2,133
Views
73
CrossRef citations to date
0
Altmetric
Invited Review

Arsenic, lead, and cadmium bioaccessibility in contaminated soils: Measurements and validations

, , , , , , & show all
Pages 1303-1338 | Published online: 29 Aug 2019

References

  • Basta, N. T., Foster, J. N., Dayton, E. A., Rodriguez, R. R., & Casteel, S. W. (2007). The effect of dosing vehicle on arsenic bioaccessibility in smelter-contaminated soils. Journal of Environmental Science and Health, Part A, 42(9), 1275–1281. doi:10.1080/10934520701434927
  • Basta, N. T., & Juhasz, A. (2014). Using in vivo bioavailability and/or in vitro gastrointestinal bioaccessibility testing to adjust human exposure to arsenic from soil ingestion. Reviews in Mineralogy and Geochemistry, 79(1), 451–472.
  • Bradham, K., Diamond, G., Juhasz, A. L., Nelson, C., & Thomas, D. (2017). Comparison of mouse and swine bioassays for determination of soil arsenic relative bioavailability. Applied Geochemistry, 88, 221–225. doi:10.1016/j.apgeochem.2017.05.016
  • Bradham, K. D., Diamond, G. L., Burgess, M., Juhasz, A., Klotzbach, J. M., Maddaloni, M., … Thomas, D. J. (2018a). In vivo and in vitro methods for evaluating soil arsenic bioavailability: Relevant to human health risk assessment. Journal of Toxicology and Environmental Health, Part B, 21(2), 83–114. doi:10.1080/10937404.2018.1440902
  • Bradham, K. D., Diamond, G. L., Nelson, C. M., Noerpel, M., Scheckel, K. G., Elek, B., … Thomas, D. J. (2018b). Long-term in situ reduction in soil lead bioavailability measured in a mouse model. Environmental Science & Technology, 52(23), 13908–13913. doi:10.1021/acs.est.8b04684
  • Bradham, K. D., Diamond, G. L., Scheckel, K. G., Hughes, M. F., Casteel, S. W., Miller, B. W., … Thomas, D. J. (2013). Mouse assay for determination of arsenic bioavailability in contaminated soils. Journal of Environmental Science and Health, Part A, 76(13), 815–826. doi:10.1080/15287394.2013.821395
  • Bradham, K. D., Nelson, C., Juhasz, A. L., Smith, E., Scheckel, K., Obenour, D. R., … Thomas, D. J. (2015). Independent data validation of an in vitro method for the prediction of the relative bioavailability of arsenic in contaminated soils. Environmental Science & Technology, 49(10), 6312–6318. doi:10.1021/acs.est.5b00905
  • Bradham, K. D., Scheckel, K. G., Nelson, C. M., Seales, P. E., Lee, G. E., Hughes, M. F., … Thoms, D. J. (2011). Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils. Environmental Health Perspectives, 119(11), 1629–1634. doi:10.1289/ehp.1003352
  • Brattin, W., & Casteel, S. (2013). Measurement of arsenic relative bioavailability in swine. Journal of Environmental Science and Health, Part A, 76(7), 449–457. doi:10.1080/15287394.2013.771562
  • Brattin, W., Drexler, J., Lowney, Y., Griffin, S., Diamond, G., & Woodbury, L. (2013). An in vitro method for estimation of arsenic relative bioavailability. Journal of Environmental Science and Health, Part A, 76(7), 458–478. doi:10.1080/15287394.2013.771765
  • Casteel, S. W., Weis, C. P., Henningsen, G. M., & Brattin, W. J. (2006). Estimation of relative bioavailability of lead in soil and soil–like materials using young swine. Environmental Health Perspectives, 114(8), 1162–1171. doi:10.1289/ehp.8852
  • Denys, S., Caboche, J., Tack, K., Rychen, G., Wragg, J., Cave, M., … Feidt, C. (2012). In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environmental Science & Technology, 46(11), 6252–6260. doi:10.1021/es3006942
  • Diamond, G. K., Bradham, K. D., Brattin, W. J., Burgess, M., Griffin, S., Hawkins, C. A., … Thomas, D. J. (2016). Predicting oral relative bioavailability of arsenic in soil from in vitro bioaccessibility. Journal of Environmental Science and Health, Part A, 79(4), 165–173. doi:10.1080/15287394.2015.1134038
  • Deutsches Institut fur Normung e.V. (DIN). (2000). Soil Quality − Absorption availability of organic and inorganic pollutants from contaminated soil material. DIN E, 19738.
