283.x
  • Gan, C., Liu, Y., Tan, X., Wang, S., Zeng, G., Zheng, B., … Liu, W. (2015). Effect of porous zinc–biochar nanocomposites on Cr(VI) adsorption from aqueous solution. RSC Advances, 5(44), 35107–35115. doi:10.1039/C5RA04416B
  • Gao, B., Han, L., Hao, H., & Zhou, H. (2016). Pollution characteristics of mercury (Hg) in surface sediments of major basins, China. Ecological Indicators, 67, 577–585. doi:10.1016/j.ecolind.2016.03.031
  • Gong, X., Huang, D., Liu, Y., Zeng, G., Chen, S., Wang, R., … Xue, W. (2019). Biochar facilitated the phytoremediation of cadmium contaminated sediments: Metal behavior, plant toxicity, and microbial activity. Science of the Total Environment, 666, 1126–1133. doi:10.1016/j.scitotenv.2019.02.215
  • González-Chávez, M. D. C. A., Carrillo-González, R., Hernández Godínez, M. I., & Evangelista Lozano, S. (2017). Jatropha curcas and assisted phytoremediation of a mine tailing with biochar and a mycorrhizal fungus. International Journal of Phytoremediation, 19(2), 174–182. doi:10.1080/15226514.2016.1207602
  • Gregory, S. J., Anderson, C. W. N., Camps Arbestain, M., & McManus, M. T. (2014). Response of plant and soil microbes to biochar amendment of an arsenic-contaminated soil. Agriculture, Ecosystems & Environment, 191, 133–141. doi:10.1016/j.agee.2014.03.035
  • Gurtler, J. B., Boateng, A. A., Han, Y., & Douds, D. D. (2014). Inactivation of E. coli O157:H7 in cultivable soil by fast and slow pyrolysis-generated biochar. Foodborne Pathogens and Disease, 11(3), 215–223. doi:10.1089/fpd.2013.1631
  • Hafeez, F., Rizwan, M., Saqib, M., Yasmeen, T., Ali, S., Abbas, T., … Qayyum, M. F. (2019). Residual effect of biochar on growth, antioxidant defence and cadmium (Cd) accumulation in rice in a cd contaminated saline soil. Pakistan Journal of Agricultural Sciences, 56, 197–204.
  • Hamer, U., Marschner, B., Brodowski, S., & Amelung, W. (2004). Interactive priming of black carbon and glucose mineralisation. Organic Geochemistry, 35(7), 823–830. doi:10.1016/j.orggeochem.2004.03.003
  • Han, L., Sun, H., Ro, K. S., Sun, K., Libra, J. A., & Xing, B. (2017). Removal of antimony(III) and cadmium(II) from aqueous solution using animal manure-derived hydrochars and pyrochars. Bioresource Technology, 234, 77–85. doi:10.1016/j.biortech.2017.02.130
  • Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology, 9, (3), 177–192. doi:10.1038/nrmicro2519
  • Hartley, W., Dickinson, N. M., Riby, P., & Lepp, N. W. (2009). Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environmental Pollution (Barking, Essex: 1987), 157(10), 2654–2662. doi:10.1016/j.envpol.2009.05.011
  • He, L., Fan, S., Müller, K., Wang, H., Che, L., Xu, S., … Bolan, N. S. (2018). Comparative analysis biochar and compost-induced degradation of di-(2-ethylhexyl) phthalate in soils. Science of the Total Environment, 625, 987–993. doi:10.1016/j.scitotenv.2018.01.002
  • He, L., Gielen, G., Bolan, N. S., Zhang, X., Qin, H., Huang, H., & Wang, H. (2015). Contamination and remediation of phthalic acid esters in agricultural soils in China: A review. Agronomy for Sustainable Development, 35(2), 519–534. doi:10.1007/s13593-014-0270-1
  • Herath, I., Iqbal, M. C. M., Al-Wabel, M. I., Abduljabbar, A., Ahmad, M., Usman, A. R. A., … Vithanage, M. (2017). Bioenergy-derived waste biochar for reducing mobility, bioavailability, and phytotoxicity of chromium in anthropized tannery soil. Journal of Soils and Sediments, 17(3), 731–740. doi:10.1007/s11368-015-1332-y
  • Hernandez-Soriano, M. C., Kerré, B., Kopittke, P. M., Horemans, B., & Smolders, E. (2016). Biochar affects carbon composition and stability in soil: A combined spectroscopy-microscopy study. Scientific Reports, 6(1), 25127. doi:10.1038/srep25127
  • Houben, D., & Sonnet, P. (2015). Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus. Chemosphere, 139, 644–651. doi:10.1016/j.chemosphere.2014.12.036
  • Houben, D., Evrard, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92(11), 1450–1457. doi:10.1016/j.chemosphere.2013.03.055
  • Hua, L., Zhang, H., Wei, T., Yang, C., & Guo, J. (2019). Effect of biochar on fraction and species of antimony in contaminated soil. Journal of Soils and Sediments, 19(6), 2836–2849. doi:10.1007/s11368-019-02251-4
  • Huang, D., Liu, L., Zeng, G., Xu, P., Huang, C., Deng, L., … Wan, J. (2017). The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere, 174, 545–553. doi:10.1016/j.chemosphere.2017.01.130
  • Huang, S., Bao, J., Shan, M., Qin, H., Wang, H., Yu, X., … Xu, Q. (2018). Dynamic changes of polychlorinated biphenyls (PCBs) degradation and adsorption to biochar as affected by soil organic carbon content. Chemosphere, 211, 120–127. doi:10.1016/j.chemosphere.2018.07.133
  • Huang, X., Liu, Y., Liu, S., Tan, X., Ding, Y., Zeng, G., … Zheng, B. (2016). Effective removal of Cr(VI) using β-cyclodextrinchitosan modified biochars with adsorption/reduction bifuctional roles. RSC Advances, 6(1), 94–104. doi:10.1039/C5RA22886G
  • Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A. M., Solaiman, Z. M., Alghamdi, S. S., … Siddique, K. H. M. (2017). Biochar for crop production: Potential benefits and risks. Journal of Soils and Sediments, 17(3), 685–716. doi:10.1007/s11368-016-1360-2
  • Hyväluoma, J., Hannula, M., Arstila, K., Wang, H., Kulju, S., & Rasa, K. (2018). Effects of pyrolysis temperature on the hydrologically relevant porosity of willow biochar. Journal of Analytical and Applied Pyrolysis, 134, 446–453.
  • Ibrahim, M., Khan, S., Hao, X., & Li, G. (2016). Biochar effects on metal bioaccumulation and arsenic speciation in alfalfa (Medicago sativa L.) grown in contaminated soil. International Journal of Environmental Science and Technology, 13(10), 2467–2474. doi:10.1007/s13762-016-1081-5
  • Ibrahim, M., Li, G., Khan, S., Chi, Q., & Xu, Y. (2017). Biochars mitigate greenhouse gas emissions and bioaccumulation of potentially toxic elements and arsenic speciation in Phaseolus vulgaris L. Environmental Science and Pollution Research, 24(24), 19524–19534. doi:10.1007/s11356-017-9605-1
  • Igalavithana, A. D., Kim, K.-H., Jung, J.-M., Heo, H.-S., Kwon, E. E., Tack, F. M. G., … Ok, Y. S. (2019). Effect of biochars pyrolyzed in N2 and CO2, and feedstock on microbial community in metal(loid)s contaminated soils. Environment International, 126, 791–801. doi:10.1016/j.envint.2019.02.061
  • Igalavithana, A. D., Kwon, E. E., Vithanage, M., Rinklebe, J., Moon, D. H., Meers, E., … Ok, Y. S. (2019). Soil lead immobilization by biochars in short-term laboratory incubation studies. Environment International, 127, 190–198. doi:10.1016/j.envint.2019.03.031
  • Igalavithana, A. D., Lee, S. E., Lee, Y. H., Tsang, D. C. W., Rinklebe, J., Kwon, E. E., & Ok, Y. S. (2017). Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere, 174, 593–603. doi:10.1016/j.chemosphere.2017.01.148
  • Igalavithana, A. D., Mandal, S., Niazi, N. K., Vithanage, M., Parikh, S. J., Mukome, F. N. D., … Ok, Y. S. (2017). Advances and future directions of biochar characterization methods and applications. Critical Reviews in Environmental Science and Technology, 47(23), 2275–2330. doi:10.1080/10643389.2017.1421844
  • Igalavithana, A. D., Park, J., Ryu, C., Lee, Y. H., Hashimoto, Y., Huang, L., … Lee, S. S. (2017). Slow pyrolyzed biochars from crop residues for soil metal (loid) immobilization and microbial community abundance in contaminated agricultural soils. Chemosphere, 177, 157–166. doi:10.1016/j.chemosphere.2017.02.112
  • Igalavithana, A. D., Yang, X., Zahra, H. R., Tack, F. M., Tsang, D. C., Kwon, E. E., & Ok, Y. S. (2018). Metal (loid) immobilization in soils with biochars pyrolyzed in N2 and CO2 environments. Science of the Total Environment, 630, 1103–1114.
