1,036
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

Breakthroughs in the fabrication of electrospun-nanofiber-supported thin film composite/nanocomposite membranes for the forward osmosis process: A review

, , , , , & show all
Pages 1727-1795 | Published online: 16 Oct 2019

References

  • Abdelkareem, M. A., Assad, M. E. H., Sayed, E. T., & Soudan, B. (2017). Recent progress in the use of renewable energy sources to power water desalination plants. Desalination. doi:10.1016/j.desal.2017.11.018
  • Achilli, A., Cath, T. Y., Marchand, E. A., & Childress, A. E. (2009). The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes. Desalination, 239(1–3), 10–21. doi:10.1016/j.desal.2008.02.022
  • Ahmed, F. E., Lalia, B. S., & Hashaikeh, R. (2015). A review on electrospinning for membrane fabrication: Challenges and applications. Desalination, 356, 15–30. doi:10.1016/j.desal.2014.09.033
  • Al-Karaghouli, A., & Kazmerski, L. L. (2013). Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable and Sustainable Energy Reviews, 24, 343–356. doi:10.1016/j.rser.2012.12.064
  • Angammana, C. J., & Jayaram, S. H. (2011). Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Transactions on Industry Applications, 47(3), 1109–1117. doi:10.1109/TIA.2011.2127431
  • Arena, J. T., McCloskey, B., Freeman, B. D., & McCutcheon, J. R. (2011). Surface modification of thin film composite membrane support layers with polydopamine: Enabling use of reverse osmosis membranes in pressure retarded osmosis. Journal of Membrane Science, 375(1–2), 55–62. doi:10.1016/j.memsci.2011.01.060
  • Arinstein, A. (2017). Electrospun polymer nanofibers. New York: Jenny Stanford Publishing. Taylor & Francis Group.
  • Attarde, D., Jain, M., Chaudhary, K., & Gupta, S. K. (2015). Osmotically driven membrane processes by using a spiral wound module — Modeling, experimentation and numerical parameter estimation. Desalination, 361, 81–94. doi:10.1016/j.desal.2015.01.025
  • Attarde, D., Jain, M., & Gupta, S. K. (2016). Modeling of a forward osmosis and a pressure-retarded osmosis spiral wound module using the Spiegler-Kedem model and experimental validation. Separation and Purification Technology, 164, 182–197. doi:10.1016/j.seppur.2016.03.039
  • Baker, R. W. (2000). Membrane technology. Hoboken, NJ: Wiley Online Library.
  • Baker, R. W. (2004). Membrane technology and applications (pp. 96–103). Hoboken, NJ: John Wiley & Sons, Ltd.
  • Balas, F., Manzano, M., Horcajada, P., & Vallet-Regí, M. (2006). Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. Journal of the American Chemical Society, 128, 8116–8117. doi:10.1021/ja062286z
  • Blandin, G., Verliefde, A. R. D., Tang, C. Y., Childress, A. E., & Le-Clech, P. (2013). Validation of assisted forward osmosis (AFO) process: Impact of hydraulic pressure. Journal of Membrane Science, 447, 1–11. doi:10.1016/j.memsci.2013.06.002
  • Blandin, G., Verliefde, A. R. D., Tang, C. Y., & Le-Clech, P. (2015). Opportunities to reach economic sustainability in forward osmosis–reverse osmosis hybrids for seawater desalination. Desalination, 363, 26–36. doi:10.1016/j.desal.2014.12.011
  • Buchko, C. J., Chen, L. C., Shen, Y., & Martin, D. C. (1999). Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 40(26), 7397–7407. doi:10.1016/S0032-3861(98)00866-0
  • Bui, N.-N., Lind, M. L., Hoek, E. M. V., & McCutcheon, J. R. (2011). Electrospun nanofiber supported thin film composite membranes for engineered osmosis. Journal of Membrane Science, 385-386, 10–19. doi:10.1016/j.memsci.2011.08.002
  • Bui, N.-N., & McCutcheon, J. R. (2013). Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis. Environmental Science & Technology, 47, 1761–1769. doi:10.1021/es304215g
  • Burger, C., Hsiao, B. S., & Chu, B. (2006). Nanofibrous materials and their applications. 36, 333–368. doi:10.1146/annurev.matsci.36.011205.123537
  • Casper, C. L., Stephens, J. S., Tassi, N. G., Chase, D. B., & Rabolt, J. F. J. M. (2004). Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process. Macromolecules 37, 573–578. doi:10.1021/ma0351975
  • Cath, T. Y., Adams, D., & Childress, A. E. (2005). Membrane contactor processes for wastewater reclamation in space: II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater. Journal of Membrane Science, 257(1–2), 111–119. doi:10.1016/j.memsci.2004.07.039
  • Cath, T. Y., Childress, A. E., & Elimelech, M. (2006). Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281(1–2), 70–87. doi:10.1016/j.memsci.2006.05.048
  • Cath, T. Y., Elimelech, M., McCutcheon, J. R., McGinnis, R. L., Achilli, A., Anastasio, D., … Hancock, N. T. (2013). Standard methodology for evaluating membrane performance in osmotically driven membrane processes. Desalination, 312, 31–38. doi:10.1016/j.desal.2012.07.005
  • Chen, S., Slattum, P., Wang, C., & Zang, L. (2015). Self-assembly of perylene imide molecules into 1D nanostructures: Methods, morphologies, and applications. Chemical Reviews, 115(21), 11967–11998. doi:10.1021/acs.chemrev.5b00312
  • Chi, X.-Y., Zhang, P.-Y., Guo, X.-J., & Xu, Z.-L. (2018). A novel TFC forward osmosis (FO) membrane supported by polyimide (PI) microporous nanofiber membrane. Applied Surface Science, 427, 1–9. doi:10.1016/j.apsusc.2017.07.259
  • Chowdhury, M. R., Huang, L., & McCutcheon, J. R. (2017). Thin film composite membranes for forward osmosis supported by commercial nanofiber nonwovens. Industrial & Engineering Chemistry Research, 56, 1057–1063. doi:10.1021/acs.iecr.6b04256
  • Chun, Y., Mulcahy, D., Zou, L., & Kim, I. (2017). A short review of membrane fouling in forward osmosis processes. Membranes, 7(2), 30. doi:10.3390/membranes7020030
  • Chung, T.-S., Li, X., Ong, R. C., Ge, Q., Wang, H., & Han, G. (2012). Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications. Current Opinion in Chemical Engineering, 1(3), 246–257. doi:10.1016/j.coche.2012.07.004
  • Chung, T.-S., Zhang, S., Wang, K. Y., Su, J., & Ling, M. M. (2012). Forward osmosis processes: Yesterday, today and tomorrow. Desalination, 287, 78–81. doi:10.1016/j.desal.2010.12.019
  • Coday, B. D., Heil, D. M., Xu, P., & Cath, T. Y. (2013). Effects of transmembrane hydraulic pressure on performance of forward osmosis membranes. Environmental Science & Technology, 47, 2386–2393. doi:10.1021/es304519p
  • Costa, L. M. M., Bretas, R. E. S., & Gregorio, R. J. (2010). Effect of solution concentration on the electrospray/electrospinning transition and on the crystalline phase of PVDF. Materials Sciences and Applications, 1, 247. doi:10.4236/msa.2010.14036
  • Cramariuc, B., Cramariuc, R., Scarlet, R., Manea, L. R., Lupu, I. G., & Cramariuc, O. (2013). Fiber diameter in electrospinning process. Journal of Electrostatics, 71(3), 189–198. doi:10.1016/j.elstat.2012.12.018
  • De Vrieze, S., Van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., & De Clerck, K. (2009). The effect of temperature and humidity on electrospinning. Journal of Materials Science, 44, 1357–1362. doi:10.1007/s10853-008-3010-6
  • Deitzel, J. M., Kleinmeyer, J., Harris, D., & Tan, N. B. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42, 261–272. doi:10.1016/S0032-3861(00)00250-0
  • Ding, Y., Hou, H., Zhao, Y., Zhu, Z., & Fong, H. (2016). Electrospun polyimide nanofibers and their applications. Progress in Polymer Science, 61, 67–103. doi:10.1016/j.progpolymsci.2016.06.006
  • Ding, B., & Yu, J. (2014). Electrospun nanofibers for energy and environmental applications. Heidelberg, New York, Dordrecht, London: Springer.
