1,381
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Combating soil salinity with combining saline agriculture and phytomanagement with salt-accumulating plants

, , , , , , , , , , & show all
Pages 1085-1115 | Published online: 31 Jul 2019

References

  • Abbasi, T., & Abbasi, S. (2012). Is the use of renewable energy sources an answer to the problems of global warming and pollution? Critical Reviews in Environmental Science and Technology, 42(2), 99–154. doi:10.1080/10643389.2010.498754
  • Abeer, H., Abd_Allah, E., Alqarawi, A., El-Didamony, G., Alwhibi, M., Egamberdieva, D., & Ahmad, P. (2014). Alleviation of adverse impact of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pakistan Journal of Botany, 46(6), 2003–2013.
  • Agarwal, P. K., Agarwal, P., Jain, P., Jha, B., Reddy, M., & Sopory, S. (2007). Constitutive overexpression of a stress-inducible small GTP-binding protein PgRab7 from Pennisetum glaucum enhances abiotic stress tolerance in transgenic tobacco. Plant Cell Reports, 27(1), 105–115. doi:10.1007/s00299-007-0446-0
  • Agarwal, P., Dave, A., & Agarwal, P. (2018). Transcriptional regulation of salinity stress: Role and spatio-temporal expressions of ion-transporter gene promoters. Biologia Plantarum, 62(4), 641–646. doi:10.1007/s10535-018-0815-2
  • Ahmad, I. (2014). The role of cation channels in abiotic stress resistance in rice. York: University of York.
  • Ahmad, S., Ghafoor, A., Akhtar, M. E., & Khan, M. Z. (2016). Implication of gypsum rates to optimize hydraulic conductivity for variable texture saline–sodic soils reclamation. Land Degradation & Development, 27(3), 550–560. doi:10.1002/ldr.2413
  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-concepts and applications. Chemosphere, 91(7), 869–881. doi:10.1016/j.chemosphere.2013.01.075
  • Ali, S. A. M., Adam, K. I., Bahar, A. H., & Hassan, T. A. (2013). Effect of sowing date and variety on growth and yield of pearl millet (Pennisetum glaucum L.) grown on two soil types under rain-fed condition at Zalingei area in Sudan. ARPN Journal of Science and Technology, 3(4), 340–344.
  • Ashraf, M. Y., Ashraf, M., Mahmood, K., Akhter, J., Hussain, F., & Arshad, M. (2010). Phytoremediation of saline soils for sustainable agricultural productivity. In M. Ashraf, M. Ozturk, M. S. A. Ahmad (Eds.), Plant adaptation and phytoremediation (pp. 335–355). Netherland: Springer.
  • Aslam, K., Rashid, S., Saleem, R., & Aslam, R. M. S. (2015). Use of geospatial technology for assessment of waterlogging & salinity conditions in the Nara Canal Command area in Sindh, Pakistan. Journal of Geographic Information System, 7(4), 438. doi:10.4236/jgis.2015.74035
  • Athar, H., & Ashraf, M. (2009). Strategies for crop improvement against salinity and drought stress: An overview. In M. Ashraf, M. Ozturk, H. R. Athar (Eds.), Salinity and water stress (pp. 1–16). Dordrecht: Springer Netherlands.