  • Intani, K., Latif, S., Islam, M., & Müller, J. (2018). Phytotoxicity of Corncob Biochar before and after Heat Treatment and Washing. Sustainability, 11(1), 30. doi:10.3390/su11010030
  • Jia, Y., Zhang, Y., Fu, J., Yuan, L., Li, Z., Liu, C., … Wang, X. (2019). A novel magnetic biochar/MgFe-layered double hydroxides composite removing Pb2+ from aqueous solution: Isotherms, kinetics and thermodynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 567, 278–287. doi:10.1016/j.colsurfa.2019.01.064
  • Jiang, J., Xu, R-K., Jiang, T-y., & Li, Z. (2012). Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. Journal of Hazardous Materials, 229–230, 145–150.
  • Jiang, T.-Y., Jiang, J., Xu, R.-K., & Li, Z. (2012). Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere, 89(3), 249–256.
  • Jiang, T.-Y., Xu, R.-K., Gu, T.-X., & Jiang, J. (2014). Effect of crop-straw derived biochars on Pb(II) adsorption in two variable charge soils. Journal of Integrative Agriculture, 13(3), 507–516.
  • Jiang, X., Denef, K., Stewart, C., & Cotrufo, M. (2016). Controls and dynamics of biochar decomposition and soil microbial abundance, composition, and carbon use efficiency during long-term biochar-amended soil incubations. Biology and Fertility of Soils, 52(1), 1–14. doi:10.1007/s00374-015-1047-7
  • Jin, H., Hanif, M. U., Capareda, S., Chang, Z., Huang, H., & Ai, Y. (2016). Copper(II) removal potential from aqueous solution by pyrolysis biochar derived from anaerobically digested algae-dairy-manure and effect of KOH activation. Journal of Environmental Chemical Engineering, 4(1), 365–372.
  • Jin, Y., O'Connor, D., Ok, Y. S., Tsang, D. C. W., Liu, A., & Hou, D. (2019). Assessment of sources of heavy metals in soil and dust at children's playgrounds in Beijing using GIS and multivariate statistical analysis. Environment International, 124, 320–328. doi:10.1016/j.envint.2019.01.024
  • Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A., & Sonoki, T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23), 6613–6621. doi:10.5194/bg-11-6613-2014
  • Jing, R., & Kjellerup, B. V. (2018). Biogeochemical cycling of metals impacting by microbial mobilization and immobilization. Journal of Environmental Sciences, 66, 146–154. doi:10.1016/j.jes.2017.04.035
  • Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., … Amonette, J. E. (2010). An investigation into the reactions of biochar in soil. Soil Research, 48(7), 501–515. doi:10.1071/SR10009
  • Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359–378. doi:10.1016/j.rser.2015.01.050
  • Kappler, A., Wuestner, M. L., Ruecker, A., Harter, J., Halama, M., & Behrens, S. (2014). Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environmental Science & Technology Letters, 1, 339–344. doi:10.1021/ez5002209
  • Kim, H.-B., Kim, S.-H., Jeon, E.-K., Kim, D.-H., Tsang, D. C. W., Alessi, D. S., … Baek, K. (2018). Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil. Science of the Total Environment, 636, 1241–1248. doi:10.1016/j.scitotenv.2018.04.406
  • Kookana, R. S., Sarmah, A. K., Van Zwieten, L., Krull, E., & Singh, B. (2011). Biochar application to soil: Agronomic and environmental benefits and unintended consequences. Advances in Agronomy, 112, 103–143.
  • Kopittke, P. M., Wang, P., Lombi, E., & Donner, E. (2017). Synchrotron-based X-Ray Approaches for Examining Toxic Trace Metal(loid)s in Soil–Plant Systems. Journal of Environment Quality, 46(6), 1175–1189. doi:10.2134/jeq2016.09.0361
  • Kumarathilaka, P., Ahmad, M., Herath, I., Mahatantila, K., Athapattu, B. C. L., Rinklebe, J., … Vithanage, M. (2018). Influence of bioenergy waste biochar on proton- and ligand-promoted release of Pb and Cu in a shooting range soil. Science of the Total Environment, 625, 547–554. doi:10.1016/j.scitotenv.2017.12.294
  • Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environment International, 87, 1–12. doi:10.1016/j.envint.2015.10.018
  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota – A review. Soil Biology and Biochemistry, 43(9), 1812–1836. doi:10.1016/j.soilbio.2011.04.022
  • Li, B., Yang, L., Wang, C-Q., Zhang, Q-P., Liu, Q-C., Li, Y-D., & Xiao, R. (2017). Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere, 175, 332–340.
  • Li, G., Khan, S., Ibrahim, M., Sun, T.-R., Tang, J.-F., Cotner, J. B., & Xu, Y.-Y. (2018). Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium. Journal of Hazardous Materials, 348, 100–108.
  • Li, H., Dong, X., Da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466–478. doi:10.1016/j.chemosphere.2017.03.072
  • Li, H., Ye, X., Geng, Z., Zhou, H., Guo, X., Zhang, Y., … Wang, G. (2016). The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. Journal of Hazardous Materials, 304, 40–48. doi:10.1016/j.jhazmat.2015.10.048
  • Li, J., Dai, J., Liu, G., Zhang, H., Gao, Z., Fu, J., … Huang, Y. (2016). Biochar from microwave pyrolysis of biomass: A review. Biomass and Bioenergy, 94, 228–244. doi:10.1016/j.biombioe.2016.09.010
  • Li, J., Wang, S.-L., Zheng, L., Chen, D., Wu, Z., Xie, Y., … Wang, H. (2019). Sorption of lead in soil amended with coconut fiber biochar: Geochemical and spectroscopic investigations. Geoderma, 350, 52–60. doi:10.1016/j.geoderma.2019.05.008
  • Li, J., Zheng, L., Wang, S.-L., Wu, Z., Wu, W., Niazi, N. K., … Wang, H. (2019). Sorption mechanisms of lead on silicon-rich biochar in aqueous solution: Spectroscopic investigation. Science of the Total Environment, 672, 572–582.
  • Li, L. Y., Gong, X., & Abida, O. (2019). Waste-to-resources: Exploratory surface modification of sludge-based activated carbon by nitric acid for heavy metal adsorption. Waste Management, 87, 375–386. doi:10.1016/j.wasman.2019.02.019
  • Li, R., Deng, H., Zhang, X., Wang, J. J., Awasthi, M. K., Wang, Q., … Zhang, Z. (2019). High-efficiency removal of Pb(II) and humate by a CeO2–MoS2 hybrid magnetic biochar. Bioresource Technology, 273, 335–340. doi:10.1016/j.biortech.2018.10.053
  • Li, Y., Shen, F., Guo, H., Wang, Z., Yang, G., Wang, L., … Deng, S. (2015). Phytotoxicity assessment on corn stover biochar, derived from fast pyrolysis, based on seed germination, early growth, and potential plant cell damage. Environmental Science and Pollution Research, 22(12), 9534–9543. doi:10.1007/s11356-015-4115-5
  • Li, Z., Song, Z., Singh, B. P., & Wang, H. (2019). The impact of crop residue biochars on silicon and nutrient cycles in croplands. The Science of the Total Environment, 659, 673–680. doi:10.1016/j.scitotenv.2018.12.381
  • Lin, L., Gao, M., Qiu, W., Wang, D., Huang, Q., & Song, Z. (2017). Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments. Environmental Pollution, 231, 479–486.
  • Lin, Q., Xu, X., Chen, Q., Fang, J., Shen, X., & Zhang, L. (2018). Changes in structural characteristics and metal speciation for biochar exposure in typic udic ferrisols. Environmental Science and Pollution Research, 25(1), 153–162. doi:10.1007/s11356-017-8634-0
  • Lin, Q., Xu, X., Wang, L., Chen, Q., Fang, J., Shen, X., … Tian, G. (2017). The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: Effect of feedstock and pyrolysis temperature. Fronties of Environmental Science & Engineering, 11, 1–12.
