626
Views
27
CrossRef citations to date
0
Altmetric
Reviews

Aquaporins mediated arsenite transport in plants: Molecular mechanisms and applications in crop improvement

, , , , , , , & show all
Pages 1613-1639 | Published online: 12 Sep 2019

References

  • Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, N. K., Khan, M. I. … Natasha. (2018). Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. International Journal of Environmental Research and Public Health, 15, 59. doi:10.3390/ijerph15010059
  • Ahmadpour, D., Maciaszczyk-Dziubinska, E., Babazadeh, R., Dahal, S., Migocka, M., Andersson, M., … Hohmann, S. (2016). The mitogen-activated protein kinase Slt2 modulates arsenite transport through the aquaglyceroporin Fps1. FEBS Letters, 590(20), 3649–3659. doi:10.1002/1873-3468.12390
  • Ben Fekih, I., Ma, Y., Herzberg, M., Zhang, C., Li, Y. P., Mazhar, S. H., … Rensing, C. (2018). Draft genome sequence of Pseudarthrobacter sp. strain AG30, isolated from a gold and copper mine in. Microbiology Resource Announcements, 7, e01329–01318. doi:10.1128/MRA.01329-18
  • Bhattacharjee, H., Mukhopadhyay, R., Thiyagarajan, S., & Rosen, B. P. (2008). Aquaglyceroporins: Ancient channels for metalloids. Journal of Biology, 7(9), 33. doi:10.1186/jbiol91
  • Bienert, G. P., & Jahn, T. P. (2010). Major intrinsic proteins and arsenic transport in plants: New players and their potential role. In T. P. Jahn & G. P. Bienert (Eds.), MIPs and their role in the exchange of metalloids (pp. 111–125). New York, NY: Springer New York.
  • Bienert, G. P., Schüssler, M. D., & Jahn, T. P. (2008). Metalloids: Essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends in Biochemical Sciences, 33(1), 20–26. doi:10.1016/j.tibs.2007.10.004
  • Bienert, G. P., Thorsen, M., Schüssler, M. D., Nilsson, H. R., Wagner, A., Tamás, M. J., & Jahn, T. P. (2008). A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biology, 6(1), 26–26. doi:10.1186/1741-7007-6-26
  • Bowell, R. J., Alpers, C. N., Jamieson, H. E., Nordstrom, D. K., & Majzlan, J. (2014). The environmental geochemistry of arsenic an overview. Reviews in Mineralogy and Geochemistry, 79(1), 1–16. doi:10.2138/rmg.2014.79.1
  • Carbrey, J. M., Song, L., Zhou, Y., Yoshinaga, M., Rojek, A., Wang, Y., … Mukhopadhyay, R. (2009). Reduced arsenic clearance and increased toxicity in aquaglyceroporin-9-null mice. Proceedings of the National Academy of Sciences, 106(37), 15956–15960. doi:10.1073/pnas.0908108106
  • Chen, Y., Fu, J. W., Han, Y. H., Rathinasabapathi, B., & Ma, L. Q. (2016). High As exposure induced substantial arsenite efflux in As-hyperaccumulator Pteris vittata. Chemosphere, 144, 2189–2194. doi:10.1016/j.chemosphere.2015.11.001
  • Chen, J., Garbinski, L. D., Rosen, B., Zhang, J., Xiang, P., & Ma, L. Q. (2019). Organoarsenical compounds: Occurrence, toxicology and biotransformation. Critical Reviews in Environmental Science and Technology. doi:10.1080/10643389.2019.1619375
  • Chen, Y., Han, Y. H., Cao, Y., Zhu, Y. G., Rathinasabapathi, B., & Ma, L. Q. (2017). Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Frontiers in Plant Science, 8, 268. doi:10.3389/fpls.2017.00268
  • Chen, Y., Hua, C. Y., Jia, M. R., Fu, J. W., Liu, X., Han, Y. H., B. Rathinasabapathi, … Ma, L. Q. (2017). Heterologous expression of Pteris vittata arsenite antiporter PvACR3;1 reduces arsenic accumulation in plant shoots. Environmental Science & Technology, 51(18), 10387–10395. doi:10.1021/acs.est.7b03369
