1,580
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

From second generation feed-stocks to innovative fermentation and downstream techniques for succinic acid production

, , , &
Pages 1829-1873 | Published online: 12 Oct 2019

References

  • Agarwal, L., Isar, J., Meghwanshi, G. K., & Saxena, R. K. (2007). Influence of environmental and nutritional factors on succinic acid production and enzymes of reverse tricarboxylic acid cycle from Enterococcus flavescens. Enzyme and Microbial Technology, 40(4), 629–636. doi:10.1016/j.enzmictec.2006.05.019
  • Akhtar, J., Idris, A., & Abd. Aziz, R. (2014). Recent advances in production of succinic acid from lignocellulosic biomass. Applied Microbiology and Biotechnology, 98(3), 987–1000. doi:10.1007/s00253-013-5319-6
  • Alexandri, M., Vlysidis, A., Papapostolou, H., Tverezovskaya, O., Tverezovskiy, V., Kookos, I. K., & Koutinas, A. (2019). Downstream separation and purification of succinic acid from fermentation broths using spent sulphite liquor as feedstock. Separation and Purification Technology, 209, 666–675. doi:10.1016/j.seppur.2018.08.061
  • Alvarado-Morales, M., Gunnarsson, I. B., Fotidis, I. A., Vasilakou, E., Lyberatos, G., & Angelidaki, I. (2015). Laminaria digitata as a potential carbon source for succinic acid and bioenergy production in a biorefinery perspective. Algal Research, 9, 126–132. doi:10.1016/j.algal.2015.03.008
  • Andersson, C., Hodge, D., Berglund, K. A., & Rova, U. (2007). Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli. Biotechnology Progress, 23(2), 381–388. doi:10.1021/bp060301y
  • Arshadi, M., Clark, J. H., Deswarte, F. E. I., Du, C., Kerton, F. M., Kountinas, A. A., … Webb, C. (2008). Production of energy from biomass. In J. H. Clark & F. E. I. Deswarte (Eds.), Introduction to chemicals from biomass. York, UK: John Wiley & Sons.
  • Bai, B., Zhou, J., Min, Yang, M., Hua, Liu, Y., Lan, Xu, X., Hui., & Xing, J. M. (2015). Efficient production of succinic acid from macroalgae hydrolysate by metabolically engineered Escherichia coli. Bioresource Technology, 185, 56–61. doi:10.1016/j.biortech.2015.02.081
  • BASF. (2014). Succinity produces first commercial quantities of biobased succinic acid. Retrieved from https://www.basf.com/global/en/media/news-releases/2014/03/p-14-0303-ci.html.
  • Beauprez, J. J., De Mey, M., & Soetaert, W. K. (2010). Microbial succinic acid production: Natural versus metabolic engineered producers. Process Biochemistry, 45(7), 1103–1114. doi:10.1016/j.procbio.2010.03.035
  • Bechthold, I., Bretz, K., Kabasci, S., Kopitzky, R., & Springer, A. (2008). Succinic acid: A new platform chemical for biobased polymers from renewable resources. Chemical Engineering & Technology, 31(5), 647–654. doi:10.1002/ceat.200800063
  • Blain, P. (2019). BioAmber Inc., Bioamber Canada Inc. & Bioamber Sarnia Inc. Retrieved from https://www.pwc.com/ca/en/services/insolvency-assignments/bioamber.html.
