1,170
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Challenges and potentials of forward osmosis process in the treatment of wastewater

, , , &
Pages 1339-1383 | Published online: 27 Aug 2019

References

  • Abid, H. S., Johnson, D. J., Hashaikeh, R., & Hilal, N. (2017). A review of efforts to reduce membrane fouling by control of feed spacer characteristics. Desalination, 420, 384–402. doi: 10.1016/j.desal.2017.07.019
  • Achilli, A., Cath, T. Y., & Childress, A. E. (2010). Selection of inorganic-based draw solutions for forward osmosis applications. Journal of Membrane Science, 364(1–2), 233–241. doi: 10.1016/j.memsci.2010.08.010
  • Alsvik, I., & Hägg, M.-B. (2013). Pressure retarded osmosis and forward osmosis membranes: Materials and methods. Polymers, 5(1), 303–327. doi: 10.3390/polym5010303
  • Altaee, A. (2012). Forward osmosis: Potential use in desalination and water reuse. Journal of Membrane and Separation Technology, 1, 79–93.
  • Altaee, A., Sharif, A., Zaragoza, G., & Hilal, N. (2014). Dual stage PRO process for power generation from different feed resources. Desalination, 352, 118–127. doi: 10.1016/j.desal.2014.08.017
  • Altaee, A., Zhou, J., Alanezi, A. A., & Zaragoza, G. (2017). Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters. Applied Energy, 206, 303–311. doi: 10.1016/j.apenergy.2017.08.195
  • Amy, G. (2008). Fundamental understanding of organic matter fouling of membranes. Desalination, 231(1–3), 44–51. doi: 10.1016/j.desal.2007.11.037
  • Ansari, A. J., Hai, F. I., Price, W. E., & Nghiem, L. D. (2016). Phosphorus recovery from digested sludge centrate using seawater-driven forward osmosis. Separation and Purification Technology, 163, 1–7. doi: 10.1016/j.seppur.2016.02.031
  • Bao, X., Wu, Q., Shi, W., Wang, W., Yu, H., Zhu, Z., … Cui, F. (2019). Polyamidoamine dendrimer grafted forward osmosis membrane with superior ammonia selectivity and robust antifouling capacity for domestic wastewater concentration. Water Research, 153, 1–10. doi: 10.1016/j.watres.2018.12.067
  • Blandin, G., Vervoort, H., Le-Clech, P., & Verliefde, A. R. D. (2016). Fouling and cleaning of high permeability forward osmosis membranes. Journal of Water Process Engineering, 9, 161–169. doi: 10.1016/j.jwpe.2015.12.007
  • Boo, C., Elimelech, M., & Hong, S. (2013). Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation. Journal of Membrane Science, 444, 148–156. doi: 10.1016/j.memsci.2013.05.004
  • Boo, C., Lee, S., Elimelech, M., Meng, Z., & Hong, S. (2012). Colloidal fouling in forward osmosis: Role of reverse salt diffusion. Journal of Membrane Science, 390–391, 277–284. doi: 10.1016/j.memsci.2011.12.001
  • Bucs, S. S., Valladares Linares, R., Vrouwenvelder, J. S., & Picioreanu, C. (2016). Biofouling in forward osmosis systems: An experimental and numerical study. Water Research, 106, 86–97. doi: 10.1016/j.watres.2016.09.031
  • Bui, N.-N., Arena, J. T., & McCutcheon, J. R. (2015). Proper accounting of mass transfer resistances in forward osmosis: Improving the accuracy of model predictions of structural parameter. Journal of Membrane Science, 492, 289–302. doi: 10.1016/j.memsci.2015.02.001
  • Cai, Y., & Hu, X. M. (2016). A critical review on draw solutes development for forward osmosis. Desalination, 391, 16–29. doi: 10.1016/j.desal.2016.03.021
  • Cath, T., Childress, A., & Elimelech, M. (2006). Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281(1–2), 70–87. doi: 10.1016/j.memsci.2006.05.048
  • Cen, J., Vukas, M., Barton, G., Kavanagh, J., & Coster, H. G. L. (2015). Real time fouling monitoring with Electrical Impedance Spectroscopy. Journal of Membrane Science, 484, 133–139. doi: 10.1016/j.memsci.2015.03.014
  • Choi, Y.-J., Kim, S.-H., Jeong, S., & Hwang, T.-M. (2014). Application of ultrasound to mitigate calcium sulfate scaling and colloidal fouling. Desalination, 336, 153–159. doi: 10.1016/j.desal.2013.10.011
  • Chou, S., Shi, L., Wang, R., Tang, C. Y., Qiu, C., & Fane, A. G. (2010). Characteristics and potential applications of a novel forward osmosis hollow fiber membrane. Desalination, 261(3), 365–372. doi: 10.1016/j.desal.2010.06.027
  • Chun, Y., Mulcahy, D., Zou, L., & Kim, I. S. (2017). A short review of membrane fouling in forward osmosis processes. Membranes (Basel), 7(2), 30. doi: 10.3390/membranes7020030
  • Chung, T.-S., Zhang, S., Wang, K. Y., Su, J., & Ling, M. M. (2012). Forward osmosis processes: Yesterday, today and tomorrow. Desalination, 287, 78–81. doi: 10.1016/j.desal.2010.12.019
  • Coday, B. D., Almaraz, N., & Cath, T. Y. (2015). Forward osmosis desalination of oil and gas wastewater: Impacts of membrane selection and operating conditions on process performance. Journal of Membrane Science, 488, 40–55. doi: 10.1016/j.memsci.2015.03.059
  • Coday, B. D., Xu, P., Beaudry, E. G., Herron, J., Lampi, K., Hancock, N. T., & Cath, T. Y. (2014). The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalination, 333(1), 23–35. doi: 10.1016/j.desal.2013.11.014
  • Combe, C., Molis, E., Lucas, P., Riley, R., & Clark, M. M. (1999). The effect of CA membrane properties on adsorptive fouling by humic acid. Journal of Membrane Science, 154(1), 73–87. doi: 10.1016/S0376-7388(98)00268-3
  • Cornelissen, E., Harmsen, D., Beerendonk, E., Qin, J., Oo, H., De Korte, K., & Kappelhof, J. (2011). The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater. Water Science and Technology, 63(8), 1557–1565. doi: 10.2166/wst.2011.206
  • Corzo, B., de la Torre, T., Sans, C., Ferrero, E., & Malfeito, J. J. (2017). Evaluation of draw solutions and commercially available forward osmosis membrane modules for wastewater reclamation at pilot scale. Chemical Engineering Journal, 326, 1–8. doi: 10.1016/j.cej.2017.05.108