  • Chen, Y., Moore, K. L., Miller, A. J., McGrath, S. P., Ma, J. F., & Zhao, F. J. (2015). The role of nodes in arsenic storage and distribution in rice. Journal of Experimental Botany, 66(13), 3717–3724. doi:10.1093/jxb/erv164
  • Chen, Y., Sun, S. K., Tang, Z., Liu, G., Moore, K. L., Maathuis, F. J. M., … Zhao, F. J. (2017). The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice. Journal of Experimental Botany, 68(11), 3007–3016. doi:10.1093/jxb/erx165
  • Choi, W. G., Hilleary, R., Swanson, S. J., Kim, S. H., & Gilroy, S. (2016). Rapid, long-distance electrical and calcium signaling in plants. Annual Review of Plant Biology, 67, 287–307. doi:10.1146/annurev-arplant-043015-112130
  • Clemens, S., & Ma, J. F. (2016). Toxic heavy metal and metalloid accumulation in crop plants and foods. Annual Review of Plant Biology, 67, 489–512. doi:10.1146/annurev-arplant-043015-112301
  • Cui, J., You, C., & Chen, X. (2017). The evolution of microRNAs in plants. Current Opinion in Plant Biology, 35, 61–67. doi:10.1016/j.pbi.2016.11.006
  • Deng, F., Yamaji, N., Ma, J. F., Lee, S. K., Jeon, J. S., Martinoia, E., … Song, W. Y. (2018). Engineering rice with lower grain arsenic. Plant Biotechnology Journal, 16, 1691–1699. doi:10.1111/pbi.12905
  • Deng, F., Yu, M., Martinoia, E., & Song, W. Y. (2019). Ideal cereals with lower arsenic and cadmium by accurately enhancing vacuolar sequestration capacity. Front Genet, 10, 322. doi:10.3389/fgene.2019.00322
  • Deshmukh, R. K., Sonah, H., & Bélanger, R. R. (2016). Plant aquaporins: Genome-wide identification. Frontiers in Plant Science, 7, 1896–1896. doi:10.3389/fpls.2016.01896
  • Duan, G. L., Hu, Y., Schneider, S., McDermott, J., Chen, J., Sauer, N., … Zhu, Y. G. (2015). Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nature Plants, 2, 15202.  doi:10.1038/nplants.2015.202
  • Duan, G., Kamiya, T., Ishikawa, S., Arao, T., & Fujiwara, T. (2012). Expressing ScACR3 in rice enhanced Arsenite efflux and reduced arsenic accumulation in rice grains. Plant and Cell Physiology, 53(1), 154–163. doi:10.1093/pcp/pcr161
  • Figarella, K., Uzcategui, N. L., Zhou, Y., LeFurgey, A., Ouellette, M., Bhattacharjee, H., & Mukhopadhyay, R. (2007). Biochemical characterization of Leishmania major aquaglyceroporin LmAQP1: Possible role in volume regulation and osmotaxis. Molecular Microbiology, 65(4), 1006–1017. doi:10.1111/j.1365-2958.2007.05845.x
  • Fu, S. F., Chen, P. Y., Nguyen, Q. T. T., Huang, L. Y., Zeng, G. R., Huang, T. L., … Huang, H. J. (2014). Transcriptome profiling of genes and pathways associated with arsenic toxicity and tolerance in Arabidopsis. BMC Plant Biology, 14(1), 94–94. doi:10.1186/1471-2229-14-94
  • Gao, W., Xu, F. C., Guo, D. D., Zhao, J. R., Liu, J., Guo, Y. W., … Song, C. P. (2018). Calcium-dependent protein kinases in cotton: Insights into early plant responses to salt stress. BMC Plant Biology, 18(1), 15. doi:10.1186/s12870-018-1230-8
  • Ghosh, M., Shen, J., & Rosen, B. P. (1999). Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 96(9), 5001–5006. doi:10.1073/pnas.96.9.5001
  • Han, Y. H., Fu, J. W., Chen, Y. S., Rathinasabapathi, B., & Ma, L. Q. (2016). Arsenic uptake, arsenite efflux and plant growth in hyperaccumulator Pteris vittata: Role of arsenic-resistant bacteria. Chemosphere, 144, 1937–1942. doi:10.1016/j.chemosphere.2015.10.096
