2,465
Views
75
CrossRef citations to date
0
Altmetric
Original Articles

Valorization of selected fruit and vegetable wastes as bioactive compounds: Opportunities and challenges

, , , &
Pages 2061-2108 | Published online: 29 Nov 2019

References

  • Abedi, A.S., Rismanchi, M., Shahdoostkhany, M., Mohammadi, A., & Mortazavian, A. M. (2017). Microwave-assisted extraction of Nigella sativa L. Essential oil and evaluation of its antioxidant activity. Journal of Food Science and Technology, 54, 3779–3790. doi:10.1007/s13197-017-2718-1
  • Abid, M., Cheikhrouhou, S., Renard, M. G. C., Bureau, S., Cuvelier, G., Attia, H., & Ayadi, M. A. (2017). Characterization of pectins extracted from pomegranate peel and their gelling properties. Food Chemistry, 2015, 318–325. doi:10.1016/j.foodchem.2016.07.181
  • Abu-Reidah, I. M., Arráez-Román, D., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2013). Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC-DAD-ESI-QTOF-MS. Food Chemistry, 141, 2269–2277. doi:10.1016/j.foodchem.2013.04.066
  • Acharya, K. R., Sturrock, E. D., Riordan, J. F., & Ehlers, M. R. W. (2003). Ace revisited: A new target for structure-based drug design. Nature Reviews Drug Discovery, 2, 891–902. doi:10.1038/nrd1227
  • Adamiec, J., & Kalemba, D. (2006). Analysis of microencapsulation ability of essential oils during spray drying. Drying Technology, 24, 1127–1132. doi:10.1080/07373930600778288
  • Adams, L. S., Seeram, N. P., Aggarwal, B. B., Takada, Y., Sand, D., & Heber, D. (2006). Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells. Journal of Agricultural and Food Chemistry, 54, 980–985. doi:10.1021/jf052005r
  • Ahangari, B., & Sargolzaei, J. (2012). Extraction of pomegranate seed oil using subcritical propane and supercritical carbon dioxide. Theoretical Foundations of Chemical Engineering, 46, 258–265. doi:10.1134/S0040579512030013
  • Aizpurua-Olaizola, O., Ormazabal, M., Vallejo, A., Olivares, M., Navarro, P., Etxebarria, N., & Usobiaga, A. (2015). Optimization of supercritical fluid consecutive extractions of fatty acids and polyphenols from Vitis vinifera grape wastes. Journal of Food Science, 80(1), E101–E107. doi:10.1111/1750-3841.12715
  • Akhtar, S., Ismail, T., Fraternale, D., & Sestili, P. (2015). Pomegranate peel and peel extracts: Chemistry and food features. Food Chemistry, 174, 417–425. doi:10.1016/j.foodchem.2014.11.035
  • Al-Rawahi, A. S., Rahman, M. S., Guizani, N., & Essa, M. M. (2013). Chemical composition, water sorption isotherm, and phenolic contents in fresh and dried pomegranate peels. Drying Technology, 31, 257–263. doi:10.1080/07373937.2012.710695
  • Al-Rawahi, A., Rahman, M. S., Waly, M., & Guillemin, G. J. (2013). Thermal characteristics of a water soluble extract obtained from pomegranate skin: Developing a state diagram for determining stability. Industrial Crops and Products, 48, 198–204. doi:10.1016/j.indcrop.2013.04.021
  • Alvarez, M. V., Cabred, S., Ramirez, C. L., & Fanovich, M. A. (2019). Valorization of an agroindustrial soybean residue by supercritical fluid extraction of phytochemical compounds. The Journal of Supercritical Fluids, 143, 90–96. doi:10.1016/j.supflu.2018.07.012
  • Ameer, K., Shahbaz, H. M., & Kwon, J. H. (2017). Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive Reviews in Food Science and Food Safety, 16, 295–315. doi:10.1111/1541-4337.12253
