1,821
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

Microalgae for saline wastewater treatment: a critical review

, , , , , , , & show all
Pages 1224-1265 | Published online: 13 Sep 2019

References

  • Abou-Elela, S. I., Kamel, M. M., & Fawzy, M. E. (2010). Biological treatment of saline wastewater using a salt-tolerant microorganism. Desalination, 250(1), 1–5. doi:10.1016/j.desal.2009.03.022
  • Adenan, N. S., Yusoff, F. M., & Shariff, M. (2013). Effect of salinity and temperature on the growth of diatoms and green algae. Journal of Fisheries and Aquatic Science, 8, 397–404. doi:10.3923/jfas.2013.397.404
  • Afonina, E. Y., & Tashlykova, N. A. (2018). Plankton community and the relationship with the environment in saline lakes of Onon-Torey plain, Northeastern Mongolia. Saudi Journal of Biological Sciences, 25(2), 399–408. doi:10.1016/j.sjbs.2017.01.003
  • Ahmad, T., Guria, C., & Mandal, A. (2018). Synthesis, characterization and performance studies of mixed-matrix poly(vinyl chloride)-bentonite ultrafiltration membrane for the treatment of saline oily wastewater. Process Safety and Environmental Protection, 116, 703–717. doi:10.1016/j.psep.2018.03.033
  • Ahmadi, M., Jorfi, S., Kujlu, R., Ghafari, S., Darvishi Cheshmeh Soltani, R., & Jaafarzadeh Haghighifard, N. (2017). A novel salt-tolerant bacterial consortium for biodegradation of saline and recalcitrant petrochemical wastewater. Journal of Environmental Management, 191, 198–208. doi:10.1016/j.jenvman.2017.01.010
  • Ajao, V., Bruning, H., Rijnaarts, H., & Temmink, H. (2018). Natural flocculants from fresh and saline wastewater: Comparative properties and flocculation performances. Chemical Engineering Journal, 349, 622–632. doi:10.1016/j.cej.2018.05.123
  • Akan, J. C., Moses, E. A., Ogugbuaja, V. O., & Abah, J. (2007). Assessment of tannery industrial effluents from Kano Metropolis, Kano State, Nigeria. Journal of Applied Sciences, 7(19), 2788–2793. doi:10.3923/jas.2007.2788.2793
  • Al‐Jaloud, A. A., Hussain, G., Al‐Saati, A. J., & Karimullah, S. (1993). Effect of wastewaters on plant growth and soil properties. Arid Land Research and Management, 7(2), 173–179. doi:10.1080/15324989309381346
  • Aller, M. F. (2016). Biochar properties: Transport, fate, and impact. Critical Reviews in Environmental Science and Technology, 46(14–15), 1183–1296. doi:10.1080/10643389.2016.1212368
  • Al-Said, T., Al-Ghunaim, A., Rao, D. V. S., Al-Yamani, F., Al-Rifaie, K., & Al-Baz, A. (2017). Salinity-driven decadal changes in phytoplankton community in the NW Arabian Gulf of Kuwait. Environmental Monitoring and Assessment, 189(6), 17.
  • Alves, R. D. C., de Medeiros, A. S., Nicolau, M. C. M., Neto, A. P., de Assis Oliveira, F., Lima, L. W., … Gratão, P. L. (2018). The partial root-zone saline irrigation system and antioxidant responses in tomato plants. Plant Physiology and Biochemistry, 127, 366–379. doi:10.1016/j.plaphy.2018.04.006
  • Baek, S. H., Jung, S. W., & Shin, K. (2011). Effects of temperature and salinity on growth of Thalassiosira pseudonana (Bacillariophyceae) isolated from ballast water. Journal of Freshwater Ecology, 26(4), 547–552. doi:10.1080/02705060.2011.582696
  • Bai, X., & Acharya, K. (2017). Algae-mediated removal of selected pharmaceutical and personal care products (PPCPs) from Lake Mead water. Science of the Total Environment, 581–582, 734–740. doi:10.1016/j.scitotenv.2016.12.192
  • Bai, Y., Cui, Z., Su, R., & Qu, K. (2018). Influence of DOM components, salinity, pH, nitrate, and bicarbonate on the indirect photodegradation of acetaminophen in simulated coastal waters. Chemosphere, 205, 108–117. doi:10.1016/j.chemosphere.2018.04.087
  • Bakire, S., Yang, X., Ma, G., Wei, X., Yu, H., Chen, J., & Lin, H. (2018). Developing predictive models for toxicity of organic chemicals to green algae based on mode of action. Chemosphere, 190, 463–470. doi:10.1016/j.chemosphere.2017.10.028
  • Barquilha, C. E. R., Cossich, E. S., Tavares, C. R. G., & Silva, E. A. (2017). Biosorption of nickel (II) and copper (II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. Journal of Cleaner Production, 150, 58–64. doi:10.1016/j.jclepro.2017.02.199
  • Bartley, M. L., Boeing, W. J., Corcoran, A. A., Holguin, F. O., & Schaub, T. (2013). Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass and Bioenergy, 54(Suppl C), 83–88. doi:10.1016/j.biombioe.2013.03.026
  • Belzile, C., & Gosselin, M. (2015). Free-living stage of the unicellular algae Coccomyxa sp. parasite of the blue mussel (Mytilus edulis): Low-light adaptation, capacity for growth at a very wide salinity range and tolerance to low pH. Journal of Invertebrate Pathology, 132, 201. doi:10.1016/j.jip.2015.10.006
  • Bhatia, D., Sharma, N. R., Singh, J., & Kanwar, R. S. (2017). Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology, 47(19), 1836–1876. doi:10.1080/10643389.2017.1393263
  • Borecka, M., Białk-Bielińska, A., Haliński, Ł.P., Pazdro, K., Stepnowski, P., & Stolte, S. (2016). The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris. Journal of Hazardous Materials, 308(Suppl C), 179–186. doi:10.1016/j.jhazmat.2016.01.041
  • Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369. doi:10.1016/j.rser.2012.11.030
  • Cataldo, S., Iannì, A., Loddo, V., Mirenda, E., Palmisano, L., Parrino, F., & Piazzese, D. (2016). Combination of advanced oxidation processes and active carbons adsorption for the treatment of simulated saline wastewater. Separation and Purification Technology, 171, 101–111. doi:10.1016/j.seppur.2016.07.026
  • Chen, C., Guo, W., Ngo, H. H., Lee, D.-J., Tung, K.-L., Jin, P., … Wu, Y. (2016). Challenges in biogas production from anaerobic membrane bioreactors. Renewable Energy, 98, 120–134. doi:10.1016/j.renene.2016.03.095
  • Chen, W.-Q., Wang, W.-X., & Tan, Q.-G. (2017). Revealing the complex effects of salinity on copper toxicity in an estuarine clam Potamocorbula laevis with a toxicokinetic-toxicodynamic model. Environmental Pollution, 222(Suppl C), 323–330. doi:10.1016/j.envpol.2016.12.033
  • Chivall, D., M’Boule, D., Sinke-Schoen, D., Sinninghe Damsté, J. S., Schouten, S., & van der Meer, M. T. J. (2014). The effects of growth phase and salinity on the hydrogen isotopic composition of alkenones produced by coastal haptophyte algae. Geochimica et Cosmochimica Acta., 140, 381–390. doi:10.1016/j.gca.2014.05.043
  • Church, J., Hwang, J.-H., Kim, K.-T., McLean, R., Oh, Y.-K., Nam, B., … Lee, W. H. (2017). Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresource Technology, 243(Suppl C), 147–153. doi:10.1016/j.biortech.2017.06.081
  • Connan, S., & Stengel, D. B. (2011a). Impacts of ambient salinity and copper on brown algae: 1. Interactive effects on photosynthesis, growth, and copper accumulation. Aquatic Toxicology, 104(1-2), 94–107. doi:10.1016/j.aquatox.2011.03.015
  • Connan, S., & Stengel, D. B. (2011b). Impacts of ambient salinity and copper on brown algae: 2. Interactive effects on phenolic pool and assessment of metal binding capacity of phlorotannin. Aquatic Toxicology, 104(1-2), 1–13. doi:10.1016/j.aquatox.2011.03.016
  • Cristóvão, R. O., Botelho, C. M., Martins, R. J. E., Loureiro, J. M., & Boaventura, R. A. R. (2015). Fish canning industry wastewater treatment for water reuse – A case study. Journal of Cleaner Production, 87, 603–612. doi:10.1016/j.jclepro.2014.10.076
  • Cristóvão, R. O., Botelho, C. M., Martins, R. J. E., Loureiro, J. M., & Boaventura, R. A. R. (2014). Primary treatment optimization of a fish canning wastewater from a Portuguese plant. Water Resources and Industry, 6, 51–63. doi:10.1016/j.wri.2014.07.002
  • Cristóvão, R. O., Gonçalves, C., Botelho, C. M., Martins, R. J. E., Loureiro, J. M., & Boaventura, R. A. R. (2015). Fish canning wastewater treatment by activated sludge: Application of factorial design optimization: Biological treatment by activated sludge of fish canning wastewater. Water Resources and Industry, 10, 29–38. doi:10.1016/j.wri.2015.03.001
  • Davidovich, O. I., Davidovich, N. A., Podunay, Y. A., Shorenko, K. I., & Witkowski, A. (2016). Effect of salinity on vegetative growth and sexual reproduction of algae from the genus Ardissonea de Notaris (Bacillariophyta). Russian Journal of Plant Physiology, 63(6), 776–782. doi:10.1134/S1021443716060030
  • Dey, S., & Islam, A. (2015). A review on textile wastewater characterization in Bangladesh. Environmental and Resource Economics, 5(1), 15–44.
  • Ding, L., Ma, Y., Huang, B., & Chen, S. (2013). Effects of seawater salinity and temperature on growth and pigment contents in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta). Biomed Research International, 2013, 1. doi:10.1155/2013/594308
  • D'Ors, A., Bartolomé, M. C., & Sánchez-Fortún, S. (2016). Repercussions of salinity changes and osmotic stress in marine phytoplankton species. Estuarine, Coastal and Shelf Science, 175(Suppl C), 169–175. doi:10.1016/j.ecss.2016.04.004
  • Duppeti, H., Chakraborty, S., Das, B. S., Mallick, N., & Kotamreddy, J. N. R. (2017). Rapid assessment of algal biomass and pigment contents using diffuse reflectance spectroscopy and chemometrics. Algal Research, 27(Suppl C), 274–285. doi:10.1016/j.algal.2017.09.016
  • Elfwing, T., & Tedengren, M. (2002). Effects of copper and reduced salinity on grazing activity and macroalgae production: A short-term study on a mollusc grazer, Trochus maculatus, and two species of macroalgae in the inner Gulf of Thailand. Marine Biology, 140(5), 913–919. doi:10.1007/s00227-001-0763-8
  • El-Kassas, H. Y., & El-Sheekh, M. M. (2016). Induction of the synthesis of bioactive compounds of the marine alga Tetraselmis tetrathele (West) Butcher grown under salinity stress. The Egyptian Journal of Aquatic Research, 42(4), 385–391. doi:10.1016/j.ejar.2016.10.006
  • Engström-Öst, J., Repka, S., & Mikkonen, M. (2011). Interactions between plankton and cyanobacterium Anabaena with focus on salinity, growth and toxin production. Harmful Algae, 10(5), 530–535. doi:10.1016/j.hal.2011.04.002
  • Ericsson, B., & Hallmans, B. (1994). Treatment and disposal of saline wastewater from coal mines in Poland. Desalination, 98(1–3), 239–248. doi:10.1016/0011-9164(94)00148-0