  • Cui, Y., Ge, Q., Liu, X.-Y., & Chung, T.-S. (2014). Novel forward osmosis process to effectively remove heavy metal ions. Journal of Membrane Science, 467, 188–194. doi: 10.1016/j.memsci.2014.05.034
  • Dai, R., Zhang, X., Liu, M., Wu, Z., & Wang, Z. (2019). Porous metal organic framework CuBDC nanosheet incorporated thin-film nanocomposite membrane for high-performance forward osmosis. Journal of Membrane Science, 573, 46–54. doi: 10.1016/j.memsci.2018.11.075
  • Distefano, T., & Kelly, S. (2017). Are we in deep water? Water scarcity and its limits to economic growth. Ecological Economics, 142, 130–147. doi: 10.1016/j.ecolecon.2017.06.019
  • Du, X., Wang, Y., Qu, F., Li, K., Liu, X., Wang, Z., … Liang, H. (2017). Impact of bubbly flow in feed channel of forward osmosis for wastewater treatment: Flux performance and biofouling. Chemical Engineering Journal, 316, 1047–1058. doi: 10.1016/j.cej.2017.02.031
  • Duong, P. H. H., Chung, T.-S., Wei, S., & Irish, L. (2014). Highly permeable double-skinned forward osmosis membranes for anti-fouling in the emulsified oil–water separation process. Environmental Science & Technology, 48, 4537–4545. doi: 10.1021/es405644u
  • Dutta, S., & Nath, K. (2018). Feasibility of forward osmosis using ultra low pressure RO membrane and Glauber salt as draw solute for wastewater treatment. Journal of Environmental Chemical Engineering, 6(4), 5635. doi: 10.1016/j.jece.2018.08.037
  • Fam, W., Phuntsho, S., Lee, J. H., & Shon, H. K. (2013). Performance comparison of thin-film composite forward osmosis membranes. Desalination and Water Treatment, 51(31–33), 6274–6280. doi: 10.1080/19443994.2013.780805
  • Fan, L., Harris, J. L., Roddick, F. A., & Booker, N. A. (2001). Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Research, 35(18), 4455–4463. doi: 10.1016/S0043-1354(01)00183-X
  • Fane, T. (2016). Inorganic scaling. In E. Drioli & L. Giorno (Eds.), Encyclopedia of Membranes (pp. 1–2). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Fritzmann, C., Löwenberg, J., Wintgens, T., & Melin, T. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216(1–3), 1–76. doi: 10.1016/j.desal.2006.12.009
  • Ge, Q., Amy, G. L., & Chung, T.-S. (2017). Forward osmosis for oily wastewater reclamation: Multi-charged oxalic acid complexes as draw solutes. Water Research, 122, 580–590. doi: 10.1016/j.watres.2017.06.025
  • Ge, Q., Wang, P., Wan, C., & Chung, T.-S. (2012). Polyelectrolyte-promoted forward osmosis–membrane distillation (FO–MD) hybrid process for dye wastewater treatment. Environmental Science & Technology, 46, 6236–6243. doi: 10.1021/es300784h
  • Gebreyohannes, A. Y., Curcio, E., Poerio, T., Mazzei, R., Di Profio, G., Drioli, E., & Giorno, L. (2015). Treatment of olive mill wastewater by forward osmosis. Separation and Purification Technology, 147, 292–302. doi: 10.1016/j.seppur.2015.04.021
  • Gilron, J. (2014). Water-energy nexus matching source and uses. Clean Technologies and Environmental Policy, 16(8), 1471–1479. doi: 10.1007/s10098-014-0853-1
  • Graf von der Schulenburg, D. A., Vrouwenvelder, J. S., Creber, S. A., van Loosdrecht, M. C. M., & Johns, M. L. (2008). Nuclear magnetic resonance microscopy studies of membrane biofouling. Journal of Membrane Science, 323, 37–44. doi: 10.1016/j.memsci.2008.06.012
  • Gruber, M. F., Johnson, C. J., Tang, C. Y., Jensen, M. H., Yde, L., & Hélix-Nielsen, C. (2011). Computational fluid dynamics simulations of flow and concentration polarization in forward osmosis membrane systems. Journal of Membrane Science, 379(1–2), 488–495. doi: 10.1016/j.memsci.2011.06.022
  • Gwak, G., & Hong, S. (2017). New approach for scaling control in forward osmosis (FO) by using an antiscalant-blended draw solution. Journal of Membrane Science, 530, 95–103. doi: 10.1016/j.memsci.2017.02.024
  • Gwak, G., Kim, D. I., & Hong, S. (2018). New industrial application of forward osmosis (FO): Precious metal recovery from printed circuit board (PCB) plant wastewater. Journal of Membrane Science, 552, 234–242. doi: 10.1016/j.memsci.2018.02.022
  • Han, G., de Wit, J. S., & Chung, T.-S. (2015). Water reclamation from emulsified oily wastewater via effective forward osmosis hollow fiber membranes under the PRO mode. Water Research, 81, 54–63. doi: 10.1016/j.watres.2015.05.048
  • Han, G., Liang, C.-Z., Chung, T.-S., Weber, M., Staudt, C., & Maletzko, C. (2016). Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater. Water Research, 91, 361–370. doi: 10.1016/j.watres.2016.01.031
  • Hancock, N. T., Xu, P., Roby, M. J., Gomez, J. D., & Cath, T. Y. (2013). Towards direct potable reuse with forward osmosis: Technical assessment of long-term process performance at the pilot scale. Journal of Membrane Science, 445, 34–46. doi: 10.1016/j.memsci.2013.04.056
  • Hausman, R., Gullinkala, T., & Escobar, I. C. (2009). Development of low‐biofouling polypropylene feedspacers for reverse osmosis. Journal of Applied Polymer Science, 114(5), 3068–3073. doi: 10.1002/app.30755
  • Hawari, A. H., Al-Qahoumi, A., Ltaief, A., Zaidi, S., & Altaee, A. (2018). Dilution of seawater using dewatered construction water in a hybrid forward osmosis system. Journal of Cleaner Production, 195, 365–373. doi: 10.1016/j.jclepro.2018.05.211
  • Hawari, A. H., Kamal, N., & Altaee, A. (2016). Combined influence of temperature and flow rate of feeds on the performance of forward osmosis. Desalination, 398, 98–105. doi: 10.1016/j.desal.2016.07.023
  • Herron, J. (2008). Asymmetric forward osmosis membranes: US patent 7445712B2.