  • Bakar, N. A., Sultan, M. T. H., Azni, M. E., Hazwan, M. H., & Ariffin, A. H. (2018). Extraction and surface characterization of novel bast fibers extracted from the Pennisetum purpureum plant for composite application. Materials Today: Proceedings, 5(10), 21926–21935. doi:10.1016/j.matpr.2018.07.052
  • Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24(1), 23–58. doi:10.1080/07352680590910410
  • Borde, M., Dudhane, M., & Jite, P. (2011). Growth photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under salinity stress condition. Crop Protection, 30(3), 265–271. doi:10.1016/j.cropro.2010.12.010
  • Cabello, J. V., Lodeyro, A. F., & Zurbriggen, M. D. (2014). Novel perspectives for the engineering of abiotic stress tolerance in plants. Current Opinion in Biotechnology, 26, 62–70. doi:10.1016/j.copbio.2013.09.011
  • Campbell, B. M., Thornton, P., Zougmoré, R., Van Asten, P., & Lipper, L. (2014). Sustainable intensification: What is its role in climate smart agriculture? Current Opinion in Environmental Sustainability, 8, 39–43. doi:10.1016/j.cosust.2014.07.002
  • Cao, J., Li, X., Kong, X., Zed, R., & Dong, L. (2012). Using alfalfa (Medicago sativa) to ameliorate salt-affected soils in Yingda irrigation district in Northwest China. Acta Ecologica Sinica, 32(2), 68–73. doi:10.1016/j.chnaes.2011.12.001
  • Cetin, M., & Kirda, C. (2003). Spatial and temporal changes of soil salinity in a cotton field irrigated with low-quality water. Journal of Hydrology, 272(1–4), 238–249. doi:10.1016/S0022-1694(02)00268-8
  • Chantre Nongpiur, R., Lata Singla-Pareek, S., & Pareek, A. (2016). Genomics approaches for improving salinity stress tolerance in crop plants. Current Genomics, 17(4), 343–357. doi:10.2174/1389202917666160331202517
  • Chartres, C. J., & Noble, A. (2015). Sustainable intensification: Overcoming land and water constraints on food production. Food Security, 7(2), 235–245. doi:10.1007/s12571-015-0425-1
  • Chiranjeevi, P., Mohanakrishna, G., & Mohan, S. V. (2012). Rhizosphere mediated electrogenesis with the function of anode placement for harnessing bioenergy through CO2 sequestration. Bioresource Technology, 124, 364–370. doi:10.1016/j.biortech.2012.08.020
  • Clark, C. E. F., Kaur, R., Millapan, L. O., Golder, H. M., Thomson, P. C., Horadagoda, A., … Garcia, S. C. (2018). The effect of temperate or tropical pasture grazing state and grain-based concentrate allocation on dairy cattle production and behavior. Journal of Dairy Science, 101(6), 5454–5465. doi:10.3168/jds.2017-13388
  • Csiszár, J., Brunner, S., Horváth, E., Bela, K., Ködmön, P., Riyazuddin, R., … Szabados, L. (2018). Exogenously applied salicylic acid maintains redox homeostasis in salt-stressed Arabidopsis gr1 mutants expressing cytosolic roGFP1. Plant Growth Regulation, 86(2), 181–194. doi:10.1007/s10725-018-0420-6
  • Dagar, J. C., Yadav, R. K., & Sharma, P. C. (2019). Research developments in saline agriculture. Singapore: Springer Nature Singapore Pte Ltd.
  • Day, S., Norton, J., Strom, C., Kelleners, T., & Aboukila, E. (2018). Gypsum, langbeinite, sulfur, and compost for reclamation of drastically disturbed calcareous saline–sodic soils. International Journal of Environmental Science and Technology, 16(1), 259–304. doi:10.1007/s13762-018-1671-5
  • Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. Trends in Plant Science, 19(6), 371–379. doi:10.1016/j.tplants.2014.02.001
  • Dikilitas, M., & Karakas, S. (2010). Salts as potential environmental pollutants, their types, effects on plants and approaches for their phytoremediation. In M. Ashraf, M. Ozturk, M. S. A. Ahmad (Eds.), Plant adaptation and phytoremediation (pp. 357–381). London: Springer.
  • Djanaguiraman, M., Perumal, R., Ciampitti, I., Gupta, S., & Prasad, P. (2018). Quantifying pearl millet response to high temperature stress: Thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Plant, Cell & Environment, 41(5), 993–1007. doi:10.1111/pce.12931
  • Donadío, S., Giussani, L. M., Kellogg, E. A., Zuolaga, F. O., & Morrone, O. (2009). A preliminary molecular phylogeny of Pennisetum and Cenchrus (Poaceae-Paniceae) based on the trnL-F, rpl16 chloroplast markers. TAXON, 58(2), 392–404. doi:10.1002/tax.582007
  • El-Ashry, M. T., van Schilfgaarde, J., & Schiffman, S. (1985). Salinity pollution from irrigated agriculture. Journal of Soil and Water Conservation, 40(1), 48–52.