  • Han, Y. H., Fu, J. W., Xiang, P., Cao, Y., Rathinasabapathi, B., Chen, Y. S., & Ma, L. Q. (2017). Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata. Journal of Hazardous Materials, 321, 146–153. doi:10.1016/j.jhazmat.2016.08.079
  • Hayashi, S., Kuramata, M., Abe, T., Takagi, H., Ozawa, K., & Ishikawa, S. (2017). Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains. The Plant Journal, 91(5), 840–848. doi:10.1111/tpj.13612
  • He, Z., Yan, H., Chen, Y., Shen, H., Xu, W., Zhang, H., … Ma, M. (2016). An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. New Phytologist, 209(2), 746–761. doi:10.1111/nph.13637
  • Huang, T. L., Nguyen, Q. T. T., Fu, S. F., Lin, C. Y., Chen, Y. C., & Huang, H. J. J. P. M. B. (2012). Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Molecular Biology, 80(6), 587–608. doi:10.1007/s11103-012-9969-z
  • Hub, J. S., & de Groot, B. L. (2008). Mechanism of selectivity in aquaporins and aquaglyceroporins. Proceedings of the National Academy of Sciences of Sciences, 105(4), 1198–1203. doi:10.1073/pnas.0707662104
  • Hwang, S. G., Chapagain, S., Han, A. R., Park, Y. C., Park, H. M., Kim, Y. H., & Jang, C. S. (2017). Molecular characterization of rice arsenic-induced RING finger E3 ligase 2 (OsAIR2) and its heterogeneous overexpression in Arabidopsis thaliana. Physiologia Plantarum, 161(3), 372–384. doi:10.1111/ppl.12607
  • Hwang, S. G., Park, H. M., Han, A. R., & Jang, C. S. (2016). Molecular characterization of Oryza sativa arsenic-induced RING E3 ligase 1 (OsAIR1): Expression patterns, localization, functional interaction, and heterogeneous overexpression. Journal of Plant Physiology, 191, 140–148. doi:10.1016/j.jplph.2015.12.010
  • Isayenkov, S. V., & Maathuis, F. J. (2008). The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Letters, 582(11), 1625–1628. doi:10.1016/j.febslet.2008.04.022
  • Ji, R., Zhou, L., Liu, J., Wang, Y., Yang, L., Zheng, Q., … Lan, W. (2017). Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in Arabidopsis thaliana. PLoS One, 12(3), e0173681. doi:10.1371/journal.pone.0173681
  • Kamiya, T., Tanaka, M., Mitani, N., Ma, J. F., Maeshima, M., & Fujiwara, T. (2009). NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. Journal of Biological Chemistry, 284(4), 2114–2120. doi:10.1074/jbc.M806881200
  • Li, R. Y., Ago, Y., Liu, W. J., Mitani, N., Feldmann, J., McGrath, S. P., … Zhao, F. J. (2009). The rice aquaporin lsi1 mediates uptake of methylated arsenic species. Plant Physiology, 150(4), 2071–2080. doi:10.1104/pp.109.140350
  • Li, J., Li, C., Sun, H. J., Juhasz, A. L., Luo, J., Li, H. B., & Ma, L. Q. (2016). Arsenic relative bioavailability in contaminated soils: Comparison of animal models, dosing schemes, and biological end points. Environmental Science & Technology, 50(1), 453–461. doi:10.1021/acs.est.5b04552
  • Li, H., Li, J., Zhao, D., Li, C., Wang, X., Sun, H. J., … Ma, L. Q. (2017). Arsenic relative bioavailability in rice using a mouse arsenic urinary excretion bioassay and its application to assess human health risk. Environmental Science & Technology, 51(8), 4689–4696. doi:10.1021/acs.est.7b00495
  • Li, M., Wang, P., Wang, J., Chen, X., Zhao, D., Yin, D., … Ma, L. Q. (2019). Arsenic concentrations, speciation, and localization in 141 cultivated market mushrooms: Implications for arsenic exposure to humans. Environmental Science & Technology, 53(1), 503–511. doi:10.1021/acs.est.8b05206