  • Borges, E. R., & Pereira, N. (2011). Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes. Journal of Industrial Microbiology & Biotechnology, 38(8), 1001–1011. doi:10.1007/s10295-010-0874-7
  • Borzani, W. (2006). Batch ethanol fermentation: The correlation between the fermentation efficiency and the biomass initial concentration depends on what is considered as produced ethanol. Brazilian Journal of Microbiology, 37(1), 87–89. doi:10.1590/S1517-83822006000100016
  • Bradfield, M. F. A., Mohagheghi, A., Salvachúa, D., Smith, H., Black, B. A., Dowe, N., … Nicol, W. (2015). Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnology for Biofuels, 8(1), 181. doi:10.1186/s13068-015-0363-3
  • Bradfield, M. F. A., & Nicol, W. (2016). The pentose phosphate pathway leads to enhanced succinic acid flux in biofilms of wild-type Actinobacillus succinogenes. Applied Microbiology and Biotechnology, 100(22), 9641–9652. doi:10.1007/s00253-016-7763-6
  • Brink, H. G., & Nicol, W. (2014). Succinic acid production with Actinobacillus succinogenes: Rate and yield analysis of chemostat and biofilm cultures. Microbial Cell Factories, 13(1), 1–12. doi:10.1186/s12934-014-0111-6
  • Brunklaus, B., Rex, E., Carlsson, E., & Berlin, J. (2018). The future of Swedish food waste: An environmental assessment of existing and prospective valorization techniques. Journal of Cleaner Production, 202, 1–10. https://doi.org/10.1016/j.jclepro.2018.07.240 doi:10.1016/j.jclepro.2018.07.240
  • Buchner, B., Fischler, C., Gustafson, E., Reilly, J., Riccardi, G., Ricordi, C., & Veronesi, U. (2012). Food waste: Causes, impacts and proposals. Barilla Center for Food & Nutrition. https://doi.org/45854585
  • Cao, W., Wang, Y., Luo, J., Yin, J., Xing, J., & Wan, Y. (2018a). Effectively converting carbon dioxide into succinic acid under mild pressure with Actinobacillus succinogenes by an integrated fermentation and membrane separation process. Bioresource Technology, 266, 26–33. doi:10.1016/j.biortech.2018.06.016
  • Cao, W., Wang, Y., Luo, J., Yin, J., Xing, J., & Wan, Y. (2018b). Succinic acid biosynthesis from cane molasses under low pH by Actinobacillus succinogenes immobilized in luffa sponge matrices. Bioresource Technology, 268, 45–51. doi:10.1016/j.biortech.2018.06.075
  • Carvalho, M., Matos, M., Roca, C., & Reis, M. A. M. (2014). Succinic acid production from glycerol by Actinobacillus succinogenes using dimethylsulfoxide as electron acceptor. New Biotechnology, 31(1), 133–139. doi:10.1016/j.nbt.2013.06.006
  • Carvalho, M., Roca, C., & Reis, M. A. M. (2016). Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods. Bioresource Technology, 218, 491–497. doi:10.1016/j.biortech.2016.06.140
  • Cavani, F., Albonetti, S., Basile, F., & Gandini, A. (Eds.). (2016). Chemicals and fuels from bio-based building blocks (Vol. 2). Weinheim: Wiley - VCH. https://doi.org/ doi:10.1016/j.focat.2016.06.047
  • Chaiklahan, R., Chirasuwan, N., Loha, V., Tia, S., & Bunnag, B. (2011). Bioresource Technology separation and purification of phycocyanin from Spirulina sp. using a membrane process. Bioresource Technology, 102(14), 7159–7164. doi:10.1016/j.biortech.2011.04.067
  • Chandel, A. K., Garlapati, V. K., Singh, A. K., Antunes, F. A. F., & da Silva, S. S. (2018). The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresource Technology, 264, 370. (April), 0–1. doi:10.1016/j.biortech.2018.06.004
  • Chatterjee, R., Millard, C. S., Champion, K., Clark, D. P., & Donnelly, M. I. (2001). Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Applied and Environmental Microbiology, 67(1), 148–154. https://doi.org/10.1128/AEM.67.1.148 doi:10.1128/AEM.67.1.148-154.2001
  • Chen, P., Tao, S., & Zheng, P. (2016). Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support. Bioresource Technology, 211, 406–413. doi:10.1016/j.biortech.2016.03.108
  • Cheng, K.-K., Zhao, X.-B., Zeng, J., & Zhang, J.-A. (2012). Biotechnological production of succinic acid: Current state and perspectives. Biofuels, Bioproducts and Biorefining, 6(3), 302–318. doi:10.1002/bbb.1327
  • Cheng, K. K., Zhao, X. B., Zeng, J., Wu, R. C., Xu, Y. Z., Liu, D. H., & Zhang, J. A. (2012). Downstream processing of biotechnological produced succinic acid. Applied Microbiology and Biotechnology, 95(4), 841–850. doi:10.1007/s00253-012-4214-x
  • Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412–1421. doi:10.1016/j.enconman.2010.01.015
  • Choi, J. H., Fukushi, K., & Yamamoto, K. (2008). A study on the removal of organic acids from wastewaters using nanofiltration membranes. Separation and Purification Technology, 59(1), 17–25. doi:10.1016/j.seppur.2007.05.021
  • Cimini, D., Argenzio, O., D’Ambrosio, S., Lama, L., Finore, I., Finamore, R., … Schiraldi, C. (2016). Production of succinic acid from Basfia succiniciproducens up to the pilot scale from Arundo donax hydrolysate. Bioresource Technology, 222, 355–360. doi:10.1016/j.biortech.2016.10.004
  • Cok, B., Ioannis, T., Alexander, L. R., & Martin, K. P. (2013). Succinic acid production derived from carbohydrates: An energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuels, Bioproducts and Biorefining, 16–29. doi:10.1002/bbb.1427
  • Cukalovic, A., & Stevens, C. V. (2008). Feasibility of production methods for succinic acid derivatives: A marriage of renewable resources and chemical technology. Biofuels, Bioproducts and Biorefining, 2(6), 505–529. doi:10.1002/bbb.105
  • Datta, R., Glassner, D. A., Jain, M. K., & Vick Roy, J. R. (1992). US Patent No. 5,168,055. United States.