  • Epstein, E., Norlyn, J. D., Rush, D. W., Kingsbury, R. W., Kelley, D. B., Cunningham, G. A., & Wrona, A. F. (1980). Saline culture of crops: A genetic approach. Science (New York, N.Y.), 210(4468), 399–404. doi:10.1126/science.210.4468.399
  • FAO/UNESCO. (1970–1980). Soil map of the world legend and 9 volumes. Paris: UNESCO.
  • Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Frontiers in Plant Science, 6, 978. doi:10.3389/fpls.2015.00978
  • Flowers, T. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55(396), 307–319. doi:10.1093/jxb/erh003
  • Flowers, T., & Yeo, A. (1986). Ion relations of plants under drought and salinity. Functional Plant Biology, 13(1), 75–91. doi:10.1071/PP9860075
  • Foster, S., Pulido-Bosch, A., Vallejos, Á., Molina, L., Llop, A., & MacDonald, A. M. (2018). Impact of irrigated agriculture on groundwater-recharge salinity: A major sustainability concern in semi-arid regions. Hydrogeology Journal, 26, 2781–2791. doi:10.1007/s10040-018-1830-2
  • Gangwar, P., Singh, R., Trivedi, M., & Tiwari, R. K. (2020). Sodic soil: management and reclamation strategies. In Environmental Concerns and Sustainable Development (pp. 175–190). Singapore: Springer.
  • Ghassemi, F., Jakeman, A. J., & Nix, H. A. (1995). Salinisation of land and water resources: Human causes, extent, management and case studies. Wallingford: CAB International.
  • Gholizadeh, A., Saberioon, M., Ben-Dor, E., & Borůvka, L. (2018). Monitoring of selected soil contaminants using proximal and remote sensing techniques: Background, state-of-the-art and future perspectives. Critical Reviews in Environmental Science and Technology, 48(3), 243–278. doi:10.1080/10643389.2018.1447717
  • Gisbert, C., Rus, A. M., Boları́n, M. C., López-Coronado, J. M., Arrillaga, I., Montesinos, C., … Moreno, V. (2000). The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiology, 123(1), 393–402. doi:10.1104/pp.123.1.393
  • Goosen, M. F., Mahmoudi, H., & Ghaffour, N. (2014). Today's and future challenges in applications of renewable energy technologies for desalination. Critical Reviews in Environmental Science and Technology, 44(9), 929–999. doi:10.1080/10643389.2012.741313
  • Grover, A., Aggarwal, P. K., Kapoor, A., Katiyar-Agarwal, S., Agarwal, M., & Chandramouli, A. (2003). Addressing abiotic stresses in agriculture through transgenic technology. Current Science, 84(3), 355–367.
  • Gudžinskas, Z., Žalneravičius, E., & Petrulaitis, L. (2018). Assessment of the potential of introduction, establishment and further spread of invasive alien plant species of European union concern in Lithuania. Botanica, 24(1), 37–48. doi:10.2478/botlit-2018-0004
  • Haryanto, A., Hasanudin, U., Afrian, C., & Zulkarnaen, I. (2018). Biogas production from anaerobic codigestion of cowdung and elephant grass (Pennisetum purpureum) using batch digester. IOP Conference Series: Earth and Environmental Science, 141, 012011. doi:10.1088/1755-1315/141/1/012011
  • Hillel, D. (1992). Out of the earth: civilization and the life of the soil. Berkley: Univ of California Press.
  • Himabindu, Y., Chakradhar, T., Reddy, M. C., Kanygin, A., Redding, K. E., & Chandrasekhar, T. (2016). Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environmental and Experimental Botany, 124, 39–63. doi:10.1016/j.envexpbot.2015.11.010
  • Hussain, K., Ashraf, M., & Ashraf, M. Y. (2008). Relationship between growth and ion relation in pearl millet (Pennisetum glaucum (L.) R. Br.) at different growth stages under salt stress. African Journal of Plant Science, 2(3), 23–27.
  • ICARDA. (2002). Marginal quality water: A solution to fresh water scarcity. Aleppo, Syria: International Center for Agricultural Research in the Dry Areas
  • Imadi, S. R., Shah, S. W., Kazi, A. G., Azooz, M., & Ahmad, P. (2016). Phytoremediation of saline soils for sustainable agricultural productivity. In Plant Metal Interaction (pp. 455–468). New York: Elsevier.