  • Escapa, C., Coimbra, R. N., Paniagua, S., García, A. I., & Otero, M. (2015). Nutrients and pharmaceuticals removal from wastewater by culture and harvesting of Chlorella sorokiniana. Bioresource Technology, 185, 276–284. doi:10.1016/j.biortech.2015.03.004
  • Fan, L., Brett, M. T., Li, B., & Song, M. (2018). The bioavailability of different dissolved organic nitrogen compounds for the freshwater algae Raphidocelis subcapitata. Science of the Total Environment, 618(Suppl C), 479–486. doi:10.1016/j.scitotenv.2017.11.096
  • Fang, L., Qi, S. Y., Xu, Z. Y., Wang, W., He, J., Chen, X., & Liu, J. H. (2017). De novo transcriptomic profiling of Dunaliella salina reveals concordant flows of glycerol metabolic pathways upon reciprocal salinity changes. Algal Research, 23, 135–149. doi:10.1016/j.algal.2017.01.017
  • Fasahati, P., Saffron, C. M., Woo, H. C., & Liu, J. J. (2017). Potential of brown algae for sustainable electricity production through anaerobic digestion. Energy Conversion Management., 135, 297–307. doi:10.1016/j.enconman.2016.12.084
  • Feng, Y. Y., Hou, L. C., Ping, N. X., Ling, T. D., & Kyo, C. I. (2004). Development of mariculture and its impacts in Chinese coastal waters. Reviews in Fish Biology and Fisheries, 14(1), 1–10. doi:10.1007/s11160-004-3539-7
  • Figueroa, M., Mosquera-Corral, A., Campos, J. L., & Mendez, R. (2008). Treatment of saline wastewater in SBR aerobic granular reactors. Water Science and Technology, 58(2), 479–485. doi:10.2166/wst.2008.406
  • Finnegan, C., Ryan, D., Enright, A.-M., & Garcia-Cabellos, G. (2018). A review of strategies for the detection and remediation of organotin pollution. Critical Reviews in Environmental Science and Technology, 48(1), 77–118. doi:10.1080/10643389.2018.1443669
  • Forján, E., Navarro, F., Cuaresma, M., Vaquero, I., Ruíz-Domínguez, M. C., Gojkovic, Ž., … Garbayo, I. (2015). Microalgae: Fast-growth sustainable green factories. Critical Reviews in Environmental Science and Technology, 45(16), 1705–1755. doi:10.1080/10643389.2014.966426
  • Furuhashi, K., Hasegawa, F., Saga, K., Kudou, S., Okada, S., Kaizu, Y., & Imou, K. (2016). Effects of culture medium salinity on the hydrocarbon extractability, growth and morphology of Botryococcus braunii. Biomass and Bioenergy, 91(Suppl C), 83–90. doi:10.1016/j.biombioe.2016.05.007
  • Gebauer, R., & Eikebrokk, B. (2006). Mesophilic anaerobic treatment of sludge from salmon smolt hatching. Bioresource Technology, 97(18), 2389–2401. doi:10.1016/j.biortech.2005.10.008
  • Goh, P. S., & Ismail, A. F. (2018). A review on inorganic membranes for desalination and wastewater treatment. Desalination, 434, 60–80. doi:10.1016/j.desal.2017.07.023
  • Gonçalves, A. M. M., Barroso, D. V., Serafim, T. L., Verdelhos, T., Marques, J. C., & Gonçalves, F. (2017). The biochemical response of two commercial bivalve species to exposure to strong salinity changes illustrated by selected biomarkers. Ecological Indicators, 77(Suppl C), 59–66. doi:10.1016/j.ecolind.2017.01.020
  • Groisillier, A., Shao, Z., Michel, G., Goulitquer, S., Bonin, P., Krahulec, S., … Tonon, T. (2014). Mannitol metabolism in brown algae involves a new phosphatase family. Journal of Experimental Botany, 65(2), 559–570. doi:10.1093/jxb/ert405
  • Gu, N., Lin, Q., Li, G., Qin, G., Lin, J., & Huang, L. (2012). Effect of salinity change on biomass and biochemical composition of Nannochloropsis oculata. Journal of the World Aquaculture Society, 43(1), 97–106. doi:10.1111/j.1749-7345.2011.00538.x
  • Guo, N., Wang, Y., Tong, T., & Wang, S. (2018). The fate of antibiotic resistance genes and their potential hosts during bio-electrochemical treatment of high-salinity pharmaceutical wastewater. Water Research, 133, 79–86. doi:10.1016/j.watres.2018.01.020
  • Gupta, V. K., Nayak, A., Bhushan, B., & Agarwal, S. (2015). A critical analysis on the efficiency of activated carbons from low-cost precursors for heavy metals remediation. Critical Reviews in Environmental Science and Technology, 45(6), 613–668. doi:10.1080/10643389.2013.876526
  • Gylle, A. M., Nygård, C. A., & Ekelund, N. G. A. (2009). Desiccation and salinity effects on marine and brackish Fucus vesiculosus L. (Phaeophyceae). Phycologia, 48(3), 156–164. doi:10.2216/08-45.1
  • Heizer, W. D., Sandler, R. S., Seal, E., Jr., Murray, S. C., Busby, M. G., Schliebe, B. G., & Pusek, S. N. (1997). Intestinal effects of sulfate in drinking water on normal human subjects. Digestive Diseases and Sciences, 42(5), 1055–1061. doi:10.1023/A:1018801522760
  • Hellebust, J. A. (1985). Mechanisms of response to salinity in halotolerant microalgae. Plant and Soil, 89(1–3), 69–81. doi:10.1007/BF02182234
  • Herbst, D. B., & Bradley, T. J. (1989). Salinity and nutrient limitations on growth of benthic algae from two alkaline Salt Lakes of the Western Great Basin (USA). Journal of Phycology, 25(4), 673–678. doi:10.1111/j.0022-3646.1989.00673.x
  • Ho, S. H., Nakanishi, A., Kato, Y., Yamasaki, H., Chang, J. S., Misawa, N., … Kondo, A. (2017). Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. Science Reports, 7, 11.
