2,791
Views
59
CrossRef citations to date
0
Altmetric
Reviews

Satellite remote sensing of aerosol optical depth: advances, challenges, and perspectives

, ORCID Icon, &
Pages 1640-1725 | Published online: 04 Nov 2019

References

  • Acker, J. G., & Leptoukh, G. (2007). Online analysis enhances use of NASA Earth Science Data. Eos, Transactions American Geophysical Union, 88(2), 14. doi:10.1029/2007EO020003
  • Adhikary, B., Kulkarni, S., Dallura, A., Tang, Y., Chai, T., Leung, L. R., … Carmichael, G. R. (2008). A regional scale chemical transport modeling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique. Atmospheric Environment, 42(37), 8600–8615. doi:10.1016/j.atmosenv.2008.08.031
  • Ahmad, Z., Franz, B. A., McClain, C. R., Kwiatkowska, E. J., Werdell, J., Shettle, E. P., & Holben, B. N. (2010). New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans. Applied Optics, 49(29), 5545. doi:10.1364/AO.49.005545
  • Ahn, C., Torres, O., & Bhartia, P. K. (2008). Comparison of ozone monitoring instrument UV aerosol products with aqua/moderate resolution imaging spectroradiometer and multiangle imaging spectroradiometer observations in 2006. Journal of Geophysical Research Atmospheres, 113(D16), 1–13. doi:10.1029/2007JD008832
  • Aiazzi, B., Alparone, L., Baronti, S., & Garzelli, A. (2002). Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Transactions on Geoscience and Remote Sensing, 40(10), 2300–2312. doi:10.1109/TGRS.2002.803623
  • Alexandrov, M. D., Lacis, A. A., Carlson, B. E., & Cairns, B. (2002). Remote sensing of atmospheric aerosols and trace gases by means of Multifilter Rotating Shadowband Radiometer. Part II: Climatological Applications. Journal of the Atmospheric Sciences, 59(3), 524–543. doi:10.1175/15200469(2002)059%3C0544:RSOAAA%3E2.0.CO;2
  • Alexandrov, M. D., Lacis, A. A., Carlson, B. E., & Cairns, B. (2008). Characterization of atmospheric aerosols using MFRSR measurements. Journal of Geophysical Research Atmospheres, 113(D8), 1–23. doi:10.1029/2007JD009388
  • Angstrom, A. (1929). On the atmospheric transmission of sun radiation and on dust in the air. Geografiska Annaler, 11, 156–166. doi:10.2307/519399
  • Antezana, J., Massey, P., Ruiz, M., & Stojanoff, D. (2007). The Schur-horn theorem for operators and frames with prescribed norms and frame operator. Illinois Journal of Mathematics, 51(2), 537–560. doi:10.1029/2000JD900364
  • ATBD-MOD-14. (2006). MODIS fire products for both Terra and Aqua Documents. Retrieved from https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd_mod14.pdf.
  • Atkinson, P. M. (2013). Downscaling in remote sensing. International Journal of Applied Earth Observation and Geoinformation, 22(1), 106–114. doi:10.1016/j.jag.2012.04.012
  • Atkinson, P. M., Foody, G. M., Curran, P. J., & Boyd, D. S. (2000). Assessing the ground data requirements for regional scale remote sensing of tropical forest biophysical properties. International Journal of Remote Sensing, 21(13–14), 2571–2587. doi:10.1080/01431160050110188
  • Aufman, Y. O. J. K. (2002). Model assessment of the ability of MODIS to measure top-of-atmosphere direct radiative forcing from smoke aerosols. Hemisphere, 59(3), 657–667. doi:10.1175/1520-0469(2002)059 < 0657:MAOTAO>2.0.CO;2
  • Bai, K., Chang, N., Bin., & Chen, C. F. (2016). Spectral information adaptation and synthesis scheme for merging cross-mission ocean color reflectance observations from MODIS and VIIRS. IEEE Transactions on Geoscience and Remote Sensing, 54(1), 311–329. doi:10.1109/TGRS.2015.2456906
  • Bai, K., Chang, N.-B., Yu, H., & Gao, W. (2016). Statistical bias correction for creating coherent total ozone record from OMI and OMPS observations. Remote Sensing of Environment, 182, 150–168. doi:10.1016/j.rse.2016.05.007
  • Banks, M. E., Xiao, Z., Watters, T. R., Strom, R. G., Braden, S. E., Chapman, C. R., … Byrne, P. K. (2015). Duration of activity on lobate-scarp thrust faults on Mercury. Journal of Geophysical Research: Planets, 120, 1751–1762. doi:10.1002/2014JD022963
  • Bao, Y., Zhu, L., Guan, Q., Guan, Y., Lu, Q., Petropoulos, G. P., … Hou, Y. (2019). Assessing the impact of Chinese FY-3/MERSI AOD data assimilation on air quality forecasts: Sand dust events in northeast China. Atmospheric Environment, 205(February), 78–89. doi:10.1016/j.atmosenv.2019.02.026
  • Barnaba, F., & Gobbi, G. P. (2004). Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001. Atmospheric Chemistry and Physics, 4(9/10), 2367–2391. doi:10.5194/acpd-4-4285-2004
  • Beckerman, B. S., Jerrett, M., Martin, R. V., Van Donkelaar, A., Ross, Z., & Burnett, R. T. (2013). Application of the deletion/substitution/addition algorithm to selecting land use regression models for interpolating air pollution measurements in California. Atmospheric Environment, 77, 172–177. Short communication doi:10.1016/j.atmosenv.2013.04.024
  • Bennouna, Y. S., De Leeuw, G., Piazzola, J., & Kusmierczyk-Michulec, J. (2009). Aerosol remote sensing over the ocean using MSG-SEVIRI visible images. Journal of Geophysical Research Atmospheres, 114(D23), 1–18. doi:10.1029/2008JD011615
  • Berger, J., & Osborne, T. J. (2018). Perfect tangles. Environmental Science & Technology, 52, 9069–9078. doi:10.1021/acs.est.8b02864
  • Bevan, S. L., North, P. R. J., Los, S. O., & Grey, W. M. F. (2012). A global dataset of atmospheric aerosol optical depth and surface reflectance from AATSR. Remote Sensing of Environment, 116, 199–210. doi:10.1016/j.rse.2011.05.024
  • Bhatia, N., Tolpekin, V. A., Stein, A., & Reusen, I. (2018). Estimation of AOD under uncertainty: An approach for Hyperspectral Airborne data. Remote Sensing, 10(6), 947. doi:10.3390/rs10060947
  • Bibi, H., Alam, K., Chishtie, F., Bibi, S., Shahid, I., & Blaschke, T. (2015). Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data. Atmospheric Environment, 111, 113–126. doi:10.1016/j.atmosenv.2015.04.013
  • Bilal, M., Nazeer, M., & Nichol, J. E. (2017). Validation of MODIS and VIIRS derived aerosol optical depth over complex coastal waters. Atmospheric Research, 186, 43–50. doi:10.1016/j.atmosres.2016.11.009
  • Bilal, M., Nichol, J. E., Bleiweiss, M. P., & Dubois, D. (2013). A Simplified high resolution MODIS aerosol retrieval algorithm (SARA) for use over mixed surfaces. Remote Sensing of Environment, 136, 135–145. doi:10.1016/j.rse.2013.04.014
  • Bilal, M., Nichol, J. E., & Chan, P. W. (2014). Validation and accuracy assessment of a Simplified Aerosol Retrieval Algorithm (SARA) over Beijing under low and high aerosol loadings and dust storms. Remote Sensing of Environment, 153, 50–60. doi:10.1016/j.rse.2014.07.015
  • Boiyo, R., & Raghavendra, K. (2018). Spatial variations and trends in AOD climatology over East Africa during 2002–2016: A comparative study using three satellite data sets, 38(February). doi:10.1002/joc.5446
  • Boiyo, R., Kumar, K. R., Zhao, T., & Bao, Y. (2017). Climatological analysis of aerosol optical properties over East Africa observed from space-borne sensors during 2001–2015. Atmospheric Environment, 152, 298–313. doi:10.1016/j.atmosenv.2016.12.050
  • Boucher, O., & Tanre, D. (2000). Estimation of the aerosol perturbation to the Earth’s radiative budget over oceans using POLDER satellite aerosol retrievals. Geophysical Research Letters, 27(8), 1103–1106. doi:10.1029/1999GL010963
  • Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Nöel, S., Rozanov, V. V., … Goede, A. P. H. (1999). SCIAMACHY: Mission objectives and measurement modes. Journal of the Atmospheric Sciences, 56(2), 127–150. doi:10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
  • Bréon, F. M., Buriez, J. C., Couvert, P., Deschamps, P. Y., Deuzé, J. L., Herman, M., … Vesperini, M. (2002). Scientific results from the polarization and directionality of the earth’s reflectances (POLDER). Advances in Space Research, 30(11), 2383–2386. doi:10.1016/S0273-1177(02)80282-4
  • Bréon, F. M., Vermeulen, A., & Descloitres, J. (2011). An evaluation of satellite aerosol products against sunphotometer measurements. Remote Sensing of Environment, 115(12), 3102–3111. doi:10.1016/j.rse.2011.06.017
  • Bréon, F. M., & Maignan, F. (2016). A BRDF-BPDF database for the analysis of Earth target reflectances. Earth System Science Data, 9(1), 31–45. doi:10.5194/essd-9-31-2017
  • Buchroithner, M. (1998). Geodata interrelations: Inventory and structuring attempt of taxonomic diversity. In Proceedings of the 2nd conference “Fusion of Earth data: merging point measurements, raster maps and remotely sensed images”. SEE/URISCA, Nice, France, pp. 11–15.
  • Burrows, J. P., Holzle, E., Goede, A. P. H., Visser, H., & Fricke, W. (1995). SCIAMACHY – Scanning imaging absorption spectrometer for atmospheric chartography. Acta Astronautica, 35(7), 445–451. doi:10.1016/0094-5765(94)00278-T
  • Cao, C., Weinreb, M., & Xu, H. (2004). Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. Journal of Atmospheric and Oceanic Technology, 21(4), 537–542. doi:10.1175/1520-0426(2004)021 < 0537:PSNOAP>2.0.CO;2
  • Carboni, E., Thomas, G. E., Sayer, A. M., Siddans, R., Poulsen, C. A., Grainger, R. G., & Ahn, C. (2019). Intercomparison of desert dust optical depth from satellite measurements, 1973–2002. Atmospheric Measurement Techniques, 5,1973–2002. doi:10.5194/amt-5-1973-2012
  • Chang, N. B., Bai, K., & Chen, C. F. (2015). Smart information reconstruction via time-space-spectrum continuum for cloud removal in satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(5), 1898–1912. doi:10.1109/JSTARS.2015.2400636
  • Chang, N. B., Bai, K., Imen, S., Chen, C. F., & Gao, W. (2018). Multisensor satellite image fusion and networking for all-weather environmental monitoring. Systems Journal, IEEE., 12(2), 1341–1357. doi:10.1109/JSYST.2016.2565900
  • Chang, N. B., & Bai, K. (2018). Multisensor data fusion and machine learning for environmental remote sensing. In Multisensor data fusion and machine learning for environmental remote sensing, (January) (pp. 1–508). Boca Raton, FL: CRC Press.