  • Islam, S. T., Tammi, R., Singla-Pareek, S. L., & Seraj, Z. I. (2010). Enhanced salinity tolerance and improved yield properties in Bangladeshi rice Binnatoa through Agrobacterium-mediated transformation of PgNHX1 from Pennisetum glaucum. Acta Physiologiae Plantarum, 32(4), 657–663. doi:10.1007/s11738-009-0443-8
  • Ismail, S., Rao, N. K., & Dagar, J. C. (2019). Identification, Evaluation, and Domestication of Alternative Crops for Saline Environments. In Research Developments in Saline Agriculture (pp. 505–536): Singapore: Springer Singapore.
  • Jacobsen, T., & Adams, R. M. (1958). Salt and silt in ancient Mesopotamian agriculture. Science, 128(3334), 1251–1258. doi:10.1126/science.128.3334.1251
  • Jain, R. K., & Selvaraj, G. (1997). Molecular genetic improvement of salt tolerance in plants. Biotechnology Annual Review, 3, 245–267: Elsevier.
  • Jalaluddin, M. (1993). Effect of VAM fungus (Glomus intraradices) on the growth of sorghum, maize, cotton and pennisetum under salt stress. Pakistan Journal of Botany, 25, 215–218.
  • Jamil, A., Riaz, S., Ashraf, M., & Foolad, M. (2011). Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences, 30(5), 435–458. doi:10.1080/07352689.2011.605739
  • Jiang, Z., Ma, B., Erinle, K. O., Cao, B., Liu, X., Ye, S., & Zhang, Y. (2016). Enzymatic antioxidant defense in resistant plant: Pennisetum americanum (L.) K. Schum during long-term atrazine exposure. Pesticide Biochemistry and Physiology, 133, 59–66.
  • Katerji, N., Van Hoorn, J., Hamdy, A., & Mastrorilli, M. (2000). Salt tolerance classification of crops according to soil salinity and to water stress day index. Agricultural Water Management, 43(1), 99–109. doi:10.1016/S0378-3774(99)00048-7
  • Kattel, G. R. (2019). State of future water regimes in the world’s river basins: Balancing the water between society and nature. Critical Reviews in Environmental Science and Technology, 49(12), 1107–1133. doi:10.1080/10643389.2019.1579621
  • Kaul, T., Reddy, P. S., Mahanty, S., Thirulogachandar, V., Reddy, R. A., Kumar, B., … Reddy, M. K. (2011). Biochemical and molecular characterization of stress-induced β-carbonic anhydrase from a C4 plant, Pennisetum glaucum. Journal of Plant Physiology, 168(6), 601–610. doi:10.1016/j.jplph.2010.08.007
  • Kausar, A., & Ashraf, M. (2003). Alleviation of salt stress in pearl millet (Pennisetum glaucum (L.) R. Br.) through seed treatments. Agronomie, 23(3), 227–234. doi:10.1051/agro:2002086
  • Kotb, T. H., Watanabe, T., Ogino, Y., & Tanji, K. K. (2000). Soil salinization in the Nile Delta and related policy issues in Egypt. Agricultural Water Management, 43(2), 239–261. doi:10.1016/S0378-3774(99)00052-9
  • Kromdijk, J., & Long, S. P. (2016). One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation. Proceedings of the Royal Society B: Biological Sciences, 283(1826), 20152578. doi:10.1098/rspb.2015.2578
  • Lal, R. (2018). Managing agricultural soils of Pakistan for food and climate. Soil & Environment, 37(1), 1–10. doi:10.25252/SE/18/61527
  • Lee, J.-W., Kim, S.-J., An, J.-B., Nam, K.-B., Shin, H.-T., & Jung, S.-Y. (2018). Distribution characteristics of invasive alien plants in Jejudo. Journal of Asia-Pacific Biodiversity, 11(2), 276–283. doi:10.1016/j.japb.2018.02.004
  • Li, J., Pu, L., Han, M., Zhu, M., Zhang, R., & Xiang, Y. (2014). Soil salinization research in China: Advances and prospects. Journal of Geographical Sciences, 24(5), 943–960. doi:10.1007/s11442-014-1130-2