  • Hey, T., Bajraktari, N., Davidsson, A., Vogel, J., Madsen, H. T., Helix-Nielsen, C., … Jonsson, K. (2018). Evaluation of direct membrane filtration and direct forward osmosis as concepts for compact and energy-positive municipal wastewater treatment. Environmental Technology, 39(3), 264–276. doi: 10.1080/09593330.2017.1298677
  • Hey, T., Bajraktari, N., Vogel, J., Helix Nielsen, C., la Cour Jansen, J., & Jonsson, K. (2017). The effects of physicochemical wastewater treatment operations on forward osmosis. Environmental Technology, 38(17), 2130–2142. doi: 10.1080/09593330.2016.1246616
  • Hickenbottom, K. L., Hancock, N. T., Hutchings, N. R., Appleton, E. W., Beaudry, E. G., Xu, P., & Cath, T. Y. (2013). Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination, 312, 60–66. doi: 10.1016/j.desal.2012.05.037
  • HTI. (2011). Oil wastewater treatment & gas wastewater treatment: Lead story. Retrieved from http://www.htiwater.com/divisions/oil-gas/lead_story.html
  • Islam, M. S., Sultana, S., McCutcheon, J. R., & Rahaman, M. S. (2019). Treatment of fracking wastewaters via forward osmosis: Evaluation of suitable organic draw solutions. Desalination, 452, 149–158. doi: 10.1016/j.desal.2018.11.010
  • Jiang, S., Li, Y., & Ladewig, B. P. (2017). A review of reverse osmosis membrane fouling and control strategies. Science of the Total Environment, 595, 567–583. doi: 10.1016/j.scitotenv.2017.03.235
  • Jiang, Z., Peng, J., Zhao, X., Su, Y., & Wu, H. (2016). Antifouling membrane surface. In E. Drioli & L. Giorno (Eds.), Encyclopedia of membranes (pp. 83–85). Berlin, Heidelberg: Springer.
  • Johnson, D. J., Suwaileh, W. A., Mohammed, A. W., & Hilal, N. (2018). Osmotic's potential: An overview of draw solutes for forward osmosis. Desalination, 434, 100–120. doi: 10.1016/j.desal.2017.09.017
  • Jones, K. L., & O’Melia, C. R. (2000). Protein and humic acid adsorption onto hydrophilic membrane surfaces: Effects of pH and ionic strength. Journal of Membrane Science, 165(1), 31–46. doi: 10.1016/S0376-7388(99)00218-5
  • Kalafatakis, S., Braekevelt, S., Carlsen, V., Lange, L., Skiadas, I. V., & Gavala, H. N. (2017). On a novel strategy for water recovery and recirculation in biorefineries through application of forward osmosis membranes. Chemical Engineering Journal, 311, 209–216. doi: 10.1016/j.cej.2016.11.092
  • Katkar, R. A., Tadinada, S. A., Amaechi, B. T., & Fried, D. (2018). Optical Coherence Tomography. Dental Clinics of North America, 62(3), 421–434. doi: 10.1016/j.cden.2018.03.004
  • Kavanagh, J. M., Hussain, S., Chilcott, T. C., & Coster, H. G. L. (2009). Fouling of reverse osmosis membranes using electrical impedance spectroscopy: Measurements and simulations. Desalination, 236(1–3), 187–193. doi: 10.1016/j.desal.2007.10.066
  • Khorshidi, B., Bhinder, A., Thundat, T., Pernitsky, D., & Sadrzadeh, M. (2016). Developing high throughput thin film composite polyamide membranes for forward osmosis treatment of SAGD produced water. Journal of Membrane Science, 511, 29–39. doi: 10.1016/j.memsci.2016.03.052
  • Kim, J. E., Phuntsho, S., Lotfi, F., & Shon, H. K. (2015). Investigation of pilot-scale 8040 FO membrane module under different operating conditions for brackish water desalination. Desalination and Water Treatment, 53(10), 2782–2791. doi: 10.1080/19443994.2014.931528
  • Kim, Y., Elimelech, M., Shon, H. K., & Hong, S. (2014). Combined organic and colloidal fouling in forward osmosis: Fouling reversibility and the role of applied pressure. Journal of Membrane Science, 460, 206–212. doi: 10.1016/j.memsci.2014.02.038
  • Korenak, J., Basu, S., Balakrishnan, M., Hélix-Nielsen, C., & Petrinic, I. (2017). Forward osmosis in wastewater treatment processes. Acta Chimica Slovenica, 64(1), 83–94. doi: 10.17344/acsi.2016.2852
  • Korenak, J., Hélix-Nielsen, C., Bukšek, H., & Petrinić, I. (2019). Efficiency and economic feasibility of forward osmosis in textile wastewater treatment. Journal of Cleaner Production, 210, 1483–1495. doi: 10.1016/j.jclepro.2018.11.130
  • Kwan, S. E., Bar-Zeev, E., & Elimelech, M. (2015). Biofouling in forward osmosis and reverse osmosis: Measurements and mechanisms. Journal of Membrane Science, 493, 703–708. doi: 10.1016/j.memsci.2015.07.027