  • Liu, H., Xu, F., Xie, Y., Wang, C., Zhang, A., Li, L., & Xu, H. (2018). Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil. Science of the Total Environment, 645, 702–709. doi:10.1016/j.scitotenv.2018.07.115
  • Liu, P., Ptacek, C. J., Blowes, D. W., & Finfrock, Y. Z. (2019). Mercury distribution and speciation in biochar particles reacted with contaminated sediment up to 1030 days: A synchrotron-based study. Science of the Total Environment, 662, 915–922. doi:10.1016/j.scitotenv.2019.01.148
  • Liu, P., Ptacek, C. J., Blowes, D. W., & Gould, W. D. (2018). Control of mercury and methylmercury in contaminated sediments using biochars: A long-term microcosm study. Applied Geochemistry, 92, 30–44. doi:10.1016/j.apgeochem.2018.02.004
  • Liu, P., Ptacek, C. J., Blowes, D. W., Finfrock, Y. Z., & Gordon, R. A. (2017). Stabilization of mercury in sediment by using biochars under reducing conditions. Journal of Hazardous Materials, 325, 120–128. doi:10.1016/j.jhazmat.2016.11.033
  • Liu, Q., Wu, L., Gorring, M., & Deng, Y. (2019). Aluminum-Impregnated Biochar for Adsorption of Arsenic(V) in Urban Stormwater Runoff. Journal of Environmental Engineering, 145(4), 04019008. doi:10.1061/(ASCE)EE.1943-7870.0001503
  • Liu, S-J., Liu, Y-G., Tan, X-F., Zeng, G-M., Zhou, Y-h., Liu, S-B., … Wen, J. (2018). The effect of several activated biochars on Cd immobilization and microbial community composition during in-situ remediation of heavy metal contaminated sediment. Chemosphere, 208, 655–664. doi:10.1016/j.chemosphere.2018.06.023
  • Liu, W., Wang, S., Lin, P., Sun, H., Hou, J., Zuo, Q., & Huo, R. (2016). Response of CaCl2-extractable heavy metals, polychlorinated biphenyls, and microbial communities to biochar amendment in naturally contaminated soils. Journal of Soils and Sediments, 16, (2), 476–485. doi:10.1007/s11368-015-1218-z
  • Lomaglio, T., Hattab-Hambli, N., Bret, A., Miard, F., Trupiano, D., Scippa, G. S., … Morabito, D. (2017). Effect of biochar amendments on the mobility and (bio) availability of As, Sb and Pb in a contaminated mine technosol. Journal of Geochemical Exploration, 182, 138–148. doi:10.1016/j.gexplo.2016.08.007
  • Lombi, E., & Susini, J. (2009). Synchrotron-based techniques for plant and soil science: Opportunities, challenges and future perspectives. Plant and Soil, 320(1–2), 1–35. doi:10.1007/s11104-008-9876-x
  • Lu, H., Li, Z., Fu, S., Méndez, A., Gascó, G., & Paz-Ferreiro, J. (2015). Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd. Chemosphere, 119, 209–216. doi:10.1016/j.chemosphere.2014.06.024
  • Lu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y. S., Niazi, N. K., … Wang, H. (2017). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management, 186, 285–292. doi:10.1016/j.jenvman.2016.05.068
  • Lu, K., Yang, X., Shen, J., Robinson, B., Huang, H., Liu, D., … Wang, H. (2014). Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agriculture, Ecosystems & Environment, 191, 124–132.
  • Luo, Y., Durenkamp, M., De Nobili, M., Lin, Q., & Brookes, P. C. (2011). Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biology and Biochemistry, 43(11), 2304–2314. doi:10.1016/j.soilbio.2011.07.020
  • Luo, Y., Lin, Q., Durenkamp, M., & Kuzyakov, Y. (2018). Does repeated biochar incorporation induce further soil priming effect?. Journal of Soils and Sediments, 18(1), 128–135.
  • Mandal, S., Sarkar, B., Bolan, N., Novak, J., Ok, Y. S., Van Zwieten, L., … Naidu, R. (2016). Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Critical Reviews in Environmental Science and Technology, 46(17), 1367–1401. doi:10.1080/10643389.2016.1239975
  • Mandal, S., Sarkar, B., Bolan, N., Ok, Y. S., & Naidu, R. (2017). Enhancement of chromate reduction in soils by surface modified biochar. Journal of Environmental Management, 186, 277–284. doi:10.1016/j.jenvman.2016.05.034
  • Mao, X., Kang, Q., Liu, Y., Siyal, A. A., Ao, W., Ran, C., … Dai, J. (2019). Microwave-assisted pyrolysis of furfural residue in a continuously operated auger reactor: Biochar characterization and analysis. Energy, 168, 573–584. doi:10.1016/j.energy.2018.11.055
  • Melo, T. M., Bottlinger, M., Schulz, E., Leandro, W. M., Botelho de Oliveira, S., Menezes de Aguiar Filho, A., … Rinklebe, J. (2019). Management of biosolids-derived hydrochar (Sewchar): Effect on plant germination, and farmers' acceptance. Journal of Environmental Management, 237, 200–214. doi:10.1016/j.jenvman.2019.02.042
  • Meng, J., Zhong, L., Wang, L., Liu, X., Tang, C., Chen, H., & Xu, J. (2018). Contrasting effects of alkaline amendments on the bioavailability and uptake of Cd in rice plants in a Cd-contaminated acid paddy soil. Environmental Science and Pollution Research, 25(9), 8827–8835. doi:10.1007/s11356-017-1148-y.
  • Meng, F., Yuan, G., Wei, J., Bi, D., Ok, Y. S., & Wang, H. (2017). Humic substances as a washing agent for Cd-contaminated soils. Chemosphere, 181, 461–467. doi:10.1016/j.chemosphere.2017.04.127
  • Meng, J., Tao, M., Wang, L., Liu, X., & Xu, J. (2018). Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Science of the Total Environment, 633, 300–307. doi:10.1016/j.scitotenv.2018.03.199
  • Mian, M. M., Liu, G., Yousaf, B., Fu, B., Ullah, H., Ali, M. U., … Ruijia, L. (2018). 'Simultaneous functionalization and magnetization of biochar via NH3 ambiance pyrolysis for efficient removal of Cr (VI)'. Chemosphere, 208, 712–721. doi:10.1016/j.chemosphere.2018.06.021
  • Mohamed, I., Zhang, G-S., Li, Z-G., Liu, Y., Chen, F., & Dai, K. (2015). Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application. Ecological Engineering, 84, 67–76. doi:10.1016/j.ecoleng.2015.07.009
  • Moon, D. H., Park, J.-W., Chang, Y.-Y., Ok, Y. S., Lee, S. S., Ahmad, M., … Baek, K. (2013). Immobilization of lead in contaminated firing range soil using biochar. Environmental Science and Pollution Research, 20(12), 8464–8471. doi:10.1007/s11356-013-1964-7
  • Moore, F., González, M.-E., Khan, N., Curaqueo, G., Sanchez-Monedero, M., Rilling, J., … Meier, S. (2018). Copper immobilization by biochar and microbial community abundance in metal-contaminated soils. Science of the Total Environment, 616–617, 960–969. doi:10.1016/j.scitotenv.2017.10.223
  • Mueller, C. W., Weber, P. K., Kilburn, M. R., Hoeschen, C., Kleber, M., & Pett-Ridge, J. (2013). Advances in the analysis of biogeochemical interfaces: NanoSIMS to investigate soil microenvironments. Advances in Agronomy, 121, 1–46.