  • Li, X., Geng, X., Xie, R., Fu, L., Jiang, J., Gao, L., & Sun, J. (2016). The endophytic bacteria isolated from elephant grass (Pennisetum purpureum Schumach) promote plant growth and enhance salt tolerance of Hybrid Pennisetum. Biotechnology for Biofuels, 9(1), 190. doi:10.1186/s13068-016-0592-0
  • Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1), 286–291. doi:10.1016/j.bbrc.2017.11.043
  • Liu, B., Xiao, Z., Zhao, C., & Huang, Y. (2017). Energy grass comprehensive recycling method: Google Patents. Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
  • Liu, Q., Lan, Y., Tan, F., Tu, Y., Sun, Y., Yougu, G., … Li, T. (2019). Drip irrigation elevated olive productivity in Southwest China. Hort Technology, 29(aop), 122–127. doi:10.21273/HORTTECH04211-18
  • Loescher, W., Chan, Z., & Grumet, R. (2011). Options for developing salt-tolerant crops. Hort Science, 46(8), 1085–1092. doi:10.21273/HORTSCI.46.8.1085
  • Mane, A., Karadge, B., & Samant, J. (2010). Salt stress induced alteration in photosynthetic pigments and polyphenols of Pennisetum alopecuroides (L.). Journal of Ecophysiology and Occupational Health, 10(3–4), 177–182.
  • Mararakanye, N., Magoro, M. N., Matshaya, N. N., Rabothata, M. C., & Ncobeni, S. R. (2017). Railway side mapping of alien plant distributions in Mpumalanga, South Africa. Bothalia, 47(1), 1–11. doi:10.4102/abc.v47i1.2130
  • Massino, A., Edenbaev, D., Khujanazarov, T., Azizov, K., Boboev, F., Shuyskaya, E., … Toderich, K. (2015). Comparative performance of corn, sorghum and pearl millet growing under saline soil and water environments in Aral Sea Basin. Journal of Arid Land Studies, 25(3), 269–272.
  • Minhas, P., Qadir, M., & Yadav, R. (2019). Groundwater irrigation induced soil sodification and response options. Agricultural Water Management, 215, 74–85. doi:10.1016/j.agwat.2018.12.030
  • Munns, R. (2005). Genes and salt tolerance: Bringing them together. The New Phytologist, 167(3), 645–663. doi:10.1111/j.1469-8137.2005.01487.x
  • Munns, R., Husain, S., Rivelli, A. R., James, R. A., Condon, A. T., Lindsay, M. P., … Hare, R. A. (2002). Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium.
  • Muscolo, A., Panuccio, M. R., & Sidari, M. (2003). Effects of salinity on growth, carbohydrate metabolism and nutritive properties of kikuyu grass (Pennisetum clandestinum Hochst). Plant Science, 164(6), 1103–1110. doi:10.1016/S0168-9452(03)00119-5
  • Muscolo, A., Panuccio, M., & Eshel, A. (2013). Ecophysiology of Pennisetum clandestinum: A valuable salt tolerant grass. Environmental and Experimental Botany, 92, 55–63. doi:10.1016/j.envexpbot.2012.07.009
  • Oborn, I., Vanlauwe, B., Phillips, M., Thomas, R., Brooijmans, W., & Atta-Krah, K. (2017). Sustainable Intensification in Smallholder Agriculture: An integrated systems research approach New York: Taylor & Francis.
  • Oweis, T. (2018). Managing surface water for irrigation A. Qureshi, International Center for Biosaline Agriculture, United Arab Emirates. Water management for sustainable agriculture (pp. 163–182): London: Burleigh Dodds Science Publishing. doi:10.19103/AS.2017.0037.06
  • Ozturk, M., Hakeem, K. R., Ashraf, M., & Ahmad, M. S. A. (2019). Crop production technologies for sustainable use and conservation: physiological and molecular advances. Boca Raton, FL: CRC Press.