  • Dova, M. I., Petrotos, K. B., & Lazarides, H. N. (2007b). On the direct osmotic concentration of liquid foods: Part II. Development of a generalized model. Journal of Food Engineering, 78(2), 431–437. doi:10.1016/j.jfoodeng.2005.10.011.
  • Dova, M. I., Petrotos, K. B., & Lazarides, H. N. (2007a). On the direct osmotic concentration of liquid foods. Part I: Impact of process parameters on process performance. Journal of Food Engineering, 78(2), 422–430. doi:10.1016/j.jfoodeng.2005.10.010
  • Elmarco. (2018). Retreived from http://www.elmarco.com/.
  • Emadzadeh, D., Lau, W. J., Matsuura, T., Ismail, A. F., & Rahbari-Sisakht, M. (2014). Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization. Journal of Membrane Science, 449, 74–85. doi:10.1016/j.memsci.2013.08.014
  • Emadzadeh, D., Lau, W. J., Matsuura, T., Rahbari-Sisakht, M., & Ismail, A. F. (2014). A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination. Chemical Engineering Journal, 237, 70–80. doi:10.1016/j.cej.2013.09.081
  • Emadzadeh, D., Lau, W. J., Rahbari-Sisakht, M., Ilbeygi, H., Rana, D., Matsuura, T., & Ismail, A. F. (2015). Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application. Chemical Engineering Journal, 281, 243–251. doi:10.1016/j.cej.2015.06.035
  • Fan, L., Xu, Y., Zhou, X., Chen, F., & Fu, Q. (2018). Effect of salt concentration in spinning solution on fiber diameter and mechanical property of electrospun styrene-butadiene-styrene tri-block copolymer membrane. Polymer, 153, 61–69. doi:10.1016/j.polymer.2018.08.008
  • Fathizadeh, M., Aroujalian, A., & Raisi, A. (2012). Effect of lag time in interfacial polymerization on polyamide composite membrane with different hydrophilic sub layers. Desalination, 284, 32–41. doi:10.1016/j.desal.2011.08.034
  • Feng, C., Khulbe, K., Matsuura, T., Tabe, S., & Ismail, A. (2013). Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Separation and Purification Technology, 102, 118–135. doi:10.1016/j.seppur.2012.09.037
  • Feng, C., Takeuchi, T., Abdelkareem, M. A., Tsujiguchi, T., & Nakagawa, N. (2013). Carbon–CeO2 composite nanofibers as a promising support for a PtRu anode catalyst in a direct methanol fuel cell. Journal of Power Sources, 242, 57–64. doi:10.1016/j.jpowsour.2013.04.157
  • Freger, V. (2005). Kinetics of film formation by interfacial polycondensation. Langmuir, 21(5), 1884–1894. doi:10.1021/la048085v
  • Gao, Y., Wang, Y.-N., Li, W., & Tang, C. Y. (2014). Characterization of internal and external concentration polarizations during forward osmosis processes. Desalination, 338, 65–73. doi:10.1016/j.desal.2014.01.021
  • Garg, K., & Bowlin, G. L. (2011). Electrospinning jets and nanofibrous structures. Biomicrofluidics, 5(1), 013403. doi:10.1063/1.3567097
  • Ge, Q., & Chung, T.-S. (2015). Oxalic acid complexes: Promising draw solutes for forward osmosis (FO) in protein enrichment. Chemical Communications, 51(23), 4854–4857. doi:10.1039/C5CC00168D
  • Ge, Q., Fu, F., & Chung, T.-S. (2014). Ferric and cobaltous hydroacid complexes for forward osmosis (FO) processes. Water Research, 58, 230–238. doi:10.1016/j.watres.2014.03.024
  • Ge, Q., Ling, M., & Chung, T.-S. (2013). Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future. Journal of Membrane Science, 442, 225–237. doi:10.1016/j.memsci.2013.03.046
  • Ghanbari, M., Emadzadeh, D., Lau, W., Riazi, H., Almasi, D., & Ismail, A. (2016). Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates. Desalination, 377, 152–162. doi:10.1016/j.desal.2015.09.019
  • Ghosh, A. K., & Hoek, E. M. V. (2009). Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. Journal of Membrane Science, 336(1–2), 140–148. doi:10.1016/j.memsci.2009.03.024
  • Gohil, J. M., & Ray, P. (2017). A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and desalination. Separation and Purification Technology, 181, 159. doi:10.1016/j.seppur.2017.03.020
  • Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S., & Matsuura, T. (2006). Electrospun nanofibrous filtration membrane. Journal of Membrane Science, 281(1–2), 581–586. doi:10.1016/j.memsci.2006.04.026
  • Gray, G. T., McCutcheon, J. R., & Elimelech, M. (2006). Internal concentration polarization in forward osmosis: Role of membrane orientation. Desalination, 197(1–3), 1–8. doi:10.1016/j.desal.2006.02.003
  • Gruber, M. F., Johnson, C. J., Tang, C. Y., Jensen, M. H., Yde, L., & Hélix-Nielsen, C. (2011). Computational fluid dynamics simulations of flow and concentration polarization in forward osmosis membrane systems. Journal of Membrane Science, 379(1–2), 488–495. doi:10.1016/j.memsci.2011.06.022
  • Gu, B., Kim, D. Y., Kim, J. H., & Yang, D. R. (2011). Mathematical model of flat sheet membrane modules for FO process: Plate-and-frame module and spiral-wound module. Journal of Membrane Science, 379(1–2), 403–415. doi:10.1016/j.memsci.2011.06.012
  • Gwak, G., & Hong, S. (2017). New approach for scaling control in forward osmosis (FO) by using an antiscalant-blended draw solution. Journal of Membrane Science, 530, 95–103. doi:10.1016/j.memsci.2017.02.024
  • Haider, A., Haider, S., & Kang, I.-K. J. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11, 1165–1188. doi:10.1016/j.arabjc.2015.11.015
  • Han, G., Chung, T.-S., Toriida, M., & Tamai, S. (2012). Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination. Journal of Membrane Science, 423-424, 543–555. doi:10.1016/j.memsci.2012.09.005
  • Han, G., Liang, C.-Z., Chung, T.-S., Weber, M., Staudt, C., & Maletzko, C. (2016). Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater. Water Research, 91, 361–370. doi:10.1016/j.watres.2016.01.031
  • Han, G., Zhang, S., Li, X., Widjojo, N., & Chung, T.-S. (2012). Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection. Chemical Engineering Science, 80, 219–231. doi:10.1016/j.ces.2012.05.033
  • Haupt, A., & Lerch, A. J. M. (2018). Forward osmosis application in manufacturing industries. Membranes, 8, 47. doi:10.3390/membranes8030047
  • Hidayat, M. A., Kook, S., & Kim, I. S. (2018). Draw channel contraction of an 8040 spiral-wound forward osmosis membrane element in pressure-assisted forward osmosis (PAFO). Desalination and Water Treatment, 109, 17–27. doi:10.5004/dwt.2018.22152
  • Hilal, N., Ismail, A. F., & Wright, C. (2015). Membrane fabrication. Boca Raton, FL: CRC Press.