  • Chang, N. B., Vannah, B., & Yang, Y. J. (2014). Comparative sensor fusion between hyperspectral and multispectral satellite sensors for monitoring mcrocystin distribution in Lake Erie. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 2426–2417. doi:10.1109/JSTARS.2014.2329913
  • Chang, N. B., Vannah, B. W., Yang, Y. J., & Elovitz, M. (2014). Integrated data fusion and mining techniques for monitoring total organic carbon concentrations in a lake. International Journal of Remote Sensing, 35(3), 1064–1093. doi:10.1080/01431161.2013.875632
  • Chanpimol, S., Seamon, B., Hernandez, H., Harris-Love, M., & Blackman, M. R. (2017). HHS Public Access, (1994), 409–416. doi:10.1186/s40945-017-0033-9.Using
  • Chatterjee, A., Michalak, A. M., Kahn, R. A., Paradise, S. R., Braverman, A. J., & Miller, C. E. (2010). A geostatistical data fusion technique for merging remote sensing and ground-based observations of aerosol optical thickness. Journal of Geophysical Research, 115(D20), 1–12. doi:10.1029/2009JD013765
  • Chen, H., Cheng, T., Gu, X., Li, Z., & Wu, Y. (2015). Evaluation of polarized remote sensing of aerosol optical thickness retrieval over China. Remote Sensing, 7(10), 13711–13728. doi:10.3390/rs71013711
  • Chen, C., Dubovik, O., Henze, D. K., Lapyonak, T., Chin, M., Ducos, F., … Li, L. (2018). Retrieval of desert dust and carbonaceous aerosol emissions over Africa from POLDER/PARASOL products generated by the GRASP algorithm. Atmospheric Chemistry and Physics, 18(16), 12551–12580. doi:10.5194/acp-18-12551-2018
  • Chen, J. P., Hazra, A., & Levin, Z. (2008). Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data. Atmospheric Chemistry and Physics, 8(24), 7431–7449. doi:10.5194/acp-8-7431-2008
  • Chen, X., Li, Z., Zhao, S., Yang, L., Ma, Y., & Liu, L., L., D. (2018). Using the Gaofen-4 geostationary satellite to retrieve aerosols with high spatiotemporal resolution. Journal of Applied Remote Sensing, 12(4), 1. doi:10.1117/1.JRS.12.042606
  • Cheng, T. H., Gu, X. F., Yu, T., & Tian, G. L. (2010). The reflection and polarization properties of non-spherical aerosol particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(6), 895–906. doi:10.1016/j.jqsrt.2009.11.019
  • Curier, R. L., Veefkind, J. P., Braak, R., Veihelmann, B., Torres, O., & de Leeuw, G. (2008). Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm: Application to western Europe. Journal of Geophysical Research Atmospheres, 113(D17), 1–16. doi:10.1029/2007JD008738
  • de Leeuw, G., Holzer-Popp, T., Bevan, S., Davies, W. H., Descloitres, J., Grainger, R. G., … Pinnock, S. (2015). Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis. Remote Sensing of Environment, 162, 295–315. doi:10.1016/j.rse.2013.04.023
  • de Leeuw, G., Sogacheva, L., Rodriguez, E., Kourtidis, K., Georgoulias, A. K., Alexandri, G., … van der A, R. (2018). Two decades of satellite observations of AOD over mainland China using ATSR-2, AATSR and MODIS/Terra: Data set evaluation and large-scale patterns. Atmospheric Chemistry and Physics, 18(3), 1573–1592. doi:10.5194/acp-18-1573-2018
  • De Meij, A., & Lelieveld, J. (2011). Evaluating aerosol optical properties observed by ground-based and satellite remote sensing over the Mediterranean and the Middle East in 2006. Atmospheric Research, 99(3–4), 415–433. doi:10.1016/j.atmosres.2010.11.005
  • Deng, X. J., Zhou, X. J., Tie, X. X., Wu, D., Li, F., Tan, H. B., & Deng, T. (2012). Attenuation of ultraviolet radiation reaching the surface due to atmospheric aerosols in Guangzhou. Chinese Science Bulletin, 57(21), 2759–2766. doi:10.1007/s11434-012-5172-5
  • Deschamps, P.-Y., Breon, F.-M., Leroy, M., Podaire, A., Bricaud, A., Buriez, J.-C., & Seze, G. (1994). The POLDER Mission: Instrument Characteristics and Scientific Objectives. IEEE Transactions on Geoscience and Remote Sensing, 32(3), 598–615. doi:10.1109/36.297978
  • Deuzé, J. L., Bréon, F. M., Devaux, C., Goloub, P., Herman, M., Lafrance, B., … Tanré, D. (2001). Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. Journal of Geophysical Research: Atmospheres, 106(D5), 4913–4926. doi:10.1029/2000JD900364
  • Di, Q., Kloog, I., Koutrakis, P., Lyapustin, A., Wang, Y., & Schwartz, J. (2016). Assessing PM 2.5 Exposures with high spatiotemporal resolution across the continental United States graphical abstract HHS Public Access. Environmental Science & Technology, 50(9), 4712–4721. doi:10.1021/acs.est.5b06121
  • Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E., Kahn, R. A., & Martonchik, J. V. (1998). Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1072–1087. doi:10.1109/36.700992
  • Diner, D. J., Davies, R., Kahn, R., Martonchik, J., Gaitley, B., & Davis, A. (2006). Current and future advances in optical multiangle remote sensing of aerosols and clouds based on Terra/MISR experience. Remote Sensing of the Atmosphere and Clouds, 6408(December 2006), 640801. doi:10.1117/12.698008
  • Diner, D. J., Mischna, M., Chipman, R. A., Davis, A., Cairns, B., Davies, R., & Kahn, R. A. (2008). WindCam and MSPI: Two cloud and aerosol instrument concepts derived from Terra/MISR heritage. Earth Observing Systems XIII, 7081(August 2008), 70810T–702008. doi:10.1117/12.795146
  • Drury, E., Jacob, D. J., Wang, J., Spurr, R. J. D., & Chance, K. (2008). Improved algorithm for MODIS satellite retrievals of aerosol optical depths over western North America. Journal of Geophysical Research Atmospheres, 113(16). doi:10.1029/2007JD009573
  • Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J. L., … Lopatin, A. (2011). Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmospheric Measurement Techniques, 4(5), 975–1018. doi:10.5194/amt-4-975-2011
  • Dubovik, O., & King, M. D. (2000). A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. Journal of Geophysical Research: Atmospheres, 105(D16), 20673–20696. doi:10.1029/2000JD900282
  • Dubovik, O., Lapyonok, T., Litvinov, P., Herman, M., Fuertes, D., Ducos, F., … Federspiel, C. (2014). GRASP: A versatile algorithm for characterizing the atmosphere. SPIE Newsroom, doi:10.1117/2.1201408.005558
  • Duffie, J. & Beckman, W. (1991). Solar engineering of thermal processes (2nd ed.). New York: John Wiley & Sons, Inc., 119–121.
  • Eck, T. F., Reid, J. S., Smirnov, A., Neill, N. T. O., Slutsker, I., & Kinne, S. (1999). Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research, 104(1), .31333–31349. doi:10.1029/1999JD900923
  • Emili, E., Lyapustin, A., Wang, Y., Popp, C., Korkin, S., Zebisch, M., & Wunderle, S. (2011). High spatial resolution aerosol retrieval with MAIAC: Application to mountain regions. Journal of Geophysical Research Atmospheres, 116(23), 1–12. doi:10.1029/2011JD016297
  • Engel-Cox, J. A., Holloman, C. H., Coutant, B. W., & Hoff, R. M. (2004). Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmospheric Environment, 38(16), 2495–2509. doi:10.1016/j.atmosenv.2004.01.039
  • Eplee, R. E., Meister, G., Patt, F. S., Barnes, R. A., Bailey, S. W., Franz, B. A., & McClain, C. R. (2012). Uncertainty Assessment of the SeaWiFS On-Orbit Calibration. Applied Optics, 51(36), 8702–8730. doi:10.1364/AO.51.008702
  • Fan, X., Chen, H., Lin, L., Han, Z., & Goloub, P. (2009). Retrieval of aerosol optical properties over the Beijing area using POLDER/PARASOL satellite polarization measurements. Advances in Atmospheric Sciences, 26(6), 1099–1107. doi:10.1007/s00376-009-8103-x
  • Fan, X., Xia, X., & Chen, H. (2018). Can MODIS detect trends in aerosol optical depth over land? Advances in Atmospheric Sciences, 35(2), 135–145. doi:10.1007/s00376-017-7017-2
  • Farahat, A. (2019). Comparative analysis of MODIS, MISR, and AERONET climatology over the Middle East and North Africa. Annales Geophysicae, 37(1), 49–64. doi:10.5194/angeo-37-49-2019
  • Farahat, A., El-Askary, H., & Al-Shaibani, A. (2015). Study of aerosols’ characteristics and dynamics over the Kingdom of Saudi Arabia using a multisensor approach combined with ground observations. Advances in Meteorology, 2015, 1. doi:10.1155/2015/247531
  • Fernandes, A. P., Riffler, M., Ferreira, J., Wunderle, S., Borrego, C., & Tchepel, O. (2015). Comparisons of aerosol optical depth provided by Seviri satellite observations and Camx air quality modelling. Isprs - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7W3), 187–193. doi:10.5194/isprsarchives-XL-7-W3-187-2015
  • Filonchyk, M., Yan, H., Zhang, Z., Yang, S., Li, W., & Li, Y. (2019). Combined use of satellite and surface observations to study aerosol optical depth in different regions of China. Scientific Reports, 9(1), 1–15. doi:10.1038/s41598-019-42466-6
  • Flowerdew, R. J., & Haigh, J. D. (1995). An approximation to improve accuracy in the derivation of surface reflectances from multi-look satellite radiometers. Geophysical Research Letters, 22(13), 1693–1696. doi:10.1029/95GL01662
  • Formenti, P., Kabuiku, L. M., Chiapello, I., Ducos, F., Dulac, F., & Tanré, D. (2018). Aerosol optical properties derived from POLDER-3 / PARASOL (2005-2013) over the western Mediterranean Sea: I. Quality assessment with AERONET and in situ airborne observation. Atmospheric Measurement Techniques, 11, 6761–6784. doi:10.5194/amt-11-6761-2018
  • Franch, B., Vermote, E. F., Sobrino, J. A., & Fédèle, E. (2013). Analysis of directional effects on atmospheric correction. Remote Sensing of Environment, 128, 276–288. doi:10.1016/j.rse.2012.10.018
  • Gao, M., Han, Z., Liu, Z., Li, M., Xin, J., Tao, Z., … Carmichael, G. R. (2018). Air quality and climate change, topic 3 of the model inter-comparison study for Asia Phase III (MICS-Asia III), Part I: Overview and model evaluation. Atmospheric Chemistry and Physics, 18(7), 4859–4884. doi:10.5194/acp-18-4859-2018
  • Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the MODIS and Landsat ETM + Surface Reflectance: Predicting daily landsat surface reflectanc. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2207–2218.
  • Garay, M. J., Kalashnikova, O. V., & Bull, M. A. (2017). Development and assessment of a higher-spatial-resolution (4.4 km) MISR aerosol optical depth product using AERONET-DRAGON data. Atmospheric Chemistry and Physics, 17(8), 5095–5106. doi:10.5194/acp-17-5095-2017
  • Garciá, R. D., Garciá, O. E., Cuevas, E., Cachorro, V. E., Barreto, A., Guirado-Fuentes, C., & Kouremeti, N. (2016). Aerosol optical depth retrievals at the Izanã Atmospheric Observatory from 1941 to 2013 by using artificial neural networks. Atmospheric Measurement Techniques, 9(1), 53–62. doi:10.5194/amt-9-53-2016
  • Gautam, R., Hsu, N. C., Eck, T. F., Holben, B. N., Janjai, S., Jantarach, T., … Lau, W. K. (2013). Characterization of aerosols over the Indochina peninsula from satellite-surface observations during biomass burning pre-monsoon season. Atmospheric Environment, 78, 51–59. doi:10.1016/j.atmosenv.2012.05.038
  • Geogdzhayev, I. V., Mishchenko, M. I., Rossow, W. B., Cairns, B., & Lacis, A. A. (2002). Global two-channel AVHRR retrievals of aerosol properties over the ocean for the period of NOAA-9 observations and preliminary retrievals using NOAA-7 and NOAA-11 data. Journal of the Atmospheric Sciences, 59(3), 262–278. doi:10.1175/1520-0469(2002)059 < 0262:GTCARO>2.0.CO;2
  • Gordon, H. R., & Wang, M. (1994). Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Applied Optics, 33(3), 443. doi:10.1364/AO.33.000443
  • Greenwald, T. J., Pierce, R. B., Schaack, T., Otkin, J., Rogal, M., Bah, K., … & Huang, H. L. (2016). Real-time simulation of the GOES-R ABI for user readiness and product evaluation. Bulletin of the American Meteorological Society, 97(2), 245–261. doi:10.1175/BAMS-D-14-00007.1
  • Grey, W. M. F., North, P. R. J., Los, S. O., & Mitchell, R. M. (2006). Aerosol optical depth and land surface reflectance from multiangle AATSR measurements: Global validation and intersensor comparisons. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2184–2197. doi:10.1109/TGRS.2006.872079
  • Griggs, M. (1975). Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data. Journal of the Air Pollution Control Association, 25(6), 622–626. doi:10.1080/00022470.1975.10470118
  • Guang, J., Xue, Y., Li, Y., Liang, S., Mei, L., & Xu, H. (2012). Retrieval of aerosol optical depth over bright land surfaces by coupling bidirectional reflectance distribution function model and aerosol retrieval model. Remote Sensing Letters, 3(7), 577–584. doi:10.1080/01431161.2011.642322
  • Guanter, L., González-Sanpedro, M. D. C., & Moreno, J. (2007). A method for the atmospheric correction of ENVISAT/MERIS data over land targets. International Journal of Remote Sensing, 28(3-4), 709–728. doi:10.1080/01431160600815525
  • Guleria, R. P., Kuniyal, J. C., & Dhyani, P. P. (2012). Validation of space-born Moderate Resolution Imaging Spectroradiometer remote sensors aerosol products using application of ground-based Multi-wavelength Radiometer. Advances in Space Research, 50(10), 1391–1404. COSPAR. doi:10.1016/j.asr.2012.07.002
  • Guo, J., Gu, X., Yu, T., Cheng, T., Chen, H., & Xie, D. (2013). Trend analysis of the aerosol optical depth over China using fusion of MODIS and MISR aerosol products via adaptive weighted estimate algorithm. Proc. SPIE 8866, Earth Observing Systems XVIII, 88661X (23 September 2013). doi:10.1117/12.2024687
  • Guo, L., Turner, A. G., & Highwood, E. J. (2016). Local and remote impacts of aerosol species on indian summer monsoon rainfall in a GCM. Journal of Climate, 29(19), 6937–6955. doi:10.1175/JCLI-D-15-0728.1
  • Gupta, P., & Christopher, S. A. (2008). Seven year particulate matter air quality assessment from surface and satellite measurements. Atmospheric Chemistry and Physics, 8(12), 3311–3324. doi:10.5194/acp-8-3311-2008
  • Ha, W., Gowda, P. H., & Howell, T. A. (2013). A review of downscaling methods for remote sensing-based irrigation management: Part I. Irrigation Science, 31(4), 831–850. doi:10.1007/s00271-012-0331-7
  • Hagolle, O., Dedieu, G., Mougenot, B., Debaecker, V., Duchemin, B., & Meygret, A. (2008). Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: Application to Formosat-2 images. Remote Sensing of Environment, 112(4), 1689–1701. doi:10.1016/j.rse.2007.08.016
  • Han, B., Ding, H., Ma, Y., & Gong, W. (2017). Improving retrieval accuracy for aerosol optical depth by fusion of MODIS and CALIOP data. Tehnicki vjesnik - Technical Gazette, 24(3), 791–800. doi:10.17559/TV-20160429044233
  • Han, X., Zou, X., Song, Z., Fu, D., Xia, X., & Che, H. (2019). Comparison of AVHRR aerosol optical depth production against CARSNET data in China. Atmospheric Research, 218(October 2018), 12–24. doi:10.1016/j.atmosres.2018.11.005
  • Hasekamp, O. P., Litvinov, P., & Butz, A. (2011). Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements. Journal of Geophysical Research Atmospheres, 116(D14), 1–13. doi:10.1029/2010JD015469
  • Heiberg, H., Tsyro, S., Valdebenito, A., & Schyberg, H. (2010). Strategic review of satellite products and recommendations for future comparison with model results and data assimilation. Terra, (5), 1–44.