  • Drexler, J. W., & Brattin, W. J. (2007). An in vitro procedure for estimation of lead relative bioavailability: With validation. Human and Ecological Risk Assessment: An International Journal, 13(2), 383–401. doi:10.1080/10807030701226350
  • Juhasz, A. L., Weber, J., & Smith, E. (2011). Influence of saliva, gastric and intestinal phases on the prediction of As relative bioavailability using the Unified Bioaccessibility Research Group of Europe Method (UBM). Journal of Hazardous Materials, 197, 161–168. doi:10.1016/j.jhazmat.2011.09.068
  • Juhasz, A. L., Basta, N. T., & Smith, E. (2013). What is required for the validation of in vitro assays for predicting contaminant relative bioavailability? Considerations and criteria. Environmental Pollution, 180, 372–375. doi:10.1016/j.envpol.2013.05.008
  • Juhasz, A. L., Gancarz, D., Herde, C., McClure, S., Scheckel, K. G., & Smith, E. (2014). In situ formation of pyromorphite is not required for the reduction of in vivo Pb relative bioavailability in contaminated soils. Environmental Science & Technology, 48(12), 7002–7009. doi:10.1021/es500994u
  • Juhasz, A. L., Herde, P., Herde, C., Boland, J., & Smith, E. (2014). Validation of the predictive capabilities of the Sbrc-G in vitro assay for estimating arsenic relative bioavailability in contaminated soils. Environmental Science & Technology, 48(21), 12962–12969. doi:10.1021/es503695g
  • Juhasz, A. L., Herde, P., Herde, C., Boland, J., & Smith, E. (2015). Predicting arsenic relative bioavailability using multiple in vitro assays: Validation of in vivo-in vitro correlations. Environmental Science & Technology, 49(18), 11167–11175. doi:10.1021/acs.est.5b02508
  • Juhasz, A. L., Scheckel, K. G., Betts, A. R., & Smith, E. (2016). Predictive capabilities of in vitro assays for estimating Pb relative bioavailability in phosphate amended soils. Environmental Science & Technology, 50(23), 13086–13094. doi:10.1021/acs.est.6b04059
  • Juhasz, A. L., Smith, E., Nelson, C., Thomas, D. J., & Bradham, K. D. (2014). Variability associated with As in vivo–in vitro correlations when using different bioaccessibility methodologies. Environmental Science & Technology, 48(19), 11646–11653. doi:10.1021/es502751z
  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., … Naidu, R. (2007). Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere, 69(6), 961–966. doi:10.1016/j.chemosphere.2007.05.018
  • Juhasz, A. L., Weber, J., Naidu, R., Gancarz, D., Rofe, A., Todor, D., & Smith, E. (2010). Determination of cadmium relative bioavailability in contaminated soils and its prediction using in vitro methodologies. Environmental Science & Technology, 44(13), 5240–5247. doi:10.1021/es1006516
  • Juhasz, A. L., Weber, J., Smith, E., Naidu, R., Marschner, B., Rees, M., … Sansom, L. (2009). Evaluation of SBRC–gastric and SBRC–intestinal methods for the prediction of in vivo relative lead bioavailability in contaminated soils. Environmental Science & Technology, 43(12), 4503–4509. doi:10.1021/es803238u
  • Juhasz, A. L., Weber, J., Smith, E., Naidu, R., Rees, M., Rofe, A., … Sansom, L. (2009). Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils. Environmental Science & Technology, 43(24), 9487–9494. doi:10.1021/es902427y
  • Kelley, M. E., Brauning, S. E., Schoof, R. A., & Ruby, M. V. (2002). Assessing oral bioavailability of metals in soil. Columbus, OH: Battelle Press.