  • Hoover, L. A., Schiffman, J. D., & Elimelech, M. (2013). Nanofibers in thin-film composite membrane support layers: Enabling expanded application of forward and pressure retarded osmosis. Desalination, 308, 73–81. doi:10.1016/j.desal.2012.07.019
  • Huang, L., Arena, J. T., & McCutcheon, J. R. (2016). Surface modified PVDF nanofiber supported thin film composite membranes for forward osmosis. Journal of Membrane Science, 499, 352–360. doi:10.1016/j.memsci.2015.10.030
  • Huang, L., Bui, N. N., Manickam, S. S., & McCutcheon, J. R. (2011). Controlling electrospun nanofiber morphology and mechanical properties using humidity. Journal of Polymer Science Part B Polymer Physics, 49, 1734–1744. doi:10.1002/polb.22371
  • Huang, L., Bui, N.-N., Meyering, M. T., Hamlin, T. J., & McCutcheon, J. R. (2013). Novel hydrophilic nylon 6, 6 microfiltration membrane supported thin film composite membranes for engineered osmosis. Journal of Membrane Science, 437, 141–149. doi:10.1016/j.memsci.2013.01.046
  • Huang, M., Chen, Y., Huang, C.-H., Sun, P., & Crittenden, J. (2015). Rejection and adsorption of trace pharmaceuticals by coating a forward osmosis membrane with TiO2. Chemical Engineering Journal, 279, 904–911. doi:10.1016/j.cej.2015.05.078
  • Huang, C., Chen, S., Lai, C., Reneker, D. H., Qiu, H., Ye, Y., & Hou, H. (2006). Electrospun polymer nanofibres with small diameters. Nanotechnology, 17(6), 1558. doi:10.1088/0957-4484/17/6/004
  • Huang, L., & McCutcheon, J. R. (2014). Hydrophilic nylon 6, 6 nanofibers supported thin film composite membranes for engineered osmosis. Journal of Membrane Science, 457, 162–169. doi:10.1016/j.memsci.2014.01.040
  • Huang, L., & McCutcheon, J. R. (2015). Impact of support layer pore size on performance of thin film composite membranes for forward osmosis. Journal of Membrane Science, 483, 25–33. doi:10.1016/j.memsci.2015.01.025
  • Im, S.-J., Go, G.-W., Lee, S.-H., Park, G.-H., & Jang, A. (2016). Performance evaluation of two-stage spiral wound forward osmosis elements at various operation conditions. Desalination and Water Treatment, 57(51), 24583–24512. doi:10.1080/19443994.2016.1157989
  • Im, S.-J., Jeong, S., & Jang, A. (2018). Feasibility evaluation of element scale forward osmosis for direct connection with reverse osmosis. Journal of Membrane Science, 549, 366–376. doi:10.1016/j.memsci.2017.12.027
  • INOVENSO Co. (2018). Retreived from http://inovenso.com/.
  • Ismail, A., Padaki, M., Hilal, N., Matsuura, T., & Lau, W. (2015). Thin film composite membrane—recent development and future potential. Desalination, 356, 140–148. doi:10.1016/j.desal.2014.10.042
  • Ito, Y., Takeuchi, T., Tsujiguchi, T., Abdelkareem, M. A., & Nakagawa, N. (2013). Ultrahigh methanol electro-oxidation activity of PtRu nanoparticles prepared on TiO2-embedded carbon nanofiber support. Journal of Power Sources, 242, 280–288. doi:10.1016/j.jpowsour.2013.05.064
  • Jacobs, V., Anandjiwala, R. D., & Maaza, M. (2010). The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. Journal of Applied Polymer Science, 115(5), 3130–3136. doi:10.1002/app.31396
  • Jeong, B.-H., Hoek, E. M., Yan, Y., Subramani, A., Huang, X., Hurwitz, G., … Jawor, A. (2007). Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. Journal of Membrane Science, 294(1-2), 1–7. doi:10.1016/j.memsci.2007.02.025
  • Jia, C., Yu, D., Lamarre, M., Leopold, P. L., Teng, Y. D., & Wang, H. (2014). Patterned electrospun nanofiber matrices via localized dissolution: Potential for guided tissue formation. Advanced Materials, 26(48), 8192–8197. doi:10.1002/adma.201403509
  • Kao, S. T., Teng, M. Y., Li, C. L., Kuo, C. Y., Hsieh, C. Y., Tsai, H. A., … Lai, J. Y. (2008). Fabricating PC/PAN composite membranes by vapor-induced phase separation. Desalination , 233(1–3), 96–103. doi:10.1016/j.desal.2007.09.031
  • Katti, D. S., Robinson, K. W., Ko, F. K., & Laurencin, C. T. (2004). Bioresorbable nanofiber‐based systems for wound healing and drug delivery: Optimization of fabrication parameters. Journal of Biomedical Materials Research, 70, 286–296. doi:10.1002/jbm.b.30041
  • Ki, C. S., Kim, J. W., Hyun, J. H., Lee, K. H., Hattori, M., Rah, D. K., & Park, Y. H. (2007). Electrospun three‐dimensional silk fibroin nanofibrous scaffold. Journal of Applied Polymer Science, 106(6), 3922–3928. doi:10.1002/app.26914
  • Kim, J., Blandin, G., Phuntsho, S., Verliefde, A., Le-Clech, P., & Shon, H. J. D. (2017). Practical considerations for operability of an 8 ″spiral wound forward osmosis module: Hydrodynamics, fouling behaviour and cleaning strategy. Desalination, 404, 249–258. doi:10.1016/j.desal.2016.11.004
  • Kim, D. I., Choi, J., & Hong, S. (2018). Evaluation on suitability of osmotic dewatering through forward osmosis (FO) for xylose concentration. Separation and Purification Technology, 191, 225–232. doi:10.1016/j.seppur.2017.09.036
  • Kim, C. H., Jung, Y. H., Kim, H. Y., Lee, D. R., Dharmaraj, N., & Choi, K. E. (2006). Effect of collector temperature on the porous structure of electrospun fibers. Macromolecular Research, 14(1), 59–65. doi:10.1007/BF03219069
  • Kim, Y. C., & Park, S. J. (2011). Experimental study of a 4040 spiral-wound forward-osmosis membrane module. Environmental Science & Technology, 45(18), 7737–7745. doi:10.1021/es202175m
  • Kim, J. E., Phuntsho, S., Ali, S. M., Choi, J. Y., & Shon, H. K. (2018). Forward osmosis membrane modular configurations for osmotic dilution of seawater by forward osmosis and reverse osmosis hybrid system. Water Research, 128, 183–192. doi:10.1016/j.watres.2017.10.042
  • Kim, J. E., Phuntsho, S., Lotfi, F., & Shon, H. K. (2015). Investigation of pilot-scale 8040 FO membrane module under different operating conditions for brackish water desalination. Desalination and Water Treatment, 53(10), 2782–2791. doi:10.1080/19443994.2014.931528
  • Klaysom, C., Cath, T. Y., Depuydt, T., & Vankelecom, I. F. (2013). Forward and pressure retarded osmosis: Potential solutions for global challenges in energy and water supply. Chemical Society Reviews, 42(16), 6959–6989. doi:10.1039/c3cs60051c
  • Kong, C., Kanezashi, M., Yamomoto, T., Shintani, T., & Tsuru, T. (2010). Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination. Journal of Membrane Science, 362(1-2), 76–80. doi:10.1016/j.memsci.2010.06.022
  • Kong, C., Koushima, A., Kamada, T., Shintani, T., Kanezashi, M., Yoshioka, T., & Tsuru, T. (2011). Enhanced performance of inorganic-polyamide nanocomposite membranes prepared by metal-alkoxide-assisted interfacial polymerization. Journal of Membrane Science, 366(1–2), 382–388. doi:10.1016/j.memsci.2010.10.026
  • Kong, C., Shintani, T., Kamada, T., Freger, V., & Tsuru, T. (2011). Co-solvent-mediated synthesis of thin polyamide membranes. Journal of Membrane Science, 384(1–2), 10–16. doi:10.1016/j.memsci.2011.08.055
  • Kong, F-X., Yang, H-W., Wu, Y-Q., Wang, X-M., & Xie, Y. F. (2015). Rejection of pharmaceuticals during forward osmosis and prediction by using the solution–diffusion model. Journal of Membrane Science, 476, 410–420. doi:10.1016/j.memsci.2014.11.026
  • Kook, S., & Kim, I. S. (2017). Transport of trace organic contaminants (TrOCs) in pressure-assisted forward osmosis (PAFO). Desalination and Water Treatment, 82, 1–10. doi:10.5004/dwt.2017.21011
  • Kook, S., Kim, J., Kim, S.-J., Lee, J., Han, D., Phuntsho, S., … Kim, I. S. (2017). Effect of initial feed and draw flowrates on performance of an 8040 spiral-wound forward osmosis membrane element. Desalination and Water Treatment, 72, 1–12. doi:10.5004/dwt.2017.20412