  • Huang, J., Prochazka, M. J., & Triantafilis, J. (2016). Irrigation salinity hazard assessment and risk mapping in the lower Macintyre Valley, Australia. Science of the Total Environment, 551-552, 460–473. doi:10.1016/j.scitotenv.2016.01.200
  • Huang, W., Li, B., Zhang, C., Zhang, Z., Lei, Z., Lu, B., & Zhou, B. (2015). Effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors. Bioresource Technology, 179, 187–192. doi:10.1016/j.biortech.2014.12.024
  • Huang, X., Yang, J., Wang, J., Bi, J., Xie, C., & Hao, H. (2018). Design and synthesis of core–shell Fe3O4@PTMT composite magnetic microspheres for adsorption of heavy metals from high salinity wastewater. Chemosphere, 206, 513–521. doi:10.1016/j.chemosphere.2018.04.184
  • Huang, Z., Wang, Y., Jiang, L., Xu, B., Wang, Y., Zhao, H., & Zhou, W. (2018). Mechanism and performance of a self-flocculating marine bacterium in saline wastewater treatment. Chemical Engineering Journal, 334, 732–740. doi:10.1016/j.cej.2017.10.076
  • Hwang, E. K., Yoo, H. C., Baek, J. M., & Park, C. S. (2015). Effect of pH and salinity on the removal of phytal animals during summer cultivation of Sargassum fusiforme and Sargassum fulvellum in Korea. Journal of Applied Phycology, 27(5), 1985–1989. doi:10.1007/s10811-014-0511-3
  • Ishika, T., Moheimani, N. R., Bahri, P. A., Laird, D. W., Blair, S., & Parlevliet, D. (2017). Halo-adapted microalgae for fucoxanthin production: Effect of incremental increase in salinity. Algal Research, 28, 66–73. doi:10.1016/j.algal.2017.10.002
  • Jin, Y., Fu, J., Chen, R., Zhang, Q., Zheng, X., Chen, X., & Liu, Y. (2018). Ammonium and phosphorus recovery and electricity generation from mariculture wastewater by the seawater battery. Energy Conversion Management., 160, 396–402. doi:10.1016/j.enconman.2018.01.055
  • Jorfi, S., Pourfadakari, S., & Ahmadi, M. (2017). Electrokinetic treatment of high saline petrochemical wastewater: Evaluation and scale-up. Journal of Environmental Management, 204, 221–229. doi:10.1016/j.jenvman.2017.08.058
  • Judd, S. J., Al Momani, F. A. O., Znad, H., & Al Ketife, A. M. D. (2017). The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement. Renewable and Sustainable Energy Reviews, 71, 379–387. doi:10.1016/j.rser.2016.12.068
  • Karimov, A., Qadir, M., Noble, A., Vyshpolsky, F., & Anzelm, K. (2009). Development of magnesium-dominant soils under irrigated agriculture in Southern Kazakhstan. Pedosphere, 19(3), 331–343. doi:10.1016/S1002-0160(09)60124-7
  • Kato, Y., Ho, S.-H., Vavricka, C. J., Chang, J.-S., Hasunuma, T., & Kondo, A. (2017). Evolutionary engineering of salt-resistant Chlamydomonas sp. strains reveals salinity stress-activated starch-to-lipid biosynthesis switching. Bioresource Technology, 245(Part B), 1484–1490. doi:10.1016/j.biortech.2017.06.035
  • Kazner, C., Jamil, S., Phuntsho, S., Shon, H. K., Wintgens, T., & Vigneswaran, S. (2014). Forward osmosis for the treatment of reverse osmosis concentrate from water reclamation: Process performance and fouling control. Water Science and Technology, 69(12), 2431–2437. doi:10.2166/wst.2014.138
  • Kester, D. R., Duedall, I. W., Connors, D. N., & Pytkowicz, R. M. (1967). Preparation of artificial seawater. Limnology and Oceanography, 12(1), 176–179. doi:10.4319/lo.1967.12.1.0176
  • Khandare, R. V., & Govindwar, S. P. (2015). Phytoremediation of textile dyes and effluents: Current scenario and future prospects. Biotechnology Advances, 33(8), 1697–1714. doi:10.1016/j.biotechadv.2015.09.003
  • Khaska, M., Le Gal La Salle, C., Lancelot, J., Team, A., Mohamad, A., Verdoux, P., … Simler, R. (2013). Origin of groundwater salinity (current seawater vs. saline deep water) in a coastal karst aquifer based on Sr and Cl isotopes. Case study of the La Clape massif (southern France). Applied Geochemistry, 37, 212–227. doi:10.1016/j.apgeochem.2013.07.006
  • Khengaoui, K., Mahammed, M. H., Touil, Y., & Amrane, A. (2015). Influence of secondary salinity wastewater on the efficiency of biological treatment of sand filter. Energy Procedia, 74, 398–403. doi:10.1016/j.egypro.2015.07.636
  • Kim, H.-C., Choi, W. J., Chae, A. N., Park, J., Kim, H. J., & Song, K. G. (2016). Treating high-strength saline piggery wastewater using the heterotrophic cultivation of Acutodesmus obliquus. Biochemical Engineering Journal., 110(Suppl. C), 51–58. doi:10.1016/j.bej.2016.02.011
  • Kim, I. H., Choi, J. H., Joo, J. O., Kim, Y. K., Choi, J. W., & Oh, B. K. (2015). Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. Journal of Microbiology and Biotechnology, 25(9), 1542–1546. doi:10.4014/jmb.1504.04067
  • Klekner, V., & Kosaric, N. (1992). Degradation of phenolic mixtures by chlorella. Environmental Technology, 13(5), 503–506. doi:10.1080/09593339209385177
  • Knoop, C., Tietze, M., Dornack, C., & Raab, T. (2018). Fate of nutrients and heavy metals during two-stage digestion and aerobic post-treatment of municipal organic waste. Bioresource Technology, 251, 238–248. doi:10.1016/j.biortech.2017.12.019
  • Kotchoni, S. O., Gachomo, E. W., Slobodenko, K., & Shain, D. H. (2016). AMP deaminase suppression increases biomass, cold tolerance and oil content in green algae. Algal Research, 16, 473–480. doi:10.1016/j.algal.2016.04.007
  • Kubo, M., Hiroe, J., Murakami, M., Fukami, H., & Tachiki, T. (2001). Treament of hypersaline-containing wastewater with salt- tolerant microorganisms. Journal of Bioscience and Bioengineering, 91(2), 222–224. doi:10.1263/jbb.91.222
  • Kumar, A., Guria, C., & Pathak, A. K. (2017). Potential CO2 fixation and optimal Dunaliella tertiolecta cultivation: Influence of fertilizer, wavelength of light-emitting diodes, salinity and carbon supply strategy. Journal of Co2 Utilization, 22(Suppl. C), 164–177. doi:10.1016/j.jcou.2017.09.013
  • Lay, W. C. L., Zhang, Q., Zhang, J., McDougald, D., Tang, C., Wang, R., … Fane, A. G. (2012). Effect of pharmaceuticals on the performance of a novel osmotic membrane bioreactor (OMBR). Separation Science and Technology, 47(4), 543–554. doi:10.1080/01496395.2011.630249
  • Lee, Y., & Chang, S. (2017). The changes of proteins and polysaccharides in extracellular polymeric substance for Spirogyra fluviatilis under different salinity. IOP Conference Series: Earth and Environmental Science, 64, 012118. doi:10.1088/1755-1315/64/1/012118
  • Lefebvre, O., & Moletta, R. (2006). Treatment of organic pollution in industrial saline wastewater: A literature review. Water Research, 40(20), 3671–3682. doi:10.1016/j.watres.2006.08.027
  • Lefebvre, O., Vasudevan, N., Torrijos, M., Thanasekaran, K., & Moletta, R. (2005). Halophilic biological treatment of tannery soak liquor in a sequencing batch reactor. Water Research, 39(8), 1471–1480. doi:10.1016/j.watres.2004.12.038
  • Li, J., Pu, L., Han, M., Zhu, M., Zhang, R., & Xiang, Y. (2014). Soil salinization research in China: Advances and prospects. Journal of Geographical Sciences, 24(5), 943–960. doi:10.1007/s11442-014-1130-2
  • Li, J., Shi, W., Jiang, C., Bai, L., Wang, T., Yu, J., & Ruan, W. (2018). Evaluation of potassium as promoter on anaerobic digestion of saline organic wastewater. Bioresource Technology, 266, 68–74. doi:10.1016/j.biortech.2018.06.066
  • Li, T., Zhang, W., Zhai, S., Gao, G., Ding, J., Zhang, W., … Lv, L. (2018). Efficient removal of nickel (II) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane. Water Research, 143, 87–98. doi:10.1016/j.watres.2018.06.031
  • Li, Y. H., Wang, D., Xu, X. T., Gao, X. X., Sun, X., & Xu, N. J. (2017). Physiological responses of a green algae (Ulva prolifera) exposed to simulated acid rain and decreased salinity. Photosynthetica, 55(4), 623–629. doi:10.1007/s11099-017-0689-0
  • Liang, L., & Xue, D. (2017). Kinetics of cellulose hydrolysis by halostable cellulase from a marine Aspergillus niger at different salinities. Process Biochemistry, 63, 163–168.