  • Li, H. B., Cui, X. Y., Li, K., Li, J., Juhasz, A. L., & Ma, L. Q. (2014). Assessment of in vitro lead bioaccessibility in house dust and its relationship to in vivo lead relative bioavailability. Environmental Science & Technology, 48(15), 8548–8455. doi:10.1021/es501899j
  • Li, H. B., Li, J., Zhu, Y. G., Juhasz, A. L., & Ma, L. Q. (2015). Comparison of arsenic bioaccessibility in housedust and contaminated soils based on four in vitro assays. Science of the Total Environment, 532, 803–811. doi:10.1016/j.scitotenv.2015.06.060
  • Li, H. B., Zhao, D., Li, J., Li, S. W., Wang, N., Juhasz, A. L., … Ma, L. Q. (2016). Using the SBRC assay to predict lead relative bioavailability in urban soils: Contaminant source and correlation model. Environmental Science & Technology, 50(10), 4989–4996. doi:10.1021/acs.est.6b00480
  • Li, J., Li, C., Sun, H. J., Juhasz, A. L., Luo, J., Li, H. B., & Ma, L. Q. (2016). Arsenic relative bioavailability in contaminated soils: Comparison of animal models, dosing schemes, and biological end points. Environmental Science & Technology, 50(1), 453–461. doi:10.1021/acs.est.5b04552
  • Li, J., Li, K., Cave, M., Li, H. B., & Ma, L. Q. (2015). Lead bioaccessibility in 12 contaminated soils from China: Correlation to lead relative bioavailability and lead in different fractions. Journal of Hazardous Materials, 295, 55–62. doi:10.1016/j.jhazmat.2015.03.061
  • Li, J., Li, K., Cui, X. Y., Basta, N., Li, L. P., Li, H. B., & Ma, L. Q. (2015). In vitro bioaccessibility and in vivo relative bioavailability in 12 contaminated soils: Method comparison and method development. Science of the Total Environment, 532, 812–820. doi:10.1016/j.scitotenv.2015.05.113
  • Li, S. W., Liu, X., Sun, H. J., Li, M. Y., Zhao, D., Luo, J., … Ma, L. Q. (2017). Effect of phosphate amendment on relative bioavailability and bioaccessibility of lead and arsenic in contaminated soils. Journal of Hazardous Materials, 339, 256–263. doi:10.1016/j.jhazmat.2017.06.040
  • Li, S. W., Sun, H. J., Li, H. B., Luo, J., & Ma, L. Q. (2016). Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils. Environment International, 94, 600–606. doi:10.1016/j.envint.2016.06.022
  • Li, S. W., Sun, H. J., Wang, G., Cui, X. Y., Juhasz, A. L., Li, H. B., & Ma, L. Q. (2017). Lead relative bioavailability in soils based on different endpoints of a mouse model. Journal of Hazardous Materials, 326, 94–100. doi:10.1016/j.jhazmat.2016.12.023
  • Lin, C. Y., Wang, B. B., Cui, X. Y., Xu, D. Q., Cheng, H. G., Wang, Q., … Liu, Y. Z. (2017). Estimates of soil ingestion in a population of Chinese children. Environmental Health Perspectives, 125(7), 077002. doi:10.1289/EHP930
  • Marschner, B., Welge, P., Hack, A., Wittsiepe, J., & Wilhelm, M. (2006). Comparison of soil Pb in vitro bioaccessibility and in vivo bioavailability with Pb pools from a sequential soil extraction. Environmental Science & Technology., 40(8), 2812–2818.