  • Heidinger, A. K., Straka, W. C., Molling, C. C., Sullivan, J. T., & Wu, X. (2010). Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record. International Journal of Remote Sensing, 31(24), 6493–6517. doi:10.1080/01431161.2010.496472
  • Henderson, B. G., & Chylek, P. (2005). The effect of spatial resolution on satellite aerosol optical depth retrieval. IEEE Transactions on Geoscience and Remote Sensing, 43(9), 1984–1990. doi:10.1109/TGRS.2005.852078
  • Herman, J. R., Bhartia, P. K., Torres, O., Hsu, C., Seftor, C., & Celarier, E. (1997). Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. Journal of Geophysical Research: Atmospheres, 102(D14), 16911–16922. doi:10.1029/96JD03680
  • Herman, M., Deuzé, J. L., Marchand, A., Roger, B., & Lallart, P. (2005). Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model. Journal of Geophysical Research, 110(D10), 1–11. doi:10.1029/2004JD004798
  • Hersey, S. P., Garland, R. M., Crosbie, E., Shingler, T., Sorooshian, A., Piketh, S., & Burger, R. (2015). An overview of regional and local characteristics of aerosols in South Africa using satellite, ground, and modeling data. Atmospheric Chemistry and Physics, 15(8), 4259–4278. doi:10.5194/acp-15-4259-2015
  • He, L., Wang, L., Lin, A., Zhang, M., Bilal, M., & Wei, J. (2018). Performance of the NPP-VIIRS and aqua-MODIS aerosol optical depth products over the Yangtze River Basin. Remote Sensing, 10(1), 117. doi:10.3390/rs10010117
  • He, J., Zha, Y., Zhang, J., Gao, J., & Wang, Q. (2014). Synergetic retrieval of terrestrial AOD from MODIS images of twin satellites Terra and Aqua. Advances in Space Research, 53(9), 1337–1346. COSPAR. doi:10.1016/j.asr.2014.02.013
  • Holben, B., Vermote, E., Kaufman, Y. (1992). Aerosol retrieval over land from AVHRR data-application for atmospheric correction. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 212–222. doi:10.1109/36.134072
  • Holzer-Popp, T., de Leeuw, G., Griesfeller, J., Martynenko, D., Klüser, L., Bevan, S., … Pinnock, S. (2013). Aerosol retrieval experiments in the ESA Aerosol-cci project. Atmospheric Measurement Techniques, 6(8), 1919–1957. doi:10.5194/amt-6-1919-2013
  • Hsu, N. C., Gautam, R., Sayer, A. M., Bettenhausen, C., Li, C., Jeong, M. J., … Holben, B. N. (2012). Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmospheric Chemistry and Physics, 12(17), 8037–8053. doi:10.5194/acp-12-8037-2012
  • Hsu, N. C., Herman, J. R., Bhartia, P. K., Seftor, C. J., Torres, O., Thompson, A. M., … Holben, B. N. (1996). Detection of biomass burning smoke from TOMS measurements. Geophysical Research Letters, 23(7), 745–748. doi:10.1029/96GL00455
  • Hsu, N. C., Herman, J. R., Torres, O., Holben, B. N., Tanre, D., Eck, T. F., … Lavenu, F. (1999). Comparisons of the TOMS aerosol index with Sun-photometer aerosol optical thickness: Results and applications. Journal of Geophysical Research: Atmospheres, 104(D6), 6269–6279. doi:10.1029/1998JD200086
  • Hsu, N. C., Jeong, M.-J., Bettenhausen, C., Sayer, A. M., Hansell, R., Seftor, C. S., … Tsay, S.-C. (2013). Enhanced Deep Blue aerosol retrieval algorithm: The second generation. Journal of Geophysical Research: Atmospheres, 118(16), 9296–9315. doi:10.1002/jgrd.50712
  • Hsu, N. C., Lee, J., Sayer, A. M., Carletta, N., Chen, S. H., Tucker, C. J., & Holben, B. N. (2017). Retrieving near-global aerosol loading over land and ocean from AVHRR. Journal of Geophysical Research: Atmospheres, 122(18), 9968–9989. doi:10.1002/2017JD026932
  • Hsu, N. C., Lee, J., Sayer, A. M., Kim, W., Bettenhausen, C., & Tsay, S. C. (2019). VIIRS deep blue aerosol products over land: Extending the EOS long-term aerosol data Records. Journal of Geophysical Research: Atmospheres, 124(7), 4026–4053. doi:10.1029/2018JD029688
  • Hsu, N. C., Tsay, S.-C., King, M. D., & Herman, J. R. (2004). Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42(3), 557–569. doi:10.1109/TGRS.2004.824067
  • Hsu, N. C., Tsay, S.-C., King, M. D., & Herman, J. R. (2006). Deep Blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Transactions on Geoscience and Remote Sensing, 44(11), 3180–3195. doi:10.1109/TGRS.2006.879540
  • Hidy, G. M., Brook, J. R., Chow, J. C., Green, M., Husar, R. B., Lee, C., … Watson, J. G. (2009). Remote sensing of particulate pollution from space: Have we reached the promised land? Journal of the Air & Waste Management Association, 59(10), 1130–1139. doi:10.3155/1047-3289.59.10.1130
  • Huang, C., Ho, H., & Lin, T. (2018). Improving the image fusion procedure for high spatiotemporal aerosol optical depth retrieval - a case study of urban area in Taiwan. Journal of Applied Remote Sensing, 12(4), 1. doi:10.1117/1.JRS.12.042605
  • Huang, J., Kondragunta, S., Laszlo, I., Liu, H., Remer, L. A., Zhang, H., … Petrenko, M. (2016). Validation and expected error estimation of Suomi-NPP VIIRS aerosol optical thickness and Ångström exponent with AERONET. Journal of Geophysical Research: Atmospheres, 121(12), 7139–7160. doi:10.1002/2016JD024834.Received
  • Huang, B., & Song, H. (2012). Spatiotemporal reflectance fusion via sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 50(10), 3707–3716. doi:10.1109/TGRS.2012.2186638
  • Hunt, W. H., Winker, D. M., Vaughan, M. A., Powell, K. A., Lucker, P. L., & Weimer, C. (2009). CALIPSO lidar description and performance assessment. Journal of Atmospheric and Oceanic Technology, 26(7), 1214–1228. doi:10.1175/2009JTECHA1223.1
  • Hyer, E. J., Reid, J. S., & Zhang, J. (2011). An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals. Atmospheric Measurement Techniques, 4(3), 379–408. doi:10.5194/amt-4-379-2011
  • Ichoku, C., Chu, D. A., Mattoo, S., Kaufman, Y. J., Remer, L. A., Tanre, D., & Slutsker, I. (2002). A spatio-temporal approach for global validation and analysis of. Geophysical Research Letters, 29(12), 1–4. doi:10.1029/2001GL013206
  • Ignatov, A., & Stowe, L. (2002). Aerosol retrievals from individual AVHRR channels. Part I: Retrieval algorithm and transition from Dave to 6S radiative transfer model. Journal of the Atmospheric Sciences, 59(3), 313–334. doi:10.1175/1520-0469(2002)059 < 0313:ARFIAC>2.0.CO;2
  • Ignatov, A., Sapper, J., Cox, S., Laszlo, I., Nalli, N. R., & Kidwell, K. B. (2004). Operational Aerosol Observations (AEROBS) from AVHRR/3 On Board NOAA-KLM Satellites. Journal of Atmospheric and Oceanic Technology, 21(1), 3–26.
  • Islam, T., Hu, Y., Kokhannovsky, A. A., & Wang, J. (editors). (2018). Remote sensing of aerosols, clouds, and precipitation. Amesterdam, The Netherlands: Elsevier. (ISBN: 9780128104378).
  • Jackson, J. M., Liu, H., Laszlo, I., Kondragunta, S., Remer, L. A., Huang, J., & Huang, H. C. (2013). Suomi-NPP VIIRS aerosol algorithms and data products. Journal of Geophysical Research Atmospheres, 118(22), 12673–12689. doi:10.1002/2013JD020449
  • Jafari, R., & Malekian, M. (2015). Comparison and evaluation of dust detection algorithms using MODIS Aqua/Terra Level 1B data and MODIS/OMI dust products in the Middle East. International Journal of Remote Sensing, 36(2), 597–617. Taylor & Francis. doi:10.1080/01431161.2014.999880
  • Jeong, M. J., Li, Z., Chu, D. A., & Tsay, S. C. (2005). Quality and compatibility analyses of global aerosol products derived from the advanced very high resolution radiometer and Moderate Resolution Imaging Spectroradiometer. Journal of Geophysical Research D Research, 110(10), 1–16. doi:10.1029/2004JD004648
  • Jethva, H., Satheesh, S. K., & Srinivasan, J. (2007). Assessment of second-generation MODIS aerosol retrieval (Collection 005) at Kanpur, India. Geophysical Research Letters, 34(19), 1–5. doi:10.1029/2007GL029647
  • Jethva, H., & Torres, O. (2011). Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument. Atmospheric Chemistry and Physics, 11(20), 10541–10551. doi:10.5194/acp-11-10541-2011
  • Jin, Y., Kai, K., Okamoto, H., & Hagihara, Y. (2014). Improvement of CALIOP cloud masking algorithms for better estimation of dust extinction profiles. Journal of the Meteorological Society of Japan. Ser. II, 92(5), 433–455. doi:10.2151/jmsj.2014-502
  • Just, A. C., Wright, R. O., Schwartz, J., Coull, B. A., Baccarelli, A., Tellez-Rojo, M. M., & Moody, E. (2015). Using high-resolution satellite aerosol optical depth to estimate daily PM2.5 geographical distribution in Mexico City. Environmental Science & Technology, 49(14), 8576–8584. doi:10.1021/acs.est.5b00859
  • Kacenelenbogen, M., Redemann, J., Vaughan, M. A., Omar, A. H., Russell, P. B., Burton, S., & Rogers, R. R. (2014). An evaluation of CALIOP/CALIPSO’s aerosol-above-cloud detection and retrieval capability over North America. Journal of Geophysical Research: Atmospheres, 119(1), 230–244. doi:10.1002/2013JD020178
  • Kacenelenbogen, M., Vaughan, M. A., Redemann, J., Hoff, R. M., Rogers, R. R., Ferrare, R. A., … Holben, B. N. (2011). An accuracy assessment of the CALIOP/CALIPSO version 2/version 3 daytime aerosol extinction product based on a detailed multi-sensor, multi-platform case study. Atmospheric Chemistry and Physics, 11(8), 3981–4000. doi:10.5194/acp-11-3981-2011
  • Kahn, R. A., Bull, M. A., Nastan, A. M., Seidel, F. C., & Diner, D. J. (2018). Data Quality Statement for the MISR Level 2 Aerosol Product Data Quality Statement for the MISR Level 2 Aerosol Product. JPL D-101563, https://eosweb.larc.nasa.gov/project/misr/quality_summaries/DQS_AEROSOL_V023.20180207.pdf.