  • Liang, Y., Zhu, H., Bañuelos, G., Yan, B., Zhou, Q., Yu, X., & Cheng, X. (2017). Constructed wetlands for saline wastewater treatment: A review. Ecological Engineering, 98, 275–285. doi:10.1016/j.ecoleng.2016.11.005
  • Lin, L., Jiang, W., & Xu, P. (2017). Comparative study on pharmaceuticals adsorption in reclaimed water desalination concentrate using biochar: Impact of salts and organic matter. Science of the Total Environment, 601, 857–864. doi:10.1016/j.scitotenv.2017.05.203
  • Lofrano, G., Meriç, S., Zengin, G. E., & Orhon, D. (2013). Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review. Science of the Total Environment, 461, 265–281. doi:10.1016/j.scitotenv.2013.05.004
  • Luo, Y., Le-Clech, P., & Henderson, R. K. (2017). Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: A review. Algal Research, 24, 425–437. doi:10.1016/j.algal.2016.10.026
  • Maeng, S. K., Khan, W., Park, J. W., Han, I., Yang, H. S., Song, K. G., … Kim, H.-C. (2018). Treatment of highly saline RO concentrate using Scenedesmus quadricauda for enhanced removal of refractory organic matter. Desalination, 430, 128–135. doi:10.1016/j.desal.2017.12.056
  • Maharaja, P., Mahesh, M., Chitra, C., Kalaivani, D., Srividya, R., Swarnalatha, S., & Sekaran, G. (2017). Sequential oxic-anoxic bio reactor for the treatment of tannery saline wastewater using halophilic and filamentous bacteria. Journal of Water Process Engineering, 18, 47–57. doi:10.1016/j.jwpe.2017.03.011
  • McCool, B. C., Rahardianto, A., Faria, J. I., & Cohen, Y. (2013). Evaluation of chemically-enhanced seeded precipitation of RO concentrate for high recovery desalting of high salinity brackish water. Desalination, 317, 116–126. doi:10.1016/j.desal.2013.01.010
  • Mehta, C. M., Khunjar, W. O., Nguyen, V., Tait, S., & Batstone, D. J. (2015). Technologies to recover nutrients from waste streams: A critical review. Critical Reviews in Environmental Science and Technology, 45(4), 385–427. doi:10.1080/10643389.2013.866621
  • Meng, X., Liu, G., Zhou, J., & Fu, Q. S. (2014). Effects of redox mediators on azo dye decolorization by Shewanella algae under saline conditions. Bioresource Technology, 151(Suppl. C), 63–68. doi:10.1016/j.biortech.2013.09.131
  • Miao, H., Wang, S., Zhao, M., Huang, Z., Ren, H., Yan, Q., & Ruan, W. (2014). Codigestion of Taihu blue algae with swine manure for biogas production. Energy Conversion Management, 77, 643–649. doi:10.1016/j.enconman.2013.10.025
  • Mirbolooki, H., Amirnezhad, R., & Pendashteh, A. R. (2017). Treatment of high saline textile wastewater by activated sludge microorganisms. Journal of Applied Research and Technology, 15(2), 167–172. doi:10.1016/j.jart.2017.01.012
  • Mishra, A., & Jha, B. (2009). Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliellasalina under salt stress. Bioresource Technology, 100(13), 3382–3386. doi:10.1016/j.biortech.2009.02.006
  • Miura, T., Kita, A., Okamura, Y., Aki, T., Matsumura, Y., Tajima, T., … Nakashimada, Y. (2014). Evaluation of marine sediments as microbial sources for methane production from brown algae under high salinity. Bioresource Technology, 169(Suppl. C), 362–366. doi:10.1016/j.biortech.2014.07.013
  • Miura, T., Kita, A., Okamura, Y., Aki, T., Matsumura, Y., Tajima, T., … Nakashimada, Y. (2015). Improved methane production from brown algae under high salinity by fed-batch acclimation. Bioresource Technology, 187(Suppl. C), 275–281. doi:10.1016/j.biortech.2015.03.142
  • Miura, T., Kita, A., Okamura, Y., Aki, T., Matsumura, Y., Tajima, T., … Nakashimada, Y. (2017). Improved methanization and microbial diversity during batch mode cultivation with repetition of substrate addition using defined organic matter and marine sediment inoculum at seawater salinity. Bioresource Technology, 245(Part A), 833–840. doi:10.1016/j.biortech.2017.09.009
  • Muschal, M. (2006). Assessment of risk to aquatic biota from elevated salinity - a case study from the Hunter River, Australia. Journal of Environmental Management, 79(3), 266–278. doi:10.1016/j.jenvman.2005.08.002
  • Nedbalova, L., Strizek, A., Sigler, K., & Rezanka, T. (2016). Effect of salinity on the fatty acid and triacylglycerol composition of five haptophyte algae from the genera Coccolithophora, Isochrysis and Prymnesium determined by LC-MS/APCI. Phytochemistry, 130, 64–76. doi:10.1016/j.phytochem.2016.06.001
  • New South Wales Government. (2003). Retrieved from http://www.environment.nsw.gov.au/salinity/basics/costs.htm.