  • Lay, W. C. L., Zhang, J., Tang, C., Wang, R., Liu, Y., & Fane, A. G. (2012). Factors affecting flux performance of forward osmosis systems. Journal of Membrane Science, 394–395, 151–168. doi: 10.1016/j.memsci.2011.12.035
  • Lee, K. L., Baker, R. W., & Lonsdale, H. K. (1981). Membranes for power generation by pressure-retarded osmosis. Journal of Membrane Science, 8(2), 141–171. doi: 10.1016/S0376-7388(00)82088-8
  • Lee, S., Boo, C., Elimelech, M., & Hong, S. (2010). Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). Journal of Membrane Science, 365(1–2), 34–39. doi: 10.1016/j.memsci.2010.08.036
  • Lee, S., & Elimelech, M. (2006). Relating Organic Fouling of Reverse Osmosis Membranes to Intermolecular Adhesion Forces. Environmental Science & Technology, 40, 980–987. doi: 10.1021/es051825h
  • Lee, S., Kim, Y., Park, J., Shon, H. K., & Hong, S. (2018). Treatment of medical radioactive liquid waste using Forward Osmosis (FO) membrane process. Journal of Membrane Science, 556, 238–247. doi: 10.1016/j.memsci.2018.04.008
  • Lee, S., & Kim, Y. C. (2017). Calcium carbonate scaling by reverse draw solute diffusion in a forward osmosis membrane for shale gas wastewater treatment. Journal of Membrane Science, 522, 257–266. doi: 10.1016/j.memsci.2016.09.026
  • Lee, W. J., Goh, P. S., Lau, W. J., Ong, C. S., & Ismail, A. F. (2019). Antifouling zwitterion embedded forward osmosis thin film composite membrane for highly concentrated oily wastewater treatment. Separation and Purification Technology, 214, 40–50. doi: 10.1016/j.seppur.2018.07.009
  • Li, F., Cheng, Q., Tian, Q., Yang, B., & Chen, Q. (2016). Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor. Bioresource Technology, 211, 751–758. doi: 10.1016/j.biortech.2016.03.169
  • Li, H., Fane, A. G., Coster, H. G. L., & Vigneswaran, S. (1998). Direct observation of particle deposition on the membrane surface during crossflow microfiltration. Journal of Membrane Science, 149(1), 83–97. doi: 10.1016/S0376-7388(98)00181-1
  • Li, J.-Y., Ni, Z.-Y., Zhou, Z.-Y., Hu, Y.-X., Xu, X.-H., & Cheng, L.-H. (2018). Membrane fouling of forward osmosis in dewatering of soluble algal products: Comparison of TFC and CTA membranes. Journal of Membrane Science, 552, 213–221. doi: 10.1016/j.memsci.2018.02.006
  • Ling, M. M., Wang, K. Y., & Chung, T.-S. (2010). Highly Water-Soluble Magnetic Nanoparticles as Novel Draw Solutes in Forward Osmosis for Water Reuse. Industrial & Engineering Chemistry Research, 49, 5869–5876. doi: 10.1021/ie100438x
  • Liu, P., Zhang, H., Feng, Y., Shen, C., & Yang, F. (2015). Integrating electrochemical oxidation into forward osmosis process for removal of trace antibiotics in wastewater. Journal of Hazardous Materials, 296, 248–255. doi: 10.1016/j.jhazmat.2015.04.048
  • Liu, Y., & Mi, B. (2012). Combined fouling of forward osmosis membranes: Synergistic foulant interaction and direct observation of fouling layer formation. Journal of Membrane Science, 407–408, 136–144. doi: 10.1016/j.memsci.2012.03.028
  • Loeb, S., Titelman, L., Korngold, E., & Freiman, J. (1997). Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane. Journal of Membrane Science, 129(2), 243–249. doi: 10.1016/S0376-7388(96)00354-7
  • Lu, P., Li, W., Yang, S., Liu, Y., Wang, Q., & Li, Y. (2019). Layered double hydroxide-modified thin–film composite membranes with remarkably enhanced chlorine resistance and anti-fouling capacity. Separation and Purification Technology, 220, 231–237. doi: 10.1016/j.seppur.2019.03.039
  • Lu, P., Liang, S., Zhou, T., Xue, T., Mei, X., & Wang, Q. (2017). Layered double hydroxide nanoparticle modified forward osmosis membranes via polydopamine immobilization with significantly enhanced chlorine and fouling resistance. Desalination, 421, 99–109. doi: 10.1016/j.desal.2017.04.030
  • Lutchmiah, K., Lauber, L., Roest, K., Harmsen, D. J. H., Post, J. W., Rietveld, L. C., … Cornelissen, E. R. (2014). Zwitterions as alternative draw solutions in forward osmosis for application in wastewater reclamation. Journal of Membrane Science, 460, 82–90. doi: 10.1016/j.memsci.2014.02.032
  • Lutchmiah, K., Verliefde, A. R., Roest, K., Rietveld, L. C., & Cornelissen, E. R. (2014). Forward osmosis for application in wastewater treatment: A review. Water Research, 58, 179–197. doi: 10.1016/j.watres.2014.03.045