  • Kahn, R. A., & Gaitley, B. J. (2015). An analysis of global aerosol type as retrieved by MISR. Journal of Geophysical Research: Atmospheres, 120, 4248–4281, doi:10.1002/2015JD023322
  • Kahn, R. A., Gaitley, B. J., Garay, M. J., Diner, D. J., Eck, T. F., Smirnov, A., & Holben, B. N. (2010). Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. Journal of Geophysical Research Atmospheres, 115(D23), 23209. doi:10.1029/2010JD014601
  • Kahn, R. A., Gaitley, B. J., Martonchik, J. V., Diner, D. J., Crean, K. A., & Holben, B. (2005). Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. Journal of Geophysical Research, 110(D10), 1–16. doi:10.1029/2004JD004706
  • Kahn, R. A., Garay, M. J., Nelson, D. L., Levy, R. C., Bull, M. A., Diner, D. J., … Tanré, D. (2011). Response to “Toward unified satellite climatology of aerosol properties. 3. MODIS versus MISR versus AERONET. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(5), 901–909. doi:10.1016/j.jqsrt.2010.11.001
  • Kahn, R. A., Garay, M. J., Nelson, D. L., Yau, K. K., Bull, M. A., Gaitley, B. J., … Levy, R. C. (2007). Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies. Journal of Geophysical Research Atmospheres, 112(D18), D18205. doi:10.1029/2006JD008175
  • Kahn, R. A., Nelson, D. L., Garay, M. J., Levy, R. C., Bull, M. A., Diner, D. J., … Remer, L. A. (2009). MISR Aerosol Product Attributes and Statistical Comparisons With MODIS. IEEE Transactions on Geoscience and Remote Sensing, 47(12), 4095–4114. doi:10.1109/TGRS.2009.2023115
  • Kalantari, E., & Molan, Y. E. (2016). Analytical BRDF model for rough surfaces. Optik, 127(3), 1049–1055. doi:10.1016/j.ijleo.2015.10.170
  • Kalashnikova, O. V., Garay, M. J., Martonchik, J. V., & Diner, D. J. (2013). MISR Dark Water aerosol retrievals: Operational algorithm sensitivity to particle non-sphericity. Atmospheric Measurement Techniques, 6(8), 2131–2154. doi:10.5194/amt-6-2131-2013
  • Kaskaoutis, D. G., Rashki, A., Houssos, E. E., Goto, D., & Nastos, P. T. (2014). Extremely high aerosol loading over Arabian Sea during June 2008: The specific role of the atmospheric dynamics and Sistan dust storms. Atmospheric Environment, 94, 374–384. doi:10.1016/j.atmosenv.2014.05.012
  • Kaskaoutis, D. G., Sifakis, N., Retalis, A., & Kambezidis, H. D. (2010). Aerosol monitoring over Athens using satellite and ground-based measurements. Advances in Meteorology, 2010, 1–12. doi:10.1155/2010/147910
  • Kaufman, Y. (1993). Aerosol optical thickness and path radiance. Journal of Geophysical Research: Atmospheres, 98(D2), 2677–2692. doi:10.1029/92JD02427
  • Kaufman, Y. J., Boucher, O., Tanré, D., Chin, M., Remer, L. A., & Takemura, T. (2005). Aerosol anthropogenic component estimated from satellite data. Geophysical Research Letters, 32(17), 1–4. doi:10.1029/2005GL023125
  • Kaufman, Y. J., & Joseph, J. H. (1982). Determination of surface albedos and aerosol extinction characteristics from satellite imagery. Journal of Geophysical Research, 87(C2), 1287–1299. doi:10.1029/JC087iC02p01287
  • Kaufman, Y. J., & Sendra, C. (1988). Algorithm for automatic atmospheric corrections to visible and near-ir satellite imagery. International Journal of Remote Sensing, 9(8), 1357–1381. doi:10.1080/01431168808954942
  • Kaufman, Y. J., & Tanré, D. (1998). Algorithm for remote sensing of tropospheric aerosol from MODIS. Products: MOD04, MOD08. NASA MODIS Algorithm Theoretical Basis Document, Goddard Space Flight Center, Greenbelt, Md, 85 pp. Reference Number: ATBD-MOD-02.
  • Kaufman, Y. J., Tanré, D., & Boucher, O. (2002). A satellite view of aerosols in the climate system. Nature, 419(September), 215–223. doi:10.1038/nature01091
  • Kaufman, Y. J., Tanré, D., Dubovik, O., Karnieli, A., & Remer, L. A. (2001). Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing. Geophysical Research Letters, 28(8), 1479–1482. doi:10.1029/2000GL012647
  • Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E. F., Chu, A., & Holben, B. N. (1997). Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. Journal of Geophysical Research: Atmospheres, 102(D14), 17051–17067. doi:10.1029/96JD03988
  • Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R., & Flynn, L. (1997). The MODIS 2. 1- m Channel — Correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 35(5), 1286–1298. doi:10.1109/36.628795
  • Kharol, S. K., Badarinath, K. V. S., Kaskaoutis, D. G., Sharma, A. R., & Gharai, B. (2011). Influence of continental advection on aerosol characteristics over Bay of Bengal (BoB) in winter: Results from W-ICARB cruise experiment. Annales Geophysicae, 29(8), 1423–1438. doi:10.5194/angeo-29-1423-2011
  • Kim, M., Kim, J., Wong, M. S., Yoon, J., Lee, J., Wu, D., … Ou, M.-L. (2014). Improvement of aerosol optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background optical depth correction. Remote Sensing of Environment, 142(2014), 176–187. doi:10.1016/j.rse.2013.12.003
  • Kim, J., Lee, J., Lee, H. C., Higurashi, A., Takemura, T., & Song, C. H. (2007). Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud-East Asia Regional Experiment campaign. Journal of Geophysical Research Atmospheres, 112(D22), 1–12. doi:10.1029/2006JD008201
  • King, M. D., & Byrne, D. M. (1976). A method for inferring total ozone content from the spectral variation of total optical depth obtained with a solar radiometer. Journal of the Atmospheric Sciences, 33(11), 2242–2251. doi:10.1175/1520-0469(1976)033 < 2242:AMFITO>2.0.CO;2
  • King, M., Kaufman, Y., Tanré, D., & Nakajima, T. (1999). Remote sensing of tropospheric aerosols from space. Bulletin of the American Meteorological Society, 80(11), 2229–2259. doi:10.1175/1520-0477(1999)080<2229:RSOTAF>2.0.CO;2
  • Kinne, S., Schulz, M., Textor, C., Guibert, S., Balkanski, Y., Bauer, S. E., … Tie, X. (2006). An AeroCom initial assessment - Optical properties in aerosol component modules of global models. Atmospheric Chemistry and Physics, 6(7), 1815–1834. doi:10.5194/acp-6-1815-2006
  • Klingmüller, K., Pozzer, A., Metzger, S., Stenchikov, G. L., & Lelieveld, J. (2016). Aerosol optical depth trend over the Middle East. Atmospheric Chemistry and Physics, 16(8), 5063. doi:10.5194/acp-16-5063-2016
  • Kloog, I., Koutrakis, P., Coull, B. A., Lee, H. J., & Schwartz, J. (2011). Assessing temporally and spatially resolved PM2.5exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmospheric Environment, 45(35), 6267–6275. doi:10.1016/j.atmosenv.2011.08.066
  • Knapp, K. R., & Stowe, L. L. (2002). Evaluating the potential for retrieving aerosol optical depth over land from AVHRR Pathfinder Atmosphere data. Journal of the Atmospheric Sciences, 59(3), 279–293. doi:10.1175/1520-0469(2002)059%3C0279:ETPFRA%3E2.0.CO;2
  • Kokhanovsky, A. A., Breon, F.-M., Cacciari, A., Carboni, E., Diner, D., Di Nicolantonio, W., … von Hoyningen-Huene, W. (2007). Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments. Atmospheric Research, 85(3–4), 372–394. doi:10.1016/j.atmosres.2007.02.008
  • Kokhanovsky, A. A., Curier, R. L., De Leeuw, G., Grey, W. M. F., Lee, K.-H., Bennouna, Y., … North, P. R. J. (2009). The inter-comparison of AATSR dual-view aerosol optical thickness retrievals with results from various algorithms and instruments. International Journal of Remote Sensing, 30(17), 4525–4537. doi:10.1080/01431160802578012
  • Kolmonen, P., Sogacheva, L., Virtanen, T. H., & G. De, L. (2016). The ADV/ASV AATSR aerosol retrieval algorithm: current status and presentation of a full-mission AOD dataset. . International Journal of Digital Earth, 9(6), 545–561. doi:10.1080/17538947.2015.1111450
  • Kolmonen, P., Sundström, A.-M., Sogacheva, L., Rodriguez, E., Virtanen, T., & de Leeuw, G. (2013). Uncertainty characterization of AOD for the AATSR dual and single view retrieval algorithms. Atmospheric Measurement Techniques Discussions, 6(2), 4039–4075. doi:10.5194/amtd-6-4039-2013
  • Koren, I., Dagan, G., & Altaratz, O. (2014). From aerosol-limited to invigoration of warm convective clouds. Science, 344(6188), 1143–1146. doi:10.1126/science.1252595
  • Koukouli, M. E., Kazadzis, S., Amiridis, V., Ichoku, C., Balis, D. S., & Bais, A. F. (2010). Signs of a negative trend in the MODIS aerosol optical depth over the Southern Balkans. Atmospheric Environment, 44(9), 1219–1228. doi:10.1016/j.atmosenv.2009.11.024
  • Kumar, A. (2018). Satellite derived spatio-temporal characteristics of aerosol optical depths and cloud parameters over tropical Indian region. Journal of Indian Geophysical Union, 22(6), 649–658.
  • Kumar, R., Srivastava, S. S., & Kumari, K. M. (2007). Characteristics of aerosols over suburban and urban site of semiarid region in India: Seasonal and spatial variations. Aerosol and Air Quality Research, 7(4), 531–549. doi:10.4209/aaqr.2007.02.0010
  • Lanzaco, B. L., Olcese, L. E., Palancar, G. G., & Toselli, B. M. (2017). An improved aerosol optical depth map based on machine-learning and modis data: Development and application in South America. Aerosol and Air Quality Research, 17(6), 1623–1536. doi:10.4209/aaqr.2016.11.0484
  • Lee, K. H., & Kim, Y. J. (2010). Satellite remote sensing of Asian aerosols: A case study of clean, polluted, and Asian dust storm days. Atmospheric Measurement Techniques, 3(6), 1771–1784. doi:10.5194/amt-3-1771-2010
  • Lee, J., Kim, J., Song, C. H., Ryu, J. H., Ahn, Y. H., & Song, C. K. (2010). Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager. Remote Sensing of Environment, 114(5), 1077–1088. doi:10.1016/j.rse.2009.12.021
  • Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Mälkki, A., Visser, H., de Vries, J., … Saari, H. (2006). The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1093–1101.
  • Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., & Hsu, N. C. (2013). The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11), 2989–3034. doi:10.5194/amt-6-2989-2013
  • Levy, R. C., Munchak, L. A., Mattoo, S., Patadia, F., Remer, L. A., & Holz, R. E. (2015). Towards a long-term global aerosol optical depth record: Applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance. Atmospheric Measurement Techniques, 8(10), 4083–4110. doi:10.5194/amt-8-4083-2015
  • Levy, R. C., Remer, L. A., & Dubovik, O. (2007). Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. Journal of Geophysical Research Atmospheres, 112(13), 1–15. doi:10.1029/2006JD007815
  • Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., & Eck, T. F. (2010). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 10(21), 10399–10420. doi:10.5194/acp-10-10399-2010
  • Levy, R. C., Remer, L. A., Mattoo, S., Kaufman, Y. J., & Systems, S. (2009). Algorithm for remote sensing of tropospheric aerosol over dark targets from MODIS: Collections 005 and 051: Revision 2. MODIS Algorithm Theoretical Basis Document for the MOD04_L2 Product; Feb 2009, 1–96.
  • Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., & Kaufman, Y. J. (2007). Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. Journal of Geophysical Research Atmospheres, 112(13), 1–21. doi:10.1029/2006JD007811
  • Liang, S., Zhong, B., & Fang, H. (2006). Improved estimation of aerosol optical depth from MODIS imagery over land surfaces. Remote Sensing of Environment, 104(4), 416–425. doi:10.1016/j.rse.2006.05.016
  • Li, B., Yuan, H., Feng, N., & Tao, S. (2009). Comparing MODIS and AERONET aerosol optical depth over China. International Journal of Remote Sensing, 30(24), 6519–6529. doi:10.1080/01431160903111069
  • Li, Z., Zhao, X., Kahn, R., Mishchenko, M., Remer, L., Lee, K.-H., … Maring, H. (2009). Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective. Annales Geophysicae, 27(7), 2755–2770. doi:10.5194/angeo-27-2755-2009
  • Li, C., Joiner, J., Krotkov, N. A., & Dunlap, L. (2015). A new method for global retrievals of HCHO total columns from the Suomi National Polar-orbiting Partnership Ozone Mapping and Profiler Suite. Geophysical Research Letters, 42(7), 2515–2522. doi:10.1002/2015GL063204.Received
  • Li, Q., Li, C., & Mao, J. (2012). Evaluation of atmospheric aerosol optical depth products at ultraviolet bands derived from MODIS products. Aerosol Science and Technology, 46(9), 1025–1034. doi:10.1080/02786826.2012.687475
  • Li, Y., Xue, Y., Li, C., Yang, L., Hou, T., & Liu, J. (2012). Aerosol and BRDF/albedo inversion over land from MSG/SEVIRI data. International Geoscience and Remote Sensing Symposium (IGARSS), 2490–2493. doi:10.1109/IGARSS.2012.6350347
  • Li, Y., Li, L., & Zha, Y. (2018). Improved retrieval of aerosol optical depth from POLDER/PARASOL polarization data based on a self-defined aerosol model. Advances in Space Research, 62(4), 874–883. COSPAR. doi:10.1016/j.asr.2018.05.034
  • Lim, H., Choi, M., Kim, J., Kasai, Y., & Chan, P. W. (2018). AHI/Himawari-8 Yonsei aerosol retrieval (YAER): Algorithm, validation and merged products. Remote Sensing, 10(5), 699. doi:3390/rs10050699 doi:10.3390/rs10050699
  • Lipponen, A., Mielonen, T., Pitkänen, M. R. A., Levy, R. C., Sawyer, V. R., Romakkaniemi, S., … Arola, A. (2018). Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land. Atmospheric Measurement Techniques, 11(3), 1529–1547. doi:10.5194/amt-11-1529-2018
  • Li, L., Shi, R., Zhang, L., Zhang, J., & Gao, W. (2014). The data fusion of aerosol optical thickness using universal kriging and stepwise regression in East China. Remote Sensing and Modeling of Ecosystems for Sustainability XI, 9221, 1–11. doi:10.1117/12.2061764
  • Liu, G. R., Chen, A. J., Lin, T. H., & Kuo, T. H. (2002). Applying SPOT data to estimate the aerosol optical depth and air quality. Environmental Modelling & Software, 17(1), 3–9. doi:10.1016/S1364-8152(01)00047-0
  • Liu, C. J., Liu, C. Y., Mong, N. T., & Chou, C. C. K. (2016). Spatial correlation of satellite-derived PM2.5 with hospital admissions for respiratory diseases. Remote Sensing, 8(11), 914–915. doi:10.1001/archfami.2.3.317
  • Liu, H., Pinker, R. T., & Holben, B. N. (2005). A global view of aerosols from merged transport models, satellite, and ground observations. Journal of Geophysical Research, 110(D10), 1–16. doi:10.1029/2004JD004695
  • Liu, D., Zhao, T., Boiyo, R., Chen, S., Lu, Z., Wu, Y., & Zhao, Y. (2019). Vertical structures of dust aerosols over East Asia Based on CALIPSO Retrievals. Remote Sensing, 11(6), 701. doi:10.3390/rs11060701
  • Livingston, J. M., Redemann, J., Russell, P. B., Torres, O., Veihelmann, B., Veefkind, P., … Zhang, Q. (2009). Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI) on Aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B. Atmospheric Chemistry and Physics, 9(18), 6743–6765. doi:10.5194/acp-9-6743-2009
  • Lodhi, N. K., Beegum, S. N., & Singh, S. (2013). Aerosol climatology at Delhi in the western Indo-Gangetic Plain: Microphysics, long-term trends, and source strengths. Journal of Geophysical Research: Atmospheres, 118, 1361–1375. doi:10.1002/jgrd.50165
  • Loeb, N. G., Sun, W., Miller, W. F., Loukachine, K., & Davies, R. (2006). Fusion of CERES, MISR, and MODIS measurements for top-of atmosphere radiative flux validation. Journal of Geophysical Research, 111(D18), 1–11. doi:10.1029/2006JD007146
  • Louyakis, A. S., Mobberley, J. M., Vitek, B. E., Visscher, P. T., Hagan, P. D., Reid, P., … Foster, J. S. (2018). A study of the microbial spatial heterogeneity of Bahamian thrombolites using molecular, biochemical, and stable isotope analyses. Astrobiology, 17(5), 413–430. doi:10.1089/ast.2016.1563.A
  • Luo, Y., Trishchenko, A. P., & Khlopenkov, K. V. (2008). Developing clear-sky, cloud and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America. Remote Sensing of Environment, 112(12), 4167–4185. doi:10.1016/j.rse.2008.06.010
  • Luo, Y., Trishchenko, A. P., Latifovic, R., & Li, Z. (2005). Surface bidirectional reflectance and albedo properties derived using a land cover-based approach with Moderate Resolution Imaging Spectroradiometer observations. Journal of Geophysical Research, 110(D1), 1–17. doi:10.1029/2004JD004741
  • Lyapustin, A., Korkin, S., Wang, Y., Quayle, B., & Laszlo, I. (2012). Discrimination of biomass burning smoke and clouds in MAIAC algorithm. Atmospheric Chemistry and Physics, 12(20), 9679–9686. doi:10.5194/acp-12-9679-2012
  • Lyapustin, A., Martonchik, J., Wang, Y., Laszlo, I., & Korkin, S. (2011). Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. Journal of Geophysical Research Atmospheres, 116(3), D03210. doi:10.1029/2010JD014985
  • Lyapustin, A., Wang, Y., Korkin, S., & Huang, D. (2018). MODIS Collection 6 MAIAC Algorithm. Atmospheric Measurement Techniques, 11(10), 5741–5765. doi:10.5194/amt-2018-141
  • Lyapustin, A. I., Wang, Y., Laszlo, I., Hilker, T., Hall, G. F., Sellers, P. J., … Korkin, S. V. (2012). Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction. Remote Sensing of Environment, 127, 385–393. doi:10.1016/j.rse.2012.09.002
  • Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., & Levy, R. (2011). Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. Journal of Geophysical Research Atmospheres, 116(3), 1–15. doi:10.1029/2010JD014986
  • Lyapustin, A., Wang, Y., Laszlo, I., & Korkin, S. (2012). Improved cloud and snow screening in MAIAC aerosol retrievals using spectral and spatial analysis. Atmospheric Measurement Techniques, 5(4), 843–850. doi:10.5194/amt-5-843-2012
  • Mao, K. B., Ma, Y., Xia, L., Chen, W. Y., Shen, X. Y., He, T. J., & Xu, T. R. (2014). Global aerosol change in the last decade: An analysis based on MODIS data. Atmospheric Environment, 94, 680–686. doi:10.1016/j.atmosenv.2014.04.053
  • Martins, V. S., Lyapustin, A., De Carvalho, L. A. S., Barbosa, C. C. F., & Novo, E. M. L. M. (2017). Validation of high-resolution MAIAC aerosol product over South America. Journal of Geophysical Research: Atmospheres, 122(14), 7537–7559. doi:10.1002/2016JD026301
  • Martins, V., Souza, Barbosa, C. C. F., de Carvalho, L. A. S., Jorge, D. S. F., Lobo, F., de, L., & de Moraes Novo, E. M. L. (2017). Assessment of atmospheric correction methods for sentinel-2 MSI images applied to Amazon floodplain lakes. Remote Sensing, 9(4), 322. doi:10.3390/rs9040322
  • Martonchik, J. V., Kahn, R. A., & Diner, D. J. (2009). Retrieval of aerosol properties over land using MISR observations. Satellite Aerosol Remote Sensing over Land, 267–293. doi:10.1007/978-3-540-69397-0_9
  • McClain, C. R., Feldman, G. C., & Hooker, S. B. (2004). An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series. Deep Sea Research Part II: Topical Studies in Oceanography, 51(1–3), 5–42. doi:10.1016/j.dsr2.2003.11.001
  • McGuinn, L. A., Ward-Caviness, C. K., Neas, L. M., Schneider, A., Diaz-Sanchez, D., Cascio, W. E., … Devlin, R. B. (2016). Association between satellite-based estimates of long-term PM2.5exposure and coronary artery disease. Environmental Research, 145, 9–17. doi:10.1016/j.envres.2015.10.026
  • Mcpeters, R. D., Bhartia, P. K., Krueger, A. J., Herman, J. R., Schlesinger, B. M., Wellemeyer, C. G., & Seftor, C. J. (1996). Nimbus – 7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide. NASA reference Publication 1384, National Aeronautics and Space Administration, Washington, DC.
  • Mehta, M., Singh, R., Singh, A., Singh, N. & Anshumali, (2016). Recent global aerosol optical depth variations and trends - A comparative study using MODIS and MISR level 3 datasets. Remote Sensing of Environment, 181, 137–150. doi:10.1016/j.rse.2016.04.004
  • Meij, A., De Pozzer, A., & Lelieveld, J. (2010). Global and regional trends in aerosol optical depth based on remote sensing products and pollutant emission estimates between 2000 and 2009. Atmospheric Chemistry and Physics Discussions, 10(12), 30731–30776. doi:10.5194/acpd-10-30731-2010
  • Mei, L., Rozanov, V., Vountas, M., Burrows, J. P., Levy, R. C., & Lotz, W. (2017). Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results. Remote Sensing of Environment, 197, 125–140. doi:10.1016/j.rse.2016.11.015
  • Mei, L. L., Xue, Y., Kokhanovsky, A. A., von Hoyningen-Huene, W., De Leeuw, G., & Burrows, J. P. (2014). Retrieval of aerosol optical depth over land surfaces from AVHRR data. Atmospheric Measurement Techniques, 7(8), 2411–2420. doi:10.5194/amt-7-2411-2014
  • Mei, L., Xue, Y., Kokhanovsky, A. A., von Hoyningen-Huene, W., Istomina, L., de Leeuw, G., … Jing, Y. (2013). Aerosol optical depth retrieval over snow using AATSR data. International Journal of Remote Sensing, 34(14), 5030–5041. doi:10.1080/01431161.2013.786197
  • Mélin, F., Zibordi, G., & Djavidnia, S. (2007). Development and validation of a technique for merging satellite derived aerosol optical depth from SeaWiFS and MODIS. Remote Sensing of Environment, 108(4), 436–450. doi:10.1016/j.rse.2006.11.026
  • Melin, J., & Quake, S. R. (2007). Microfluidic large-scale integration: The evolution of design rules for biological automation. Annual Review of Biophysics and Biomolecular Structure, 36(1), 213–231. doi:10.1146/annurev.biophys.36.040306.132646
  • Mhawish, A., Banerjee, T., Broday, D. M., Misra, A., & Tripathi, S. N. (2017). Evaluation of MODIS Collection 6 aerosol retrieval algorithms over Indo-Gangetic Plain: Implications of aerosols types and mass loading. Remote Sensing of Environment, 201(August), 297–313. doi:10.1016/j.rse.2017.09.016
  • Mhawish, A., Banerjee, T., Sorek-Hamer, M., Lyapustin, A., Broday, D. M., & Chatfield, R. (2019). Comparison and evaluation of MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) aerosol product over South Asia. Remote Sensing of Environment, 224(February 2018), 12–28. doi:10.1016/j.rse.2019.01.033
  • Mishchenko, M. I., Dlugach, J. M., Yanovitskij, E. G., & Zakharova, N. T. (1999). Bidirectional reflectance of flat, optically thick particulate layers: An efficient radiative transfer solution and applications to snow and soil surfaces. Journal of Quantitative Spectroscopy and Radiative Transfer, 63(2–6), 409–432. doi:10.1016/S0022-4073(99)00028-X
  • Mishchenko, M. I., & Geogdzhayev, I. V. (2007). Satellite remote sensing reveals regional tropospheric aerosol trends. Optics Express, 15(12), 7423–7438. doi:10.1364/OE.15.007423
  • Mishchenko, M. I., Geogdzhayev, I. V., Cairns, B., Rossow, W. B., & Lacis, A. A. (1999). Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: Sensitivity analysis and preliminary results. Applied Optics, 38(36), 7325. doi:10.1364/AO.38.007325
  • Mishchenko, M. I., Lacis, A. A., & Travis, L. D. (1994). Errors induced by the neglect of polarization in radiance calculations for Rayleigh-scattering atmospheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 51(3), 491–510. doi:10.1016/0022-4073(94)90149-X
  • Mishchenko, M. I., Liu, L., Geogdzhayev, I. V., Travis, L. D., Cairns, B., & Lacis, A. A. (2010). Toward unified satellite climatology of aerosol properties. 3. MODIS versus MISR versus AERONET. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(4), 540–552. doi:10.1016/j.jqsrt.2009.11.003
  • Montes, R., & Ureña, C. (2012). An Overview of BRDF Models. Technical Report, University of Granada, 1–26. doi:bhm214 [pii] 10.1093/cercor/bhm214
  • Nguyen, H., Cressie, N., & Braverman, A. (2012). Spatial statistical data fusion for remote sensing applications. Journal of the American Statistical Association, 107(499), 1004–1018. doi:10.1080/01621459.2012.694717
  • Nirala, M. (2008). Technical Note - Multi-sensor data fusion of aerosol optical thickness. International Journal of Remote Sensing, 29(7), 2127–2136. doi:10.1080/01431160701395336
  • North, P. R. J. (2002). Estimation of aerosol opacity and land surface bidirectional reflectance from ATSR-2 dual-angle imagery: Operational method and validation. Journal of Geophysical Research, 107(D12), AAC 4-1–AAC 4-10. doi:10.1029/2000JD000207
  • North, P. R. J., Briggs, S. A., Plummer, S. E., & Settle, J. J. (1999). Retrieval of land surface bidirectional reflectance and aerosol opacity from ATSR-2 multi-angle imagery. IEEE Transactions on Geoscience and Remote Sensing, 37(1), 526–537. doi:10.1109/36.739106
  • Odell, A. P., & Weinman, J. A. (1975). The effect of atmospheric haze on images of the Earth's surface. Journal of Geophysical Research, 80(36), 5035–5040.
