735
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Batch assays for biological sulfate-reduction: a review towards a standardized protocol

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1195-1223 | Published online: 14 Aug 2019

References

  • Abel, S., Nehls, T., Mekiffer, B., Mathes, M., Thieme, J., & Wessolek, G. (2015). Pools of sulfur in urban rubble soils. Journal of Soils and Sediments, 15(3), 532–540. doi:10.1007/s11368-014-1014-1
  • American Public Health, A., Eaton, A. D., American Water Works, A., & Water Environment, F. (APHA-AWWA-WEF). (2005). Standard methods for the examination of water and wastewater. Washington, D.C.: APHA-AWWA-WEF.
  • Arivoli, A., Mohanraj, R., & Seenivasan, R. (2015). Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater. Environmental Science and Pollution Research, 22(17), 13336–13343.
  • Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., … Van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology, 59(5), 927–934. doi:10.2166/wst.2009.040
  • Azabou, S., Mechichi, T., & Sayadi, S. (2007). Zinc precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source. Minerals Engineering, 20(2), 173–178. doi:10.1016/j.mineng.2006.08.008
  • Barnes, L., Sherren, J., Janssen, F., Scheeren, P., Versteegh, J., & Koch, R. (1991). Simultaneous microbial removal of sulphate and heavy metals from waste water. EMC’91: Non-Ferrous Metallurgy—Present and Future, 391–401. Springer.
  • Barton, L. L., & Fauque, G. D. (2009). Chapter 2: Biochemistry, physiology and biotechnology of sulfate‐reducing bacteria. In Advances in applied microbiology (pp. 41–98). London: Academic Press.
  • Brown, K. A. (1982). Sulphur in the environment: A review. Environmental Pollution Series B, Chemical and Physical, 3(1), 47–80. doi:10.1016/0143-148X(82)90042-8
  • Cabrera, G., Pérez, R., Gómez, J. M., Ábalos, A., & Cantero, D. (2006). Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. Journal of Hazardous Materials, 135(1–3), 40–46. doi:10.1016/j.jhazmat.2005.11.058
  • Cao, J., Li, Y., Zhang, G., Yang, C., & Cao, X. (2013). Effect of Fe(III) on the biotreatment of bioleaching solutions using sulfate-reducing bacteria. International Journal of Mineral Processing, 125, 27–33. doi:10.1016/j.minpro.2013.09.004
  • Cassidy, J., Lubberding, H. J., Esposito, G., Keesman, K. J., & Lens, P. N. (2015). Automated biological sulphate reduction: A review on mathematical models, monitoring and bioprocess control. FEMS Microbiology Reviews, 39(6), 823–853. doi:10.1093/femsre/fuv033
  • Castillo, J., Pérez-López, R., Caraballo, M. A., Nieto, J. M., Martins, M., Costa, M. C., … Tucoulou, R. (2012). Biologically-induced precipitation of sphalerite–wurtzite nanoparticles by sulfate-reducing bacteria: Implications for acid mine drainage treatment. Science of the Total Environment, 423, 176–184. doi:10.1016/j.scitotenv.2012.02.013
  • Chang, I. S., & Kim, B. H. (2007). Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition. Chemosphere, 68(2), 218–226.