  • Lim, S. D., Hwang, J. G., Han, A. R., Park, Y. C., Lee, C., Ok, Y. S., & Jang, C. S. (2014). Positive regulation of rice RING E3 ligase OsHIR1 in arsenic and cadmium uptakes. Plant Molecular Biology, 85(4–5), 365–379. doi:10.1007/s11103-014-0190-0
  • Lindsay, E. R., & Maathuis, F. J. M. (2016). Arabidopsis thaliana NIP7;1 is involved in tissue arsenic distribution and tolerance in response to arsenate. FEBS Letters, 590(6), 779–786. doi:10.1002/1873-3468.12103
  • Lindsay, E. R., & Maathuis, F. J. M. (2017). New molecular mechanisms to reduce arsenic in crops. Trends in Plant Science, 22(12), 1016–1026. doi:10.1016/j.tplants.2017.09.015
  • Liu, Z., Boles, E., & Rosen, B. P. (2004). Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. Journal of Biological Chemistry, 279(17), 17312–17318. doi:10.1074/jbc.M314006200
  • Liu, Z., Shen, J., Carbrey, J. M., Mukhopadhyay, R., Agre, P., & Rosen, B. P. (2002). Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proceedings of the National Academy of Sciences of Sciences, 99(9), 6053–6058. doi:10.1073/pnas.092131899
  • Liu, Z., Styblo, M., & Rosen, B. P. (2006). Methylarsonous acid transport by aquaglyceroporins. Environmental Health Perspectives, 114(4), 527–531. doi:10.1289/ehp.8600
  • Liu, Q., & Zhang, H. (2012). Molecular identification and analysis of arsenite stress-responsive miRNAs in rice. Journal of Agricultural and Food Chemistry, 60(26), 6524–6536. doi:10.1021/jf300724t
  • Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 411(6836), 438. doi:10.1038/35054664
  • Ma, J. F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., … Yano, M. (2006). A silicon transporter in rice. Nature, 440(7084), 688–691. doi:10.1038/nature04590
  • Ma, J. F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., … Yano, M. (2007). An efflux transporter of silicon in rice. Nature, 448(7150), 209. doi:10.1038/nature05964
  • Ma, J. F., Yamaji, N., Mitani, N., Xu, X. Y., Su, Y. H., McGrath, S. P., & Zhao, F. J. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences of Sciences, 105(29), 9931–9935. doi:10.1073/pnas.0802361105
  • Maciaszczyk-Dziubinska, E., Migdal, I., Migocka, M., Bocer, T., & Wysocki, R. (2010). The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel. FEBS Letters, 584(4), 726–732. doi:10.1016/j.febslet.2009.12.027
  • Macur, R. E., Wheeler, J. T., McDermott, T. R., & Inskeep, W. P. (2001). Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environmental Science & Technology, 35, 3676–3682. doi:10.1021/es0105461
  • Madeira, A., Moura, T. F., & Soveral, G. (2016). Detecting aquaporin function and regulation. Frontiers in Chemistry, 4, 3. doi:10.3389/fchem.2016.00003
  • Maharjan, M., Singh, S., Chatterjee, M., & Madhubala, R. (2008). Role of aquaglyceroporin (AQP1) gene and drug uptake in antimony-resistant clinical isolates of Leishmania donovani. The American Journal of Tropical Medicine and Hygiene, 79(1), 69–75. doi:10.4269/ajtmh.2008.79.69
  • Marschner, H. (2012). Marschner’s mineral nutrition of higher plants. Cambridge, MA: Academic Press.
  • Mathews, S., Rathinasabapathi, B., & Ma, L. Q. (2011). Uptake and translocation of arsenite by Pteris vittata L.: Effects of glycerol, antimonite and silver. Environmental Pollution, 159(12), 3490–3495. doi:10.1016/j.envpol.2011.08.027
  • Maurel, Y., Boursiac, D. T., Luu, V., Santoni, Z., & Shahzad Verdoucq, A. L. (2015). Aquaporins in plants. Physiological Reviews, 95(4), 1321–1358.