  • Ng, K. K., Shi, X., Tang, M. K. Y., & Ng, H. Y. (2014). A novel application of anaerobic bio-entrapped membrane reactor for the treatment of chemical synthesis-based pharmaceutical wastewater. Separation and Purification Technology, 132, 634–643. doi:10.1016/j.seppur.2014.06.021
  • Nguyen, N. C., Chen, S.-S., Nguyen, H. T., Chen, Y.-H., Ngo, H. H., Guo, W., … Le, Q. H. (2018). Applicability of an integrated moving sponge biocarrier-osmotic membrane bioreactor MD system for saline wastewater treatment using highly salt-tolerant microorganisms. Separation and Purification Technology, 198, 93–99. doi:10.1016/j.seppur.2017.01.011
  • Nygard, C. A., & Dring, M. J. (2008). Influence of salinity, temperature, dissolved inorganic carbon and nutrient concentration on the photosynthesis and growth of Fucus vesiculosus from the Baltic and Irish Seas. European Journal of Phycology, 43(3), 253–262. doi:10.1080/09670260802172627
  • Okai, M., Betsuno, A., Shirao, A., Obara, N., Suzuki, K., Takei, T., … Urano, N. (2017). Citeromyces matritensis M37 is a salt-tolerant yeast that produces ethanol from salted algae. Canadian Journal of Microbiology, 63(1), 20–26. doi:10.1139/cjm-2016-0259
  • Omil, F., Méndez, R., & Lema, J. M. (1995). Anaerobic treatment of saline wastewaters under high sulphide and ammonia content. Bioresource Technology, 54(3), 269–278. doi:10.1016/0960-8524(95)00143-3
  • Petersen, K., Heiaas, H. H., & Tollefsen, K. E. (2014). Combined effects of pharmaceuticals, personal care products, biocides and organic contaminants on the growth of Skeletonema pseudocostatum. Aquatic Toxicology, 150, 45–54. doi:10.1016/j.aquatox.2014.02.013
  • Pradhan, S., Fan, L., & Roddick, F. A. (2015). Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2–BAC treatment. Chemosphere, 136, 198–203. doi:10.1016/j.chemosphere.2015.05.028
  • Qin, L., Liu, Q., Meng, Q., Fan, Z., He, J., Liu, T., … Zhang, G. (2017). Anoxic oscillating MBR for photosynthetic bacteria harvesting and high salinity wastewater treatment. Bioresource Technology, 224, 69–77. doi:10.1016/j.biortech.2016.10.067
  • Qiu, Y.-W., Zeng, E. Y., Qiu, H., Yu, K., & Cai, S. (2017). Bioconcentration of polybrominated diphenyl ethers and organochlorine pesticides in algae is an important contaminant route to higher trophic levels. Science of the Total Environment, 579(Suppl. C), 1885–1893. doi:10.1016/j.scitotenv.2016.11.192
  • Queensland Government. (2013). Retrieved from https://www.qld.gov.au/environment/land/soil/salinity/impacts.
  • Rahardianto, A., McCool, B. C., & Cohen, Y. (2010). Accelerated desupersaturation of reverse osmosis concentrate by chemically-enhanced seeded precipitation. Desalination, 264(3), 256–267. doi:10.1016/j.desal.2010.06.018
  • Rashel, R. H., & Patiño, R. (2017). Influence of genetic background, salinity, and inoculum size on growth of the ichthyotoxic golden alga (Prymnesium parvum). Harmful Algae, 66(Suppl. C), 97–104. doi:10.1016/j.hal.2017.05.010
  • Ren, L.-F., Chen, R., Zhang, X., Shao, J., & He, Y. (2017). Phenol biodegradation and microbial community dynamics in extractive membrane bioreactor (EMBR) for phenol-laden saline wastewater. Bioresource Technology, 244, 1121–1128. doi:10.1016/j.biortech.2017.08.121
  • Rocha, D. N., Martins, M. A., Soares, J., Vaz, M. G. M. V., de Oliveira Leite, M., Covell, L., & Mendes, L. B. B. (2019). Combination of trace elements and salt stress in different cultivation modes improves the lipid productivity of Scenedesmus spp. Bioresource Technology, 289, 121644. doi:10.1016/j.biortech.2019.121644
  • Rodriguez, C., Alaswad, A., Mooney, J., Prescott, T., & Olabi, A. G. (2015). Pre-treatment techniques used for anaerobic digestion of algae. Fuel Processing Technology, 138, 765–779. doi:10.1016/j.fuproc.2015.06.027
  • Ruangsomboon, S., Ganmanee, M., & Choochote, S. (2013). Effects of different nitrogen, phosphorus, and iron concentrations and salinity on lipid production in newly isolated strain of the tropical green microalga, Scenedesmus dimorphus KMITL. Journal of Applied Phycology, 25(3), 867–874. doi:10.1007/s10811-012-9956-4
  • Sahu, A., Pancha, I., Jain, D., Paliwal, C., Ghosh, T., Patidar, S., … Mishra, S. (2013). Fatty acids as biomarkers of microalgae. Phytochemistry, 89(Suppl. C), 53–58. doi:10.1016/j.phytochem.2013.02.001
  • Shi, X., Lefebvre, O., Ng, K. K., & Ng, H. Y. (2014). Sequential anaerobic–aerobic treatment of pharmaceutical wastewater with high salinity. Bioresource Technology, 153, 79–86. doi:10.1016/j.biortech.2013.11.045
  • Shi, X., Yeap, T. S., Huang, S., Chen, J., & Ng, H. Y. (2018). Pretreatment of saline antibiotic wastewater using marine microalga. Bioresource Technology, 258, 240–246. doi:10.1016/j.biortech.2018.02.110
  • Singh, P., Jain, R., Srivastava, N., Borthakur, A., Pal, D. B., Singh, R., … Mishra, P. K. (2017). Current and emerging trends in bioremediation of petrochemical waste: A review. Critical Reviews in Environmental Science and Technology, 47(3), 155–201. doi:10.1080/10643389.2017.1318616
  • Singh, R., Upadhyay, A. K., Chandra, P., & Singh, D. P. (2018). Sodium chloride incites reactive oxygen species in green algae Chlorococcum humicola and Chlorella vulgaris: Implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresource Technology, 270, 489–497. doi:10.1016/j.biortech.2018.09.065
  • Singh, S. K., Sundaram, S., Sinha, S., Rahman, M. A., & Kapur, S. (2016). Recent advances in CO2 uptake and fixation mechanism of cyanobacteria and microalgae. Critical Reviews in Environmental Science and Technology, 46(16), 1297–1323. doi:10.1080/10643389.2016.1217911
  • Søgaard, D. H., Hansen, P. J., Rysgaard, S., & Glud, R. N. (2011). Growth limitation of three Arctic sea ice algal species: Effects of salinity, pH, and inorganic carbon availability. Polar Biology, 34(8), 1157–1165. doi:10.1007/s00300-011-0976-3
  • Somensi, C. A., Simionatto, E. L., Bertoli, S. L., Wisniewski, A., & Radetski, C. M. (2010). Use of ozone in a pilot-scale plant for textile wastewater pre-treatment: Physicochemical efficiency, degradation by-products identification and environmental toxicity of treated wastewater. Journal of Hazardous Materials, 175(1–3), 235–240. doi:10.1016/j.jhazmat.2009.09.154
  • Song, W., Li, Z., Ding, Y., Liu, F., You, H., Qi, P., … Jin, C. (2018). Performance of a novel hybrid membrane bioreactor for treating saline wastewater from mariculture: Assessment of pollutants removal and membrane filtration performance. Chemical Engineering Journal, 331, 695–703. doi:10.1016/j.cej.2017.09.032
  • Srivastava, G., & Nishchal, Goud, V. V. (2017). Salinity induced lipid production in microalgae and cluster analysis (ICCB 16-BR_047). Bioresource Technology, 242, 244–252.