  • Lv, L., Xu, J., Shan, B., & Gao, C. (2017). Concentration performance and cleaning strategy for controlling membrane fouling during forward osmosis concentration of actual oily wastewater. Journal of Membrane Science, 523, 15–23. doi: 10.1016/j.memsci.2016.08.058
  • Maltos, R. A., Regnery, J., Almaraz, N., Fox, S., Schutter, M., Cath, T. J., … Cath, T. Y. (2018). Produced water impact on membrane integrity during extended pilot testing of forward osmosis – reverse osmosis treatment. Desalination, 440, 99–110. doi: 10.1016/j.desal.2018.02.029
  • McCutcheon, J. R., & Elimelech, M. (2006). Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. Journal of Membrane Science, 284(1–2), 237–247. doi: 10.1016/j.memsci.2006.07.049
  • McCutcheon, J. R., McGinnis, R. L., & Elimelech, M. (2005). A novel ammonia–carbon dioxide forward (direct) osmosis desalination process. Desalination, 174(1), 1–11. doi: 10.1016/j.desal.2004.11.002
  • McGinnis, R. L., Hancock, N. T., Nowosielski-Slepowron, M. S., & McGurgan, G. D. (2013). Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines. Desalination, 312, 67–74. doi: 10.1016/j.desal.2012.11.032
  • McGovern, R. K., & Lienhard V, J. H. (2014). On the potential of forward osmosis to energetically outperform reverse osmosis desalination. Journal of Membrane Science, 469, 245–250. doi: 10.1016/j.memsci.2014.05.061
  • Mi, B., & Elimelech, M. (2008). Chemical and physical aspects of organic fouling of forward osmosis membranes. Journal of Membrane Science, 320(1–2), 292–302. doi: 10.1016/j.memsci.2008.04.036
  • Mi, B., & Elimelech, M. (2010a). Gypsum Scaling and Cleaning in Forward Osmosis: Measurements and Mechanisms. Environmental Science & Technology, 44, 2022–2028. doi: 10.1021/es903623r
  • Mi, B., & Elimelech, M. (2010b). Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 348(1–2), 337–345. doi: 10.1016/j.memsci.2009.11.021
  • Mi, B., & Elimelech, M. (2013). Silica scaling and scaling reversibility in forward osmosis. Desalination, 312, 75–81. doi: 10.1016/j.desal.2012.08.034
  • Mondal, S., Field, R. W., & Wu, J. J. (2017). Novel approach for sizing forward osmosis membrane systems. Journal of Membrane Science, 541, 321–328. doi: 10.1016/j.memsci.2017.07.019
  • Motsa, M. M., Mamba, B. B., & Verliefde, A. R. D. (2018). Forward osmosis membrane performance during simulated wastewater reclamation: Fouling mechanisms and fouling layer properties. Journal of Water Process Engineering, 23, 109–118. doi: 10.1016/j.jwpe.2018.03.007
  • Mulder, M., & Mulder, J. (1996). Basic principles of membrane technology. Berlin, Germany: Springer Science & Business Media.
  • Na, Y., Yang, S., & Lee, S. (2014). Evaluation of citrate-coated magnetic nanoparticles as draw solute for forward osmosis. Desalination, 347, 34–42. doi: 10.1016/j.desal.2014.04.032
  • Nagy, E. (2014). A general, resistance-in-series, salt- and water flux models for forward osmosis and pressure-retarded osmosis for energy generation. Journal of Membrane Science, 460, 71–81. doi: 10.1016/j.memsci.2014.02.021
  • Nelson, C., & Ghosh, A. (2011). Membrane technology for produced water in Lea County, Project number DE-NT0005227, https://www.netl.doe.gov/node/2929, 20/04/2019
  • Nguyen, A., Azari, S., & Zou, L. (2013). Coating zwitterionic amino acid l-DOPA to increase fouling resistance of forward osmosis membrane. Desalination, 312, 82–87. doi: 10.1016/j.desal.2012.11.038
  • Nguyen, N. C., Chen, S. S., Jain, S., Nguyen, H. T., Ray, S. S., Ngo, H. H., … Duong, H. C. (2018). Exploration of an innovative draw solution for a forward osmosis-membrane distillation desalination process. Environmental Science and Pollution Research, 25(6), 5203–5211. doi: 10.1007/s11356-017-9192-1
  • Nguyen, N. C., Nguyen, H. T., Ho, S.-T., Chen, S.-S., Ngo, H. H., Guo, W., … Hsu, H.-T. (2016). Exploring high charge of phosphate as new draw solute in a forward osmosis–membrane distillation hybrid system for concentrating high-nutrient sludge. Science of the Total Environment, 557–558, 44–50. doi: 10.1016/j.scitotenv.2016.03.025
  • Nicoll, P. G. (2013). Forward osmosis—A brief introduction. Proceedings of the International Desalination Association World Congress on Desalination and Water Reuse, Tianjin, China (pp. 20–25).