  • Chen, L., Tsui, T. H., Ekama, G. A., Mackey, H. R., Hao, T., & Chen, G. (2018). Development of biochemical sulfide potential (BSP) test for sulfidogenic biotechnology application. Water Research, 135, 231–240. doi:10.1016/j.watres.2018.02.009
  • Chen, T., Wang, J., Jin, X., & Yue, Z. (2010). Goethite-enhanced anaerobic bio-decomposition of sulfate minerals. Frontiers of Earth Science in China, 4(2), 160–166. doi:10.1007/s11707-010-0020-x
  • Cocos, I. A., Zagury, G. J., Clément, B., & Samson, R. (2002). Multiple factor design for reactive mixture selection for use in reactive walls in mine drainage treatment. Water Research, 36(1), 167–177. doi:10.1016/S0043-1354(01)00238-X
  • Cord-Ruwisch, R. (1985). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. Journal of Microbiological Methods, 4(1), 33–36. doi:10.1016/0167-7012(85)90005-3
  • Costa, M., Martins, M., Jesus, C., & Duarte, J. (2008). Treatment of acid mine drainage by sulphate-reducing bacteria using low cost matrices. Water, Air, and Soil Pollution, 189(1-4), 149–162. doi:10.1007/s11270-007-9563-1
  • Cruz Viggi, C., Pagnanelli, F., Cibati, A., Berteletti, C., & Toro, L. (2009). Sulphate reducing bacteria for the treatment of heavy metals contaminated waters in permeable reactive barriers. Advanced Materials Research, 71–73, 565–568. doi:10.4028/www.scientific.net/AMR.71-73.565
  • Falk, N., Chaganti, S. R., & Weisener, C. G. (2018). Evaluating the microbial community and gene regulation involved in crystallization kinetics of ZnS formation in reduced environments. Geochimica et Cosmochimica Acta, 220, 201–216. doi:10.1016/j.gca.2017.09.039
  • Fan, L., Zhao, F., Liu, J., & Frost, R. L. (2018). The As behavior of natural arsenical-containing colloidal ferric oxyhydroxide reacted with sulfate reducing bacteria. Chemical Engineering Journal, 332, 183–191. doi:10.1016/j.cej.2017.09.078
  • Fang, H. H. P., & Zhou, G. M. (1997). Anaerobic degradation of benzoate and cresol isomers in sulfate-rich wastewater. Water Science and Technology, 36(6–7), 7–14. doi:10.2166/wst.1997.0569
  • Gallagher, K. L., Braissant, O., Kading, T. J., Dupraz, C., & Visscher, P. T. (2013). Phosphate-related artifacts in carbonate mineralization experiments. Journal of Sedimentary Research, 83(1), 37–49. doi:10.2110/jsr.2013.9
  • Geets, J., Borremans, B., Vangronsveld, J., Diels, L., & Van Der Lelie, D. (2005). Molecular monitoring of SRB community structure and dynamics in batch experiments to examine the applicability of in situ precipitation of heavy metals for groundwater remediation (15 pp). Journal of Soils and Sediments, 5(3), 149–163. doi:10.1065/jss2004.12.125
  • Gibert, O., De Pablo, J., Cortina, J. L., & Ayora, C. (2004). Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage. Water Research, 38(19), 4186–4196. doi:10.1016/j.watres.2004.06.023
  • Gibson, G. (1990). Physiology and ecology of the sulphate‐reducing bacteria. Journal of Applied Bacteriology, 69(6), 769–797. doi:10.1111/j.1365-2672.1990.tb01575.x
  • Greben, H., Maree, J., & Mnqanqeni, S. (2000). Comparison between sucrose, ethanol and methanol as carbon and energy sources for biological sulphate reduction. Water Science and Technology, 41(12), 247–253. doi:10.2166/wst.2000.0279
  • Guha, S., & Bhargava, P. (2005). Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria. Water Environment Research, 77(4), 411–416. doi:10.1002/j.1554-7531.2005.tb00300.x
  • Gustavsson, J., Shakeri Yekta, S., Sundberg, C., Karlsson, A., Ejlertsson, J., Skyllberg, U., & Svensson, B. H. (2013). Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation. Applied Energy, 112, 473–477. doi:10.1016/j.apenergy.2013.02.009
  • Hageman, S. P. W., van der Weijden, R. D., Stams, A. J. M., van Cappellen, P., & Buisman, C. J. N. (2017). Microbial selenium sulfide reduction for selenium recovery from wastewater. Journal of Hazardous Materials, 329, 110–119. doi:10.1016/j.jhazmat.2016.12.061
  • Hao, O. J., Huang, L., & Chen, J. M. (1994). Effects of metal additions on sulfate reduction activity in wastewaters. Toxicological & Environmental Chemistry, 46, 197–212. doi:10.1080/02772249409358113
  • Harerimana, C., Keffala, C., Jupsin, H., & Vasel, J. L. (2013). Development of a simple model for anaerobic digestion based on preliminary measurements of the bacterial sulphur activity in wastewater stabilization ponds. Environmental Technology, 34, 2213–2220. doi:10.1080/09593330.2012.725773
  • Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., … Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2522. doi:10.2166/wst.2016.336
  • Hsu, H. F., Jhuo, Y. S., Kumar, M., Ma, Y. S., & Lin, J. G. (2010). Simultaneous sulfate reduction and copper removal by a PVA-immobilized sulfate reducing bacterial culture. Bioresource Technology, 101(12), 4354–4361. doi:10.1016/j.biortech.2010.01.094