  • Anane, R. F., Sun, H., Zhao, L., Wang, L., Lin, C., & Mao, Z. (2017). Improved curdlan production with discarded bottom parts of asparagus spear. Microbial Cell Factories, 16(1), 1–8. doi:10.1186/s12934-017-0671-3
  • Angiolillo, L., Del Nobile, M. A., & Conte, A. (2015). The extraction of bioactive compounds from food residues using microwaves. Current Opinion in Food Science, 5, 93–98. doi:10.1016/j.cofs.2015.10.001
  • Arun, K. B., Jayamurthy, P., Anusha, C. V., Mahesh, S. K., & Nisha, P. (2017). Studies on activity guided fractionation of pomegranate peel extracts and its effect on antidiabetic and cardiovascular protection properties. Journal of Food Processing and Preservation, 41(1), e13108–e13112. doi:10.1111/jfpp.13108
  • Aruna, P., Manohar, B., & Singh, R. P. (2018). Processing of pomegranate seed waste and mass transfer studies of extraction of pomegranate seed oil. Journal of Food Processing and Preservation, 42, e13609–e13611. doi:10.1111/jfpp.13609
  • Aruna, P., Venkataramanamma, D., Singh, A. K., & Singh, R. P. (2016). Health benefits of punicic acid: A review. Comprehensive Reviews in Food Science and Food Safety, 15(1), 16–27. doi:10.1111/1541-4337.12171
  • Ayala-Zavala, J. F., & González-Aguilar, G. A. (2011). Use of additives to preserve the quality of fresh-cut fruits and vegetables. In O. Martin-Belloso & R. C. Soliva-Fortuny (Eds.), Advances in fresh-cut fruits and vegetables processing (pp. 231–254). Boca Ratón, FL: CRC.
  • Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., … Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117, 426–436. doi:10.1016/j.jfoodeng.2013.01.014
  • Azorín-Ortuño, M., Urbán, C., Cerón, J. J., Tecles, F., Allende, A., Tomás-Barberán, F. A., & Espín, J. C. (2009). Effect of low inulin doses with different polymerisation degree on lipid metabolism, mineral absorption, and intestinal microbiota in rats with fat-supplemented diet. Food Chemistry, 113, 1058–1065. doi:10.1016/j.foodchem.2008.08.062
  • Baccarin, T., Mitjans, M., Ramos, D., Lemos-Senna, E., & Vinardell, M. P. (2015). Photoprotection by Punica granatum seed oil nanoemulsion entrapping polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in human keratinocyte (HaCaT) cell line. Journal of Photochemistry and Photobiology B: Biology, 153, 127–136. doi:10.1016/j.jphotobiol.2015.09.005
  • Baiano, A., Bevilacqua, L., Terracone, C., Contò, F., & Del Nobile, M. A. (2014). Single and interactive effects of process variables on microwave-assisted and conventional extractions of antioxidants from vegetable solid wastes. Journal of Food Engineering, 120, 135–145. doi:10.1016/j.jfoodeng.2013.07.010
  • Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A. F., & Arora, A. (2017). Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chemistry, 225, 10–22. doi:10.1016/j.foodchem.2016.12.093
  • Barba, F. J., Puértolas, E., Brnčić, M., Panchev, I. N., Dimitrov, D. A., Athès-Dutour, V., … Souchon, I. (2015). Emerging extraction. In C. M. Galanakis (Ed.), Food waste recovery: Processing technologies and industrial techniques (pp. 249–272). Cambridge, MA: Academic Press. doi:10.1016/B978-0-12-800351-0.00011-0
  • Barba, F. J., Zhu, Z., Koubaa, M., Sant’Ana, A. S., & Orlien, V. (2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A Review. Trends in Food Science & Technology, 49, 96–109. doi:10.1016/j.tifs.2016.01.006