  • Dessie, W., Xin, F., Zhang, W., Jiang, Y., Wu, H., Ma, J., & Jiang, M. (2018). Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Applied Microbiology and Biotechnology, 102(23), 9893. doi:10.1007/s00253-018-9379-5
  • Diaz, A. B., Blandino, A., & Caro, I. (2018). Value added products from fermentation of sugars derived from agro-food residues. Trends in Food Science & Technology, 71, 52–64. doi:10.1016/j.tifs.2017.10.016
  • Dorado, M. P., Lin, S. K. C., Koutinas, A., Du, C., Wang, R., & Webb, C. (2009). Cereal-based biorefinery development: Utilisation of wheat milling byproducts for the production of succinic acid. Journal of Biotechnology, 143(1), 51–59. doi:10.1016/j.jbiotec.2009.06.009
  • Du, C., Lin, S. K. C., Koutinas, A., Wang, R., Dorado, P., & Webb, C. (2008). A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid. Bioresource Technology, 99(17), 8310–8315. doi:10.1016/j.biortech.2008.03.019
  • Du, C., Lin, S. K. C., Koutinas, A., Wang, R., & Webb, C. (2007). Succinic acid production from wheat using a biorefining strategy. Applied Microbiology and Biotechnology, 76(6), 1263–1270. doi:10.1007/s00253-007-1113-7
  • EC-DGE. (2015). From the sugar platform to biofuels and biochemicals. E4Tech, RE - CORD (Consorzio per la Ricerca e la Dimostrazione sulle Energie Rinnovabili). Wageningen University and Research Center. https://doi.org/contract. no. ENER/C2/423-2012/SI2.673791.
  • Efe, Ç., van der Wielen, L. A. M., & Straathof, A. J. J. (2013). Techno-economic analysis of succinic acid production using adsorption from fermentation medium. Biomass and Bioenergy, 56(13), 479–492. doi:10.1016/j.biombioe.2013.06.002
  • Erica, H. (2004). Total food. Cormorant January, 19–27. https://doi.org/doi:10.1039/9781849730785
  • European Commission. (2018). World production of main daiary products. Retrieved from https://ec.europa.eu/agriculture/market-observatory/milk/latest-statistics/productions-stocks_en.
  • FAO. (2018). FAOstat. Retrieved from http://www.fao.org/faostat/en/#data/QC.
  • Ferone, M., Raganati, F., Ercole, A., Olivieri, G., Salatino, P., & Marzocchella, A. (2018). Continuous succinic acid fermentation by Actinobacillus succinogenes in a packed-bed biofilm reactor. Biotechnology for Biofuels, 11(1), 1–11. doi:10.1186/s13068-018-1143-7
  • Ferone, M., Raganati, F., Olivieri, G., & Marzocchella, A. (2019). Bioreactors for succinic acid production processes. Critical Reviews in Biotechnology, 39(4), 571–586. doi:10.1080/07388551.2019.1592105
  • Finley, K. R., Huryta, J. M., Mastel, B. M., McMullin, T. W., Poynter, G. M., Rush, B. J., … Brady, K. M. (2013). US Patent No. 2013/0302866 A1. United States.