  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1–4), 105–126. doi:10.1007/s11270-007-9401-5
  • Paiva, A. L. S., Passaia, G., Lobo, A. K. M., Jardim-Messeder, D., Silveira, J. A., & Margis-Pinheiro, M. (2019). Mitochondrial glutathione peroxidase (OsGPX3) has a crucial role in rice protection against salt stress. Environmental and Experimental Botany, 158, 12–21. doi:10.1016/j.envexpbot.2018.10.027
  • Park, M. Y., Chung, M. S., Koh, H. S., Lee, D. J., Ahn, S. J., & Kim, C. S. (2009). Isolation and functional characterization of the Arabidopsis salt-tolerance 32 (AtSAT32) gene associated with salt tolerance and ABA signaling. Physiologia Plantarum, 135(4), 426–435. doi:10.1111/j.1399-3054.2008.01202.x
  • Peng, J., Ji, W., Ma, Z., Li, S., Chen, S., Zhou, L., & Shi, Z. (2016). Predicting total dissolved salts and soluble ion concentrations in agricultural soils using portable visible near-infrared and mid-infrared spectrometers. Biosystems Engineering, 152, 94–103. doi:10.1016/j.biosystemseng.2016.04.015
  • Petersen, B., & Snapp, S. (2015). What is sustainable intensification? Views from experts. Land Use Policy, 46, 1–10. doi:10.1016/j.landusepol.2015.02.002
  • Pokhrel, L. R., & Dubey, B. (2013). Global scenarios of metal mining, environmental repercussions, public policies, and sustainability: A review. Critical Reviews in Environmental Science and Technology, 43(21), 2352–2388. doi:10.1080/10643389.2012.672086
  • Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of Botany, 114(8), 1571–1596. doi:10.1093/aob/mcu205
  • Qadir, M., & Oster, J. (2004). Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Science of the Total Environment, 323(1–3), 1–19. doi:10.1016/j.scitotenv.2003.10.012
  • Qadir, M., Ghafoor, A., & Murtaza, G. (2001). Use of saline–sodic waters through phytoremediation of calcareous saline–sodic soils. Agricultural Water Management, 50(3), 197–210. doi:10.1016/S0378-3774(01)00101-9
  • Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., … Noble, A. D. (2014). Economics of salt induced land degradation and restoration. Natural Resources Forum, 38(4), 282. doi:10.1111/1477-8947.12054
  • Qadir, M., Qureshi, R., & Ahmad, N. (2006). Amelioration of calcareous saline sodic soils through phytoremediation and chemical strategies. Soil Use and Management, 18(4), 381–385. doi:10.1111/j.1475-2743.2002.tb00256.x
  • Qureshi, A. S., McCornick, P. G., Qadir, M., & Aslam, Z. (2008). Managing salinity and waterlogging in the Indus Basin of Pakistan. Agricultural Water Management, 95(1), 1–10. doi:10.1016/j.agwat.2007.09.014
  • Qureshi, R., & Barrett, L. (1998). Saline agriculture for irrigated land in Pakistan: A handbook. Canberra: Australian Center for International Agricultural Research.
  • Rajagopal, D., Agarwal, P., Tyagi, W., Singla-Pareek, S. L., Reddy, M. K., & Sopory, S. (2007). Pennisetum glaucum Na+/H + antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Molecular Breeding, 19(2), 137–151. doi:10.1007/s11032-006-9052-z
  • Rajkumar, M., Bruno, L. B., & Banu, J. R. (2017). Alleviation of environmental stress in plants: The role of beneficial Pseudomonas spp. Critical Reviews in Environmental Science and Technology, 47(6), 372–407. doi:10.1080/10643389.2017.1318619
  • Rani, R. J. (2011). Salt stress tolerance and stress proteins in pearl millet (Pennisetum glaucum (L.) R. Br. ). Journal of Applied Pharmaceutical Science, 1(7), 185.