  • O'Toole, G., Kaplan, H. B., & Kolter, R. (2000). Biofilm Formation as Microbial Development. Annual Review of Microbiology, 54, 49–79. doi: 10.1146/annurev.micro.54.1.49
  • Ong, R. C., Chung, T.-S., Helmer, B. J., & de Wit, J. S. (2013). Characteristics of water and salt transport, free volume and their relationship with the functional groups of novel cellulose esters. Polymer, 54(17), 4560–4569. doi: 10.1016/j.polymer.2013.06.043
  • Pan, S.-F., Zhu, M.-P., Chen, J. P., Yuan, Z.-H., Zhong, L.-B., & Zheng, Y.-M. (2015). Separation of tetracycline from wastewater using forward osmosis process with thin film composite membrane – Implications for antibiotics recovery. Separation and Purification Technology, 153, 76–83. doi: 10.1016/j.seppur.2015.08.034
  • Parida, V., & Ng, H. Y. (2013). Forward osmosis organic fouling: Effects of organic loading, calcium and membrane orientation. Desalination, 312, 88–98. doi: 10.1016/j.desal.2012.04.029
  • Phuntsho, S., Kim, J. E., Johir, M. A. H., Hong, S., Li, Z., Ghaffour, N., … Shon, H. K. (2016). Fertiliser drawn forward osmosis process: Pilot-scale desalination of mine impaired water for fertigation. Journal of Membrane Science, 508, 22–31. doi: 10.1016/j.memsci.2016.02.024
  • Phuntsho, S., Shon, H. K., Hong, S., Lee, S., & Vigneswaran, S. (2011). A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions. Journal of Membrane Science, 375(1–2), 172–181. doi: 10.1016/j.memsci.2011.03.038
  • Qin, J. J., Kekre, K. A., Oo, M. H., Tao, G., Lay, C. L., Lew, C. H., … Ruiken, C. J. (2010). Preliminary study of osmotic membrane bioreactor: Effects of draw solution on water flux and air scouring on fouling. Water Science and Technology, 62(6), 1353–1360. doi: 10.2166/wst.2010.426
  • Qiu, M., & He, C. (2019). Efficient removal of heavy metal ions by forward osmosis membrane with a polydopamine modified zeolitic imidazolate framework incorporated selective layer. Journal of Hazardous Materials, 367, 339–347. doi: 10.1016/j.jhazmat.2018.12.096
  • Rana, D., & Matsuura, T. (2010). Surface Modifications for Antifouling Membranes. Chemical Reviews, 110(4), 2448–2471. doi: 10.1021/cr800208y
  • Ren, J., & McCutcheon, J. R. (2014). A new commercial thin film composite membrane for forward osmosis. Desalination, 343, 187–193. doi: 10.1016/j.desal.2013.11.026
  • Salgot, M., & Folch, M. (2018). Wastewater treatment and water reuse. Current Opinion in Environmental Science & Health, 2, 64–74. doi: 10.1016/j.coesh.2018.03.005
  • Sandeep, G. (2019). Nuclear magnetic resonance. Retrieved from https://www.slideshare.net/sandeepgupta0491/nuclear-magnetic-resonance-39763597
  • Seyedpour, S. F., Rahimpour, A., & Najafpour, G. (2019). Facile in-situ assembly of silver-based MOFs to surface functionalization of TFC membrane: A novel approach toward long-lasting biofouling mitigation. Journal of Membrane Science, 573, 257–269. doi: 10.1016/j.memsci.2018.12.016
  • Shakeri, A., Mighani, H., Salari, N., & Salehi, H. (2019). Surface modification of forward osmosis membrane using polyoxometalate based open frameworks for hydrophilicity and water flux improvement. Journal of Water Process Engineering, 29, 100762. doi: 10.1016/j.jwpe.2019.02.002
  • Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., & Mayes, A. M. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301doi: 10.1038/nature06599
  • She, Q., Wang, R., Fane, A. G., & Tang, C. Y. (2016). Membrane fouling in osmotically driven membrane processes: A review. Journal of Membrane Science, 499, 201–233. doi: 10.1016/j.memsci.2015.10.040
  • Shen, L., Zhang, X., Zuo, J., & Wang, Y. (2017). Performance enhancement of TFC FO membranes with polyethyleneimine modification and post-treatment. Journal of Membrane Science, 534, 46–58. doi: 10.1016/j.memsci.2017.04.008
  • Shon, H. K., Vigneswaran, S., Kim, I. S., Cho, J., & Ngo, H. H. (2006). Fouling of ultrafiltration membrane by effluent organic matter: A detailed characterization using different organic fractions in wastewater. Journal of Membrane Science, 278(1–2), 232–238. doi: 10.1016/j.memsci.2005.11.006
  • Sim, L. N., Wang, Z. J., Gu, J., Coster, H. G. L., & Fane, A. G. (2013). Detection of reverse osmosis membrane fouling with silica, bovine serum albumin and their mixture using in-situ electrical impedance spectroscopy. Journal of Membrane Science, 443, 45–53. doi: 10.1016/j.memsci.2013.04.047
  • Sim, S. T. V., Suwarno, S. R., Chong, T. H., Krantz, W. B., & Fane, A. G. (2013). Monitoring membrane biofouling via ultrasonic time-domain reflectometry enhanced by silica dosing. Journal of Membrane Science, 428, 24–37. doi: 10.1016/j.memsci.2012.10.032
  • Singh, G., & Song, L. (2007). Experimental correlations of pH and ionic strength effects on the colloidal fouling potential of silica nanoparticles in crossflow ultrafiltration. Journal of Membrane Science, 303(1–2), 112–118. doi: 10.1016/j.memsci.2007.06.072
  • Singh, N., Petrinic, I., Hélix-Nielsen, C., Basu, S., & Balakrishnan, M. (2018). Concentrating molasses distillery wastewater using biomimetic forward osmosis (FO) membranes. Water Research, 130, 271–280. doi: 10.1016/j.watres.2017.12.006
  • Singh, R. (2006). Hybrid membrane systems for water purification: Technology, systems design and operations. Amsterdam, the Netherlands: Elsevier.