  • Fu, L., Gao, X., Yang, Y., Aiyong, F., Hao, H., & Gao, C. (2014). Preparation of succinic acid using bipolar membrane electrodialysis. Separation and Purification Technology, 127, 212–218. doi:10.1016/j.seppur.2014.02.028
  • Fumagalli, C. (2006). Succinic acid and succinic anhydide. In Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons Inc (Ed.). https://doi.org/10.1002/0471238961.1921030306211301.a01.pub2
  • Garg, N., Woodley, J. M., Gani, R., & Kontogeorgis, G. M. (2019). Sustainable solutions by integrating process synthesis-intensification. Computers & Chemical Engineering, 126, 499–519. doi:10.1016/j.compchemeng.2019.04.030
  • Glassner, D. A., & Datta, R. (1992). US Patent No. 5,143,834. United States.
  • Guettler, M. V., Rumler, D., & Jain, M. K. (1999). Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. International Journal of Systematic Bacteriology, 49(1), 207–216. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10028265 doi:10.1099/00207713-49-1-207
  • Gunarathne, D. S., Udugama, I. A., Jayawardena, S., Gernaey, K. V., Mansouri, S. S., & Narayana, M. (2019). Resource recovery from bio-based production processes in developing Asia. Sustainable Production and Consumption, 17, 196–214. doi:10.1016/j.spc.2018.11.008
  • Gunnarsson, I. B., Kuglarz, M., Karakashev, D., & Angelidaki, I. (2015). Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.). Bioresource Technology, 182, 58–66. doi:10.1016/j.biortech.2015.01.126
  • Hestekin, J., Snyder, S., & Davison, B. (2002). Direct capture of products from biotransformations. Retrieved from digital.library.unt.edu/ark:/67531/metadc741289/
  • Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology, 23(3), 543. doi:10.1007/s10811-010-9632-5
  • IEA Bioenergy. (2012). Bio-based chemicals - Value added products from biorefineries. https://doi.org/. doi:10.1007/978-3-319-07593-8_30
  • Jansen, M. L. A., & van Gulik, W. M. (2014). Towards large scale fermentative production of succinic acid. Current Opinion in Biotechnology, 30, 190–197. doi:10.1016/j.copbio.2014.07.003
  • Jiang, M., Dai, W., Xi, Y., Wu, M., Kong, X., Ma, J., … Wei, P. (2014). Succinic acid production from sucrose by Actinobacillus succinogenes NJ113. Bioresource Technology, 153, 327–332. doi:10.1016/j.biortech.2013.11.062
  • Jiang, M., Ma, J., Wu, M., Liu, R., Liang, L., Xin, F., … Dong, W. (2017). Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies. Bioresource Technology, 245(30), 1710–1717. doi:10.1016/j.biortech.2017.05.209
  • Joshi, R. V., Schindler, B. D., McPherson, N. R., Tiwari, K., & Vieille, C. (2014). Development of a markerless knockout method for Actinobacillus succinogenes. Applied and Environmental Microbiology, 80(10), 3053–3061. doi:10.1128/AEM.00492-14
  • Kawasumi, R., Narita, S., Miyamoto, K., Tominaga, K. I., Takita, R., & Uchiyama, M. (2017). One-step conversion of levulinic acid to succinic acid using I2/t-BuOK system: The iodoform reaction revisited. Scientific Reports, 7(1), 4–11. doi:10.1038/s41598-017-17116-4
  • Klein, B. C., Silva, J. F. L., Junqueira, T. L., Rabelo, S. C., Arruda, P. V., Ienczak, J. L., … Bonomi, A. (2017). Process development and techno- economic analysis of bio-based succinic acid derived from pentoses integrated to a sugarcane biorefi nery. Biofuels, Bioproducts and Biorefining, 11, 1051–1064. doi:10.1002/bbb.1813
  • Kim, D. Y., Yim, S. C., Lee, P. C., Lee, W. G., Lee, S. Y., & Chang, H. N. (2004). Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E. Enzyme and Microbial Technology, 35(6-7), 648–653. doi:10.1016/j.enzmictec.2004.08.018