  • Omar, A. H., Winker, D. M., Tackett, J. L., Giles, D. M., Kar, J., Liu, Z., … Trepte, C. R. (2013). CALIOP and AERONET aerosol optical depth comparisons: One size fits none. Journal of Geophysical Research: Atmospheres, 118(10), 4748–4766. doi:10.1002/jgrd.50330
  • Ouaidrari, H., & Vermote, E. F. (1999). Operational atmospheric correction of Landsat TM Data. Remote Sensing of Environment, 70(1), 4–15. doi:10.1016/S0034-4257(99)00054-1
  • Paasonen, P., Asmi, A., Petäjä, T., Kajos, M. K., Äijälä, M., Junninen, H., … Kulmala, M. (2013). Warming-induced increase in aerosol number concentration likely to moderate climate change. Nature Geoscience, 6(6), 438–442. doi:10.1038/ngeo1800
  • Paciorek, C. J., Liu, Y., Moreno-Macias, H., & Kondragunta, S. (2008). Spatio-temporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5. Environmental Science & Technology, 42(15), 5800–5806. doi:10.1021/es703181j
  • Papadimas, C. D., Hatzianastassiou, N., Mihalopoulos, N., Querol, X., & Vardavas, I. (2008). Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000–2006) MODIS data. Journal of Geophysical Research Atmospheres, 113(D11), 1–12. doi:10.1029/2007JD009189
  • Patadia, F., Levy, R. C., Mattoo, S., & Morgan, G. (2018). Correcting for trace gas absorption when retrieving aerosol optical depth from satellite observations of reflected shortwave radiation. Atmospheric Measurement Techniques, 11(6), 3205–3219. doi:10.5194/amt-11-3205-2018
  • Petrenko, M., & Ichoku, C. (2013). Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors. Atmospheric Chemistry and Physics, 13(14), 6777–6805. doi:10.5194/acp-13-6777-2013
  • Petzold, A., Thouret, V., Gerbig, C., Zahn, A., Carl, A. M., Gallagher, M., … Global, I. T. (2016). Global-scale atmosphere monitoring by in- service aircraft – current achievements and future prospects of the European Research Infrastructure IAGOS. Chemical and Physical Meteorology, 67(1), 28452. doi:10.3402/tellusb.v67.28452
  • Pope, III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). NIH Public Access. Journal of the American Medical Association, 287(9), 1132–1141.
  • Pohl, C., & Van Genderen, J. L. (1998). Review article multisensor image fusion in remote sensing: Concepts, methods and applications. International Journal of Remote Sensing, 19(5), 823–854. doi:10.1080/014311698215748
  • Povey, A. C., & Grainger, R. G. (2015). Known and unknown unknowns: Uncertainty estimation in satellite remote sensing. Atmospheric Measurement Techniques, 8(11), 4699–4718. doi:10.5194/amt-8-4699-2015
  • Puttaswamy, S. J., Nguyen, H. M., Braverman, A., Hu, X., & Liu, Y. (2013). Statistical data fusion of multi-sensor AOD over the Continental United States. Geocarto International, 29(1), 48–64. doi:10.1080/10106049.2013.827750
  • Radosavljevic, V., Vucetic, S., & Obradovic, Z. (2010). A data-mining technique for aerosol retrieval across multiple accuracy measures. IEEE Geoscience and Remote Sensing Letters, 7(2), 411–415. doi:10.1109/LGRS.2009.2037720
  • Ramachandran, S., Srivastava, R., Kedia, S., & Rajesh, T. A. (2012). Contribution of natural and anthropogenic aerosols to optical properties and radiative effects over an urban location. Environmental Research Letters, 7(3), 034028.doi:10.1088/1748-9326/7/3/
  • Rao, C. R. N. J. A., Stowe, L. L., & Mcclain, E. P. (2007). Remote sensing of aerosols over the oceans using AVHRR data Theory, practice and applications. International Journal of Remote Sensing, 10, 743–749. doi:10.1080/01431168908903915
  • Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., … Holben, B. N. (2005). The MODIS Aerosol Algorithm, Products, and Validation. Journal of the Atmospheric Sciences, 62(4), 947–973. doi:10.1175/JAS3385.1
  • Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D., Mattoo, S., … Holben, B. N. (2008). Global aerosol climatology from the MODIS satellite sensors. Journal of Geophysical Research Atmospheres, 113(D14), 1–18. doi:10.1029/2007JD009661
  • Remer, L. A., Mattoo, S., Levy, R. C., & Munchak, L. A. (2013). MODIS 3 km aerosol product: Algorithm and global perspective. Atmospheric Measurement Techniques, 6(7), 1829–1844. doi:10.5194/amt-6-1829-2013
  • Riffler, M., Popp, C., Hauser, A., Fontana, F., & Wunderle, S. (2010). Validation of a modified AVHRR aerosol optical depth retrieval algorithm over Central Europe. Atmospheric Measurement Techniques, 3(5), 1255–1270. doi:10.5194/amt-3-1255-2010
  • Rimmer, J. S., Redondas, A., & Karppinen, T. (2018). EuBrewNet - A European Brewer network (COST Action ES1207), an overview. Atmospheric Chemistry and Physics, 18(14), 10347–10353. doi:10.5194/acp-18-10347-2018
  • Rosenfeld, D., Rosenfeld, D., Lohmann, U., Raga, G. B., Dowd, C. D. O., Kulmala, M., & Fuzzi, S. (2014). Flood or drought: How Do Aerosols Affect Precipitation?. Science, 1309(2008), 1309–1314. doi:10.1126/science.1160606
  • Safai, P. D., Kewat, S., Pandithurai, G., Praveen, P. S., Ali, K., Tiwari, S., … Devara, P. C. S. (2008). Aerosol characteristics during winter fog at Agra, North India. Journal of Atmospheric Chemistry, 61(2), 101–118. doi:10.1007/s10874-009-9127-4
  • Sahoo, T., & Patnaik, S. (2008). Cloud removal from satellite images using auto associative neural network and stationary wavelet transform. Proceedings - 1st International Conference on Emerging Trends in Engineering and Technology, ICETET 2008, 100–105. doi:10.1109/ICETET.2008.99
  • Santer, R., Ramon, D., Vidot, J., & Dilligeard, E. (2007). A surface reflectance model for aerosol remote sensing over land. International Journal of Remote Sensing, 28(3–4), 737–760. doi:10.1080/01431160600821028
  • Sassen, K. (2003). Polarization in Lidar: A Review. Polarization Science and Remote Sensing, 5158, 151–160. doi:10.1117/12.507006
  • Sathe, Y., Kulkarni, S., Gupta, P., Kaginalkar, A., Islam, S., & Gargava, P. (2019). Application of Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) and Weather Research Forecasting (WRF) model meteorological data for assessment of fine particulate matter (PM 2.5) over India. Atmospheric Pollution Research, 10(2), 418–434. doi:10.1016/j.apr.2018.08.016
  • Satheesh, S. K., Torres, O., Remer, L. A., Babu, S. S., Vinoj, V., Eck, T. F., & Kleidman, R. G. (2009). Improved assessment of aerosol absorption using OMI-MODIS joint retrieval. Journal of Geophysical Research, 114, 1–10. doi:10.1029/2008JD011024
  • Sayer, A. M., Hsu, N. C., Bettenhausen, C., Ahmad, Z., Holben, B. N., Smirnov, A., & Thomas, G. E. (2012a). SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets. Journal of Geophysical Research Atmospheres, 117(3), 1–17. doi:10.1029/2011JD016599
  • Sayer, A. M., Hsu, N. C., Bettenhausen, C., & Jeong, M. J. (2013). Validation and uncertainty estimates for MODIS Collection 6 “deep Blue” aerosol data. Journal of Geophysical Research: Atmospheres, 118(14), 7864–7872. doi:10.1002/jgrd.50600
  • Sayer, A. M., Hsu, N. C., Bettenhausen, C., Jeong, M. J., Holben, B. N., & Zhang, J. (2012b). Global and regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS. Atmospheric Measurement Techniques, 5(7), 1761–1778. doi:10.5194/amt-5-1761-2012
  • Sayer, A. M., Hsu, N. C., Eck, T. F., Smirnov, A., & Holben, B. N. (2014). AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth. Atmospheric Chemistry and Physics, 14(20), 11493–11523. doi:10.5194/acp-14-11493-2014
  • Sayer, A. M., Hsu, N. C., Lee, J., Bettenhausen, C., Kim, W. V., & Smirnov, A. (2018). Satellite Ocean Aerosol Retrieval (SOAR) Algorithm Extension to S-NPP VIIRS as Part of the “Deep Blue” Aerosol Project. Journal of Geophysical Research: Atmospheres, 123(1), 380–400. doi:10.1002/2017JD027412
  • Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S., & Martonchik, J. V. (2006). Reflectance quantities in optical remote sensing-definitions and case studies. Remote Sensing of Environment, 103(1), 27–42. doi:10.1016/j.rse.2006.03.002
  • Seidel, F., Schläpfer, D., Nieke, J., & Itten, K. I. (2008). Sensor performance requirements for the retrieval of atmospheric aerosols by airborne optical remote sensing. Sensors, 8(3), 1901–1914. doi:10.3390/s8031901
  • Shao, Y., Taff, G., & Lunetta, R. (2011). A review of selected MODIS algorithms, data products, and applications. In Advances in environmental remote sensing: Sensors, algorithms, and applications.
  • She, L., Mei, L., Xue, Y., Che, Y., & Guang, J. (2017). SAHARA: A simplified atmospheric correction algorithm for Chinese gAofen data: 1. Aerosol algorithm. Remote Sensing, 9(3), 253. doi:10.3390/rs9030253
  • Shen, S. S. (1990). Summary of types of data fusion methods utilized in workshop papers. Multisource Data Integration in Remote Sensing, Proceedings of Workshop, Maryland, USA, 14–15 June 1990, NASA Conference Publication 3099 (Greenbelt, MD: NASA), pp. 145–149.