  • Kook, S., Lee, C., Nguyen, T. T., Lee, J., Shon, H. K., & Kim, I. S. (2018). Serially connected forward osmosis membrane elements of pressure-assisted forward osmosis-reverse osmosis hybrid system: Process performance and economic analysis. Desalination, 448, 1–12. doi:10.1016/j.desal.2018.09.019
  • Kook, S., Swetha, C. D., Lee, J., Lee, C., Fane, T., & Kim, I. S. (2018). Forward osmosis membranes under null-pressure condition: Do hydraulic and osmotic pressures have identical nature? Environmental Science & Technology, 52(6), 3556–3566. doi:10.1021/acs.est.7b05265
  • Koski, A., Yim, K., & Shivkumar, S. J. M. L. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. 58, 493–497. doi:10.1016/S0167-577X(03)00532-9
  • Kuang, W., Liu, Z., Yu, H., Kang, G., Jie, X., Jin, Y., & Cao, Y. (2016). Investigation of internal concentration polarization reduction in forward osmosis membrane using nano-CaCO3 particles as sacrificial component. Journal of Membrane Science, 497, 485–493. doi:10.1016/j.memsci.2015.06.052
  • Lalia, B. S., Kochkodan, V., Hashaikeh, R., & Hilal, N. (2013). A review on membrane fabrication: Structure, properties and performance relationship. Desalination, 326, 77–95. doi:10.1016/j.desal.2013.06.016
  • Lau, W., Gray, S., Matsuura, T., Emadzadeh, D., Chen, J. P., & Ismail, A. (2015). A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. Water Research, 80, 306–324. doi:10.1016/j.watres.2015.04.037
  • Lau, W. J., Ismail, A. F., Misdan, N., & Kassim, M. A. (2012). A recent progress in thin film composite membrane: A review. Desalination, 287, 190–199. doi:10.1016/j.desal.2011.04.004
  • Lau, W., Ismail, A., Misdan, N., & Kassim, M. (2012). A recent progress in thin film composite membrane: A review. Desalination, 287, 190–199. doi:10.1016/j.desal.2011.04.004
  • Lay, W. C., Zhang, J., Tang, C., Wang, R., Liu, Y., & Fane, A. G. (2012). Factors affecting flux performance of forward osmosis systems. Journal of Membrane Science, 394, 151–168. doi:10.1016/j.memsci.2011.12.035
  • Lee, J. S., Choi, K. H., Ghim, H. D., Kim, S. S., Chun, D. H., Kim, H. Y., & Lyoo, W. S. (2004). Role of molecular weight of atactic poly (vinyl alcohol)(PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. Journal of Applied Polymer Science, 93(4), 1638–1646. doi:10.1002/app.20602
  • Lee, S., & Kim, Y. C. (2017). Calcium carbonate scaling by reverse draw solute diffusion in a forward osmosis membrane for shale gas wastewater treatment. Journal of Membrane Science, 522, 257–266. doi:10.1016/j.memsci.2016.09.026
  • Lee, S., & Kim, Y. C. (2018). Performance analysis of plate-and-frame forward osmosis membrane elements and implications for scale-up design. Journal of Membrane Science, 550, 219–229. doi:10.1016/j.memsci.2017.12.080
  • Lee, K. H., Kim, H. Y., La, Y. M., Lee, D. R., & Sung, N. H. (2002). Influence of a mixing solvent with tetrahydrofuran and N, N‐dimethylformamide on electrospun poly (vinyl chloride) nonwoven mats. Journal of Polymer Science Part B: Polymer Physics, 40(19), 2259–2268. doi:10.1002/polb.10293
  • Li, N. N., Fane, A. G., Ho, W. W., & Matsuura, T. (2011). Advanced membrane technology and applications. Hoboken, NJ: John Wiley & Sons.
  • Lian, B., Blandin, G., Leslie, G., & Le-Clech, P. (2018). Impact of module design in forward osmosis and pressure assisted osmosis: An experimental and numerical study. Desalination, 426, 108–117. doi:10.1016/j.desal.2017.10.047
  • Liang, H.-Q., Hung, W.-S., Yu, H.-H., Hu, C.-C., Lee, K.-R., Lai, J.-Y., & Xu, Z.-K. (2017). Forward osmosis membranes with unprecedented water flux. Journal of Membrane Science, 529, 47–54. doi:10.1016/j.memsci.2017.01.056
  • Lim, S. K., Hwang, S.-H., Chang, D., & Kim, S. (2010). Preparation of mesoporous In 2 O 3 nanofibers by electrospinning and their application as a CO gas sensor. Sensors and Actuators B: Chemical, 149(1), 28–33. doi:10.1016/j.snb.2010.06.039
  • LINARI NanoTech. (2018). Retreived from http://www.linaribiomedical.com/.
  • Liu, Z., Cui, Z., Zhang, Y., Qin, S., Yan, F., & Li, J. (2017). Fabrication of polysulfone membrane via thermally induced phase separation process. Materials Letters, 195, 190–193. doi:10.1016/j.matlet.2017.02.070
  • Liu, S., Fukushima, K., Venkataraman, S., Hedrick, J. L., & Yang, Y. Y. (2018). Supramolecular nanofibers self-assembled from cationic small molecules derived from repurposed poly (ethylene teraphthalate) for antibiotic delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 14(1), 165–172. doi:10.1016/j.nano.2017.09.007
  • Liu, Q., Li, J., Zhou, Z., Xie, J., & Lee, J. Y. (2016). Hydrophilic mineral coating of membrane substrate for reducing internal concentration polarization (ICP) in forward osmosis. Scientific Reports, 6(1), 19593. doi:10.1038/srep19593
  • Liu, Z., Yu, H., Kang, G., Jie, X., Jin, Y., & Cao, Y. (2016). Investigation of internal concentration polarization reduction in forward osmosis membrane using nano-CaCO3 particles as sacrificial component. Journal of Membrane Science, 497, 485–493. doi:10.1016/j.memsci.2015.06.052
  • Loeb, S., Titelman, L., Korngold, E., & Freiman, J. (1997). Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane. Journal of Membrane Science, 129(2), 243–249. doi:10.1016/S0376-7388(96)00354-7
  • Lu, P., Liang, S., Qiu, L., Gao, Y., & Wang, Q. (2016). Thin film nanocomposite forward osmosis membranes based on layered double hydroxide nanoparticles blended substrates. Journal of Membrane Science, 504, 196–205. doi:10.1016/j.memsci.2015.12.066
  • Lutchmiah, K., Verliefde, A. R. D., Roest, K., Rietveld, L. C., & Cornelissen, E. R. (2014). Forward osmosis for application in wastewater treatment: A review. Water Research, 58, 179–197. doi:10.1016/j.watres.2014.03.045
  • Lu, X., Wang, C., & Wei, Y. (2009). One‐dimensional composite nanomaterials: Synthesis by electrospinning and their applications. Small, 5(21), 2349–2370. doi:10.1002/smll.200900445
  • Ma, N., Wei, J., Liao, R., & Tang, C. Y. (2012). Zeolite-polyamide thin film nanocomposite membranes. Journal of Membrane Science, 405, 149–157. doi:10.1016/j.memsci.2012.03.002
  • Ma, N., Wei, J., Qi, S., Zhao, Y., Gao, Y., & Tang, C. Y. (2013). Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes. Journal of Membrane Science, 441, 54–62. doi:10.1016/j.memsci.2013.04.004
  • Mazlan, N. M., Peshev, D., & Livingston, A. G. (2016). Energy consumption for desalination—A comparison of forward osmosis with reverse osmosis, and the potential for perfect membranes. Desalination, 377, 138–151. doi:10.1016/j.desal.2015.08.011
  • McCutcheon, J. R., & Elimelech, M. (2006). Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. Journal of Membrane Science, 284(1–2), 237–247. doi:10.1016/j.memsci.2006.07.049
  • McCutcheon, J. R., & Elimelech, M. (2007). Modeling water flux in forward osmosis: Implications for improved membrane design. AIChE Journal, 53(7), 1736–1744. doi:10.1002/aic.11197
  • McCutcheon, J. R., & Elimelech, M. (2008). Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. Journal of Membrane Science, 318(1–2), 458–466. doi:10.1016/j.memsci.2008.03.021
  • McGinnis, R. L., & Elimelech, M. (2007). Energy requirements of ammonia–carbon dioxide forward osmosis desalination. Desalination, 207(1–3), 370–382. doi:10.1016/j.desal.2006.08.012
  • McGinnis, R. L., Hancock, N. T., Nowosielski-Slepowron, M. S., & McGurgan, G. D. (2013). Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines. Desalination, 312, 67–74. doi:10.1016/j.desal.2012.11.032
  • McGinnis, R., & McGurgan, G. (2012). Forward osmosis membranes: Google Patents.