  • Hsu, H. F., Kumar, M., Ma, Y. S., & Lin, J. G. (2009). Extent of precipitation and sorption during copper removal from synthetic wastewater in the presence of sulfate-reducing bacteria. Environmental Engineering Science, 26(6), 1087–1096. doi:10.1089/ees.2008.0270
  • Hubert, C., Voordouw, G., & Mayer, B. (2009). Elucidating microbial processes in nitrate-and sulfate-reducing systems using sulfur and oxygen isotope ratios: The example of oil reservoir souring control. Geochimica et Cosmochimica Acta, 73(13), 3864–3879. doi:10.1016/j.gca.2009.03.025
  • Huisman, J. L., Schouten, G., & Schultz, C. (2006). Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy, 83(1–4), 106–113. doi:10.1016/j.hydromet.2006.03.017
  • Hussain, A., Hasan, A., Javid, A., & Qazi, J. I. (2016). Exploited application of sulfate-reducing bacteria for concomitant treatment of metallic and non-metallic wastes: A mini review. 3 Biotech, 6(2), 119. doi:10.1007/s13205-016-0437-3
  • Jalali, K., & Baldwin, S. A. (2000). The role of sulphate reducing bacteria in copper removal from aqueous sulphate solutions. Water Research, 34(3), 797–806. doi:10.1016/S0043-1354(99)00194-3
  • Jia, Y., Khanal, S. K., Zhang, H., Chen, G. H., & Lu, H. (2017). Sulfamethoxazole degradation in anaerobic sulfate-reducing bacteria sludge system. Water Research, 119, 12–20. doi:10.1016/j.watres.2017.04.040
  • Kaksonen, A. H., & Puhakka, J. A. (2007). Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Engineering in Life Sciences, 7(6), 541–564. doi:10.1002/elsc.200720216
  • Kaksonen, A. H., Franzmann, P. D., & Puhakka, J. A. (2004). Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Biotechnology and Bioengineering, 86(3), 332–343. doi:10.1002/bit.20061
  • Kijjanapanich, P., Pakdeerattanamint, K., Lens, P., & Annachhatre, A. (2012). Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage. Environmental Technology, 33(23), 2635–2644. doi:10.1080/09593330.2012.673013
  • Kijjanapanich, P., Annachhatre, A. P., Esposito, G., van Hullebusch, E. D., & Lens, P. N. L. (2013). Biological sulfate removal from gypsum contaminated construction and demolition debris. Journal of Environmental Management, 131, 82–91.
  • Kjeldsen, K. U., Joulian, C., & Ingvorsen, K. (2004). Oxygen tolerance of sulfate-reducing bacteria in activated sludge. Environmental Science & Technology, 38(7), 2038–2043. doi:10.1021/es034777e
  • Kumar, R., Bhatia, D., Singh, R., Rani, S., & Bishnoi, N. R. (2011). Sorption of heavy metals from electroplating effluent using immobilized biomass Trichoderma viride in a continuous packed-bed column. International Biodeterioration & Biodegradation, 65(8), 1133–1139.
  • Kosińska, K., & Miśkiewicz, T. (1999). Upgrading the efficiency of dissimilatory sulfate reduction by Desulfovibrio desulfuricans via adjustment of the COD/SO4 ratio. Biotechnology Letters, 21(4), 299–302.
  • Lee, B. D., Schaller, K. D., Watwood, M. E., & Apel, W. A. (2000). Transition metal catalyst-assisted reductive dechlorination of perchloroethylene by anaerobic aquifer enrichments. Bioremediation Journal, 4(2), 97–110. doi:10.1080/10889860091114167
  • Lens, P., & Kuenen, J. G. (2001). The biological sulfur cycle: Novel opportunities for environmental biotechnology. Water Science and Technology, 44(8), 57. doi:10.2166/wst.2001.0464
  • Lens, P. N. L., Visser, A., Janssen, A. J. H., Hulshoff Pol, L. W., & Lettinga, G. (1998). Biotechnological treatment of sulfate-rich wastewaters. Critical Reviews in Environmental Science and Technology, 28(1), 41–88. doi:10.1080/10643389891254160
  • Liamleam, W., & Annachhatre, A. P. (2007). Electron donors for biological sulfate reduction. Biotechnology Advances, 25(5), 452–463. doi:10.1016/j.biotechadv.2007.05.002
  • Lindsay, M. B. J., Ptacek, C. J., Blowes, D. W., & Gould, W. D. (2008). Zero-valent iron and organic carbon mixtures for remediation of acid mine drainage: Batch experiments. Applied Geochemistry, 23(8), 2214–2225. doi:10.1016/j.apgeochem.2008.03.005
  • Liu, D., Dong, H., Bishop, M. E., Zhang, J., Wang, H., Xie, S., … Eberl, D. D. (2012). Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium. Geobiology, 10(2), 150–162. doi:10.1111/j.1472-4669.2011.00307.x
  • Liu, W., Long, Y., Fang, Y., Ying, L., & Shen, D. (2018). A novel aerobic sulfate reduction process in landfill mineralized refuse. Science of the Total Environment, 637-638, 174–181. doi:10.1016/j.scitotenv.2018.04.304
  • Liu, Z. H., Yin, H., Lin, Z., & Dang, Z. (2018). Sulfate-reducing bacteria in anaerobic bioprocesses: Basic properties of pure isolates, molecular quantification, and controlling strategies. Environmental Technology Reviews, 7(1), 46–72. doi:10.1080/21622515.2018.1437783
  • Lu, H., Ekama, G. A., Wu, D., Feng, J., van Loosdrecht, M. C. M., & Chen, G.-H. (2012). SANI® process realizes sustainable saline sewage treatment: Steady state model-based evaluation of the pilot-scale trial of the process. Water Research, 46(2), 475–490.