  • Nagodavithane, C. L., Singh, B., & Fang, Y. (2014). Effect of ageing on surface charge characteristics and adsorption behaviour of cadmium and arsenate in two contrasting soils amended with biochar. Soil Research, 52(2), 155–163. doi:10.1071/SR13187
  • Newsome, L., Lopez Adams, R., Downie, H. F., Moore, K. L., & Lloyd, J. R. (2018). NanoSIMS imaging of extracellular electron transport processes during microbial iron(III) reduction. FEMS Microbiology Ecology, 94(8), fiy104. doi:10.1093/femsec/fiy104
  • Nie, C., Yang, X., Niazi, N. K., Xu, X., Wen, Y., Rinklebe, J., … Wang, H. (2018). Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study. Chemosphere, 200, 274–282. doi:10.1016/j.chemosphere.2018.02.134
  • Norini, M.-P., Thouin, H., Miard, F., Battaglia-Brunet, F., Gautret, P., Guégan, R., … Motelica-Heino, M. (2019). Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. Journal of Environmental Management, 232, 117–130. doi:10.1016/j.jenvman.2018.11.021
  • O'Connor, D., Peng, T., Li, G., Wang, S., Duan, L., Mulder, J., … Hou, D. (2018). Sulfur-modified rice husk biochar: A green method for the remediation of mercury contaminated soil. Science of the Total Environment, 621, 819–826. doi:10.1016/j.scitotenv.2017.11.213
  • Oh, S.-Y., & Yoon, H.-S. (2016). Biochar Amendment for Reducing Leachability of Nitro Explosives and Metals from Contaminated Soils and Mine Tailings. Journal of Environment Quality, 45(3), 993–1002. doi:10.2134/jeq2015.05.0222
  • Ok, Y. S., Oh, S.-E., Ahmad, M., Hyun, S., Kim, K.-R., Moon, D. H., … Yang, J. E. (2010). Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environmental Earth Sciences, 61(6), 1301–1308. doi:10.1007/s12665-010-0674-4
  • Padhye, L. P. (2017). Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water. Chemosphere, 184, 532–547.
  • Pal, D., & Maiti, S. K. (2019). Abatement of cadmium (Cd) contamination in sediment using tea waste biochar through meso-microcosm study. Journal of Cleaner Production, 212, 986–996.
  • Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., … Ok, Y. S. (2019). Response of microbial communities to biochar-amended soils: A critical review. Biochar, 1(1), 3–22. doi:10.1007/s42773-019-00009-2
  • Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348(1–2), 439–451. doi:10.1007/s11104-011-0948-y
  • Pellera, F.-M., & Gidarakos, E. (2015). Effect of dried olive pomace – derived biochar on the mobility of cadmium and nickel in soil. Journal of Environmental Chemical Engineering, 3(2), 1163–1176. doi:10.1016/j.jece.2015.04.005
  • Penen, F., Malherbe, J., Isaure, M.-P., Dobritzsch, D., Bertalan, I., Gontier, E., … Schaumlöffel, D. (2016). Chemical bioimaging for the subcellular localization of trace elements by high contrast TEM, TEM/X-EDS, and NanoSIMS. Journal of Trace Elements in Medicine and Biology, 37, 62–68. doi:10.1016/j.jtemb.2016.04.014
  • Peng, X., Deng, Y., Peng, Y., & Yue, K. (2018). Effects of biochar addition on toxic element concentrations in plants: A meta-analysis. Science of the Total Environment, 616, 970–977.
  • Purakayastha, T. J., Kumari, S., & Pathak, H. (2015). Characterisation, stability, and microbial effects of four biochars produced from crop residues. Geoderma, 239, 293–303. doi:10.1016/j.geoderma.2014.11.009
  • Qi, F., Dong, Z., Lamb, D., Naidu, R., Bolan, N. S., Ok, Y. S., … Semple, K. T. (2017). Effects of acidic and neutral biochars on properties and cadmium retention of soils. Chemosphere, 180, 564–573. doi:10.1016/j.chemosphere.2017.04.014
  • Qi, F., Kuppusamy, S., Naidu, R., Bolan, N. S., Ok, Y. S., Lamb, D., … Wang, H. (2017). Pyrogenic carbon and its role in contaminant immobilization in soils. Critical Reviews in Environmental Science and Technology, 47(10), 795–876. doi:10.1080/10643389.2017.1328918
  • Qi, F., Lamb, D., Naidu, R., Bolan, N. S., Yan, Y., Ok, Y. S., … Choppala, G. (2018). Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Science of the Total Environment, 610–611, 1457–1466. doi:10.1016/j.scitotenv.2017.08.228
  • Qian, T.-T., Wu, P., Qin, Q.-Y., Huang, Y.-N., Wang, Y.-J., & Zhou, D.-M. (2019). Screening of wheat straw biochars for the remediation of soils polluted with Zn (II) and Cd (II)). Journal of Hazardous Materials, 362, 311–317. doi:10.1016/j.jhazmat.2018.09.034
  • Qiao, J-T., Li, X-M., & Li, F-B. (2018). Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar. Journal of Hazardous Materials, 344, 958–967. doi:10.1016/j.jhazmat.2017.11.025
  • Qiao, Y., Crowley, D., Wang, K., Zhang, H., & Li, H. (2015). Effects of biochar and Arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil. Environmental Pollution, 206, 636–643. doi:10.1016/j.envpol.2015.08.029
  • Qiao, Y., Wu, J., Xu, Y., Fang, Z., Zheng, L., Cheng, W., … Zhao, D. (2017). Remediation of cadmium in soil by biochar-supported iron phosphate nanoparticles. Ecological Engineering, 106, 515–522. doi:10.1016/j.ecoleng.2017.06.023
  • Qiu, G., Feng, X., Wang, S., & Shang, L. (2006). Environmental contamination of mercury from Hg-mining areas in Wuchuan, northeastern Guizhou, China. Environmental Pollution, 142(3), 549–558. doi:10.1016/j.envpol.2005.10.015
  • Que, W., Zhou, Y-h., Liu, Y-G., Wen, J., Tan, X-F., Liu, S-J., & Jiang, L-h. (2019). Appraising the effect of in-situ remediation of heavy metal contaminated sediment by biochar and activated carbon on Cu immobilization and microbial community. Ecological Engineering, 127, 519–526. doi:10.1016/j.ecoleng.2018.10.005
  • Quilliam, R. S., Rangecroft, S., Emmett, B. A., Deluca, T. H., & Jones, D. L. (2013). Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? Gcb Bioenergy, 5(2), 96–103. doi:10.1111/gcbb.12007
  • Rajapaksha, A. U., Chen, S. S., Tsang, D. C. W., Zhang, M., Vithanage, M., Mandal, S., … Ok, Y. S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 148, 276–291. doi:10.1016/j.chemosphere.2016.01.043
  • Rajapaksha, A. U., Vithanage, M., Oze, C., Bandara, W. M. A. T., & Weerasooriya, R. (2012). Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Geoderma, 189–190, 1–9. doi:10.1016/j.geoderma.2012.04.019
  • Rajapaksha, A., Ahmad, M., Vithanage, M., Kim, K.-R., Chang, J., Lee, S., & Ok, Y. (2015). The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environmental Geochemistry and Health, 37(6), 931–942. doi:10.1007/s10653-015-9694-z
  • Rangabhashiyam, S., & Balasubramanian, P. (2019). The potential of lignocellulosic biomass precursors for biochar production: Performance, mechanism and wastewater application-A review. Industrial Crops and Products, 128, 405–423.