  • Maurel, C., Verdoucq, L., Luu, D. T., & Santoni, V. (2008). Plant aquaporins: Membrane channels with multiple integrated functions. Annual Review of Plant Biology, 59(1), 595–624. doi:10.1146/annurev.arplant.59.032607.092734
  • Meng, Y. L., Liu, Z., & Rosen, B. P. (2004). As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. The Journal of Biological Chemistry, 279(18), 18334–18341. doi:10.1074/jbc.M400037200
  • Metsalu, T., & Vilo, J. (2015). ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566–W570. doi:10.1093/nar/gkv468
  • Mitani, N., Yamaji, N., & Ma, J. F. (2008). Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflugers Archiv: European Journal of Physiology, 456(4), 679–686. doi:10.1007/s00424-007-0408-y
  • Mitani-Ueno, N., Yamaji, N., & Ma, J. F. (2016). High silicon accumulation in the shoot is required for down-regulating the expression of Si transporter genes in rice. Plant and Cell Physiology, 57(12), 2510–2518. doi:10.1093/pcp/pcw163
  • Mitani-Ueno, N., Yamaji, N., Zhao, F. J., & Ma, J. F. (2011). The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. Journal of Experimental Botany, 62(12), 4391–4398. doi:10.1093/jxb/err158
  • Moore, K. L., Chen, Y., van de Meene, A. M., Hughes, L., Liu, W., Geraki, T., … Zhao, F. J. (2014). Combined NanoSIMS and synchrotron X-ray fluorescence reveal distinct cellular and subcellular distribution patterns of trace elements in rice tissues. New Phytologist, 201(1), 104–115. doi:10.1111/nph.12497
  • Moore, K. L., Schröder, M., Wu, Z., Martin, B. G. H., Hawes, C. R., McGrath, S. P., … Grovenor, C. R. M. (2011). High-resolution secondary ion mass spectrometry reveals the contrasting subcellular distribution of arsenic and silicon in rice roots. 156, 913–924. doi:10.1104/pp.111.173088
  • Mosa, K. A., Kumar, K., Chhikara, S., Mcdermott, J., Liu, Z., Musante, C., … Dhankher, O. P. (2012). Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Research, 21(6), 1265–1277. doi:10.1007/s11248-012-9600-8
  • Mudhoo, A., Sharma, S. K., Garg, V. K., & Tseng, C. H. (2011). Arsenic: An overview of applications, health, and environmental concerns and removal processes. Critical Reviews in Environmental Science and Technology, 41(5), 435–519. doi:10.1080/10643380902945771
  • Mukhopadhyay, R., Bhattacharjee, H., & Rosen, B. P. (2014). Aquaglyceroporins: Generalized metalloid channels. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(5), 1583–1591. doi:10.1016/j.bbagen.2013.11.021
  • Rahman, A., Mostofa, M. G., Alam, M. M., Nahar, K., Hasanuzzaman, M., & Fujita, M. (2015). Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers. Biomed Research International, 2015, 1. doi:10.1155/2015/340812
  • Rao, K. P., Vani, G., Kumar, K., Wankhede, D. P., Misra, M., Gupta, M., & Sinha, A. K. (2011). Arsenic stress activates MAP kinase in rice roots and leaves. Archives of Biochemistry and Biophysics, 506(1), 73–82. doi:10.1016/j.abb.2010.11.006
  • Sakurai, G., Satake, A., Yamaji, N., Mitani-Ueno, N., Yokozawa, M., Feugier, F. G., & Ma, J. F. (2015). In silico simulation modeling reveals the importance of the casparian strip for efficient silicon uptake in rice roots. Plant and Cell Physiology, 56(4), 631–639. doi:10.1093/pcp/pcv017
  • Sanders, O. I., Rensing, C., Kuroda, M., Mitra, B., & Rosen, B. P. (1997). Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. Journal of Bacteriology, 179(10), 3365–3367. doi:10.1128/jb.179.10.3365-3367.1997
  • Sarwat, M., Ahmad, P., Nabi, G., & Hu, X. (2013). Ca(2+) signals: The versatile decoders of environmental cues. Critical Reviews in Biotechnology, 33(1), 97–109. doi:10.3109/07388551.2012.672398