  • Menert, A., Paalme, V., Juhkam, J., & Vilu, R. (2004). Characterization of sulfate-reducing bacteria in yeast industry waste by microcalorimetry and PCR amplification. Thermochimica Acta, 420(1–2), 89–98. doi:10.1016/j.tca.2003.12.032
  • Milan, Z., Montalvo, S., Ruiz-Tagle, N., Urrutia, H., Chamy, R., Sanchez, E., & Borja, R. (2010). Influence of heavy metal supplementation on specific methanogenic activity and microbial communities detected in batch anaerobic digesters. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 45, 1307–1314. doi:10.1080/10934529.2010.500878
  • Moest, R. R. (1975). Hydrogen sulfide determination by the methylene blue method. Analytical Chemistry, 47(7), 1204–1205. doi:10.1021/ac60357a008
  • Möller, A., Grahn, A., & Welander, U. (2004). Precipitation of heavy metals from landfill leachates by microbially-produced sulphide. Environmental Technology ( Technology), 25, 69–77. doi:10.1080/09593330409355439
  • Muyzer, G., & Stams, A. J. M. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 6(6), 441–454. doi:10.1038/nrmicro1892
  • Nagpal, S., Chuichulcherm, S., Livingston, A., & Peeva, L. (2000). Ethanol utilization by sulfate‐reducing bacteria: An experimental and modeling study. Biotechnology and Bioengineering, 70(5), 533–543. doi:10.1002/1097-0290(20001205)70:5<533::AID-BIT8>3.0.CO;2-C
  • Najib, T., Solgi, M., Farazmand, A., Heydarian, S. M., & Nasernejad, B. (2017). Optimization of sulfate removal by sulfate reducing bacteria using response surface methodology and heavy metal removal in a sulfidogenic UASB reactor. Journal of Environmental Chemical Engineering, 5(4), 3256–3265. doi:10.1016/j.jece.2017.06.016
  • Nanninga, H. J., & Gottschal, J. C. (1986). Isolation of a sulfate‐reducing bacterium growing with methanol. FEMS Microbiology Letters, 38(2), 125–130. doi:10.1111/j.1574-6968.1986.tb01959.x
  • Neculita, C. M., & Zagury, G. J. (2008). Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization. Journal of Hazardous Materials, 157(2-3), 358–366. doi:10.1016/j.jhazmat.2008.01.002
  • Nevatalo, L. M., Bijmans, M. F. M., Lens, P. N. L., Kaksonen, A. H., & Puhakka, J. A. (2010). The effect of sub-optimal temperature on specific sulfidogenic activity of mesophilic SRB in an H2-fed membrane bioreactor. Process Biochemistry, 45(3), 363–368. doi:10.1016/j.procbio.2009.10.007
  • Nordstrom, D. K., Blowes, D. W., & Ptacek, C. J. (2015). Hydrogeochemistry and microbiology of mine drainage: An update. Applied Geochemistry, 57, 3–16.