  • Ollson, C. J., Smith, E., Scheckel, K. G., Betts, A. R., & Juhasz, A. L. (2016). Assessment of arsenic speciation and bioaccessibility in mine-impacted materials. Journal of Hazardous Materials, 313, 130–137. doi:10.1016/j.jhazmat.2016.03.090
  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., … Van Wijnen, J. H. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology, 36(15), 3326–3334. doi:10.1021/es010204v
  • Oomen, A. G., Tolls, J., Sips, A. J. A. M., & Groten, J. P. (2003). In vitro intestinal lead uptake and transport in relation to speciation. Archives of Environmental Contamination and Toxicology, 44(1), 116–124. doi:10.1007/s00244-002-1226-z
  • Rodriguez, R. R., Basta, N. T., Casteel, S. W., & Pace, L. W. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science & Technology, 33(4), 642–649. doi:10.1021/es980631h
  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science & Technology, 30(2), 422–430. doi:10.1021/es950057z
  • Ruby, M. V., & Lowney, Y. W. (2012). Selective soil particle adherence to hands: Implications for understanding oral exposure to soil contaminants. Environmental Science & Technology, 46(23), 12759–12771. doi:10.1021/es302473q
  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., … Chappell, W. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science & Technology, 33(21), 3697–3705. doi:10.1021/es990479z
  • Schroder, J. L., Basta, N. T., Casteel, S. W., Evans, T. J., Payton, M. E., & Si, J. (2004). Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils. Journal of Environment Quality, 33(2), 513–521. doi:10.2134/jeq2004.0513
  • Schroder, J. L., Basta, N. T., Si, J., Casteel, S. W., Evans, T., & Payton, M. (2003). In vitro gastrointestinal method to estimate relative bioavailable cadmium in contaminated soil. Environmental Science & Technology, 37(7), 1365–1370. doi:10.1021/es026105e
  • Smith, B. A., Kirk, J. L., & Stephenson, G. L. (2010). The influence of liquid to soil ratios on arsenic and lead bioaccessibility in reference and field soil. Human and Ecological Risk Assessment: An International Journal, 16(1), 149–162. doi:10.1080/10807030903459163
  • Smith, E., Kempson, I. M., Juhasz, A. L., Weber, J., Rofe, A., Gancarz, D., … Gräfe, M. (2011). In vivo–in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils. Environmental Science & Technology, 45(14), 6145–6152. doi:10.1021/es200653k
  • Smith, E., Scheckel, K., Miller, B. W., Weber, J., & Juhasz, A. L. (2014). Influence of in vitro assay pH and extractant composition on As bioaccessibility in contaminated soils. Science of the Total Environment, 473–474, 171–177. doi:10.1016/j.scitotenv.2013.12.030
  • USEPA. (1994). Guidance manual for the integrated exposure uptake biokinetic model for lead in children. Washington, DC: United States Environmental Protection Agency.
  • USEPA. (2008). Child specific exposure factors handbook. Washington, DC: U.S. Environmental Protection Agency (EPA). Retrieved from http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=199243
  • USEPA. (2009). Validation assessment of in vitro lead bioaccessibility assay for predicting relative bioavailability of lead in soils and soil-like materials at superfund sites (pp. 3–51). Washington, DC: U.S. Environmental Protection Agency. OSWER 9200.
  • USEPA. (2012). Compilation and review of data on relative bioavailability of arsenic in soil (pp. 1–113). Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. OSWER 9200. Retrieved from http://www.epa.gov/superfund/health/contaminants/bioavailability/guidance.htm
  • USEPA. (2013). In vitro bioaccessibility assay for lead in soil. Washington, DC: U.S. Environmental Protection Agency. Method 1340.
  • von Lindern, I., Spalinger, S., Stifelman, M. L., Stanek, L. W., & Bartrem, C. (2016). Estimating children’s soil/dust ingestion rates through retrospective analyses of blood lead biomonitoring from the Bunker Hill Superfund Site in Idaho. Environmental Health Perspectives, 124(9), 1462–1470. doi:10.1289/ehp.1510144
  • Whitacre, S., Basta, N., Stevens, B., Hanley, V., Anderson, R., & Scheckel, K. (2017). Modification of an existing in vitro method to predict relative bioavailable arsenic in soils. Chemosphere, 180, 545–552. doi:10.1016/j.chemosphere.2017.03.134
  • Wragg, J., Cave, M., Taylor, H., Basta, N., Brandon, E., Casteel, S., … Wiele, T. (2009). Interlaboratory trial of a unified bioaccessibility procedure. British Geological Survey, OR/07/027.
  • Wragg, J., Cave, M., Basta, N., Brandon, E., Casteel, S., Denys, S. E. B., … Van de Wiele, T. (2011). An inter–laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Science of the Total Environment, 409(19), 4016–4030.
  • Zahran, S., Laidlaw, M. A., McElmurry, S. P., Filippelli, G. M., & Taylor, M. (2013). Linking source and effect: Resuspended soil lead, air lead, and children's blood lead levels in Detroit, Michigan. Environmental Science & Technology, 47(6), 2839–2845.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.