  • Kumar, P., Barrett, D. M., Delwiche, M. J., Stroeve, P., Kumar, P., Barrett, D. M., … Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48, 3713–3729. doi:10.1021/ie801542g
  • Lee, P. C., Lee, S. Y., Hong, S. H., & Chang, H. N. (2003). Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E for the production of succinic acid from whey and corn steep liquor. Bioprocess and Biosystems Engineering, 26(1), 63–67. doi:10.1007/s00449-003-0341-1
  • Lee, P. C., Lee, S. Y., Hong, S. H., Chang, H. N., & Park, S. C. (2003). Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnology Letters, 25(2), 111–114. https://doi.org/10.1023/A:1021907116361
  • Leung, C. C. J., Cheung, A. S. Y., Zhang, A. Y. Z., Lam, K. F., & Lin, C. S. K. (2012). Utilisation of waste bread for fermentative succinic acid production. Biochemical Engineering Journal, 65, 10–15. doi:10.1016/j.bej.2012.03.010
  • Li, J., Zheng, X.-Y., Fang, X.-J., Liu, S.-W., Chen, K.-Q., Jiang, M., … Ouyang, P.-K. (2011). A complete industrial system for economical succinic acid production by Actinobacillus succinogenes. Bioresource Technology, 102(10), 6147–6152. doi:10.1016/j.biortech.2011.02.093
  • Li, Q., Siles, J. A., & Thompson, I. P. (2010). Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85. Applied Microbiology and Biotechnology, 88(3), 671–678. doi:10.1007/s00253-010-2726-9
  • Li, Q., Wang, D., Wu, Y., Li, W., Zhang, Y., Xing, J., & Su, Z. (2010a). One step recovery of succinic acid from fermentation broths by crystallization. Separation and Purification Technology, 72(3), 294–300. doi:10.1016/j.seppur.2010.02.021
  • Li, Q., Yang, M., Wang, D., Li, W., Wu, Y., Zhang, Y., … Su, Z. (2010b). Efficient conversion of crop stalk wastes into succinic acid production by Actinobacillus succinogenes. Bioresource Technology, 101(9), 3292–3294. doi:10.1016/j.biortech.2009.12.064
  • Liang, L., Liu, R., Li, F., Wu, M., Chen, K., Ma, J., … Ouyang, P. (2013). Repetitive succinic acid production from lignocellulose hydrolysates by enhancement of ATP supply in metabolically engineered Escherichia coli. Bioresource Technology, 143, 405–412. doi:10.1016/j.biortech.2013.06.031
  • Lin, S. K. C., Du, C., Koutinas, A., Wang, R., & Webb, C. (2008). Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes. Biochemical Engineering Journal, 41(2), 128–135. doi:10.1016/j.bej.2008.03.013.
  • Lin, C. S. K., Pfaltzgraff, L. A., Herrero-Davila, L., Mubofu, E. B., Abderrahim, S., Clark, J. H., … Luque, R. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy & Environmental Science, 6(2), 426–464. doi:10.1039/c2ee23440h
  • Lin, S. K. C., Du, C., Blaga, A. C., Camarut, M., Webb, C., Stevens, C. V., & Soetaert, W. (2010). Novel resin-based vacuum distillation-crystallisation method for recovery of succinic acid crystals from fermentation broths. Green Chemistry, 12(4), 666–671. doi:10.1039/b913021g
  • Liu, Y.-P., Zheng, P., Sun, Z.-H., Ni, Y., Dong, J.-J., & Zhu, L.-L. (2008). Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresource Technology, 99(6), 1736–1742. doi:10.1016/j.biortech.2007.03.044
  • López-Garzón, C. S., & Straathof, A. J. J. (2014). Recovery of carboxylic acids produced by fermentation. Biotechnology Advances, 32(5), 873–904. doi:10.1016/j.biotechadv.2014.04.002
  • Loureiro da Costa Lira Gargalo, C. (2017). Process design, supply chain, economic and environmental analysis for chemical production in a glycerol biorefinery: Towards the sustainable design of biorefineries. Denmark: Technical University of Denmark. Retrieved from http://orbit.dtu.dk/files/134655421/Carina_Gargalo_PhD_Thesis_05_2017.pdf.