  • McGovern, R. K., & Lienhard, J. H. (2014). On the potential of forward osmosis to energetically outperform reverse osmosis desalination. Journal of Membrane Science, 469, 245–250. doi:10.1016/j.memsci.2014.05.061
  • McKee, M. G., Layman, J. M., Cashion, M. P., & Long, T. E. J. S. (2006). Phospholipid nonwoven electrospun membranes. Science, 311, 353–355. doi:10.1126/science.1119790
  • Min, B.-M., Lee, G., Kim, S. H., Nam, Y. S., Lee, T. S., & Park, W. H. J. B. (2004). Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 25, 1289–1297. doi:10.1016/j.biomaterials.2003.08.045
  • Misdan, N., Lau, W. J., Ismail, A. F., & Matsuura, T. (2013). Formation of thin film composite nanofiltration membrane: Effect of polysulfone substrate characteristics. Desalination, 329, 9–18. doi:10.1016/j.desal.2013.08.021
  • Mit-Uppatham, C., Nithitanakul, M., & Supaphol, P. (2004). Ultrafine electrospun polyamide‐6 fibers: Effect of solution conditions on morphology and average fiber diameter. Macromolecular Chemistry and Physics, 205, 2327–2338. doi:10.1002/macp.200400225
  • Muta, H., Miwa, M., & Satoh, M. (2001). Ion-specific swelling of hydrophilic polymer gels. Polymer, 42(14), 6313–6316. doi:10.1016/S0032-3861(01)00098-2
  • Na, H., Zhao, Y., Zhao, C., Zhao, C., & Yuan, X. (2008). Effect of hot-press on electrospun poly(vinylidene fluoride) membranes. Polymer Engineering & Science, 48, 934–940. doi:10.1002/pen.21039
  • Nadetech Innovations. (2018). Retreived from http://www.nadetech.com/index.php/en/.
  • Nain, A. S., Amon, C., & Sitti, M. (2006). Proximal probes based nanorobotic drawing of polymer micro/nanofibers. IEEE Transactions on Nanotechnology, 5(5), 499–510. doi:10.1109/TNANO.2006.880453
  • NanoNC. (2018). Retreived from http://nanonc.co.kr/wordpress/.
  • Neo, Y. P., Ray, S., Easteal, A. J., Nikolaidis, M. G., & Quek, S. Y. (2012). Influence of solution and processing parameters towards the fabrication of electrospun zein fibers with sub-micron diameter. Journal of Food Engineering, 109(4), 645–651. doi:10.1016/j.jfoodeng.2011.11.032
  • Obaid, M., Ghouri, Z. K., Fadali, O. A., Khalil, K. A., Almajid, A. A., & Barakat, N. A. (2016). Amorphous SiO2 NP-incorporated poly (vinylidene fluoride) electrospun nanofiber membrane for high flux forward osmosis desalination. ACS Applied Materials & Interfaces, 8, 4561–4574. doi:10.1021/acsami.5b09945
  • Obaid, M., Kang, Y., Wang, S., Yoon, M.-H., Kim, C.-M., Song, J-h., & Kim, I. S. (2018). Fabrication of highly permeable thin-film nanocomposite forward osmosis membranes via design novel freestanding robust nanofiber substrates. Journal of Materials Chemistry A, 6(25), 11700. doi:10.1039/C7TA11320J
  • Obaid, M., Mohamed, H. O., Yasin, A. S., Fadali, O. A., Khalil, K. A., Kim, T., & Barakat, N. A. (2016). A novel strategy for enhancing the electrospun PVDF support layer of thin-film composite forward osmosis membranes. RSC Advances, 6(104), 102762–102772. doi:10.1039/C6RA18153H
  • Obaid, M., Mohamed, H. O., Yasin, A. S., Yassin, M. A., Fadali, O. A., Kim, H., & Barakat, N. A. (2017). Under-oil superhydrophilic wetted PVDF electrospun modified membrane for continuous gravitational oil/water separation with outstanding flux. Water Research, 123, 524–535. doi:10.1016/j.watres.2017.06.079
  • Oh, Y., Lee, S., Elimelech, M., Lee, S., & Hong, S. (2014). Effect of hydraulic pressure and membrane orientation on water flux and reverse solute flux in pressure assisted osmosis. Journal of Membrane Science, 465, 159–166. doi:10.1016/j.memsci.2014.04.008
  • Okutan, N., Terzi, P., & Altay, F. (2014). Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids, 39, 19–26. doi:10.1016/j.foodhyd.2013.12.022
  • Ong, R. C., Chung, T.-S., de Wit, J. S., & Helmer, B. J. (2015). Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes. Journal of Membrane Science, 473, 63–71. doi:10.1016/j.memsci.2014.08.046
  • Pan, S.-F., Dong, Y., Zheng, Y.-M., Zhong, L.-B., & Yuan, Z.-H. (2017). Self-sustained hydrophilic nanofiber thin film composite forward osmosis membranes: Preparation, characterization and application for simulated antibiotic wastewater treatment. Journal of Membrane Science, 523, 205–215. doi:10.1016/j.memsci.2016.09.045
  • Park, S. Y., Ahn, H.-W., Chung, J. W., & Kwak, S.-Y. (2016). Magnetic core-hydrophilic shell nanosphere as stability-enhanced draw solute for forward osmosis (FO) application. Desalination, 397, 22–29. doi:10.1016/j.desal.2016.06.017
  • Park, M. J., Gonzales, R. R., Abdel-Wahab, A., Phuntsho, S., & Shon, H. K. (2018). Hydrophilic polyvinyl alcohol coating on hydrophobic electrospun nanofiber membrane for high performance thin film composite forward osmosis membrane. Desalination, 426, 50–59. doi:10.1016/j.desal.2017.10.042
  • Park, M. J., Phuntsho, S., He, T., Nisola, G. M., Tijing, L. D., Li, X.-M., … Shon, H. K. (2015). Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes. Journal of Membrane Science, 493, 496–507. doi:10.1016/j.memsci.2015.06.053
  • Pelipenko, J., Kristl, J., Janković, B., Baumgartner, S., & Kocbek, P. (2013). The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. International Journal of Pharmaceutics, 456, 125–134. doi:10.1016/j.ijpharm.2013.07.078
  • Peng, S., Li, L., Hu, Y., Srinivasan, M., Cheng, F., Chen, J., & Ramakrishna, S. (2015). Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano, 9(2), 1945–1954. doi:10.1021/nn506851x
  • Peng, J., Su, Y., Chen, W., Shi, Q., Jiang, Z. J. I., & Research, E. C. (2010). Effects of coagulation bath temperature on the separation performance and antifouling property of poly (ether sulfone) ultrafiltration membranes. Industrial & Engineering Chemistry Research, 49, 4858–4864. doi:10.1021/ie9018963