  • Basiri, S., Shekarforoush, S. S., Aminlari, M., & Akbari, S. (2015). The effect of pomegranate peel extract (PPE) on the polyphenol oxidase (PPO) and quality of pacific white shrimp (Litopenaeus vannamei) during refrigerated storage. LWT – Food Science and Technology, 60, 1025–1033. doi:10.1016/j.lwt.2014.10.043
  • Belšcak-Cvitanovic, A., & Komes, D. (2017). Extraction and formulation of bioactive compounds. In C. M. Galanakis (Ed.), Handbook of coffee processing by-products(pp. 93–140). Cambridge, MA: Academic Press. doi:10.1016/B978-0-12-811290-8/00004-9
  • Bhattacharjee, C., Nath, A., Cassano, A., Tahergorabi, R., & Chakraborty, S. (2015). Conventional macro- and micromolecules separation. In C. M. Galanakis (Ed.), Food waste recovery: Processing technologies and industrial techniques(pp. 105–126). Cambridge, MA: Academic Press. doi:10.1016/B978-0-12-800351-0.00005-5
  • Biesalski, H. K., Dragsted, L. O., Elmadfa, I., Grossklaus, R., Müller, M., Schrenk, D., … Weber, P. (2009). Bioactive compounds: Definition and assessment of activity. Nutrition, 25, 1202–1205. doi:10.1016/j.nut.2009.04.023
  • Boggia, R., Turrini, F., Villa, C., Lacapra, C., Zunin, P., & Parodi, B. (2016). Green extraction from pomegranate marcs for the production of functional foods and cosmetics. Pharmaceuticals, 9, 63–74. doi:10.3390/ph9040063
  • Breeze, P. (2018). Landfill waste disposal, anaerobic digestion, and energy production. In Energy from waste (pp. 39–47). Cambridge, MA: Academic Press.
  • Bustamante, A., Hinojosa, A., Robert, P., & Escalona, V. (2017). Extraction and microencapsulation of bioactive compounds from pomegranate (Punica granatum Var. Wonderful) residues. International Journal of Food Science & Technology, 52, 1452–1462. doi:10.1111/ijfs.13422
  • Calín-Sánchez, Á., Figiel, A., Hernández, F., Melgarejo, P., Lech, K., & Carbonell-Barrachina, Á. A. (2013). Chemical composition, antioxidant capacity, and sensory quality of pomegranate (Punica granatum L.) arils and rind as affected by drying method. Food and Bioprocess Technology, 6, 1644–1654. doi:10.1007/s11947-012-0790-0
  • Çam, M., & Hişil, Y. (2010). Pressurised water extraction of polyphenols from pomegranate peels. Food Chemistry, 123, 878–885. doi:10.1016/j.foodchem.2010.05.011
  • Çam, M., İçyer, N. C., & Erdoğan, F. (2014). Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT – Food Science and Technology, 55(1), 117–123. doi:10.1016/j.lwt.2013.09.011
  • Capone, R., Bilali, H. E., Debs, P., Gianluigi, C., & Noureddin, D. (2014). Food system sustainability and food security: Connecting the dots. Journal of Food Security, 2(1), 13–22. doi:10.12691/jfs-2-1-2
  • Capson-Tojo, G., Rouez, M., Crest, M., Steyer, J. P., Delgenès, J. P., & Escudié, R. (2016). Food waste valorization via anaerobic processes: A review. Reviews in Environmental Science and Biotechnology, 15, 499–547. doi:10.1007/s11157-016-9405-y
  • Causey, J. L., Feirtag, J. M., Gallaher, D. D., Tungland, B. C., & Slavin, J. L. (2000). Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men. Nutrition Research, 20, 191–201. doi:10.1016/S0271-5317(99)00152-9