  • Lubsungneon, J., Srisuno, S., Rodtong, S., & Boontawan, A. (2014). Nanofiltration coupled with vapor permeation-assisted esterification as an effective purification step for fermentation-derived succinic acid. Journal of Membrane Science, 459, 132–142. doi:10.1016/j.memsci.2014.02.006
  • Luque, R., Lin, C. S. K., Du, C., Macquarrie, D. J., Koutinas, A., Wang, R., … Clark, J. H. (2009). Chemical transformations of succinic acid recovered from fermentation broths by a novel direct vacuum distillation-crystallisation method. Green Chemistry, 11(2), 193–200. doi:10.1039/B813409J
  • Macy, J. M., Ljungdahl, L. G., & Gottschalk, G. (1978). Pathway of succinate and propionate formatin in {IBacteroides} {Ifragilis}. Journal of Bacteriology, 134(1), 84–91. Retrieved from http://jb.asm.org.ezproxy.library.wur.nl/content/134/1/84.full.pdf
  • Maharaj, K., Bradfield, M. F. A., & Nicol, W. (2014). Succinic acid-producing biofilms of Actinobacillus succinogenes: Reproducibility, stability and productivity. Applied Microbiology and Biotechnology, 98(17), 7379–7386. doi:10.1007/s00253-014-5779-3
  • Mansouri, S. S., Gargalo, C. L., Udugama, I. A., Ramin, P., Sales-Cruz, M., Sin, G., & Gernaey, K. V. (2019). Economic risk analysis and critical comparison of biodiesel production systems. In M. Tabatabaei & M. Aghbashlo (Eds.), Biodiesel: From production to combustion (pp. 127–148). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-00985-4_6
  • Mansouri, S. S., Ismail, M. I., Babi, D. K., Simasatitkul, L., Huusom, J. K., & Gani, R. (2013). Systematic sustainable process design and analysis of biodiesel processes. Processes 1(2), 167–202. doi:10.3390/pr1020167
  • Maslova, O., Stepanov, N., Senko, O., & Efremenko, E. (2019). Production of various organic acids from different renewable sources by immobilized cells in the regimes of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SFF). Bioresource Technology, 272, 1–9. doi:10.1016/j.biortech.2018.09.143
  • Mazière, A., Pepijn, P., García, A., Luque, R., & Len, C. (2017). A review of progress in (bio)catalytic routes from/to renewable succinic acid. Biofuels, Bioproducts and Biorefining, 11(5), 908–931. https://doi.org/10.1002/bbb doi:10.1002/bbb.1785
  • McKinlay, J. B., Vieille, C., & Zeikus, J. G. (2007). Prospects for a bio-based succinate industry. Applied Microbiology and Biotechnology, 76(4), 727–740. doi:10.1007/s00253-007-1057-y
  • Mulvihill, M. J., Beach, E. S., Zimmerman, J. B., & Anastas, P. T. (2011). Green chemistry and green engineering: A framework for sustainable technology development. Annual Review of Environment and Resources, 36, 271–293. doi:10.1146/annurev-environ-032009-095500
  • Myriant. (2019). Myriant technologies bio-based succinic acid plant. Retrieved from https://www.chemicals-technology.com/projects/myriant-plant/.
  • Nghiem, N. P., Kleff, S., & Schwegmann, S. (2017). Succinic acid: Technology development and commercialization. Fermentation, 3(2), 601–630. doi:10.3390/fermentation3020026
  • Okino, S., Noburyu, R., Suda, M., Jojima, T., Inui, M., & Yukawa, H. (2008). An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Applied Microbiology and Biotechnology, 81(3), 459–464. https://doi.org/10.3923/pjn.2016.639.648 doi:10.1007/s00253-008-1668-y
  • Palmqvist, E., & Hahn-Hagerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresource Technology, 74(1), 17–24. https://doi.org/10.1016/S0960-8524(99)00160-1 doi:10.1016/S0960-8524(99)00160-1
  • Pateraki, C., Patsalou, M., Vlysidis, A., Kopsahelis, N., Webb, C., Koutinas, A. A., & Koutinas, M. (2016). Actinobacillus succinogenes: Advances on succinic acid production and prospects for development of integrated biorefineries. Biochemical Engineering Journal, 112, 285. doi:10.1016/j.bej.2016.04.005
  • Pinazo, J. M., Domine, M. E., Parvulescu, V., & Petru, F. (2015). Sustainability metrics for succinic acid production: A comparison between biomass-based and petrochemical routes. Catalysis Today, 239, 17–24. doi:10.1016/j.cattod.2014.05.035