  • Rao, D. V., Gigante, G. E., Cesareo, R., Brunetti, A., Schiavon, N., Akatsuka, T., … Takeda, T. (2017). Synchrotron-based XRD from rat bone of different age groups. Materials Science and Engineering: C, 74, 207–218. doi:10.1016/j.msec.2016.11.136
  • Rawal, A., Joseph, S. D., Hook, J. M., Chia, C. H., Munroe, P. R., Donne, S., … Webber, J. B. W. (2016). Mineral–Biochar Composites: Molecular Structure and Porosity. Environmental Science & Technology, 50, 7706–7714. doi:10.1021/acs.est.6b00685
  • Rechberger, M. V., Kloss, S., Wang, S.-L., Lehmann, J., Rennhofer, H., Ottner, F., … Zehetner, F. (2019). Enhanced Cu and Cd sorption after soil aging of woodchip-derived biochar: What were the driving factors? Chemosphere, 216, 463–471. doi:10.1016/j.chemosphere.2018.10.094
  • Rees, F., Watteau, F., Mathieu, S., Turpault, M.-P., Le Brech, Y., Qiu, R., & Morel, J. L. (2017). Metal immobilization on wood-derived biochars: Distribution and reactivity of carbonate phases. Journal of Environment Quality, 46(4), 845–854. doi:10.2134/jeq2017.04.0152
  • Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International, 126, 76–88. doi:10.1016/j.envint.2019.02.011
  • Rittl, T. F., Hoffland, E. H., Kuyper, F. C., Novotny, E., Balieiro, B. J. R., & Alves, T. W. (2015). Negative priming of native soil organic carbon mineralization by oilseed biochars of contrasting quality. European Journal of Soil Science, 66(4), 714–721. doi:10.1111/ejss.12257
  • Ruan, X., Sun, Y., Du, W., Tang, Y., Liu, Q., Zhang, Z., … Tsang, D. C. W. (2019). Formation, Characteristics, and Applications of Environmentally Persistent Free Radicals in Biochars: A Review. Bioresource Technology, 281, 457–468. doi:10.1016/j.biortech.2019.02.105
  • Šafařík, I., Maděrová, Z., Pospíšková, K., Schmidt, H.-P., Baldíková, E., Filip, J., … Šafaříková, M. (2016). Magnetically modified biochar for organic xenobiotics removal. Water Science and Technology, 74(7), 1706–1715. doi:10.2166/wst.2016.335
  • Sajjadi, B., Broome, J. W., Chen, W. Y., Mattern, D. L., Egiebor, N. O., Hammer, N., & Smith, C. L. (2019). Urea functionalization of ultrasound-treated biochar: A feasible strategy for enhancing heavy metal adsorption capacity. Ultrasonics Sonochemistry, 51, 20–30. doi:10.1016/j.ultsonch.2018.09.015
  • Salam, A., Shaheen, S. M., Bashir, S., Khan, I., Wang, J., Rinklebe, J., … Hu, H. (2019). Rice straw- and rapeseed residue-derived biochars affect the geochemical fractions and phytoavailability of Cu and Pb to maize in a contaminated soil under different moisture content. Journal of Environmental Management, 237, 5–14. doi:10.1016/j.jenvman.2019.02.047
  • Sanchez-Hernandez, J. C., Ríos, J. M., Attademo, A. M., Malcevschi, A., & Andrade Cares, X. (2019). Assessing biochar impact on earthworms: Implications for soil quality promotion. Journal of Hazardous Materials, 366, 582–591. doi:10.1016/j.jhazmat.2018.12.032
  • Saquing, J. M., Yu, Y.-H., & Chiu, P. C. (2016). Wood-derived black carbon (biochar) as a microbial electron donor and acceptor. Environmental Science & Technology Letters, 3, 62–66. doi:10.1021/acs.estlett.5b00354
  • Seneviratne, M., Gunaratne, S., Bandara, T., Weerasundara, L., Rajakaruna, N., Seneviratne, G., & Vithanage, M. (2016). Plant growth promotion by Bradyrhizobium japonicum under heavy metal stress. South African Journal of Botany, 105, 19–24. doi:10.1016/j.sajb.2016.02.206
  • Seneviratne, M., Vithanage, M., Madawala, H. M. S. P., & Seneviratne, G. (2015). A Novel Microbial Biofilm for Bioremoval of Nickel from Aqueous Media. Bioremediation Journal, 19(3), 239–248. doi:10.1080/10889868.2014.995374
  • Shaheen, S. M., El-Naggar, A., Wang, J., Hassan, N. E. E., Niazi, N. K., Wang, H., … Rinklebe, J. (2019). Chapter 14 - Biochar as an (Im)mobilizing Agent for the Potentially Toxic Elements in Contaminated Soils. In Y. S. Ok, D. C. W. Tsang, N. Bolan, and J. M. Novak (Eds.), Biochar from biomass and waste, 255–274: Amsterdam, Netherlands: Elsevier
  • Shaheen, S. M., Niazi, N. K., Hassan, N. E. E., Bibi, I., Wang, H., Tsang, D. C. W., … Rinklebe, J. (2019). Wood-based biochar for the removal of potentially toxic elements in water and wastewater: A critical review. International Materials Reviews, 64(4), 216–247. doi:10.1080/09506608.2018.1473096
  • Shang, M-R., Liu, Y-G., Liu, S-B., Zeng, G-M., Tan, X-F., Jiang, L-h., … Wang, S-F. (2016). A novel graphene oxide coated biochar composite: Synthesis, characterization and application for Cr(VI) removal. RSC Advances, 6, (88), 85202–85212. doi:10.1039/C6RA07151A
  • Shen, Z., McMillan, O., Jin, F., & Al-Tabbaa, A. (2016). Salisbury biochar did not affect the mobility or speciation of lead in Kaolin in a short-term laboratory study. Journal of Hazardous Materials, 316, 214–220. doi:10.1016/j.jhazmat.2016.05.042
  • Shen, Z., Zhang, Y., Jin, F., McMillan, O., & Al-Tabbaa, A. (2017). Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars. Science of the Total Environment, 609, 1401–1410. doi:10.1016/j.scitotenv.2017.08.008
  • Shu, R., Wang, Y., & Zhong, H. (2016). Biochar amendment reduced methylmercury accumulation in rice plants. Journal of Hazardous Materials, 313, 1–8. doi:10.1016/j.jhazmat.2016.03.080
  • Shu, T., Lu, P., & He, N. (2013). Mercury adsorption of modified mulberry twig chars in a simulated flue gas. Bioresource Technology, 136, 182–187.
  • Sikarwar, V. S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M. Z., … Fennell, P. S. (2016). An overview of advances in biomass gasification. Energy & Environmental Science, 9, 2939–2977.
  • Sizmur, T., Fresno, T., Akgül, G., Frost, H., & Moreno-Jiménez, E. (2017). Biochar modification to enhance sorption of inorganics from water. Bioresource Technology, 246, 34–47. doi:10.1016/j.biortech.2017.07.082
  • Song, C., Shan, S., Müller, K., Wu, S., Niazi, N. K., Xu, S., … Wang, H. (2018). Characterization of pig manure-derived hydrochars for their potential application as fertilizer. Environmental Science and Pollution Research, 25, (26), 25772–25779. doi:10.1007/s11356-017-0301-y
  • Song, Z., Lian, F., Yu, Z., Zhu, L., Xing, B., & Qiu, W. (2014). Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chemical Engineering Journal, 242, 36–42. doi:10.1016/j.cej.2013.12.061
  • Strawn, D. G., Rigby, A. C., Baker, L. L., Coleman, M. D., & Koch, I. (2015). Biochar Soil Amendment Effects on Arsenic Availability to Mountain Brome (Bromus marginatus). Journal of Environment Quality, 44(4), 1315–1320. doi:10.2134/jeq2014.11.0477
  • Su, P., Lou, J., Brookes, P., Luo, Y., He, Y., & Xu, J. (2017). Taxon-specific responses of soil microbial communities to different soil priming effects induced by addition of plant residues and their biochars. Journal of Soils and Sediments, 17(3), 674–684.
  • Suksabye, P., Pimthong, A., Dhurakit, P., Mekvichitsaeng, P., & Thiravetyan, P. (2016). Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil. Environmental Science and Pollution Research International, 23(2), 962–973. doi:10.1007/s11356-015-4590-8
  • Suman, S., & Gautam, S. (2017). Effect of pyrolysis time and temperature on the characterization of biochars derived from biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(9), 933–940. doi:10.1080/15567036.2016.1276650.
  • Sun, C., Chen, T., Huang, Q., Wang, J., Lu, S., & Yan, J. (2019). Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO4 modification. Environmental Science and Pollution Research, 26(9), 8902–8913. doi:10.1007/s11356-019-04321-z
  • Sun, D., Meng, J., Liang, H., Yang, E., Huang, Y., Chen, W., … Gao, J. (2015). Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities. Journal of Soils and Sediments, 15, (2), 271–281. doi:10.1007/s11368-014-0996-z
  • Sun, J., He, F., Zhang, Z., Shao, H., & Xu, G. (2016). Temperature and moisture responses to carbon mineralization in the biochar-amended saline soil. Science of the Total Environment, 569, 390–394.
  • Sun, J., Lian, F., Liu, Z., Zhu, L., & Song, Z. (2014). Biochars derived from various crop straws: Characterization and Cd(II) removal potential. Ecotoxicology and Environmental Safety, 106, 226–231. doi:10.1016/j.ecoenv.2014.04.042
  • Tack, F. M. G., Rinklebe, J., & Ok, Y. S. (2019). Interactions between biochar and trace elements in the environment. Science of the Total Environment, 649, 792. doi:10.1016/j.scitotenv.2018.08.175
  • Tan, G., Sun, W., Xu, Y., Wang, H., & Xu, N. (2016). Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresource Technology, 211, 727–735. doi:10.1016/j.biortech.2016.03.147
  • Tan, Z., Wang, Y., Zhang, L., & Huang, Q. (2017). Study of the mechanism of remediation of Cd-contaminated soil by novel biochars. Environmental Science and Pollution Research, 24(32), 24844–24855. doi:10.1007/s11356-017-0109-9
  • Tang, C., Weligama, C., & Sale, P. (2013). Subsurface soil acidification in farming systems: Its possible causes and management options. In J. Xu and D. L. Sparks (Eds.), Molecular environmental soil science (pp. 389–412). Dordrecht: Springer Netherlands.