  • Rao, N. K., McCann, I., Shahid, S. A., Butt, K. U. R., Al Araj, B., & Ismail, S. (2017). Sustainable use of salt-degraded and abandoned farms for forage production using halophytic grasses. Crop and Pasture Science, 68(5), 483–492. doi:10.1071/CP16197
  • Raza, M., Hussain, F., Lee, J.-Y., Shakoor, M. B., & Kwon, K. D. (2017). Groundwater status in Pakistan: A review of contamination, health risks, and potential needs. Critical Reviews in Environmental Science and Technology, 47(18), 1713–1762. doi:10.1080/10643389.2017.1400852
  • Reddy, I. N. B. L., Kim, B.-K., Yoon, I.-S., Kim, K.-H., & Kwon, T.-R. (2017). Salt tolerance in rice: Focus on mechanisms and approaches. Rice Science, 24(3), 123–144. doi:10.1016/j.rsci.2016.09.004
  • Reddy, P. S., Reddy, G. M., Pandey, P., Chandrasekhar, K., & Reddy, M. K. (2012). Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum: Protection against abiotic stresses. Molecular Biology Reports, 39(6), 7163–7174. doi:10.1007/s11033-012-1548-5
  • Reddy, P. S., Thirulogachandar, V., Vaishnavi, C., Aakrati, A., Sopory, S. K., & Reddy, M. K. (2011). Molecular characterization and expression of a gene encoding cytosolic Hsp90 from Pennisetum glaucum and its role in abiotic stress adaptation. Gene, 474(1–2), 29–38. doi:10.1016/j.gene.2010.12.004
  • Rengasamy, P. (2002). Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: An overview. Australian Journal of Experimental Agriculture, 42(3), 351–361. doi:10.1071/EA01111
  • Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimental Botany, 57(5), 1017–1023. doi:10.1093/jxb/erj108
  • Roy, S. J., Negrão, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115–124. doi:10.1016/j.copbio.2013.12.004
  • Rui-Dong, H. (2017). Research progress on plant tolerance to soil salinity and alkalinity in sorghum. Journal of Integrative Agriculture, 17(4), 739–746.
  • Saharan, B., & Nehra, V. (2011). Plant growth promoting rhizobacteria: A critical review. Life Sci Med Res, 21(1), 30.
  • Saqib, M., Akhtar, J., Abbas, G., & Murtaza, G. (2019). Enhancing food security and climate change resilience in degraded land areas by resilient crops and agroforestry. In P. Castro (Ed.), Climate change-resilient agriculture and agroforestry (pp. 283–297). Switzerland: Springer.
  • Saqib, M., Akhtar, J., Abbas, G., & Wahab, H. A. (2019). Saline agriculture: A climate smart integrated approach for climate change resilience in degraded land areas. In W. Leal Filho (Ed.), Handbook of climate change resilience (pp. 1-19). Cham: Springer International Publishing.
  • Saxena, C., & Gupta, S. (2004). Drip Irrigation for water conservation and saline/sodic environments in India: A review. Natural Resources Engineering and Management and Agro-Environmental Engineering. Proceedings of International Conference on Emerging Technologies in Agricultural and Food Engineering (etae 2004).
  • Sharma, D. K., & Singh, A. (2017). Current trends and emerging challenges in sustainable management of salt-affected soils: A critical appraisal. In S. Arora (Eds.), Bioremediation of salt affected soils: An Indian perspective (pp. 1–40). Switzerland: Springer.
  • Sharma, D., Singh, K., & Rao, K. (2000). Subsurface drainage for rehabilitation of waterlogged saline lands: Example of a soil in semiarid climate. Arid Soil Research and Rehabilitation, 14(4), 373–386. doi:10.1080/08903060050136478
  • Singh, A. (2017). Waterlogging and salinity management for sustainable irrigated agriculture. II: Engineering measures and biodrainage. Journal of Irrigation and Drainage Engineering, 143(9), 04017036. doi:10.1061/(ASCE)IR.1943-4774.0001227
  • Singh, A. (2018). Managing the salinization and drainage problems of irrigated areas through remote sensing and GIS techniques. Ecological Indicators, 89, 584–589. doi:10.1016/j.ecolind.2018.02.041
  • Singh, J., Reddy, G. M., Agarwal, A., Chandrasekhar, K., Sopory, S., Reddy, M., & Kaul, T. (2012). Molecular and structural analysis of C4-specific PEPC isoform from Pennisetum glaucum plays a role in stress adaptation. Gene, 500(2), 224–231. doi:10.1016/j.gene.2012.03.018
  • Singh, J., Reddy, P. S., Reddy, C. S., & Reddy, M. K. (2015). Molecular cloning and characterization of salt inducible dehydrin gene from the C4 plant Pennisetum glaucum. Plant Gene, 4, 55–63. doi:10.1016/j.plgene.2015.08.002
  • Siyu, X., Zhixun, X., & Pingwu, W. (1996). Soil salinity in the irrigated area of the Yellow River in Ningxia, China. Arid Soil Research and Rehabilitation, 10(1), 95–101. doi:10.1080/15324989609381423
  • Sneha, S., Rishi, A., Dadhich, A., & Chandra, S. (2013). Effect of salinity on seed germination, accumulation of proline and free amino acid in Pennisetum glaucum (L.) R. Br. Pakistan Journal of Biological Sciences, 16(17), 877–881. doi:10.3923/pjbs.2013.877.881
  • Song, B., Xu, P., Chen, M., Tang, W., Zeng, G., Gong, J., … Ye, S. (2019). Using nanomaterials to facilitate the phytoremediation of contaminated soil. Critical Reviews in Environmental Science and Technology49(9), 791–824. doi:10.1080/10643389.2018.1558891
  • Stockle, C. O. (2001). Environmental impact of irrigation: A review (pp. 1–15). Washington: Washington State University.