  • Posada, J. A., Rincón, L. E., & Cardona, C. A. (2012). Design and analysis of biorefineries based on raw glycerol: Addressing the glycerol problem. Bioresource Technology, 111, 282–293. doi:10.1016/j.biortech.2012.01.151
  • Prochaska, K., Antczak, J., Regel-Rosocka, M., & Szczygiełda, M. (2018). Removal of succinic acid from fermentation broth by multistage process (membrane separation and reactive extraction). Separation and Purification Technology, 192, 360–368. doi:10.1016/j.seppur.2017.10.043
  • Raab, A. M., Gebhardt, G., Bolotina, N., Weuster-Botz, D., & Lang, C. (2010). Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metabolic Engineering, 12(6), 518–525. doi:10.1016/j.ymben.2010.08.005
  • Roa Engel, C. A., Straathof, A. J. J., Zijlmans, T. W., Van Gulik, W. M., & Van Der Wielen, L. A. M. (2008). Fumaric acid production by fermentation. Applied Microbiology and Biotechnology, 78(3), 379–389. doi:10.1007/s00253-007-1341-x
  • Salvachúa, D., Mohagheghi, A., Smith, H., Bradfield, M. F. A., Nicol, W., Black, B. A., … Beckham, G. T. (2016). Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation. Biotechnology for Biofuels, 9(1), 1–15. doi:10.1186/s13068-016-0425-1
  • Samuelov, N., Datta, R., Jain, M., & Zeikus, J. (1999). Whey fermentation by Anaerobiospirillum succiniciproducens for production of a succinate-based animal feed additive. Applied and Environmental Microbiology, 65(5), 2260–2263. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=91330&tool=pmcentrez&rendertype=abstract
  • Saxena, R. K., Saran, S., Isar, J., & Kaushik, R. (2016). Production and applications of succinic acid. In Current developments in biotechnology and bioengineering: Production, isolation and purification of industrial products (pp. 601–630). New Delhi: Elsevier B. V. https://doi.org/10.1016/B978-0-444-63662-1.00027-0
  • Shao, J., Hou, J., & Song, H. (2011). Comparison of humic acid rejection and flux decline during filtration with negatively charged and uncharged ultrafiltration membranes. Water Research, 45(2), 473–482. doi:10.1016/j.watres.2010.09.006
  • Shen, N., Qin, Y., Wang, Q., Liao, S., Zhu, J., Zhu, Q., … Huang, R. (2015). Production of succinic acid from sugarcane molasses supplemented with a mixture of corn steep liquor powder and peanut meal as nitrogen sources by Actinobacillus succinogenes. Letters in Applied Microbiology, 60(6), 544–551. doi:10.1111/lam.12399
  • Shi, X., Tal, G., Hankins, N. P., & Gitis, V. (2014). Fouling and cleaning of ultrafiltration membranes: A review. Journal of Water Process Engineering, 1, 121–138. doi:10.1016/j.jwpe.2014.04.003
  • Succinity. (2019). Biobased succinic acid. Retrieved from http://www.succinity.com/biobased-succinic-acid/our-product-succinity.
  • Sun, Y., Yan, L., Fu, H., & Xiu, Z. (2014). Salting-out extraction and crystallization of succinic acid from fermentation broths. Process Biochemistry, 49(3), 506–511. doi:10.1016/j.procbio.2013.12.016
  • Szczygiełda, M., Antczak, J., & Prochaska, K. (2017). Separation and concentration of succinic acid from post-fermentation broth by bipolar membrane electrodialysis (EDBM). Separation and Purification Technology, 181, 53–59. doi:10.1016/j.seppur.2017.03.018
  • Thuy, N. T. H., Kongkaew, A., Flood, A., & Boontawan, A. (2017). Fermentation and crystallization of succinic acid from Actinobacillus succinogenes ATCC55618 using fresh cassava root as the main substrate. Bioresource Technology, 233, 342. doi:10.1016/j.biortech.2017.02.114
  • Van Der Werf, M. J., Guettler, M. V., Jain, M. K., & Zeikus, J. G. (1997). Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Archives of Microbiology, 167(6), 332–342. doi:10.1007/s002030050452
  • van Heerden, C. D., & Nicol, W. (2013). Continuous succinic acid fermentation by Actinobacillus succinogenes. Biochemical Engineering Journal, 73, 5–11. doi:10.1016/j.bej.2013.01.015