  • Shi, S., Cheng, T., Gu, X., Chen, H., Guo, H., Wang, Y., … Zhang, X. (2017). Synergy of MODIS and AATSR for better retrieval of aerosol optical depth and land surface directional reflectance. Remote Sensing of Environment, 195, 130–141. doi:10.1016/j.rse.2017.04.010
  • Shi, S., Cheng, T., Gu, X., Guo, H., Chen, H., Wang, Y., & Wu, Y. (2018). Multisensor Data Synergy of Terra-MODIS, Aqua-MODIS, and Suomi NPP-VIIRS for the Retrieval of aerosol optical depth and land surface reflectance properties. IEEE Transactions on Geoscience and Remote Sensing, 56(11), 6306–6323. doi:10.1109/TGRS.2018.2835508
  • Shi, Y., Zhang, J., Reid, J. S., Hyer, E. J., Eck, T. F., Holben, B. N., & Kahn, R. A. (2011). A critical examination of spatial biases between MODIS and MISR aerosol products-application for potential AERONET deployment. Atmospheric Measurement Techniques, 4(12), 2823–2836. doi:10.5194/amt-4-2823-2011
  • Singh, M. K., Gautam, R., & Venkatachalam, P. (2016). A merged aerosol dataset based on MODIS and MISR aerosol optical depth products. Remote Sensing of the Atmosphere, Clouds, and Precipitation VI, 987627, 987627. doi:10.1117/12.2223485
  • Singh, M. K., Gautam, R., & Venkatachalam, P. (2017). Bayesian Merging of MISR and MODIS Aerosol. 10(12), 5186–5200. doi:10.1109/JSTARS.2017.2734331
  • Smirnov, A. (2004). AERONET processing algorithms refinement. AERONET Workshop, (January 2004).
  • Sogacheva, L., Rodriguez, E., Kolmonen, P., Virtanen, T. H., Saponaro, G., D., Leeuw,  G., & Georgoulias, A. K. (2018). Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations. Part II: AOD time series for 1995–2017 combined from ATSR ADV and MODIS C6.1 for AOD tendencies estimation. Atmospheric Chemistry and Physics Discussions, 1–32. doi:10.1016/j.jpg.2014.06.003
  • Soni, M., Payra, S., & Verma, S. (2018). Particulate matter estimation over a semi arid region Jaipur, India using satellite AOD and meteorological parameters. Atmospheric Pollution Research, 9(5), 949–958. doi:10.1016/j.apr.2018.03.001
  • Sorek-Hamer, M., Kloog, I., Koutrakis, P., Strawa, A. W., Chatfield, R., Cohen, A., … Broday, D. M. (2015). Assessment of PM2.5concentrations over bright surfaces using MODIS satellite observations. Remote Sensing of Environment, 163, 180–185. doi:10.1016/j.rse.2015.03.014
  • Sorribas, M., Andrews, E., Ogren, J. A., del Águila, A., Fraile, R., Sheridan, P., & Yela, M. (2019). Climatological study for understanding the aerosol radiative effects at southwest Atlantic coast of Europe. Atmospheric Environment, 205, 52–66. doi:10.1016/j.atmosenv.2019.02.017
  • Sowden, M., Mueller, U., & Blake, D. (2018). Review of surface particulate monitoring of dust events using geostationary satellite remote sensing. Atmospheric Environment, 183(March), 154–164. doi:10.1016/j.atmosenv.2018.04.020
  • Stammes. (2002). OMI Algorithm Theoretical Basis Document Volume III Clouds, Aerosols, and Surface UV Irradiance. Atbdomi03, III(August), 1–114.
  • Stap, F. A., Hasekamp, O. P., & Röckmann, T. (2015). Sensitivity of PARASOL multi-angle photopolarimetric aerosol retrievals to cloud contamination. Atmospheric Measurement Techniques, 8(3), 1287–1301. doi:10.5194/amt-8-1287-2015
  • Stowe, L., Ignatov, A., & Singh, R. (1997). Development, validation, and potential enhancements to the second-generation operational aerosol product at the national environmental satellite data, and information service of the national oceanic and atmospheric administration. Journal of Geophysical Research- Atmospheres, 102(D14–16), 923–934. doi:10.1029/96JD02132
  • Stowe, L. L., Jacobowitz, H., Ohring, G., Knapp, K. R., & Nalli, N. R. (2002). The Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmosphere (PATMOS) climate dataset: Initial analyses and evaluations. Journal of Climate, 15(11), 1243–1260. doi:10.1175/1520-0442(2002)015 < 1243:TAVHRR>2.0.CO;2
  • Superczynski, S. D., Kondragunta, S., & Lyapustin, A. I. (2017). Evaluation of the multi-angle implementation of atmospheric correction (MAIAC) aerosol algorithm through intercomparison with VIIRS aerosol products and AERONET. Journal of Geophysical Research: Atmospheres, 122(5), 3005–3022. doi:10.1002/2016JD025720
  • Tang, Q., Bo, Y., & Zhu, Y. (2016). Spatiotemporal fusion of multiplesatellite aerosol optical depth (AOD) products using Bayesian maximum entropy method. Journal of Geophysical Research: Atmospheres, 121(8), 4034–4048. doi:10.1002/2015JD024571
  • Tang, C. H., Coull, B. A., Schwartz, J., Di, Q., & Koutrakis, P. (2017). Trends and spatial patterns of fine-resolution aerosol optical depth–derived PM2.5emissions in the Northeast United States from 2002 to 2013. Journal of the Air & Waste Management Association, 67(1), 64–74. doi:10.1080/10962247.2016.1218393
  • Tanré, D., Bréon, F. M., Deuzé, J. L., Dubovik, O., Ducos, F., François, P., … Waquet, F. (2011). Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: The PARASOL mission. Atmospheric Measurement Techniques, 4(7), 1383–1395. doi:10.5194/amt-4-1383-2011
  • Tanré, D., Kaufman, Y. J., Herman, M., & Mattoo, S. (1997). Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. Journal of Geophysical Research: Atmospheres, 102(D14), 16971–16988. doi:10.1029/96JD03437
  • Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., & Zhang, C. (2012). Impact of Aerosols on boundary layer clouds and precipitation. Reviews of Geophysics, 50(2011), RG2001. doi:10.1029/2011RG000369.1.INTRODUCTION
  • Tasumi, M., Allen, R. G., & Trezza, R. (2008). At-surface reflectance and Albedo from satellite for operational calculation of land surface energy balance. Journal of Hydrologic Engineering, 13(2), 51–63. doi:10.1061/(ASCE)1084-0699(2008)13:2(51)
  • Tellier, R. (2006). Review of Aerosol Transmission of Influenza A Virus - Volume 12, Number 11—November 2006 - - CDC. Emerging Infectious Diseases, 12(11), 1657–1662. doi:10.3201/eid1211.060426
  • Thomas, G. E., Carboni, E., Sayer, A. M., Poulsen, C. A., Siddans, R., Grainger, R.G. (2009). Oxford-RAL Aerosol and Cloud (ORAC): Aerosol retrievals from satellite radiometers. In A. Kokhanovsky & G. de Leeuw (Eds.). Aerosol remote sensing over land (pp. 193–225). Berlin/Heidelberg: Springer.
  • Thomas, G. E., Poulsen, C. A., Sayer, A. M., Marsh, S. H., Dean, S. M., Carboni, E., … Lawrence, B. N. (2009). The GRAPE aerosol retrieval algorithm. Atmospheric Measurement Techniques, 2(2), 679–701. doi:10.5194/amt-2-679-2009
  • Tian, J., & Chen, D. (2010). A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements. Remote Sensing of Environment, 114(2), 221–229. doi:10.1016/j.rse.2009.09.011
  • Tian, X., Liu, Q., Song, Z., Dou, B., & Li, X. (2018). Aerosol optical depth retrieval from Landsat 8 OLI Images over Urban Areas Supported by MODIS BRDF/Albedo Data. IEEE Geoscience and Remote Sensing Letters, 15(7), 976–980. IEEE. doi:10.1109/LGRS.2018.2827200
  • Tian, X., Liu, S., Sun, L., & Liu, Q. (2018). Retrieval of aerosol optical depth in the arid or semiarid region of Northern Xinjiang, China. Remote Sensing, 10(2), 197. doi:10.3390/rs10020197
  • Tie, X., Wu, D., & Brasseur, G. (2009). Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmospheric Environment, 43(14), 2375–2377. doi:10.1016/j.atmosenv.2009.01.036
  • Torres, O., Ahn, C., & Chen, Z. (2013). Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations. Atmospheric Measurement Techniques, 6(11), 3257–3270. doi:10.5194/amt-6-3257-2013
  • Torres, O., Bhartia, P. K., Herman, J. R., Ahmad, Z., & Gleason, J. (1998). Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. Journal of Geophysical Research: Atmospheres, 103(D14), 17099–17110. doi:10.1029/98JD00900
  • Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P. K., … Levelt, P. (2007). Aerosols and surface UV products form Ozone Monitoring Instrument observations: An overview. Journal of Geophysical Research Atmospheres, 112(D24), 1–14. doi:10.1029/2007JD008809
  • Vachon, F., Royer, A., Aubé, M., Toubbé, B., O’Neill, N. T., & Teillet, P. M. (2004). Remote sensing of aerosols over North American land surfaces from POLDER and MODIS measurements. Atmospheric Environment, 38 (21), 3501–3515. doi:10.1016/j.atmosenv.2004.01.046
  • van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., & Villeneuve, P. J. (2010). Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environmental Health Perspectives, 118(6), 847–855. doi:10.1289/ehp.0901623
  • van Donkelaar, A., Martin, R. V., Levy, R. C., da Silva, A. M., Krzyzanowski, M., Chubarova, N. E., … Cohen, A. J. (2011). Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010. Atmospheric Environment, 45(34), 6225–6232. doi:10.1016/j.atmosenv.2011.07.068
  • van Genderen, J. L., & Pohl, C. (1994). Image fusion: Issues, techniques and applications. Intelligent Image Fusion, Proceedings EARSeL Workshop, (January 2016), 18–26.
  • Vaughan, M. A., Powell, K. A., Winker, D. M., Hostetler, C. A., Kuehn, R. E., Hunt, W. H., … McGill, M. J. (2009). Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. Journal of Atmospheric and Oceanic Technology, 26(10), 2034–2050. doi:10.1175/2009JTECHA1228.1
  • Veefkind, J. P., de Leeuw, G., & Durkee, P. A. (1998). Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX. Geophysical Research Letters, 25(16), 3135–3138. doi:10.1029/98GL02264
  • Verma, S., Prakash, D., Srivastava, A. K., & Payra, S. (2017). Radiative forcing estimation of aerosols at an urban site near the thar desert using ground-based remote sensing measurements. Aerosol and Air Quality Research, 17(5), 1294–1304. doi:10.4209/aaqr.2016.09.0424
  • Vermote, E., Justice, C., & Csiszar, I. (2014). Remote sensing of environment early evaluation of the VIIRS calibration, cloud mask and surface reflectance Earth data records. Remote Sensing of Environment, 148, 134–145. doi:10.1016/j.rse.2014.03.028
  • Vermote, E., Tanré, D., Deuzé, J. L., & Herman, M. (2006). Second Simulation of a Satellite Signal in the Solar Spectrum - Vector (6SV). Spectrum, (2), 1–55.
  • Virtanen, T. H., Kolmonen, P., Sogacheva, L., Rodríguez, E., Saponaro, G., & De Leeuw, G. (2018). Collocation mismatch uncertainties in satellite aerosol retrieval validation. Atmospheric Measurement Techniques, 11(2), 925–938. doi:10.5194/amt-11-925-2018
  • von Hoyningen-Huene, W., Kokhanovsky, A., Burrows, J. P., Sfakianaki, M., & Kanakidou, M. (2005). Validation of aerosol optical thickness retrieved by baer (Bemen aerosol retrieval) in the Mediterranean area. European Space Agency, (Special Publication) ESA SP, (597), 53–57.
  • Wald, L. (1999). Some terms of reference in data fusion. IEEE Transactions on Geoscience and Remote Sensing, 37(3), 1190–1193. doi:10.1109/36.763269
  • Wald, L. (1998). Data fusion: A conceptual approach for an efficient exploitation of remote sensing images. Presented at EARSeL Conference on Fusion of Earth Data, 17–24.