  • Thangarajan, R., Bolan, N. S., Kunhikrishnan, A., Wijesekara, H., Xu, Y., Tsang, D. C. W., … Hou, D. (2018). The potential value of biochar in the mitigation of gaseous emission of nitrogen. Science of the Total Environment, 612, 257–268. doi:10.1016/j.scitotenv.2017.08.242
  • Thangarajan, R., Chowdhury, S., Kunhikrishnan, A., & Bolan, N. (2014). Interactions of soluble and solid organic amendments with priming effects induced by glucose. Vadose Zone Journal, 13(7), 0. doi:10.2136/vzj2014.01.0002
  • Trakal, L., Veselská, V., Šafařík, I., Vítková, M., Číhalová, S., & Komárek, M. (2016). Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresource Technology, 203, 318–324. doi:10.1016/j.biortech.2015.12.056
  • Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. doi:10.1016/j.rser.2015.10.122
  • Tsai, W.-T., Liu, S.-C., Chen, H.-R., Chang, Y.-M., & Tsai, Y.-L. (2012). Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere, 89(2), 198–203. doi:10.1016/j.chemosphere.2012.05.085
  • Uchimiya, M., & Bannon, D. I. (2013). Solubility of lead and copper in biochar-amended small arms range soils: Influence of soil organic carbon and pH. Journal of Agricultural and Food Chemistry, 61(32), 7679–7688. doi:10.1021/jf401481x
  • Uchimiya, M., Bannon, D. I., & Wartelle, L. H. (2012). Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. Journal of Agricultural and Food Chemistry, 60(7), 1798–1809. doi:10.1021/jf2047898
  • Uchimiya, M., Bannon, D. I., Wartelle, L. H., Lima, I. M., & Klasson, K. T. (2012). Lead retention by broiler litter biochars in small arms range soil: Impact of pyrolysis temperature. Journal of Agricultural and Food Chemistry, 60(20), 5035–5044. doi:10.1021/jf300825n
  • Van Poucke, R., Ainsworth, J., Maeseele, M., Ok, Y. S., Meers, E., & Tack, F. M. G. (2018). Chemical stabilization of Cd-contaminated soil using biochar. Applied Geochemistry, 88, 122–130. doi:10.1016/j.apgeochem.2017.09.001
  • Vithanage, M., Bandara, T., Al-Wabel, M. I., Abduljabbar, A., Usman, A. R. A., Ahmad, M., & Ok, Y. S. (2018). Soil enzyme activities in waste biochar amended multi-metal contaminated soil; Effect of different pyrolysis temperatures and application rates. Communications in Soil Science and Plant Analysis, 49(5), 635–643. doi:10.1080/00103624.2018.1435795
  • Vithanage, M., Herath, I., Almaroai, Y. A., Rajapaksha, A. U., Huang, L., Sung, J.-K., … Ok, Y. S. (2017). Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil. Environmental Geochemistry and Health, 39(6), 1409–1420. doi:10.1007/s10653-017-9941-6
  • Vithanage, M., Herath, I., Joseph, S., Bundschuh, J., Bolan, N., Ok, Y. S., … Rinklebe, J. (2017). Interaction of arsenic with biochar in soil and water: A critical review. Carbon, 113, 219–230. doi:10.1016/j.carbon.2016.11.032
  • Wagner, A., Kaupenjohann, M., Hu, Y., Kruse, J., & Leinweber, P. (2015). Biochar-induced formation of Zn-P-phases in former sewage field soils studied by P K-edge XANES spectroscopy. Journal of Plant Nutrition and Soil Science, 178(4), 582–585. doi:10.1002/jpln.201400601
  • Wahi, R., Zuhaidi, NFQa., Yusof, Y., Jamel, J., Kanakaraju, D., & Ngaini, Z. (2017). Chemically treated microwave-derived biochar: An overview. Biomass and Bioenergy, 107, 411–421. doi:10.1016/j.biombioe.2017.08.007
  • Wang, A. O., Ptacek, C. J., Blowes, D. W., Gibson, B. D., Landis, R. C., Dyer, J. A., & Ma, J. (2019). Application of hardwood biochar as a reactive capping mat to stabilize mercury derived from contaminated floodplain soil and riverbank sediments. Science of the Total Environment, 652, 549–561. doi:10.1016/j.scitotenv.2018.10.213
  • Wang, C., Alidoust, D., Yang, X., & Isoda, A. (2018). Effects of bamboo biochar on soybean root nodulation in multi-elements contaminated soils. Ecotoxicology and Environmental Safety, 150, 62–69. doi:10.1016/j.ecoenv.2017.12.036
  • Wang, H.-Y., Chen, P., Zhu, Y.-G., Cen, K., & Sun, G.-X. (2019). Simultaneous adsorption and immobilization of As and Cd by birnessite-loaded biochar in water and soil. Environmental Science and Pollution Research, 26(9), 8575–8584.
  • Wang, J., Dokohely, M., Xiong, Z., & Kuzyakov, Y. (2016). Contrasting effects of aged and fresh biochars on glucose-induced priming and microbial activities in paddy soil. Journal of Soils and Sediments, 16(1), 191–203. doi:10.1007/s11368-015-1189-0
  • Wang, J., Xia, K., Waigi, M. G., Gao, Y., Odinga, E. S., Ling, W., & Liu, J. (2018). Application of biochar to soils may result in plant contamination and human cancer risk due to exposure of polycyclic aromatic hydrocarbons. Environment International, 121, 169–177. doi:10.1016/j.envint.2018.09.010
  • Wang, J., Xiong, Z., & Kuzyakov, Y. (2016). Biochar stability in soil: Meta‐analysis of decomposition and priming effects. GCB Bioenergy, 8(3), 512–523.
  • Wang, L., Wang, J., Wang, Z., He, C., Lyu, W., Yan, W., & Yang, L. (2018). Enhanced antimonate (Sb(V)) removal from aqueous solution by La-doped magnetic biochars. Chemical Engineering Journal, 354, 623–632. doi:10.1016/j.cej.2018.08.074
  • Wang, M., Wu, S., Guo, J., Zhang, X., Yang, Y., Chen, F., & Zhu, R. (2019). Immobilization of cadmium by hydroxyapatite converted from microbial precipitated calcite. Journal of Hazardous Materials, 366, 684–693.
  • Wang, N., Xue, X.-M., Juhasz, A. L., Chang, Z.-Z., & Li, H.-B. (2017). Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Environmental Pollution, 220, 514–522.