  • Nielsen, G., Janin, A., Coudert, L., Blais, J. F., & Mercier, G. (2018). Performance of sulfate-reducing passive bioreactors for the removal of Cd and Zn from mine drainage in a cold climate. Mine Water and the Environment, 37(1), 42–55. doi:10.1007/s10230-017-0465-1
  • Okpala, G. N., Chen, C., Fida, T., & Voordouw, G. (2017). Effect of thermophilic nitrate reduction on sulfide production in high temperature oil reservoir samples. Frontiers in Microbiology, 8, 1573. doi:10.3389/fmicb.2017.01573
  • O'Reilly, C., & Colleran, E. (2005). Toxicity of nitrite toward mesophilic and thermophilic sulphate-reducing, methanogenic and syntrophic populations in anaerobic sludge. Journal of Industrial Microbiology & Biotechnology, 32, 46–52. doi:10.1007/s10295-004-0204-z
  • O'Reilly, C., & Colleran, E. (2006). Effect of influent COD/SO42− ratios on mesophilic anaerobic reactor biomass populations: Physico-chemical and microbiological properties. FEMS Microbiology Ecology, 56, 141–153. doi:10.1111/j.1574-6941.2006.00066.x
  • Pagnanelli, F., Cruz Viggi, C., & Toro, L. (2010). Isolation and quantification of cadmium removal mechanisms in batch reactors inoculated by sulphate reducing bacteria: Biosorption versus bioprecipitation. Bioresource Technology, 101(9), 2981–2987. doi:10.1016/j.biortech.2009.12.009
  • Pagnanelli, F., Viggi, C. C., Mainelli, S., & Toro, L. (2009). Assessment of solid reactive mixtures for the development of biological permeable reactive barriers. Journal of Hazardous Materials, 170(2–3), 998–1005. doi:10.1016/j.jhazmat.2009.05.081
  • Papirio, S., Villa-Gomez, D., Esposito, G., Pirozzi, F., & Lens, P. (2013). Acid mine drainage treatment in fluidized-bed bioreactors by sulfate-reducing bacteria: A critical review. Critical Reviews in Environmental Science and Technology, 43(23), 2545–2580. doi:10.1080/10643389.2012.694328
  • Park, Y. J., Ko, J. J., Yun, S. L., Lee, E. Y., Kim, S. J., Kang, S. W., … Kim, S. K. (2008). Enhancement of bioremediation by Ralstonia sp. HM-1 in sediment polluted by Cd and Zn. Bioresource Technology, 99(16), 7458–7463. doi:10.1016/j.biortech.2008.02.024
  • Patidar, S. K., & Tare, V. (2006). Effect of nutrients on biomass activity in degradation of sulfate laden organics. Process Biochemistry, 41(2), 489–495. doi:10.1016/j.procbio.2005.07.001
  • Paul, V. G., Wronkiewicz, D. J., & Mormile, M. R. (2017). Impact of elevated CO2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO2 sequestration. Applied Geochemistry, 78, 250–271. doi:10.1016/j.apgeochem.2017.01.010
  • Postgate, J. R. (1979). The sulphate-reducing bacteria. Cambridge, UK: CUP Archive.
  • Prasad, D., Wai, M., Berube, P., & Henry, J. (1999). Evaluating substrates in the biological treatment of acid mine drainage. Environmental Technology, 20(5), 449–458. doi:10.1080/09593332008616840
  • Qian, J., Wang, L., Wu, Y., Bond, P. L., Zhang, Y., Chang, X., … Wang, Q. (2017). Free sulfurous acid (FSA) inhibition of biological thiosulfate reduction (BTR) in the sulfur cycle-driven wastewater treatment process. Chemosphere, 176, 212–220. doi:10.1016/j.chemosphere.2017.02.117
  • Qian, J., Wei, L., Liu, R., Jiang, F., Hao, X., & Chen, G. H. (2016). An exploratory study on the pathways of Cr (VI) reduction in sulfate-reducing Up-flow Anaerobic Sludge Bed (UASB) reactor. Scientific Reports, 6, 23694. doi:10.1038/srep23694
  • Qian, J., Zhu, X., Tao, Y., Zhou, Y., He, X., & Li, D. (2015). Promotion of Ni2+ removal by masking toxicity to sulfate-reducing bacteria: Addition of citrate. International Journal of Molecular Sciences, 16(12), 7932. doi:10.3390/ijms16047932
  • Qing-Hao, H., Xiu-Fen, L., & Jian, C. (2008). Effect of nitrilotriacetic acid on batch methane fermentation of sulfate-containing wastewater. Process Biochemistry, 43(5), 553–558. doi:10.1016/j.procbio.2008.01.014
  • Rao, A. G., Ravichandra, P., Joseph, J., Jetty, A., & Sarma, P. N. (2007). Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria. Journal of Hazardous Materials, 147(3), 718–725. doi:10.1016/j.jhazmat.2007.01.070
  • Rasol, R. M., Noor, N. M., & Mat Din, M. (2015). Effect of temperature in SRB growth for oil and gas pipeline. Conference: International Conference on Computer Engineering & Mathematical Sciences (ICCEMS 2014).