  • Stade, S., Hakkarainen, T., Kallioinen, M., Mänttäri, M., & Tuuva, T. (2015). A double transducer for high precision ultrasonic time-domain reflectometry measurements. Sensors, 15(7), 15090–15100. doi: 10.3390/s150715090
  • Takahashi, T., Yasukawa, M., & Matsuyama, H. (2016). Highly condensed polyvinyl chloride latex production by forward osmosis: Performance and characteristics. Journal of Membrane Science, 514, 547–555. doi: 10.1016/j.memsci.2016.04.012
  • Tan, C. H., & Ng, H. Y. (2008). Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations. Journal of Membrane Science, 324(1–2), 209–219. doi: 10.1016/j.memsci.2008.07.020
  • Tang, C. Y., She, Q., Lay, W. C. L., Wang, R., & Fane, A. G. (2010). Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. Journal of Membrane Science, 354(1–2), 123–133. doi: 10.1016/j.memsci.2010.02.059
  • Thiruvenkatachari, R., Francis, M., Cunnington, M., & Su, S. (2016). Application of integrated forward and reverse osmosis for coal mine wastewater desalination. Separation and Purification Technology, 163, 181–188. doi: 10.1016/j.seppur.2016.02.034
  • Thorsen, T. (2004). Concentration polarisation by natural organic matter (NOM) in NF and UF. Journal of Membrane Science, 233(1–2), 79–91. doi: 10.1016/j.memsci.2004.01.003
  • Tow, E. W., Rencken, M. M., & Lienhard, J. H. (2016). In situ visualization of organic fouling and cleaning mechanisms in reverse osmosis and forward osmosis. Desalination, 399, 138–147. doi: 10.1016/j.desal.2016.08.024
  • Uchymiak, M., Rahardianto, A., Lyster, E., Glater, J., & Cohen, Y. (2007). A novel RO ex situ scale observation detector (EXSOD) for mineral scale characterization and early detection. Journal of Membrane Science, 291(1–2), 86–95. doi: 10.1016/j.memsci.2006.12.038
  • Valladares Linares, R., Bucs, S. S., Li, Z., AbuGhdeeb, M., Amy, G., & Vrouwenvelder, J. S. (2014). Impact of spacer thickness on biofouling in forward osmosis. Water Research, 57, 223–233. doi: 10.1016/j.watres.2014.03.046
  • Valladares Linares, R., Fortunato, L., Farhat, N., Bucs, S., Staal, M., Fridjonsson, E., … Leiknes, T. (2016). Mini-review: Novel non-destructive in situ biofilm characterization techniques in membrane systems. Desalination and Water Treatment, 57(48–49), 22894–22901. doi: 10.1080/19443994.2016.1180483
  • Valladares Linares, R., Li, Z., Yangali-Quintanilla, V., Li, Q., & Amy, G. (2013). Cleaning protocol for a FO membrane fouled in wastewater reuse. Desalination and Water Treatment, 51(25–27), 4821–4824. doi: 10.1080/19443994.2013.795345
  • Volpin, F., Fons, E., Chekli, L., Kim, J. E., Jang, A., & Shon, H. K. (2018). Hybrid forward osmosis-reverse osmosis for wastewater reuse and seawater desalination: Understanding the optimal feed solution to minimise fouling. Process Safety and Environmental Protection, 117, 523–532. doi: 10.1016/j.psep.2018.05.006
  • Vrouwenvelder, J. S., Manolarakis, S. A., van der Hoek, J. P., van Paassen, J. A. M., van der Meer, W. G. J., van Agtmaal, J. M. C., … van Loosdrecht, M. C. M. (2008). Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations. Water Research, 42(19), 4856–4868. doi: 10.1016/j.watres.2008.09.002
  • Wait, A. S. (2012). Towards potable reuse: Assessment of the first pilot-scale hybrid osmotic membrane bioreactor and denitrification system: Colorado School of Mines. Golden, CO: Arthur Lakes Library.
  • Wang, C., Li, Y., & Wang, Y. (2018). Treatment of greywater by forward osmosis technology: Role of the operating temperature. Environmental Technology, 1–10. doi: 10.1080/09593330.2018.1476595
  • Wang, J., Dlamini, D. S., Mishra, A. K., Pendergast, M. T. M., Wong, M. C. Y., Mamba, B. B., … Hoek, E. M. V. (2014). A critical review of transport through osmotic membranes. Journal of Membrane Science, 454, 516–537. doi: 10.1016/j.memsci.2013.12.034
  • Wang, X., Wang, X., Xiao, P., Li, J., Tian, E., Zhao, Y., & Ren, Y. (2016). High water permeable free-standing cellulose triacetate/graphene oxide membrane with enhanced antibiofouling and mechanical properties for forward osmosis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 508, 327–335. doi: 10.1016/j.colsurfa.2016.08.077
  • Wang, Y., Wicaksana, F., Tang, C. Y., & Fane, A. G. (2010). Direct Microscopic Observation of Forward Osmosis Membrane Fouling. Environmental Science & Technology, 44, 7102–7109. doi: 10.1021/es101966m
  • Wang, Z., Tang, J., Zhu, C., Dong, Y., Wang, Q., & Wu, Z. (2015). Chemical cleaning protocols for thin film composite (TFC) polyamide forward osmosis membranes used for municipal wastewater treatment. Journal of Membrane Science, 475, 184–192. doi: 10.1016/j.memsci.2014.10.032
  • Wang, Z., Zheng, J., Tang, J., Wang, X., & Wu, Z. (2016). A pilot-scale forward osmosis membrane system for concentrating low-strength municipal wastewater: Performance and implications. Scientific Reports, 6(1), 21653. doi: 10.1038/srep21653