  • Wang, Q., Chen, L., He, L., & Sheng, X. (2016). Increased biomass and reduced heavy metal accumulation of edible tissues of vegetable crops in the presence of plant growth-promoting Neorhizobium huautlense T1-17 and biochar. Agriculture, Ecosystems & Environment, 228, 9–18. doi:10.1016/j.agee.2016.05.006
  • Wang, S., Gao, B., Li, Y., Mosa, A., Zimmerman, A. R., Ma, L. Q., … Migliaccio, K. W. (2015). Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead. Bioresource Technology, 181, 13–17. doi:10.1016/j.biortech.2015.01.044
  • Wang, S., Gao, B., Zimmerman, A. R., Li, Y., Ma, L., Harris, W. G., & Migliaccio, K. W. (2015a). Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere, 134, 257–262. doi:10.1016/j.chemosphere.2015.04.062
  • Wang, S., Gao, B., Zimmerman, A. R., Li, Y., Ma, L., Harris, W. G., & Migliaccio, K. W. (2015b). Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology, 175, 391–395. doi:10.1016/j.biortech.2014.10.104
  • Wang, S., Zhao, M., Zhou, M., Li, Y. C., Wang, J., Gao, B., … Ok, Y. S. (2019). Biochar-Supported nZVI (nZVI/BC) for Contaminant Removal from Soil and Water: A Critical Review. Journal of Hazardous Materials, 373, 820–834. doi:10.1016/j.jhazmat.2019.03.080
  • Wang, T., Sun, H., Ren, X., Li, B., & Mao, H. (2017). Evaluation of biochars from different stock materials as carriers of bacterial strain for remediation of heavy metal-contaminated soil. Scientific Reports, 7(1), 12114. doi:10.1038/s41598-017-12503-3
  • Wang, Y., Dang, F., Zheng, X., & Zhong, H. (2019). Biochar amendment to further reduce methylmercury accumulation in rice grown in selenium-amended paddy soil. Journal of Hazardous Materials, 365, 590–596. doi:10.1016/j.jhazmat.2018.11.052
  • Wei, J., Tu, C., Yuan, G., Bi, D., Wang, H., Zhang, L., & Theng, B. K. (2018). Pyrolysis temperature-dependent changes in the characteristics of biochar-borne dissolved organic matter and its copper binding properties. Bulletin of Environmental Contamination and Toxicology, 103, 169–174. doi:10.1007/s00128-018-2392-7
  • Weng, Z., Van Zwieten, L., Singh, B. P., Tavakkoli, E., Joseph, S., Macdonald, L. M., … Cowie, A. (2017). Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nature Climate Change, 7, 371–376. doi:10.1038/nclimate3276
  • Wijayawardena, M., Megharaj, M., & Naidu, R. (2016). Exposure, toxicity, health impacts, and bioavailability of heavy metal mixtures. In Advances in agronomy (pp.175–234). London: Elsevier.
  • Wood, J. L., Zhang, C., Mathews, E. R., Tang, C., & Franks, A. E. (2016). Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator. Scientific Reports, 6(1), 36067. doi:10.1038/srep36067.
  • Wood, J. L., Tang, C., & Franks, A. E. (2018). Competitive Traits Are More Important than Stress-Tolerance Traits in a Cadmium-Contaminated Rhizosphere: A Role for Trait Theory in Microbial Ecology. Frontiers in Microbiology, 9, 121doi:10.3389/fmicb.2018.00121.
  • Wood, J. L., Tang, C., & Franks, A. E. (2016). Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils. Soil Biology and Biochemistry, 103, 131–137. doi:10.1016/j.soilbio.2016.08.021
  • Wood, J. L., Liu, W., Tang, C., & Franks, A. E. (2016). Microorganisms in heavy metal bioremediation: Strategies for applying microbial-community engineering to remediate soils. AIMS Bioengineering, 3, 211–229. doi:10.3934/bioeng.2016.2.211
  • Wood, J. M., & Wang, H.-K. (1983). Microbial resistance to heavy metals. Environmental Science & Technology, 17, 582A–590A. doi:10.1021/es00118a717
  • Wu, J., Huang, D., Liu, X., Meng, J., Tang, C., & Xu, J. (2018). Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar. Journal of Hazardous Materials, 348, 10–19. doi:10.1016/j.jhazmat.2018.01.011.
  • Wu, C., Huang, L., Xue, S. G., Huang, Y. Y., Hartley, W., Cui, M. Q., & Wong, M. H. (2017). Arsenic sorption by red mud-modified biochar produced from rice straw. Environmental Science and Pollution Research, 24(22), 18168–18178. doi:10.1007/s11356-017-9466-7
  • Wu, P., Cui, P., Alves, M. E., Peijnenburg, W. J. G. M., Liu, C., Zhou, D., … Wang, Y. (2019). Interactive effects of rice straw biochar and γ-Al2O3 on immobilization of Zn. Journal of Hazardous Materials, 373, 250–257. doi:10.1016/j.jhazmat.2019.03.076
  • Wu, S., Fang, G., Wang, D., Jaisi, D. P., Cui, P., Wang, R., … Zhou, D. (2018). Fate of As(III) and As(V) during microbial reduction of arsenic-bearing ferrihydrite facilitated by activated carbon. ACS Earth and Space Chemistry, 2(9), 878–887. doi:10.1021/acsearthspacechem.8b00058
  • Wu, W., Li, J., Lan, T., Müller, K., Niazi, N. K., Chen, X., … Wang, H. (2017). Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation. Science of the Total Environment, 576, 766–774. doi:10.1016/j.scitotenv.2016.10.163
  • Wu, W., Li, J., Niazi, N. K., Müller, K., Chu, Y., Zhang, L., … Wang, H. (2016). Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments. Environmental Science and Pollution Research, 23(22), 22890–22896. doi:10.1007/s11356-016-7428-0
  • Xia, S., Song, Z., Jeyakumar, P., Shaheen, S. M., Rinklebe, J., Ok, Y. S., … Wang, H. (2019). A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Critical Reviews in Environmental Science and Technology, 49(12), 1027–1078. doi:10.1080/10643389.2018.1564526
  • Xiao, F., Cheng, J., Cao, W., Yang, C., Chen, J., & Luo, Z. (2019). Removal of heavy metals from aqueous solution using chitosan-combined magnetic biochars. Journal of Colloid and Interface Science, 540, 579–584. doi:10.1016/j.jcis.2019.01.068
  • Xiao, X., Chen, B., Chen, Z., Zhu, L., & Schnoor, J. L. (2018). Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review. Environmental Science & Technology, 52, 5027–5047. doi:10.1021/acs.est.7b06487
  • Xing, Y., Wang, J., Xia, J., Liu, Z., Zhang, Y., Du, Y., & Wei, W. (2019). A pilot study on using biochars as sustainable amendments to inhibit rice uptake of Hg from a historically polluted soil in a Karst region of China. Ecotoxicology and Environmental Safety, 170, 18–24. doi:10.1016/j.ecoenv.2018.11.111
  • Xiong, Z., Shihong, Z., Haiping, Y., Tao, S., Yingquan, C., & Hanping, C. (2013). Influence of NH3/CO2 modification on the characteristic of biochar and the CO2 capture. BioEnergy Research, 6(4), 1147–1153. doi:10.1007/s12155-013-9304-9
  • Xu, M., Xia, H., Wu, J., Yang, G., Zhang, X., Peng, H., … Qi, H. (2017). Shifts in the relative abundance of bacteria after wine-lees-derived biochar intervention in multi metal-contaminated paddy soil. Science of the Total Environment, 599–600, 1297–1307. doi:10.1016/j.scitotenv.2017.05.086
  • Xu, Y., Luo, G., He, S., Deng, F., Pang, Q., Xu, Y., & Yao, H. (2019). Efficient removal of elemental mercury by magnetic chlorinated biochars derived from co-pyrolysis of Fe(NO3)3-laden wood and polyvinyl chloride waste. Fuel, 239, 982–990. doi:10.1016/j.fuel.2018.11.102
  • Xu, Y., Seshadri, B., Sarkar, B., Wang, H., Rumpel, C., Sparks, D., … Bolan, N. (2018). Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Science of the Total Environment, 621, 148–159. doi:10.1016/j.scitotenv.2017.11.214
  • Xu, Y., Yan, Y., Obadamudalige, N. L., Ok, Y. S., Bolan, N., & Li, Q. (2019). Redox-mediated biochar-contaminant interactions in soil. In Biochar from biomass and waste (pp. 409–419). Amsterdam, Netherlands: Elsevier.
  • Xu, Z., Xu, X., Tsang, D. C., & Cao, X. (2018). Contrasting impacts of pre-and post-application aging of biochar on the immobilization of Cd in contaminated soils. Environmental Pollution, 242, 1362–1370. doi:10.1016/j.envpol.2018.08.012
  • Yang, G.-X., & Jiang, H. (2014). Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Research, 48, 396–405.