  • Rasool, K., Shahzad, A., & Lee, D. S. (2016). Exploring the potential of anaerobic sulfate reduction process in treating sulfonated diazo dye: Microbial community analysis using bar-coded pyrosequencing. Journal of Hazardous Materials, 318, 641–649. doi:10.1016/j.jhazmat.2016.07.052
  • Reyes-Alvarado, L. C., Hatzikioseyian, A., Rene, E. R., Houbron, E., Rustrian, E., Esposito, G., & Lens, P. N. L. (2018). Hydrodynamics and mathematical modelling in a low HRT inverse fluidized-bed reactor for biological sulphate reduction. Bioprocess and Biosystems Engineering, 41(12), 1869–1882. doi:10.1007/s00449-018-2008-y
  • Rittmann, B. E. (2001). Environmental biotechnology: Principles and applications. In P. L. McCarty (Ed.). Boston: McGraw-Hill.
  • Rubio-Rincón, F., Lopez-Vazquez, C., Welles, L., van den Brand, T., Abbas, B., van Loosdrecht, M., & Brdjanovic, D. (2017). Effects of electron acceptors on sulphate reduction activity in activated sludge processes. Applied Microbiology and Biotechnology, 101(15), 6229–6240. doi:10.1007/s00253-017-8340-3
  • Sáez-Navarrete, C., Zamorano, A., Ferrada, C., & Rodríguez, L. (2009). Sulphate reduction and biomass growth rates for Desulfobacterium autotrophicum in yeast extract – Supplemented media at 38 °C. Desalination, 248(1-3), 377–383. doi:10.1016/j.desal.2008.05.078
  • Sahinkaya, E., Uçar, D., & Kaksonen, A. H. (2017). Bioprecipitation of metals and metalloids. In E. R. Rene, E. Sahinkaya, A. Lewis, P. N. L. Lens (Eds.), Sustainable heavy metal remediation: Volume 1: principles and processes (pp. 199–231). Cham: Springer International Publishing.
  • Sakamoto, I. K., Maintinguer, S. I., Hirasawa, J. S., Adorno, M. A. T., & Varesche, M. B. A. (2012). Evaluation of microorganisms with sulfidogenic metabolic potential under anaerobic conditions. Brazilian Archives of Biology and Technology, 55(5), 779–784. doi:10.1590/S1516-89132012000500018
  • Santamaria, B., Apoza, Q. M. R., Strosnider, W. H., & Nairn, R. W. (2009). Preliminary evaluation of locally available organic substrates for vertical flow passive treatment cells in Potosí, Bolivia. 26th Annual Meetings of the American Society of Mining and Reclamation and 11th Billings Land Reclamation Symposium 2009, 1156–1174.
  • Sankararamakrishnan, N., Kumar, P., & Singh Chauhan, V. (2008). Modeling fixed bed column for cadmium removal from electroplating wastewater. Separation and Purification Technology, 63(1), 213–219.
  • Schwartz, W. (1985). Postgate, J. R., The Sulfate-Reducing Bacteria (2nd Edition) X + 208 S., 20 Abb., 4 Tab. University Press, Cambridge 1983. US $39.50. Journal of Basic Microbiology, 25(3), 202–202. doi:10.1002/jobm.3620250311
  • Silva, A. J., Varesche, M. B., Foresti, E., & Zaiat, M. (2002). Sulphate removal from industrial wastewater using a packed-bed anaerobic reactor. Process Biochemistry, 37(9), 927–935. doi:10.1016/S0032-9592(01)00297-7
  • Spear, J. R., Figueroa, L. A., & Honeyman, B. D. (1999). Modeling the removal of uranium U(VI) from aqueous solutions in the presence of sulfate reducing bacteria. Environmental Science & Technology, 33(15), 2667–2675. doi:10.1021/es981241y
  • Stackebrandt, E., Stahl, D. A., & Devereux, R. (1995). Taxonomic relationships. In Sulfate-reducing bacteria (pp. 49–87). New York: Springer.
  • Stams, A. J., Huisman, J., Encina, P. A. G., & Muyzer, G. (2009). Citric acid wastewater as electron donor for biological sulfate reduction. Applied Microbiology and Biotechnology, 83(5), 957–963. doi:10.1007/s00253-009-1995-7
  • Teclu, D., Tivchev, G., Laing, M., & Wallis, M. (2008). Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria. Water Research, 42(19), 4885–4893. doi:10.1016/j.watres.2008.09.010
  • Teclu, D., Tivchev, G., Laing, M., & Wallis, M. (2009). Determination of the elemental composition of molasses and its suitability as carbon source for growth of sulphate-reducing bacteria. Journal of Hazardous Materials, 161(2–3), 1157–1165. doi:10.1016/j.jhazmat.2008.04.120
  • Thatoi, H., Behera, B. C., Mishra, R. R., & Dutta, S. K. (2013). Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: A review. Annals of Microbiology, 63(1), 1–19.