  • Shao, J. F., Yamaji, N., Liu, X. W., Yokosho, K., Shen, R. F., & Ma, J. F. (2018). Preferential distribution of boron to developing tissues is mediated by the intrinsic protein OsNIP3. Plant Physiology, 176(2), 1739–1750. doi:10.1104/pp.17.01641
  • Sharma, M., Mandal, G., Mandal, S., Bhattacharjee, H., & Mukhopadhyay, R. (2015). Functional role of lysine 12 in Leishmania major AQP1. Molecular and Biochemical Parasitology, 201(2), 139–145. doi:10.1016/j.molbiopara.2015.07.005
  • Sharma, D., Tiwari, M., Lakhwani, D., Tripathi, R. D., & Trivedi, P. K. (2015). Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice. Metallomics, 7(1), 174–187. doi:10.1039/C4MT00264D
  • Shen, H., He, Z., Yan, H., Xing, Z., Chen, Y., Xu, W., … Ma, M. (2014). The fronds tonoplast quantitative proteomic analysis in arsenic hyperaccumulator Pteris vittata L. Journal of Proteomics, 105, 46–57. doi:10.1016/j.jprot.2014.01.029
  • Song, W. Y., Park, J., Mendoza-Cozatl, D. G., Suter-Grotemeyer, M., Shim, D., Hortensteiner, S., … Martinoia, E. (2010). Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proceedings of the National Academy of Sciences, 107(49), 21187–21192. doi:10.1073/pnas.1013964107
  • Song, W. Y., Yamaki, T., Yamaji, N., Ko, D., Jung, K. H., Fujii-Kashino, M., … Ma, J. F. (2014). A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proceedings of the National Academy of Sciences, 111(44), 15699. doi:10.1073/pnas.1414968111
  • Srivastava, S., Srivastava, A. K., Suprasanna, P., & D’Souza, S. F. (2013). Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. Journal of Experimental Botany, 64(1), 303–315. doi:10.1093/jxb/ers333
  • Sun, S. K., Chen, Y., Che, J., Konishi, N., Tang, Z., Miller, A. J., … Zhao, F. J. (2018). Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots. New Phytologist, 219(2), 641–653. doi:10.1111/nph.15190
  • Takano, J., Tanaka, M., Toyoda, A., Miwa, K., Kasai, K., Fuji, K., … Fujiwara, T. (2010). Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proceedings of the National Academy of Sciences, 107(11), 5220–5225. doi:10.1073/pnas.0910744107
  • Takano, J., Wada, M., Ludewig, U., Schaaf, G., von Wiren, N., & Fujiwara, T. (2006). The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. The Plant Cell, 18(6), 1498–1509. doi:10.1105/tpc.106.041640
  • Thorsen, M., Di, Y., Tängemo, C., Morillas, M., Ahmadpour, D., Van der Does, C., … Tamás, M. J. (2006). The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Molecular Biology of the Cell, 17(10), 4400–4410. doi:10.1091/mbc.e06-04-0315
  • Tisarum, R., Chen, Y., Dong, X., Lessl, J. T., & Ma, L. Q. (2015). Uptake of antimonite and antimonate by arsenic hyperaccumulator Pteris vittata: Effects of chemical analogs and transporter inhibitor. Environmental Pollution, 206, 49–55. doi:10.1016/j.envpol.2015.06.029
  • Wang, F. Z., Chen, M. X., Yu, L. J., Xie, L. J., Yuan, L. B., Qi, H., … Chen, Q. F. (2017). OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Frontiers in Plant Science, 8, 1868. doi:10.3389/fpls.2017.01868
  • Wang, Y., Li, R., Li, D., Jia, X., Zhou, D., Li, J., … Liu, J. (2017). NIP1;2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis. Proceedings of the National Academy of Sciences, 114(19), 5047–5052. doi:10.1073/pnas.1618557114
  • Wang, X., Ma, L. Q., Rathinasabapathi, B., Cai, Y., Liu, Y. G., & Zeng, G. M. (2011). Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata. Environmental Science & Technology, 45, 9719–9725. doi:10.1021/es2018048