  • Persano, L., Camposeo, A., Tekmen, C., & Pisignano, D. (2013). Industrial upscaling of electrospinning and applications of polymer nanofibers: A review. Macromolecular Materials and Engineering, 298(5), 504–520. doi:10.1002/mame.201200290
  • Phuntsho, S., Kim, J. E., Johir, M. A. H., Hong, S., Li, Z., Ghaffour, N., … Shon, H. K. (2016). Fertiliser drawn forward osmosis process: Pilot-scale desalination of mine impaired water for fertigation. Journal of Membrane Science, 508, 22–31. doi:10.1016/j.memsci.2016.02.024
  • Puguan, J. M. C., Kim, H.-S., Lee, K.-J., & Kim, H. (2014). Low internal concentration polarization in forward osmosis membranes with hydrophilic crosslinked PVA nanofibers as porous support layer. Desalination, 336, 24–31. doi:10.1016/j.desal.2013.12.031
  • Qasim, M., Darwish, N. A., Sarp, S., & Hilal, N. (2015). Water desalination by forward (direct) osmosis phenomenon: A comprehensive review. Desalination, 374, 47–69. doi:10.1016/j.desal.2015.07.016
  • Qin, M., & He, Z. (2014). Self-supplied ammonium bicarbonate draw solute for achieving wastewater treatment and recovery in a microbial electrolysis cell-forward osmosis-coupled system. Environmental Science & Technology Letters, 1, 437–441. doi:10.1021/ez500280c
  • Ramakrishna, S., Fujihara, K., Teo, W.-E., Yong, T., Ma, Z., & Ramaseshan, R. (2006). Electrospun nanofibers: Solving global issues. Materials Today, 9(3), 40–50. doi:10.1016/S1369-7021(06)71389-X
  • Rastogi, N. K. (2016). Opportunities and challenges in application of forward osmosis in food processing. Critical Reviews in Food Science and Nutrition, 56(2), 266–291. doi:10.1080/10408398.2012.724734
  • Ray, S. S., Chen, S.-S., Li, C.-W., Nguyen, N. C., & Nguyen, H. T. (2016). A comprehensive review: Electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Advances, 6(88), 85495–85514. doi:10.1039/C6RA14952A
  • Reddy, A., & Patel, H. R. (2008). Chemically treated polyethersulfone/polyacrylonitrile blend ultrafiltration membranes for better fouling resistance. Desalination, 221(1-3), 318–323. doi:10.1016/j.desal.2007.01.089
  • Ren, J., & McCutcheon, J. R. (2014). A new commercial thin film composite membrane for forward osmosis. Desalination, 343, 187–193. doi:10.1016/j.desal.2013.11.026
  • Reneker, D. H., & Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3), 216.
  • Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87(9), 4531–4547. doi:10.1063/1.373532
  • Roh, I. J., Greenberg, A. R., & Khare, V. P. (2006). Synthesis and characterization of interfacially polymerized polyamide thin films. Desalination, 191(1-3), 279–290. doi:10.1016/j.desal.2006.03.004
  • Sagiv, A., Zhu, A., Christofides, P. D., Cohen, Y., & Semiat, R. (2014). Analysis of forward osmosis desalination via two-dimensional FEM model. Journal of Membrane Science, 464, 161–172. doi:10.1016/j.memsci.2014.04.001
  • Sahebi, S., Phuntsho, S., Woo, Y. C., Park, M. J., Tijing, L. D., Hong, S., & Shon, H. K. (2016). Effect of sulphonated polyethersulfone substrate for thin film composite forward osmosis membrane. Desalination, 389, 129–136. doi:10.1016/j.desal.2015.11.028
  • Sairam, M., Sereewatthanawut, E., Li, K., Bismarck, A., & Livingston, A. G. (2011). Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis—desalination using MgSO4 draw solution. Desalination, 273(2–3), 299–307. doi:10.1016/j.desal.2011.01.050
  • Sarbatly, R., Krishnaiah, D., & Kamin, Z. (2016). A review of polymer nanofibres by electrospinning and their application in oil–water separation for cleaning up marine oil spills. Marine Pollution Bulletin, 106(1–2), 8–16. doi:10.1016/j.marpolbul.2016.03.037
  • Saud, P. S., Pant, B., Ojha, G. P., Kim, D.-U., Kuk, Y.-S., Park, S.-J., … Kim, H.-Y. (2017). One-pot synthesis of Ag3PO4/MoS2 nanocomposite with highly efficient photocatalytic activity. Journal of Environmental Chemical Engineering, 5(6), 5521–5527. doi:10.1016/j.jece.2017.10.040
  • Sehaqui, H., Ezekiel Mushi, N., Morimune, S., Salajkova, M., Nishino, T., & Berglund, L. A. (2012). Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Applied Materials & Interfaces, 4, 1043–1049. doi:10.1021/am2016766
  • Shaffer, D. L., Werber, J. R., Jaramillo, H., Lin, S., & Elimelech, M. (2015). Forward osmosis: Where are we now? Desalination, 356, 271–284. doi:10.1016/j.desal.2014.10.031
  • Shalini, H., & Nayak, C. A. (2016). Forward osmosis membrane concentration of raw sugarcane juice. Recent Advances in Chemical Engineering- Select Proceedings of ICACE 2015 (pp.81-88). Springer.
  • Shang, Y., Si, Y., Raza, A., Yang, L., Mao, X., Ding, B., & Yu, J. (2012). An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil–water separation. Nanoscale, 4(24), 7847–7854. doi:10.1039/c2nr33063f
  • Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., & Mayes, A. M. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301–310. doi:10.1038/nature06599
  • Shao, C., Kim, H.-Y., Gong, J., Ding, B., Lee, D.-R., & Park, S.-J. (2003). Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Materials Letters, 57(9-10), 1579–1584. doi:10.1016/S0167-577X(02)01036-4
  • Shen, L., Xiong, S., & Wang, Y. (2016). Graphene oxide incorporated thin-film composite membranes for forward osmosis applications. Chemical Engineering Science, 143, 194–205. doi:10.1016/j.ces.2015.12.029
  • Shi, L., Chou, S. R., Wang, R., Fang, W. X., Tang, C. Y., & Fane, A. G. (2011). Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes. Journal of Membrane Science, 382(1–2), 116–123. doi:10.1016/j.memsci.2011.07.045
  • Shirazi, A., Mahdi, M., Kargari, A., Ramakrishna, S., Doyle, J., Rajendrian, M., & Babu, P. (2017). Electrospun membranes for desalination and water/wastewater treatment: A comprehensive review. Journal of Membrane Science and Research, 3, 209–227.