  • Trüper, H. G., & Schlegel, H. G. (1964). Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells of Chromatium okenii. Antonie Van Leeuwenhoek, 30(1), 225–238. doi:10.1007/BF02046728
  • Tsukamoto, T. K., Killion, H. A., & Miller, G. C. (2004). Column experiments for microbiological treatment of acid mine drainage: Low-temperature, low-pH and matrix investigations. Water Research, 38(6), 1405–1418. doi:10.1016/j.watres.2003.12.012
  • Uberoi, V., & Bhattacharya, S. K. (1997). Effects of chlorophenols and nitrophenols on the kinetics of propionate degradation in sulfate-reducing anaerobic systems. Environmental Science & Technology, 31(6), 1607–1614. doi:10.1021/es960223i
  • Utgikar, V. P., Harmon, S. M., Chaudhary, N., Tabak, H. H., Govind, R., & Haines, J. R. (2002). Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environmental Toxicology, 17(1), 40–48. doi:10.1002/tox.10031
  • Vallero, M. V., Camarero, E., Lettinga, G., & Lens, P. N. (2004). Thermophilic (55–65° C) and extreme thermophilic (70–80° C) sulfate reduction in methanol and formate‐fed UASB reactors. Biotechnology Progress, 20(5), 1382–1392. doi:10.1021/bp034329a
  • van den Brand, T. P. H., Roest, K., Brdjanovic, D., Chen, G. H., & van Loosdrecht, M. C. M. (2014). Influence of acetate and propionate on sulphate-reducing bacteria activity. Journal of Applied Microbiology, 117(6), 1839–1847. doi:10.1111/jam.12661
  • Van Den Brand, T. P. H., Roest, K., Chen, G. H., Brdjanovic, D., & Van Loosdrecht, M. C. M. (2015). Effects of chemical oxygen demand, nutrients and salinity on sulfate-reducing bacteria. Environmental Engineering Science, 32(10), 858–864. doi:10.1089/ees.2014.0307
  • Van Den Brand, T. P. H., Roest, K., Chen, G. H., Brdjanovic, D., & Van Loosdrecht, M. C. M. (2016). Adaptation of Sulfate-Reducing Bacteria to Sulfide Exposure. Environmental Engineering Science, 33(4), 242–249. doi:10.1089/ees.2015.0208
  • Van Loosdrecht, MCMv, Nielsen, P. H., López Vázquez, C. M., & Brdjanovic, D. (2016). Experimental methods in wastewater treatment. London: IWA Publishing.
  • Velasco, A., Ramírez, M., Volke-Sepúlveda, T., González-Sánchez, A., & Revah, S. (2008). Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation. Journal of Hazardous Materials, 151(2–3), 407–413. doi:10.1016/j.jhazmat.2007.06.004
  • Vestola, E. A. (2009). Testing of different substrate materials for sulphate reducing reactive barrier to treat acid mine drainage. Advanced Materials Research, 71–73, 573–576. doi:10.4028/www.scientific.net/AMR.71-73.573
  • Videla, H. A. (1996). Manual of biocorrosion. New York: Taylor & Francis.
  • Villa-Gomez, D., Ababneh, H., Papirio, S., Rousseau, D., & Lens, P. (2011). Effect of sulfide concentration on the location of the metal precipitates in inversed fluidized bed reactors. Journal of Hazardous Materials, 192, 200–207. doi:10.1016/j.jhazmat.2011.05.002
  • Villa-Gomez, D. K., & Lens, P. N. L. (2017). Metal recovery from industrial and mining wastewaters. In E. R. Rene (eds.) Sustainable heavy metal remediation: Volume 2: Case studies (pp. 81–114). Cham: Springer International Publishing.
  • Villa-Gomez, D. K., Papirio, S., van Hullebusch, E. D., Farges, F., Nikitenko, S., Kramer, H., & Lens, P. N. L. (2012). Influence of sulfide concentration and macronutrients on the characteristics of metal precipitates relevant to metal recovery in bioreactors. Bioresource Technology, 110, 26–34. doi:10.1016/j.biortech.2012.01.041
  • Wakeman, K. D., Erving, L., Riekkola-Vanhanen, M. L., & Puhakka, J. A. (2010). Silage supports sulfate reduction in the treatment of metals-and sulfate-containing waste waters. Water Research, 44(17), 4932–4939. doi:10.1016/j.watres.2010.07.025
  • Wang, J., Lu, H., Chen, G.-H., Lau, G. N., Tsang, W. L., & van Loosdrecht, M. C. M. (2009). A novel sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process for saline wastewater treatment. Water Research, 43(9), 2363–2372. doi:10.1016/j.watres.2009.02.037
  • Wang, D., He, S., Shan, C., Ye, Y., Ma, H., Zhang, X., … Pan, B. (2016). Chromium speciation in tannery effluent after alkaline precipitation: Isolation and characterization. Journal of Hazardous Materials, 316, 169–177.