  • Subashchandrabose, S. R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2013). Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environment International, 51, 59–72. doi:10.1016/j.envint.2012.10.007
  • Sudhakar, M. P., Jegatheesan, A., Poonam, C., Perumal, K., & Arunkumar, K. (2017). Biosaccharification and ethanol production from spent seaweed biomass using marine bacteria and yeast. Renewable Energy, 105, 133–139. doi:10.1016/j.renene.2016.12.055
  • Sundarapandiyan, S., Chandrasekar, R., Ramanaiah, B., Krishnan, S., & Saravanan, P. (2010). Electrochemical oxidation and reuse of tannery saline wastewater. Journal of Hazardous Materials, 180(1–3), 197–203. doi:10.1016/j.jhazmat.2010.04.013
  • Swapnil, P., Yadav, A. K., Srivastav, S., Sharma, N. K., Srikrishna, S., & Rai, A. K. (2017). Biphasic ROS accumulation and programmed cell death in a cyanobacterium exposed to salinity (NaCl and Na2SO4). Algal Research, 23, 88–95. doi:10.1016/j.algal.2017.01.014
  • Takolander, A., Leskinen, E., & Cabeza, M. (2017). Synergistic effects of extreme temperature and low salinity on foundational macroalga Fucus vesiculosus in the northern Baltic Sea. Journal of Experimental Marine Biology and Ecology, 495(Suppl. C), 110–118. doi:10.1016/j.jembe.2017.07.001
  • Tomasini, H. R., Hacifazlioglu, M. C., Kabay, N., Bertin, L., Pek, T. O., & Yuksel, M. (2019). Concentrate management for integrated MBR-RO process for wastewater reclamation and reuse-preliminary tests. Journal of Water Process Engineering, 29, 100455. doi:10.1016/j.jwpe.2017.07.020
  • Tomei, M. C., Mosca Angelucci, D., & Daugulis, A. J. (2016). Sequential anaerobic-aerobic decolourization of a real textile wastewater in a two-phase partitioning bioreactor. Science of the Total Environment, 573, 585–593. doi:10.1016/j.scitotenv.2016.08.140
  • Tomei, M. C., Mosca Angelucci, D., Stazi, V., & Daugulis, A. J. (2017). On the applicability of a hybrid bioreactor operated with polymeric tubing for the biological treatment of saline wastewater. Science of the Total Environment, 599, 1056–1063. doi:10.1016/j.scitotenv.2017.05.042
  • Torres, F. A. E., Passalacqua, T. G., Velásquez, A. M. A., de Souza, R. A., Colepicolo, P., & Graminha, M. A. S. (2014). New drugs with antiprotozoal activity from marine algae: A review. Revista Brasileira de Farmacognosia, 24(3), 265–276. doi:10.1016/j.bjp.2014.07.001
  • Tovar, A., Moreno, C., Mánuel-Vez, M. P., & Garcı́a-Vargas, M. (2000). Environmental impacts of intensive aquaculture in marine waters. Water Research, 34(1), 334–342. doi:10.1016/S0043-1354(99)00102-5
  • Tsutsui, I., Miyoshi, T., Aue-Umneoy, D., Songphatkaew, J., Meeanan, C., Klomkling, S., … Hamano, K. (2015). High tolerance of Chaetomorpha sp. to salinity and water temperature enables survival and growth in stagnant waters of central Thailand. International Aquatic Research, 7(1), 47–62. doi:10.1007/s40071-014-0092-4
  • Víctor-Ortega, M. D., Ochando-Pulido, J. M., & Martínez-Ferez, A. (2015). Impacts of integrated strong-acid cation exchange and weak-base anion exchange process for successful removal of saline toxicity from model olive mill wastewater. Ecological Engineering, 77, 18–25. doi:10.1016/j.ecoleng.2015.01.005
  • Vo Hoang Nhat, P., Ngo, H. H., Guo, W. S., Chang, S. W., Nguyen, D. D., Nguyen, P. D., … Guo, J. B. (2018). Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation? Bioresource Technology, 256, 491–501. doi:10.1016/j.biortech.2018.02.031
  • Vo, H. N. P., Ngo, H. H., Guo, W., Liu, Y., Chang, S. W., Nguyen, D. D., … Ren, J. (2019). Identification of the pollutants’ removal and mechanism by microalgae in saline wastewater. Bioresource Technology, 275, 44–52. doi:10.1016/j.biortech.2018.12.026
  • von Alvensleben, N., Stookey, K., Magnusson, M., & Heimann, K. (2013). Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater Cyanobacterium Pseudanabaena limnetica. PLoS One, 8(5), e63569. doi:10.1371/journal.pone.0063569
  • Wang, H.-M. D., Li, X.-C., Lee, D.-J., & Chang, J.-S. (2017). Potential biomedical applications of marine algae. Bioresource Technology, 244(Part 2), 1407–1415. doi:10.1016/j.biortech.2017.05.198
  • Wang, W., Wu, B., Pan, S., Yang, K., Hu, Z., & Yuan, S. (2017). Performance robustness of the UASB reactors treating saline phenolic wastewater and analysis of microbial community structure. Journal of Hazardous Materials, 331, 21–27. doi:10.1016/j.jhazmat.2017.02.025
  • Wang, X.-X., Wu, Y.-H., Zhang, T.-Y., Xu, X.-Q., Dao, G.-H., & Hu, H.-Y. (2016). Simultaneous nitrogen, phosphorous, and hardness removal from reverse osmosis concentrate by microalgae cultivation. Water Research, 94, 215–224. doi:10.1016/j.watres.2016.02.062
  • Wei, S. J., Bian, Y. Y., Zhao, Q., Chen, S. X., Mao, J. W., Song, C. X., … Dai, S. J. (2017). Salinity-induced palmella formation mechanism in halotolerant algae Dunaliella salina revealed by quantitative proteomics and phosphoproteomics. Front. Plant Sci, 8, 27. doi:10.3389/fpls.2017.00810