  • Wang, X., Ma, L. Q., Rathinasabapathi, B., Liu, Y., & Zeng, G. (2010). Uptake and translocation of arsenite and arsenate by Pteris vittata L.: Effects of silicon, boron and mercury. Environmental and Experimental Botany, 68(2), 222–229. doi:10.1016/j.envexpbot.2009.11.006
  • Wang, X., Rathinasabapathi, B., Oliveira, L. M., Guilherme, L. R. G., & Ma, L. Q. (2012). Bacteria-mediated arsenic oxidation and reduction in the growth media of arsenic hyperaccumulator Pteris vittata. Environmental Science & Technology, 46(20), 11259–11266. doi:10.1021/es300454b
  • Wang, S., Yoshinari, A., Shimada, T., Hara-Nishimura, I., Mitani-Ueno, N., Ma, J. F., … Takano, J. (2017). Polar localization of the NIP5;1 boric acid channel is maintained by endocytosis and facilitates boron transport in Arabidopsis roots. The Plant Cell, 29(4), 824–842. doi:10.1105/tpc.16.00825
  • Williams, P. N., Villada, A., Deacon, C., Raab, A., Figuerola, J., Green, A. J., … Meharg, A. A. (2007). Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environmental Science & Technology, 41, 6854–6859. doi:10.1021/es070627i
  • Wysocki, R., Chery, C. C., Wawrzycka, D., Van Hulle, M., Cornelis, R., Thevelein, J. M., & Tamas, M. J. (2001). The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Molecular Microbiology, 40(6), 1391–1401. doi:10.1046/j.1365-2958.2001.02485.x
  • Xu, W., Dai, W., Yan, H., Li, S., Shen, H., Chen, Y., … Ma, M. (2015). Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Molecular Plant, 8(5), 722–733. doi:10.1016/j.molp.2015.01.005
  • Xu, J. Y., Li, H. B., Liang, S., Luo, J., & Ma, L. Q. (2014). Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata. Environmental Pollution, 194, 105–111. doi:10.1016/j.envpol.2014.07.017
  • Yamaji, N., & Ma, J. F. (2009). A transporter at the node responsible for intervascular transfer of silicon in rice. The Plant Cell, 21(9), 2878–2883. doi:10.1105/tpc.109.069831
  • Yamaji, N., Sakurai, G., Mitani-Ueno, N., & Ma, J. F. (2015). Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice. Proceedings of the National Academy of Sciences, 112(36), 11401. doi:10.1073/pnas.1508987112
  • Yamamura, S., Watanabe, M., Kanzaki, M., Soda, S., & Ike, M. (2008). Removal of arsenic from contaminated soils by microbial reduction of arsenate and quinone. Environmental Science & Technology, 42, 6154–6159. doi:10.1021/es703146f
  • Yang, H. C., Cheng, J., Finan, T. M., Rosen, B. P., & Bhattacharjee, H. (2005). Novel pathway for arsenic detoxification in the legume symbiont. Journal of Bacteriology, 187, 6991–6997. doi:10.1128/JB.187.20.6991-6997.2005
  • Yang, H. C., Fu, H. L., Lin, Y. F., & Rosen, B. P. (2012). Pathways of arsenic uptake and efflux. Current Topics in Membranes, 69, 325–358. doi:10.1016/B978-0-12-394390-3.00012-4
  • Yu, L. J., Luo, Y. F., Liao, B., Xie, L. J., Chen, L., Xiao, S., … Shu, W. S. (2012). Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytologist, 195(1), 97–112. doi:10.1111/j.1469-8137.2012.04154.x
  • Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z., & McGrath, S. P. (2015). Soil contamination in China: Current status and mitigation strategies. Environmental Science & Technology, 49, 750–759. doi:10.1021/es5047099
  • Zhao, F. J., McGrath, S. P., & Meharg, A. A. (2010). Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annual Review of Plant Biology, 61(1), 535–559. doi:10.1146/annurev-arplant-042809-112152
  • Zhou, X., Arita, A., Ellen, T. P., Liu, X., Bai, J., Rooney, J. P., … Costa, M. (2009). A genome-wide screen in Saccharomyces cerevisiae reveals pathways affected by arsenic toxicity. Genomics, 94(5), 294–307. doi:10.1016/j.ygeno.2009.07.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.