  • Wang, J. T., Zhang, L., Kang, Y., Chen, G., & Jiang, F. (2018). Long-term feeding of elemental sulfur alters microbial community structure and eliminates mercury methylation potential in sulfate-reducing bacteria abundant activated sludge. Environmental Science & Technology, 52(8), 4746–4753. doi:10.1021/acs.est.7b06399
  • Waybrant, K., Blowes, D., & Ptacek, C. (1998). Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage. Environmental Science & Technology, 32, 1972–1979. doi:10.1021/es9703335
  • Wei, C., Wei, L., Li, C., Wei, D., & Zhao, Y. (2018). Effects of salinity, C/S ratio, S/N ratio on the BESI process, and treatment of nanofiltration concentrate. Environmental Science and Pollution Research, 25(6), 5129–5139. doi:10.1007/s11356-017-9585-1
  • Weijma, J., Stams, A. J., Hulshoff Pol, L. W., & Lettinga, G. (2000). Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotechnology and Bioengineering, 67(3), 354–363. doi:10.1002/(SICI)1097-0290(20000205)67:3<354::AID-BIT12>3.0.CO;2-X
  • Widdel, F., & Bak, F. (1992). Gram-negative mesophilic sulfate-reducing bacteria. In A. Balows (eds.) The prokaryotes: A handbook on the biology of bacteria: Ecophysiology, isolation, identification, applications (pp. 3352–3378). New York, NY: Springer New York.
  • Wu, C., Zhou, Y., Wang, P., & Guo, S. (2015). Improving hydrolysis acidification by limited aeration in the pretreatment of petrochemical wastewater. Bioresource Technology, 194, 256–262.
  • Wu, D., Ekama, G. A., Chui, H. K., Wang, B., Cui, Y. X., Hao, T. W., … Chen, G. H. (2016). Large-scale demonstration of the sulfate reduction autotrophic denitrification nitrification integrated (SANI®) process in saline sewage treatment. Water Research, 100, 496–507. doi:10.1016/j.watres.2016.05.052
  • Xin, Y., Yong, K., Duujong, L., & Ying, F. (2008). Bioaugmented sulfate reduction using enriched anaerobic microflora in the presence of zero valent iron. Chemosphere, 73(9), 1436–1441. doi:10.1016/j.chemosphere.2008.08.002
  • Xu, X. J., Chen, C., Wang, A. J., Ni, B. J., Guo, W. Q., Yuan, Y., … Ren, N. Q. (2017). Mathematical modeling of simultaneous carbon-nitrogen-sulfur removal from industrial wastewater. Journal of Hazardous Materials, 321, 371–381. doi:10.1016/j.jhazmat.2016.08.074
  • Yamamoto-Ikemoto, R., Matsui, S., Komori, T., & Bosque-Hamilton, E. K. (1998). Interactions between filamentous sulfur bacteria, sulfate reducing bacteria and poly-P accumulating bacteria in anaerobic-oxic activated sludge from a municipal plant. Water Science and Technology, 37(4–5), 599–603. doi:10.2166/wst.1998.0725
  • Zagury, G. J., Kulnieks, V. I., & Neculita, C. M. (2006). Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment. Chemosphere, 64(6), 944–954. doi:10.1016/j.chemosphere.2006.01.001
  • Zhang, J., Zhu, G., Lv, N., Pan, X., Li, L., & Ren, Z. J. (2017). The establishment and characteristics of dominant syntrophic propionate oxidation bacteria and sulfate-reducing bacteria in a mixed culture. Chemical Engineering Communications, 204(8), 926–936. doi:10.1080/00986445.2017.1328410
  • Zhang, M., & Wang, H. (2014). Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage. Minerals Engineering, 69, 81–90. doi:10.1016/j.mineng.2014.07.010
  • Ziv, N., Brandt, N. J., & Gresham, D. (2013). The use of chemostats in microbial systems biology. Journal of Visualized Experiments, 80, 50168. doi:10.3791/50168

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.