  • Vassilev, S. V., & Vassileva, C. G. (2016). Composition, properties and challenges of algae biomass for biofuel application: An overview. Fuel, 181, 1–33. doi:10.1016/j.fuel.2016.04.106
  • Vemuri, G., Eiteman, M., & Altman, E. (2002). Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. Journal of Industrial Microbiology & Biotechnology, 28, 325–332. doi:10.1038/sj/jim/7000250
  • Wan, C., Li, Y., Shahbazi, A., & Xiu, S. (2008). Succinic acid production from cheese whey using Actinobacillus succinogenes 130 Z. Applied Biochemistry and Biotechnology, 145(1–3), 111–119. doi:10.1007/s12010-007-8031-0
  • Wang, C., Li, Q., Tang, H., Yan, D., Zhou, W., Xing, J., & Wan, Y. (2012). Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth. Bioresource Technology, 116, 366–371. doi:10.1016/j.biortech.2012.03.099
  • Wang, C., Li, Q., Tang, H., Zhou, W., Yan, D., Xing, J., & Wan, Y. (2013). Clarification of succinic acid fermentation broth by ultrafiltration in succinic acid bio-refinery. Journal of Chemical Technology & Biotechnology, 88(3), 444–448. doi:10.1002/jctb.3834
  • Wang, D., Li, Q., Yang, M., Zhang, Y., Su, Z., & Xing, J. (2011). Efficient production of succinic acid from corn stalk hydrolysates by a recombinant Escherichia coli with ptsG mutation. Process Biochemistry, 43(1), 365–371. doi:10.1016/j.procbio.2010.09.012
  • Weastra. (2012). Determination of market potential for selected platform chemicals. BioConSepT, January, 1–173. Retrieved from http://www.bioconsept.eu/wp-content/uploads/BioConSepT_Market-potential-for-selected-platform-chemicals_ppt1.pdf.
  • Werpy, T., & Petersen, G. (2004). Top value added chemicals from biomass. Volume I: Results of screening for potential candidates from sugars and synthesis gas. Produced by the Staff at the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL). https://doi.org/ doi:10.2172/15008859
  • Xu, C., Zhang, J., Zhang, Y., Guo, Y., Xu, H., & Xu, J. (2018). Long chain alcohol and succinic acid co-production process based on full utilization of lignocellulosic materials. Current Opinion in Green and Sustainable Chemistry, 14, 1–9. doi:10.1016/j.cogsc.2018.04.012
  • Yedur, S., Berglund, K. A., & Dunuwila, D. D. (2001). Succinic acid production and purification. https://doi.org/10.1038/incomms1464
  • Yu, J.-H., Zhu, L.-W., Xia, S.-T., Li, H.-M., Tang, Y.-L., Liang, X.-H., … Tang, Y.-J. (2016). Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering. Biotechnology and Bioengineering, 113(7), 1531–1541. doi:10.1002/bit.25927
  • Zeikus, J. G., Jain, M. K., & Elankovan, P. (1999). Biotechnology of succinic acid production and markets for derived industrial products. Applied Microbiology and Biotechnology, 51(5), 545–552. doi:10.1007/s002530051431
  • Zhang, A. Y. Z., Sun, Z., Leung, C. C. J., Han, W., Lau, K. Y., Li, M., & Lin, C. S. K. (2013). Valorisation of bakery waste for succinic acid production. Green Chemistry, 15(3), 690–695. doi:10.1039/c2gc36518a
  • Zhang, T., Kumar, R., Tsai, Y., Du Elander, R. T., & Wyman, C. E. (2015). Xylose yields and relationship to combined severity for dilute acid post-hydrolysis of xylooligomers from hydrothermal pretreatment of corn stover. Green Chemistry, 17(1), 394–403. doi:10.1039/C4GC01283F
  • Zhang, W., Luo, J., Ding, L., & Ja, M. Y. (2015). A review on flux decline control strategies in pressure-driven membrane processes. Industrial & Engineering Chemistry Research. 54(11), 2843–2861. https://doi.org/ doi:10.1021/ie504848m
  • Zheng, P., Dong, J.-J., Sun, Z.-H., Ni, Y., & Fang, L. (2009). Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresource Technology, 100(8), 2425–2429. doi:10.1016/j.biortech.2008.11.043
  • Zheng, P., Fang, L., Xu, Y., Dong, J. J., Ni, Y., & Sun, Z. H. (2010). Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes. Bioresource Technology, 101(20), 7889–7894. doi:10.1016/j.biortech.2010.05.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.