  • Shokrollahzadeh, S., & Tajik, S. (2018). Fabrication of thin film composite forward osmosis membrane using electrospun polysulfone/polyacrylonitrile blend nanofibers as porous substrate. Desalination, 425, 68–76. doi:10.1016/j.desal.2017.10.017
  • Singh, A. A., Geng, S., Herrera, N., & Oksman, K. (2018). Aligned plasticized polylactic acid cellulose nanocomposite tapes: Effect of drawing conditions. Composites Part A: Applied Science and Manufacturing, 104, 101–107. doi:10.1016/j.compositesa.2017.10.019
  • Song, X., & Prince, A. (2016). Relating water/solute permeability coefficients to the performance of thin-film nanofiber composite forward osmosis membrane. Journal of Membrane Science & Technology, 6, 160. doi:10.4172/2155-9589.1000160
  • Song, X., Liu, Z., & Sun, D. D. (2011). Nano gives the answer: Breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate. Advanced Materials, 23(29), 3256–3260. doi:10.1002/adma.201100510
  • Suh, C., & Lee, S. (2013). Modeling reverse draw solute flux in forward osmosis with external concentration polarization in both sides of the draw and feed solution. Journal of Membrane Science, 427, 365–374. doi:10.1016/j.memsci.2012.08.033
  • Sun, B., Long, Y., Zhang, H., Li, M., Duvail, J., Jiang, X., & Yin, H. (2014). Advances in three-dimensional nanofibrous macrostructures via electrospinning. Progress in Polymer Science, 39, 862–890. doi:10.1016/j.progpolymsci.2013.06.002
  • Tang, C. Y., She, Q., Lay, W. C., Wang, R., & Fane, A. G. (2010). Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. Journal of Membrane Science, 354(1–2), 123–133. doi:10.1016/j.memsci.2010.02.059
  • Tang, C. Y., She, Q., Lay, W. C., Wang, R., Field, R., & Fane, A. G. (2011). Modeling double-skinned FO membranes. Desalination, 283, 178–186. doi:10.1016/j.desal.2011.02.026
  • Tan, S.-H., Inai, R., Kotaki, M., & Ramakrishna, S. (2005). Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer, 46, 6128–6134. doi:10.1016/j.polymer.2005.05.068
  • Tan, C. H., & Ng, H. Y. (2008). Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations. Journal of Membrane Science, 324(1-2), 209–219. doi:10.1016/j.memsci.2008.07.020
  • Tan, C. H., & Ng, H. Y. (2013). Revised external and internal concentration polarization models to improve flux prediction in forward osmosis process. Desalination, 309, 125–140. doi:10.1016/j.desal.2012.09.022
  • Tan, C., & Ng, H. (2010). A novel hybrid forward osmosis-nanofiltration (FO-NF) process for seawater desalination: Draw solution selection and system configuration. Desalination and Water Treatment, 13(1–3), 356–361. doi:10.5004/dwt.2010.1733
  • Tao, S. L., & Desai, T. A. (2007). Aligned arrays of biodegradable poly (ϵ-caprolactone) nanowires and nanofibers by template synthesis. Nano Letters, 7(6), 1463–1468. doi:10.1021/nl0700346
  • Tian, M., Qiu, C., Liao, Y., Chou, S., & Wang, R. (2013). Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates. Separation and Purification Technology, 118, 727–736. doi:10.1016/j.seppur.2013.08.021
  • Tian, M., Wang, Y.-N., & Wang, R. (2015). Synthesis and characterization of novel high-performance thin film nanocomposite (TFN) FO membranes with nanofibrous substrate reinforced by functionalized carbon nanotubes. Desalination, 370, 79–86. doi:10.1016/j.desal.2015.05.016
  • Tian, M., Wang, Y.-N., Wang, R., & Fane, A. G. (2017). Synthesis and characterization of thin film nanocomposite forward osmosis membranes supported by silica nanoparticle incorporated nanofibrous substrate. Desalination, 401, 142–150. doi:10.1016/j.desal.2016.04.003
  • Tian, E., Wang, X., Zhao, Y., & Ren, Y. (2017). Middle support layer formation and structure in relation to performance of three-tier thin film composite forward osmosis membrane. Desalination, 421, 190. doi:10.1016/j.desal.2017.02.014
  • Tian, E. L., Zhou, H., Ren, Y. W., Mirza, ZA., Wang, X. Z., & Xiong, S. W. (2014). Novel design of hydrophobic/hydrophilic interpenetrating network composite nanofibers for the support layer of forward osmosis membrane. Desalination, 347, 207–214. doi:10.1016/j.desal.2014.05.043
  • Tiraferri, A., Yip, N. Y., Phillip, W. A., Schiffman, J. D., & Elimelech, M. (2011). Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. Journal of Membrane Science, 367(1–2), 340–352. doi:10.1016/j.memsci.2010.11.014
  • Tiraferri, A., Yip, N. Y., Straub, A. P., Castrillon, S. R.-V., & Elimelech, M. (2013). A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes. Journal of Membrane Science, 444, 523–538. doi:10.1016/j.memsci.2013.05.023
  • TONG LI TECH. (2018). Retreived from http://www.electro-spinning.com/index.html.
  • Volpin, F., Fons, E., Chekli, L., Kim, J. E., Jang, A., & Shon, H. K. (2018). Hybrid forward osmosis-reverse osmosis for wastewater reuse and seawater desalination: Understanding the optimal feed solution to minimise fouling. Process Safety and Environmental Protection, 117, 523–532. doi:10.1016/j.psep.2018.05.006
  • Vyas, B., & Ray, P. (2015). Preparation of nanofiltration membranes and relating surface chemistry with potential and topography: Application in separation and desalting of amino acids. Desalination, 362, 104–116. doi:10.1016/j.desal.2015.02.013
  • Wang, X., Ding, B., & Li, B. (2013). Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 16(6), 229–241. doi:10.1016/j.mattod.2013.06.005
  • Wang, X., Ding, B., Yu, J., & Wang, M. (2011). Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today, 6(5), 510–530. doi:10.1016/j.nantod.2011.08.004
  • Wang, J., Dlamini, D. S., Mishra, A. K., Pendergast, M. T. M., Wong, M. C. Y., Mamba, B. B., … Hoek, E. M. V. (2014). A critical review of transport through osmotic membranes. Journal of Membrane Science, 454, 516–537. doi:10.1016/j.memsci.2013.12.034
  • Wang, D.-M., & Lai, J.-Y. (2013). Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Current Opinion in Chemical Engineering, 2, 229–237. doi:10.1016/j.coche.2013.04.003
  • Wang, Y., Ou, R., Ge, Q., Wang, H., & Xu, T. (2013). Preparation of polyethersulfone/carbon nanotube substrate for high-performance forward osmosis membrane. Desalination, 330, 70–78. doi:10.1016/j.desal.2013.09.028
  • Wang, Y., Ou, R., Wang, H., & Xu, T. (2015). Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane. Journal of Membrane Science, 475, 281–289. doi:10.1016/j.memsci.2014.10.028
  • Wang, J., Ouyang, Z., Ren, Z., Li, J., Zhang, P., Wei, G., & Su, Z. (2015). Self-assembled peptide nanofibers on graphene oxide as a novel nanohybrid for biomimetic mineralization of hydroxyapatite. Carbon, 89, 20–30. doi:10.1016/j.carbon.2015.03.024
  • Wang, R., Shi, L., Tang, C. Y., Chou, S., Qiu, C., & Fane, A. G. (2010). Characterization of novel forward osmosis hollow fiber membranes. Journal of Membrane Science, 355(1–2), 158–167. doi:10.1016/j.memsci.2010.03.017
  • Wang, N., Wang, X., Ding, B., Yu, J., & Sun, G. (2012). Tunable fabrication of three-dimensional polyamide-66 nano-fiber/nets for high efficiency fine particulate filtration. Journal of Materials Chemistry, 22(4), 1445–1452. doi:10.1039/C1JM14299B
  • Wang, Y., Xu, S., Cheng, H., Liu, W., Chen, F., Liu, X., … Hu, C. (2018). Oriented growth of polyaniline nanofiber arrays onto the glass and flexible substrates using a facile method. Applied Surface Science, 428, 315–321. doi:10.1016/j.apsusc.2017.09.087