  • Yang, X., Liu, J., McGrouther, K., Huang, H., Lu, K., Guo, X., … Wang, H. (2016). Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science and Pollution Research, 23(2), 974–984. doi:10.1007/s11356-015-4233-0
  • Yang, X., Lu, K., McGrouther, K., Che, L., Hu, G., Wang, Q., … Wang, H. (2017). Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs. Journal of Soils and Sediments, 17(3), 751–762. doi:10.1007/s11368-015-1326-9
  • Yasmin, K. K., Ali, B., Cui, X., Feng, Y., Yang, X., & Joseph, S. P. (2017). Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of pak choi (Brassica rapa ssb. chinensis L.) on phytoavoidation of Cd to reduce potential dietary toxicity. Ecotoxicology and Environmental Safety, 141, 129–138. doi:10.1016/j.ecoenv.2017.03.020
  • Yin, D., Wang, X., Chen, C., Peng, B., Tan, C., & Li, H. (2016). Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil. Chemosphere, 152, 196–206. doi:10.1016/j.chemosphere.2016.01.044
  • Yousaf, B., Liu, G., Abbas, Q., Ali, M. U., Wang, R., Ahmed, R., … Usman, A. R. A. (2018). Operational control on environmental safety of potentially toxic elements during thermal conversion of metal-accumulator invasive ragweed to biochar. Journal of Cleaner Production, 195, 458–469. doi:10.1016/j.jclepro.2018.05.246
  • Yu, P., Xue, Y., Gao, F., Liu, Z., Cheng, X., & Yang, K. (2016). Phosphorus removal from aqueous solution by pre- or post-modified biochars derived from agricultural residues. Water, Air, & Soil Pollution, 227, 370. doi:10.1007/s11270-016-3066-x
  • Yu, Z., Qiu, W., Wang, F., Lei, M., Wang, D., & Song, Z. (2017). Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere, 168, 341–349. doi:10.1016/j.chemosphere.2016.10.069
  • Yu, Z., Zhou, L., Huang, Y., Song, Z., & Qiu, W. (2015). Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil. Journal of Environmental Management, 163, 155–162. doi:10.1016/j.jenvman.2015.08.020
  • Yuan, J. H., & Xu, R. K. (2011). The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 27(1), 110–115.
  • Yuan, P., Wang, J., Pan, Y., Shen, B., & Wu, C. (2019). Review of biochar for the management of contaminated soil: Preparation, application and prospect. Science of the Total Environment, 659, 473–490. doi:10.1016/j.scitotenv.2018.12.400
  • Yuan, Y., Bolan, N., Prévoteau, A., Vithanage, M., Biswas, J. K., Ok, Y. S., & Wang, H. (2017). Applications of biochar in redox-mediated reactions. Bioresource Technology, 246, 271–281. doi:10.1016/j.biortech.2017.06.154
  • Zama, E. F., Reid, B. J., Sun, G.-X., Yuan, H.-Y., Li, X.-M., & Zhu, Y.-G. (2018). Silicon (Si) biochar for the mitigation of arsenic (As) bioaccumulation in spinach (Spinacia oleracean) and improvement in the plant growth. Journal of Cleaner Production, 189, 386–395. doi:10.1016/j.jclepro.2018.04.056
  • Zhang, F., Wang, X., Yin, D., Peng, B., Tan, C., Liu, Y., … Wu, S. (2015). Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). Journal of Environmental Management, 153, 68–73. doi:10.1016/j.jenvman.2015.01.043
  • Zhang, G., Guo, X., Zhu, Y., Liu, X., Han, Z., Sun, K., … Han, L. (2018). The effects of different biochars on microbial quantity, microbial community shift, enzyme activity, and biodegradation of polycyclic aromatic hydrocarbons in soil. Geoderma, 328, 100–108. doi:10.1016/j.geoderma.2018.05.009
  • Zhang, J., Huang, B., Chen, L., Li, Y., Li, W., & Luo, Z. (2018). Characteristics of biochar produced from yak manure at different pyrolysis temperatures and its effects on the yield and growth of highland barley. Chemical Speciation & Bioavailability, 30, 57–67. doi:10.1080/09542299.2018.1487774
  • Zhang, J., Kumari, D., Fang, C., & Achal, V. (2019). Combining the microbial calcite precipitation process with biochar in order to improve nickel remediation. Applied Geochemistry, 103, 68–71. doi:10.1016/j.apgeochem.2019.02.011
  • Zhang, J., Wu, S., Xu, Z., Wang, M., Man, Y. B., Christie, P., … Wong, M. H. (2019). The role of sewage sludge biochar in methylmercury formation and accumulation in rice. Chemosphere, 218, 527–533. doi:10.1016/j.chemosphere.2018.11.090
  • Zhang, J., Zhang, J., Wang, M., Wu, S., Wang, H., Niazi, N. K., … Wong, M. H. (2019). Effect of tobacco stem-derived biochar on soil metal immobilization and the cultivation of tobacco plant. Journal of Soils and Sediments, 19, (5), 2313–2321. doi:10.1007/s11368-018-02226-x
  • Zhang, S., Yang, X., Ju, M., Liu, L., & Zheng, K. (2019). Mercury adsorption to aged biochar and its management in China. Environmental Science and Pollution Research, 26(5), 4867–4877.
  • Zhang, TA., Chen, H. Y. H., & Ruan, H. (2018). Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 12(7), 1817–1825. doi:10.1038/s41396-018-0096-y
  • Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., … Huang, H. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20(12), 8472–8483. doi:10.1007/s11356-013-1659-0
  • Zhang, X., Zhang, S., Yang, H., Feng, Y., Chen, Y., Wang, X., & Chen, H. (2014). Nitrogen enriched biochar modified by high temperature CO2–ammonia treatment: Characterization and adsorption of CO2. Chemical Engineering Journal, 257, 20–27. doi:10.1016/j.cej.2014.07.024
  • Zhang, Y., Cao, B., Zhao, L., Sun, L., Gao, Y., Li, J., & Yang, F. (2018). Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions. Applied Surface Science, 427, 147–155. doi:10.1016/j.apsusc.2017.07.237
  • Zhang, Y., Liu, Y. R., Lei, P., Wang, Y. J., & Zhong, H. (2018). Biochar and nitrate reduce risk of methylmercury in soils under straw amendment. Science of the Total Environment, 619–620, 384–390.
  • Zhang, Z., Zhu, Z., Shen, B., & Liu, L. (2019). Insights into biochar and hydrochar production and applications: A review. Energy, 171, 581–598. doi:10.1016/j.energy.2019.01.035
  • Zhao, L., Zheng, W., Mašek, O., Chen, X., Gu, B., Sharma, B. K., & Cao, X. (2017). Roles of phosphoric acid in biochar formation: Synchronously improving carbon retention and sorption capacity. Journal of Environment Quality, 46(2), 393–401. doi:10.2134/jeq2016.09.0344
  • Zhao, N., Zhao, C., Lv, Y., Zhang, W., Du, Y., Hao, Z., & Zhang, J. (2017). Adsorption and coadsorption mechanisms of Cr(VI) and organic contaminants on H3PO4 treated biochar. Chemosphere, 186, 422–429. doi:10.1016/j.chemosphere.2017.08.016
  • Zheng, H., Wang, X., Luo, X., Wang, Z., & Xing, B. (2018). Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation. Science of the Total Environment, 610–611, 951–960.
  • Zhou, H., Wang, P., Chen, D., Shi, G., Cheng, K., Bian, R., … Pan, G. (2018). Short-term biochar manipulation of microbial nitrogen transformation in wheat rhizosphere of a metal contaminated Inceptisol from North China plain. Science of the Total Environment, 640–641, 1287–1296. doi:10.1016/j.scitotenv.2018.06.009
  • Zhu, N., Qiao, J., & Yan, T. (2019). Arsenic immobilization through regulated ferrolysis in paddy field amendment with bismuth impregnated biochar. Science of the Total Environment, 648, 993–1001.
  • Zhu, N., Zhang, J., Tang, J., Zhu, Y., & Wu, Y. (2018). Arsenic removal by periphytic biofilm and its application combined with biochar. Bioresource Technology, 248, 49–55. doi:10.1016/j.biortech.2017.07.026
  • Zhu, X., Chen, B., Zhu, L., & Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution, 227, 98–115.
  • Zimmerman, A. R., Gao, B., & Ahn, M. Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43(6), 1169–1179. doi:10.1016/j.soilbio.2011.02.005
  • Zuo, W. Q., Chen, C., Cui, H. J., & Fu, M. L. (2017). Enhanced removal of Cd(II) from aqueous solution using CaCO3 nanoparticle modified sewage sludge biochar. RSC Advances, 7, (26), 16238–16243. doi:10.1039/C7RA00324B
  • Zuo, X., Chen, M., Fu, D., & Li, H. (2016). The formation of alpha-FeOOH onto hydrothermal biochar through H2O2 and its photocatalytic disinfection. Chemical Engineering Journal, 294, 202–209. doi:10.1016/j.cej.2016.02.116
  • Zuo, X., Liu, Z., & Chen, M. (2016). Effect of H2O2 concentrations on copper removal using the modified hydrothermal biochar. Bioresource Technology, 207, 262–267. doi:10.1016/j.biortech.2016.02.032

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.