  • Weiner, J. A., DeLorenzo, M. E., & Fulton, M. H. (2004). Relationship between uptake capacity and differential toxicity of the herbicide atrazine in selected microalgal species. Aquatic Toxicology, 68(2), 121–128. doi:10.1016/j.aquatox.2004.03.004
  • Wen, J., Dong, H., & Zeng, G. (2018). Application of zeolite in removing salinity/sodicity from wastewater: A review of mechanisms, challenges and opportunities. Journal of Cleaner Production, 197, 1435–1446. doi:10.1016/j.jclepro.2018.06.270
  • Woo, H., Yang, H. S., Timmes, T. C., Han, C., Nam, J.-Y., Byun, S., … Kim, H.-C. (2019). Treatment of reverse osmosis concentrate using an algal-based MBR combined with ozone pretreatment. Water Research, 159, 164–175. doi:10.1016/j.watres.2019.05.003
  • Wu, C., Li, Y., Zhou, Y., Li, Z., Zhang, S., & Liu, H. (2018). Upgrading the Chinese biggest petrochemical wastewater treatment plant: Technologies research and full scale application. Science of the Total Environment, 633, 189–197. doi:10.1016/j.scitotenv.2018.03.164
  • Xiao, J., Zhang, X. H., Gao, C. L., Jiang, M. J., Li, R. X., Wang, Z. L., … Zhang, X. L. (2016). Effect of temperature, salinity and irradiance on growth and photosynthesis of Ulva prolifera. Acta Oceanologica Sinica, 35(10), 114–121. doi:10.1007/s13131-016-0891-0
  • Xiao, R., & Zheng, Y. (2016). Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology Advances, 34(7), 1225–1244. doi:10.1016/j.biotechadv.2016.08.004
  • Xiao, Y., & Roberts, D. J. (2010). A review of anaerobic treatment of saline wastewater. Environmental Technology, 31(8-9), 1025–1043. doi:10.1080/09593331003734202
  • Xiong, J.-Q., Kurade, M. B., Patil, D. V., Jang, M., Paeng, K.-J., & Jeon, B.-H. (2017). Biodegradation and metabolic fate of levofloxacin via a freshwater green alga, Scenedesmus obliquus in synthetic saline wastewater. Algal Research, 25, 54–61. doi:10.1016/j.algal.2017.04.012
  • Xue, D-S., Liang, L-y., Lin, D-Q., Gong, C-J., & Yao, S.-J. (2017). Halostable catalytic properties of exoglucanase from a marine Aspergillus niger and secondary structure change caused by high salinities. Process Biochemistry, 58(Suppl. C), 85–91. doi:10.1016/j.procbio.2017.02.005
  • Yadav, R. K., Tripathi, K., Ramteke, P. W., Varghese, E., & Abraham, G. (2016). Salinity induced physiological and biochemical changes in the freshly separated cyanobionts of Azolla microphylla and Azolla caroliniana. Plant Physiology and Biochemistry, 106(Suppl. C), 39–45. doi:10.1016/j.plaphy.2016.04.031
  • Yan, Z., He, H., Yang, C., Zeng, G., Luo, L., Jiao, P., … Lu, L. (2017). Biodegradation of 3,5-dimethyl-2,4-dichlorophenol in saline wastewater by newly isolated Penicillium sp. yz11-22N2. Journal of Environmental Sciences, 57, 211–220. doi:10.1016/j.jes.2017.02.012
  • Yang, C.-C., Huang, C.-L., Cheng, T.-C., & Lai, H.-T. (2015). Inhibitory effect of salinity on the photocatalytic degradation of three sulfonamide antibiotics. International Biodeterioration & Biodegradation, 102, 116–125. doi:10.1016/j.ibiod.2015.01.015
  • Yeesang, C., & Cheirsilp, B. (2011). Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technology, 102(3), 3034–3040. doi:10.1016/j.biortech.2010.10.013
  • Yihdego, Y., & Webb, J. (2012). Modelling of seasonal and long-term trends in lake salinity in southwestern Victoria, Australia. Journal of Environmental Management, 112, 149–159. doi:10.1016/j.jenvman.2012.07.002
  • Zhang, S., Lin, D., & Wu, F. (2016). The effect of natural organic matter on bioaccumulation and toxicity of chlorobenzenes to green algae. Journal of Hazardous Materials, 311, 186–193. doi:10.1016/j.jhazmat.2016.03.017
  • Zhang, W., Zhao, Y., Cui, B., Wang, H., & Liu, T. (2016). Evaluation of filamentous green algae as feedstocks for biofuel production. Bioresource Technology, 220, 407–413. doi:10.1016/j.biortech.2016.08.106
  • Zhao, P., Gao, B., Yue, Q., Liu, S., & Shon, H. K. (2016). The performance of forward osmosis in treating high-salinity wastewater containing heavy metal Ni2+. Chemical Engineering Journal, 288, 569–576. doi:10.1016/j.cej.2015.12.038
  • Zhao, Z. Y., Ma, S. S., Li, A., Liu, P. H., & Wang, M. (2016). Effects of trophic modes, carbon sources, and salinity on the cell growth and lipid accumulation of tropic ocean oilgae strain Desmodesmus sp. WC08. Applied Biochemistry and Biotechnology, 180(3), 452–463. doi:10.1007/s12010-016-2109-5
  • Zhou, W., Li, Y., Gao, Y., & Zhao, H. (2017). Nutrients removal and recovery from saline wastewater by Spirulina platensis. Bioresource Technology, 245(Part A), 10–17. doi:10.1016/j.biortech.2017.08.160
  • Zhu, L., Wang, Z., Shu, Q., Takala, J., Hiltunen, E., Feng, P., & Yuan, Z. (2013). Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Research, 47(13), 4294–4302. doi:10.1016/j.watres.2013.05.004
  • Zhuang, X., Han, Z., Bai, Z., Zhuang, G., & Shim, H. (2010). Progress in decontamination by halophilic microorganisms in saline wastewater and soil. Environmental Pollution, 158(5), 1119–1126. doi:10.1016/j.envpol.2010.01.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.