  • Wang, G., Yu, D., Kelkar, A. D., & Zhang, L. (2017). Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Progress in Polymer Science, 75, 73. doi:10.1016/j.progpolymsci.2017.08.002
  • Wang, X., Yu, J., Sun, G., & Ding, B. (2016). Electrospun nanofibrous materials: A versatile medium for effective oil/water separation. Materials Today, 19(7), 403–414. doi:10.1016/j.mattod.2015.11.010
  • Wang, Y., Zhang, M., Liu, Y., Xiao, Q., & Xu, S. (2016). Quantitative evaluation of concentration polarization under different operating conditions for forward osmosis process. Desalination, 398, 106–113. doi:10.1016/j.desal.2016.07.015
  • Wang, S., Zhang, Y., Wang, W., Li, G., Ma, X., Li, X., … Qian, Y. (2006). Template-assisted synthesis of porous molybdenum dioxide nanofibers and nanospheres by redox etching method. Journal of Crystal Growth, 290(1), 96–102. doi:10.1016/j.jcrysgro.2005.10.149
  • Wei, J., Liu, X., Qiu, C., Wang, R., & Tang, C. Y. (2011). Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes. Journal of Membrane Science, 381(1–2), 110–117. doi:10.1016/j.memsci.2011.07.034
  • Wei, J., Qiu, C., Tang, C. Y., Wang, R., & Fane, A. G. (2011). Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. Journal of Membrane Science, 372(1-2), 292–302. doi:10.1016/j.memsci.2011.02.013
  • Widjojo, N., Chung, T.-S., Weber, M., Maletzko, C., & Warzelhan, V. (2011). The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes. Journal of Membrane Science, 383(1–2), 214–223. doi:10.1016/j.memsci.2011.08.041
  • Widjojo, N., Chung, T.-S., Weber, M., Maletzko, C., & Warzelhan, V. (2013). A sulfonated polyphenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO). Chemical Engineering Journal, 220, 15–23. doi:10.1016/j.cej.2013.01.007
  • Xie, W., Geise, G. M., Freeman, B. D., Lee, H.-S., Byun, G., & McGrath, J. E. (2012). Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine. Journal of Membrane Science, 403, 152–161. doi:10.1016/j.memsci.2012.02.038
  • Xie, M., Luo, W., Guo, H., Nghiem, L. D., Tang, C. Y., & Gray, S. R. (2018). Trace organic contaminant rejection by aquaporin forward osmosis membrane: Transport mechanisms and membrane stability. Water Research, 132, 90–98. doi:10.1016/j.watres.2017.12.072
  • Xu, Y., Peng, X., Tang, C. Y., Fu, Q. S., & Nie, S. (2010). Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module. Journal of Membrane Science, 348(1–2), 298–309. doi:10.1016/j.memsci.2009.11.013
  • Yang, Q., Li, Z., Hong, Y., Zhao, Y., Qiu, S., Wang, C., & Wei, Y. (2004). Influence of solvents on the formation of ultrathin uniform poly (vinyl pyrrolidone) nanofibers with electrospinning. Journal of Polymer Science Part B: Polymer Physics, 42(20), 3721–3726. doi:10.1002/polb.20222
  • Yeow, M., Liu, Y., & Li, K. (2004). Morphological study of poly (vinylidene fluoride) asymmetric membranes: Effects of the solvent, additive, and dope temperature. Journal of Applied Polymer Science, 92, 1782–1789. doi:10.1002/app.20141
  • Yin, J., Zhu, G., & Deng, B. (2016). Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination, 379, 93–101. doi:10.1016/j.desal.2015.11.001
  • Yip, N. Y., Tiraferri, A., Phillip, W. A., Schiffman, J. D., & Elimelech, M. (2010). High performance thin-film composite forward osmosis membrane. Environmental Science & Technology, 44, 3812–3818. doi:10.1021/es1002555
  • Yip, N. Y., Phillip, W. A., Schiffman, J. D., & Elimelech, M. (2015). High flux thin-film composite forward osmosis and pressure-retarded osmosis membranes. Google Patents.
  • Yuan, H., Abu-Reesh, I. M., & He, Z. (2015). Enhancing desalination and wastewater treatment by coupling microbial desalination cells with forward osmosis. Chemical Engineering Journal, 270, 437–443. doi:10.1016/j.cej.2015.02.059
  • Yuan, X., Zhang, Y., Dong, C., & Sheng, J. (2004). Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International, 53(11), 1704–1710. doi:10.1002/pi.1538
  • Zargham, S., Bazgir, S., Tavakoli, A., Rashidi, A. S., & Damerchely, R. (2012). The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber. Journal of Engineered Fabrics & Fibers (JEFF, ) 7
  • Zhang, F., Brastad, K. S., & He, Z. (2011). Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation. Environmental Science & Technology, 45(15), 6690–6696.
  • Zhang, B., Kang, F., Tarascon, J.-M., & Kim, J.-K. (2016). Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Progress in Materials Science, 76, 319–380. doi:10.1016/j.pmatsci.2015.08.002
  • Zhang, S., Shim, W. S., Kim, J. J. M. & Design, (2009). Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficiency. 30, 3659–3666. doi:10.1016/j.matdes.2009.02.017
  • Zhang, X., Xiao, C., & Hu, X. (2013). Preparation and properties of polysulfone/polyacrylonitrile blend membrane and its modification with hydrolysis. Desalination and Water Treatment, 51(19–21), 3979–3987. doi:10.1080/19443994.2013.800672
  • Zhang, C., Yuan, X., Wu, L., Han, Y., & Sheng, J. (2005). Study on morphology of electrospun poly(vinyl alcohol) mats. European Polymer Journal, 41(3), 423–432. doi:10.1016/j.eurpolymj.2004.10.027
  • Zhao, X., Li, J., & Liu, C. (2017). Improving the separation performance of the forward osmosis membrane based on the etched microstructure of the supporting layer. Desalination, 408, 102–109. doi:10.1016/j.desal.2017.01.021
  • Zhao, J., Luo, G., Wu, J., & Xia, H. J. (2013). Preparation of microporous silicone rubber membrane with tunable pore size via solvent evaporation-induced phase separation. ACS Applied Materials & Interfaces 5, 2040–2046. doi:10.1021/am302929c
  • Zhao, Y., Yang, Q., Lu, X.-F., Wang, C., & Wei, Y. (2005). Study on correlation of morphology of electrospun products of polyacrylamide with ultrahigh molecular weight. Journal of Polymer Science Part B: Polymer Physics, 43(16), 2190–2195. doi:10.1002/polb.20506
  • Zhao, S., & Zou, L. (2011). Relating solution physicochemical properties to internal concentration polarization in forward osmosis. Journal of Membrane Science, 379(1–2), 459–467. doi:10.1016/j.memsci.2011.06.021
  • Zhu, H., Qiu, S., Jiang, W., Wu, D., & Zhang, C. (2011). Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup. Environmental Science & Technology, 45, 4527–4531. doi:10.1021/es2002343
  • Zirehpour, A., Rahimpour, A., & Ulbricht, M. (2017). Nano-sized metal organic framework to improve the structural properties and desalination performance of thin film composite forward osmosis membrane. Journal of Membrane Science, 531, 59–67. doi:10.1016/j.memsci.2017.02.049
  • Zou, S., & He, Z. (2016). Enhancing wastewater reuse by forward osmosis with self-diluted commercial fertilizers as draw solutes. Water Research, 99, 235–243. doi:10.1016/j.watres.2016.04.067
  • Zou, S., Yuan, H., Childress, A., & He, Z. (2016). Energy consumption by recirculation: A missing parameter when evaluating forward osmosis. Washington, D.C.: ACS Publications.
  • Zuo, W., Zhu, M., Yang, W., Yu, H., Chen, Y., & Zhang, Y. J. (2005). Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polymer Engineering and Science 45, 704–709. doi:10.1002/pen.20304

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.