  • Wang, Y., Chen, L., Li, S., Wang, X., Yu, C., Si, Y., & Zhang, Z. (2017). Interference of Heavy Aerosol Loading on the VIIRS Aerosol Optical Depth (AOD) Retrieval Algorithm. Remote Sensing, 9(4), 397. doi:10.3390/rs9040397
  • Wang, Y., Hu, X., Chang, H. H., Waller, L. A., Belle, J. H., & Liu, Y. (2018). A Bayesian downscaler model to estimate daily PM2.5levels in the conterminous us. International Journal of Environmental Research and Public Health, 15(9) doi:10.3390/ijerph15091999
  • Wang, Y., Jiang, J. H., & Su, H. (2015). Atmospheric responses to the redistribution of anthropogenic aerosols. Journal of Geophysical Research: Atmospheres, 120(18), 9625–9641. doi:10.1002/2015JD023665
  • Wang, C., Liu, Q., Ying, N., Wang, X., & Ma, J. (2013). Air quality evaluation on an urban scale based on MODIS satellite images. Atmospheric Research, 132–133(October), 22–34. doi:10.1016/j.atmosres.2013.04.011
  • Wang, H., Sun, X., Yang, L., Zhao, M., Lui, P., & Du, W. (2018). Aerosol retrieval algorithm based on adaptive land–atmospheric decoupling for polarized remote sensing over land surfaces. Journal of Quantitative Spectroscopy and Radiative Transfer, 219, 74–84. doi:10.1016/j.jqsrt.2018.08.011
  • Wang, Z., Yang, S., Zeng, Q., & Wang, Y. (2017). Retrieval of aerosol optical depth for Chongqing using the HJ-1 satellite data. Journal of Meteorological Research, 31(3), 586–596. doi:10.1007/s13351-017-6102-x
  • Wei, J., Li, Z., Peng, Y., & Sun, L. (2019). MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison. Atmospheric Environment., 201, 428–440. doi:10.1016/j.atmosenv.2018.12.004
  • Wei, J., Peng, Y., Mahmood, R., Sun, L., & Guo, J. (2019). Intercomparison in spatial distributions and temporal trends derived from multi-source satellite aerosol products., 7183–7207. doi:10.5194/acp-19-7183-2019
  • Wei, J., Sun, L., Huang, B., Bilal, M., Zhang, Z., & Wang, L. (2018). Verification, improvement and application of aerosol optical depths in China Part 1: Inter-comparison of NPP-VIIRS and Aqua-MODIS. Atmospheric Environment, 175, 221–233. doi:10.1016/j.atmosenv.2017.11.048
  • Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., … Young, S. A. (2009). Overview of the CALIPSO mission and CALIOP data processing algorithms. Journal of Atmospheric and Oceanic Technology, 26(11), 2310–2323. doi:10.1175/2009JTECHA1281.1
  • Witek, M. L., Garay, M. J., Diner, D. J., Bull, M. A., & Seidel, F. C. (2018). New approach to the retrieval of AOD and its uncertainty from MISR observations over dark water. Atmospheric Measurement Techniques, 11(1), 429–439. doi:10.5194/amt-11-429-2018
  • Wong, M. S., Nichol, J. E., & Lee, K. H. (2011). An operational MODIS aerosol retrieval algorithm at high spatial resolution, and its application over a complex urban region. Atmospheric Research, 99(3-4), 579–589. doi:10.1016/j.atmosres.2010.12.015
  • Wu, Y., Guo, J., Zhang, X., & Li, X. (2011). Correlation between PM concentrations and Aerosol Optical Depth in eastern China based on BP neural networks. 2011 IEEE International Geoscience and Remote Sensing Symposium, (July), 3308––3311. doi:10.1109/IGARSS.2011.6049927
  • Wu, Y., Guo, J., Zhang, X., Tian, X., Zhang, J., Wang, Y., … Li, X. (2012). Science of the Total Environment Synergy of satellite and ground based observations in estimation of particulate matter in eastern China. Science of the Total Environment, 433, 20–30. doi:10.1016/j.scitotenv.2012.06.033
  • Xiao, Q., Wang, Y., Chang, H. H., Meng, X., Geng, G., Lyapustin, A., & Liu, Y. (2017). Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China. Remote Sensing of Environment, 199, 437–446. doi:10.1016/j.rse.2017.07.023
  • Xiao, Q., Zhang, H., Choi, M., Li, S., Kondragunta, S., Kim, J., … Liu, Y. (2016). Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD retrievals against ground sunphotometer observations over East Asia. Atmospheric Chemistry and Physics, 16(3), 1255–1269. doi:10.5194/acp-16-1255-2016
  • Xie, Y., Wang, Y., Zhang, K., Dong, W., Lv, B., & Bai, Y. (2015). Daily Estimation of Ground-Level PM2.5 Concentrations over Beijing Using 3 km Resolution MODIS AOD. Environmental Science & Technology, 49(20), 12280–12288. doi:10.1021/acs.est.5b01413
  • Xie, Y., Xue, Y., Che, Y., Guang, J., Mei, L., Voorhis, D., … Xu, H. (2018). Ensemble of ESA/AATSR Aerosol optical depth products based on the likelihood estimate method with uncertainties. IEEE Transactions on Geoscience and Remote Sensing, 56(2), 997–1007. doi:10.1109/TGRS.2017.2757910
  • Xue, Y., He, X., de Leeuw, G., Mei, L., Che, Y., Rippin, W., … Hu, Y. (2017). Long-time series aerosol optical depth retrieval from AVHRR data over land in North China and Central Europe Remote Sensing of Environment Long-time series aerosol optical depth retrieval from AVHRR data over land in North China and Central Europe. Remote Sensing of Environment, 198(September), 471–489. doi:10.1016/j.rse.2017.06.036
  • Xue, Y., He, X., Xu, H., Guang, J., Guo, J., & Mei, L. (2014). China Collection 2.0: The aerosol optical depth dataset from the synergetic retrieval of aerosol properties algorithm. Atmospheric Environment, 95, 45–58. doi:10.1016/j.atmosenv.2014.06.019
  • Xu, H., Guang, J., Xue, Y., de Leeuw, G., Che, Y. H., Guo, J., … Wang, T. K. (2015). A consistent aerosol optical depth (AOD) dataset over mainland China by integration of several AOD products. Atmospheric Environment, 114, 48–56. doi:10.1016/j.atmosenv.2015.05.023
  • Xu, X., Wang, J., Henze, D. K., Qu, W., & Kopacz, M. (2013). Constraints on aerosol sources using GEOS-Chem adjoint and MODIS radiances, and evaluation with multisensor (OMI, MISR) data. Journal of Geophysical Research: Atmospheres, 118(12), 6396–6413. doi:10.1002/jgrd.50515
  • Yang, F., Wang, Y., Tao, J., Wang, Z., Fan, M., de Leeuw, G., & Chen, L. (2018). Preliminary investigation of a new AHI aerosol optical depth (AOD) retrieval algorithm and evaluation with multiple source AOD measurements in China. Remote Sensing, 10(5)doi:, 10. doi:10.3390/rs10050748
  • Yang, L. K., Xue, Y., & Guang, J., L., C. (2012). Satellite aerosol retrieval using dark target algorithm by coupling BRDF effect over AERONET site. Remote Sensing of the Atmosphere, Clouds, and Precipitation Iv, 8523(November 2012), 85231j, 1–12. doi:10.1117/12.977186
  • Yin, X. M., Dai, T., Xin, J. Y., Gong, D. Y., Yang, J., Teruyuki, N., & Shi, G. Y. (2016). Estimation of aerosol properties over the Chinese desert region with MODIS AOD assimilation in a global model. Advances in Climate Change Research, 7(1-2), 90–98. doi:10.1016/j.accre.2016.04.001
  • Yocky, D. A. (1995). Image merging and data fusion by means of the discrete two-dimensional wavelet transform. Journal of the Optical Society of America A, 12(9), 1834. doi:10.1364/JOSAA.12.001834
  • Young, S. A., & Vaughan, M. A. (2009). The retrieval of profiles of particulate extinction from cloud-aerosol lidar infrared pathfinder satellite observations (CALIPSO) data: Algorithm description. Journal of Atmospheric and Oceanic Technology, 26(6), 1105–1119. doi:10.1175/2008JTECHA1221.1
  • Yu, H. B., Dickinson, R. E., Chin, M., Kaufman, Y. J., Holben, B. N., Geogdzhayev, I. V., & Mishchenko, M. I. (2003). Annual cycle of global distributions of aerosol optical depth from integration of MODIS retrievals and GOCART model simulations. Journal of Geophysical Research: Atmospheres, 108(D3), n/a. doi:10.1029/2002JD002717
  • Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., … Zhou, M. (2006). A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmospheric Chemistry and Physics, 6(3), 613–666. doi:10.5194/acp-6-613-2006
  • Yu, Y., Notaro, M., Liu, Z., Kalashnikova, O., Alkolibi, F., Fadda, E., & Bakhrjy, F. (2013). Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite, radiometric, and station data. Journal of Geophysical Research Atmospheres, 118(23), 13253–13264. doi:10.1002/2013JD020677
  • Zhang, H., Hoff, R. M., Kondragunta, S., Laszlo, I., & Lyapustin, A. (2013). Aerosol optical depth (AOD) retrieval using simultaneous GOES-East and GOES-West reflected radiances over the western United States. Atmospheric Measurement Techniques, 6(2), 471–486. doi:10.5194/amt-6-471-2013
  • Zhang, Y., Li, Z., Qie, L., Zhang, Y., Liu, Z., Chen, X., … Ou, W. (2016). Retrieval of aerosol fine-mode fraction from intensity and polarization measurements by PARASOL over East Asia. Remote Sensing, 8(5), 1–18. doi:10.3390/rs8050417
  • Zhang, Y., Li, Z., Zhang, Y., Hou, W., Xu, H., Chen, C., & Ma, Y. (2014). High temporal resolution aerosol retrieval using Geostationary Ocean Color Imager: application and initial validation. Journal of Applied Remote Sensing, 8(1), 083612. doi:10.1117/1.JRS.8.083612
  • Zhang, H., Lyapustin, A., Wang, Y., Kondragunta, S., Laszlo, I., Ciren, P., & Hoff, R. M. (2011). A multi-angle aerosol optical depth retrieval algorithm for geostationary satellite data over the United States. Atmospheric Chemistry and Physics, 11(23), 11977–11991. doi:10.5194/acp-11-11977-2011
  • Zhang, M., Ma, Y., Wang, L., Gong, W., Hu, B., & Shi, Y. (2018). Spatial-temporal characteristics of aerosol loading over the Yangtze River Basin during 2001–2015. International Journal of Climatology, 38(4), 2138–2152. doi:10.1002/joc.5324
  • Zhang, J., & Reid, J. S. (2010). A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products. Atmospheric Chemistry and Physics, 10(22), 10949–10963. doi:10.5194/acp-10-10949-2010
  • Zhang, Y., Wang, Z., Chen, L., & Gu, X. (2008). Retrieval of aerosol from cbers02b using contrast reduction method in beijing. International Geoscience and Remote Sensing Symposium (IGARSS), 3(1), III-954–III-957. IEEE. doi:10.1109/IGARSS.2008.4779509
  • Zhang, W., Xu, H., & Zheng, F. (2018). Aerosol optical depth retrieval over East Asia using Himawari-8/AHI data. Remote Sensing, 10(1), 137. doi:10.3390/rs10010137
  • Zhao, T. X.-P., Laszlo, I., Guo, W., Heidinger, A., Cao, C., Jelenak, A., … Sullivan, J. (2008). Study of long-term trend in aerosol optical thickness observed from operational AVHRR satellite instrument. Journal of Geophysical Research Atmospheres, 113(D7), 1–14. doi:10.1029/2007JD009061
  • Zhao, A., Li, Z., Zhang, Y., Zhang, Y., & Li, D. (2017). Merging MODIS and ground-based fine mode fraction of aerosols based on the Geostatistical Data Fusion Method. Atmosphere, 8(12), 117. doi:10.3390/atmos8070117
  • Zhao, T. X.-P., Stowe, L. L., Smirnov, A., Crosby, D., Sapper, J., & McClain, C. R. (2002). Development of a global validation package for satellite oceanic aerosol optical thickness retrieval based on AERONET Observations and Its Application to NOAA{sol}NESDIS Operational Aerosol Retrievals. Journal of the Atmospheric Sciences, 59(3), 294–312. doi:10.1175/1520-0469(2002)059 < 0294:doagvp>2.0.co;2
  • Zhong, B., Wu, S., Yang, A., & Liu, Q. (2017). An improved aerosol optical depth retrieval algorithm for moderate to high spatial resolution optical remotely sensed imagery. Remote Sensing, 9(6), 555. doi:10.3390/rs9060555
  • Zhu, X., Chen, J., Gao, F., Chen, X., & Masek, J. G. (2010). An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114(11), 2610–2623. doi:10.1016/j.rse.2010.05.032
  • Zhu, J., Xia, X., Wang, J., Che, H., Chen, H., Zhang, J., … Ayoub, M. (2017). Evaluation of aerosol optical depth and aerosol models from VIIRS retrieval algorithms over North China Plain. Remote Sensing, 9(5), 432. doi:10.3390/rs9050432

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.