  • Sushma, M. A. (2015). Gene pyramiding approach to improve salt tolerance in rice involving tonoplast and plasma membrane transporters. Bangalore: University of Agricultural Sciences GKVK.
  • Tanji, K. K. (2002). Salinity in the soil environment. Salinity: Environment-plants-molecules (pp. 21–51). Dordrecht: Springer.
  • Toderich, K., Shuyskaya, E., Rakhmankulova, Z., Bukarev, R., Khujanazarov, T., Zhapaev, R., … Boboev, F. (2018). Threshold Tolerance of New Genotypes of Pennisetum glaucum (L.) R. Br. to Salinity and Drought. Agronomy, 8(10), 230. doi:10.3390/agronomy8100230
  • Turan, S., Cornish, K., & Kumar, S. (2012). Salinity tolerance in plants: Breeding and genetic engineering. Australian Journal of Crop Science, 6(9), 1337.
  • Verma, D., Singla-Pareek, S. L., Rajagopal, D., Reddy, M., & Sopory, S. (2007). Functional validation of a novel isoform of Na+/H + antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. Journal of Biosciences, 32(3), 621–628. doi:10.1007/s12038-007-0061-9
  • Wang, J., Ding, J., Abulimiti, A., & Cai, L. (2018). Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS–NIR) spectroscopy, Ebinur Lake Wetland, Northwest China. PeerJ, 6, e4703. doi:10.7717/peerj.4703
  • Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218(1), 1–14. doi:10.1007/s00425-003-1105-5
  • Wang, Z., Fan, B., & Guo, L. (2019). Soil salinization after long-term mulched drip irrigation poses a potential risk to agricultural sustainability. European Journal of Soil Science, 70(1), 20–24. doi:10.1111/ejss.12742
  • Wu, W., Al-Shafie, W. M., Mhaimeed, A. S., Ziadat, F., Nangia, V., & Payne, W. B. (2014). Soil salinity mapping by multiscale remote sensing in Mesopotamia, Iraq. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(11), 4442–4452. doi:10.1109/JSTARS.2014.2360411
  • Zhang, T., He, J., Feng, H., & Zhan, X. (2019). Improvement of soil nutrient and biological properties and establishment of Lycium barbarum L. in an impermeable saline-sodic soil using drip irrigation. Soil Research, 57(1), 75–84. doi:10.1071/SR18202
  • Zhaoyong, Z., Abuduwaili, J., & Yimit, H. (2014). The occurrence, sources and spatial characteristics of soil salt and assessment of soil salinization risk in Yanqi Basin, Northwest China. PloS One, 9(9), e106079. doi:10.1371/journal.pone.0106079
  • Zhou, S., Wang, C., Frazier, T. P., Yan, H., Chen, P., Chen, Z., … Yan, Y. (2018). The first Illumina-based de novo transcriptome analysis and molecular marker development in Napier grass (Pennisetum purpureum). Molecular Breeding, 38(7), 95. doi:10.1007/s11032-018-0852-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.