  • Wu, C.-Y., Mouri, H., Chen, S.-S., Zhang, D.-Z., Koga, M., & Kobayashi, J. (2016). Removal of trace-amount mercury from wastewater by forward osmosis. Journal of Water Process Engineering, 14, 108–116. doi: 10.1016/j.jwpe.2016.10.010
  • Wu, Z., Zou, S., Zhang, B., Wang, L., & He, Z. (2018). Forward osmosis promoted in-situ formation of struvite with simultaneous water recovery from digested swine wastewater. Chemical Engineering Journal, 342, 274–280. doi: 10.1016/j.cej.2018.02.082
  • WWF. (2018). Water scarcity. Retrieved from https://www.worldwildlife.org/threats/water-scarcity
  • Xie, M., & Gray, S. R. (2017). Silica scaling in forward osmosis: From solution to membrane interface. Water Research, 108, 232–239. doi: 10.1016/j.watres.2016.10.082
  • Xie, M., & Gray, S. R. (2016). Gypsum scaling in forward osmosis: Role of membrane surface chemistry. Journal of Membrane Science, 513, 250–259. doi: 10.1016/j.memsci.2016.04.022
  • Xie, M., Nghiem, L. D., Price, W. E., & Elimelech, M. (2013). A forward osmosis–membrane distillation hybrid process for direct sewer mining: System performance and limitations. Environmental Science & Technology, 47, 13486–13493. doi: 10.1021/es404056e
  • Xie, M., Tang, C. Y., & Gray, S. R. (2016). Spacer-induced forward osmosis membrane integrity loss during gypsum scaling. Desalination, 392, 85–90. doi: 10.1016/j.desal.2016.04.017
  • Yangali-Quintanilla, V., Li, Z., Valladares, R., Li, Q., & Amy, G. (2011). Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse. Desalination, 280(1–3), 160–166. doi: 10.1016/j.desal.2011.06.066
  • Yip, N. Y., Tiraferri, A., Phillip, W. A., Schiffman, J. D., Hoover, L. A., Kim, Y. C., & Elimelech, M. (2011). Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environmental Science & Technology, 45, 4360–4369. doi: 10.1021/es104325z
  • Yoon, H., Baek, Y., Yu, J., & Yoon, J. (2013). Biofouling occurrence process and its control in the forward osmosis. Desalination, 325, 30–36. doi: 10.1016/j.desal.2013.06.018
  • You, S., Lu, J., Tang, C. Y., & Wang, X. (2017). Rejection of heavy metals in acidic wastewater by a novel thin-film inorganic forward osmosis membrane. Chemical Engineering Journal, 320, 532–538. doi: 10.1016/j.cej.2017.03.064
  • Yuan, B., Wang, X., Tang, C., Li, X., & Yu, G. (2015). In situ observation of the growth of biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and confocal laser scanning microscopy. Water Research, 75, 188–200. doi: 10.1016/j.watres.2015.02.048
  • Yuan, W., & Zydney, A. L. (1999). Humic acid fouling during microfiltration. Journal of Membrane Science, 157(1), 1–12. doi: 10.1016/S0376-7388(98)00329-9
  • Yun, M.-A., Yeon, K.-M., Park, J.-S., Lee, C.-H., Chun, J., & Lim, D. J. (2006). Characterization of biofilm structure and its effect on membrane permeability in MBR for dye wastewater treatment. Water Research, 40(1), 45–52. doi: 10.1016/j.watres.2005.10.035
  • Zhang, H., Li, J., Cui, H., Li, H., & Yang, F. (2015). Forward osmosis using electric-responsive polymer hydrogels as draw agents: Influence of freezing–thawing cycles, voltage, feed solutions on process performance. Chemical Engineering Journal, 259, 814–819. doi: 10.1016/j.cej.2014.08.065
  • Zhang, M., Shan, J., & Tang, C. Y. (2016). Gypsum scaling during forward osmosis process—A direct microscopic observation study. Desalination and Water Treatment, 57(8), 3317–3327. doi: 10.1080/19443994.2014.985727
  • Zhang, S., Wang, K. Y., Chung, T.-S., Chen, H., Jean, Y. C., & Amy, G. (2010). Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer. Journal of Membrane Science, 360(1–2), 522–535. doi: 10.1016/j.memsci.2010.05.056
  • Zhang, W., Wang, L., & Dong, B. (2017). Effects of tannic acid on membrane fouling and membrane cleaning in forward osmosis. Water Science and Technology, 76, 3160–3170. doi: 10.2166/wst.2017.392
  • Zhang, Y., Pinoy, L., Meesschaert, B., & Van der Bruggen, B. (2013). A natural driven membrane process for brackish and wastewater treatment: Photovoltaic powered ED and FO hybrid system. Environmental Science & Technology, 47, 10548–10555. doi: 10.1021/es402534m
  • Zhao, S., Zou, L., & Mulcahy, D. (2011). Effects of membrane orientation on process performance in forward osmosis applications. Journal of Membrane Science, 382(1–2), 308–315. doi: 10.1016/j.memsci.2011.08.020
  • Zhao, S., Zou, L., Tang, C. Y., & Mulcahy, D. (2012). Recent developments in forward osmosis: Opportunities and challenges. Journal of Membrane Science, 396, 1–21. doi: 10.1016/j.memsci.2011.12.023
  • Zou, S., & He, Z. (2016). Enhancing wastewater reuse by forward osmosis with self-diluted commercial fertilizers as draw solutes. Water Research, 99, 235–243. doi: 10.1016/j.watres.2016.04.067
  • Zou, S., Wang, Y.-N., Wicaksana, F., Aung, T., Wong, P. C. Y., Fane, A. G., & Tang, C. Y. (2013). Direct microscopic observation of forward osmosis membrane fouling by microalgae: Critical flux and the role of operational conditions. Journal of Membrane Science, 436, 174–185. doi: 10.1016/j.memsci.2013.02.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.