  • Çavdar, H. K., Yanık, D. K., Gök, U., & Göğüş, F. (2017). Optimisation of microwave-assisted extraction of pomegranate (Punica granatum L.) seed oil and evaluation of its physicochemical and bioactive properties. Food Technology and Biotechnology, 55(1), 86–94. doi:10.17113/ftb.55.01.17.4638
  • Ceccarelli, N., Curadi, M., Picciarelli, P., Martelloni, L., Sbrana, C., & Giovannetti, M. (2010). Globe artichoke as a functional food. Mediterranean Journal of Nutrition and Metabolism, 3, 197–201. doi:10.3233/s12349-010-0021-z
  • Chávez-González, M. L., López-López, L. I., Rodríguez-Herrera, R., Contreras-Esquivel, J. C., & Aguilar, C. N. (2016). Enzyme-assisted extraction of citrus essential oil. Chemical Papers, 70, 412–417. doi:10.1515/chempap-2015-0234
  • Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51, 1412–1421. doi:10.1016/j.enconman.2010.01.015
  • Chi, Z., Chi, Z., Zhang, T., Liu, G., & Yue, L. (2009). Inulinase-expressing microorganisms and applications of inulinases. Applied Microbiology and Biotechnology, 82, 211–220. doi:10.1007/s00253-008-1827-1
  • Chizoba Ekezie, F. G., Sun, D. W., Han, Z., & Cheng, J. H. (2017). Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments. Trends in Food Science & Technology, 67, 58–69. doi:10.1016/j.tifs.2017.05.014
  • Chua, L. S. (2013). A review on plant-based rutin extraction methods and its pharmacological activities. Journal of Ethnopharmacology, 150, 805–817. doi:10.1016/j.jep.2013.10.036
  • Cristóbal, J., Caldeira, C., Corrado, S., & Sala, S. (2018). Techno-economic and profitability analysis of food waste biorefineries at European level. Bioresource Technology, 259, 244–252. doi:10.1016/j.biortech.2018.03.016
  • Crittenden, R. G., & Playne, M. J. (1996). Production, properties and applications of food-grade oligosaccharides. Trends in Food Science & Technology, 7, 353–361. doi:10.1016/S0924-2244(96)10038-8
  • Dahiya, S., Kumar, A. N., Shanthi Sravan, J., Chatterjee, S., Sarkar, O., & Mohan, S. V. (2018). Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresource Technology, 248, 2–12. doi:10.1016/j.biortech.2017.07.176
  • Delsart, C., Ghidossi, R., Poupot, C., Cholet, C., Grimi, N., Vorobiev, E., … Peuchot, M. M. (2012). Enhanced extraction of phenolic compounds from merlot grapes by pulsed electric field treatment. American Journal of Enology and Viticulture, 63, 205–211. doi:10.5344/ajev.2012.11088
  • Dikmen, M., Ozturk, N., & Ozturk, Y. (2011). The antioxidant potency of Punica granatum L. Fruit peel reduces cell proliferation and induces apoptosis on breast cancer. Journal of Medicinal Food, 14, 1638–1646. doi:10.1089/jmf.2011.0062
  • Di Maro, A., Pacifico, S., Fiorentino, A., Galasso, S., Gallicchio, M., Guida, V., … Parente, A. (2013). Raviscanina wild asparagus (Asparagus acutifolius L.): A nutritionally valuable crop with antioxidant and antiproliferative properties. Food Research International, 53(1), 180–188. doi:10.1016/j.foodres.2013.04.026
  • Domingo, C. S., Soria, M., Rojas, A. M., Fissore, E. N., & Gerschenson, L. N. (2015). Protease and hemicellulase assisted extraction of dietary fiber from wastes of Cynara cardunculus. International Journal of Molecular Sciences, 16, 6057–6075. doi:10.3390/ijms16036057
  • Elfalleh, W., Tlili, N., Nasri, N., Yahia, Y., Hannachi, H., Chaira, N., … Ferchichi, A. (2011). Antioxidant capacities of phenolic compounds and tocopherols from tunisian pomegranate (Punica granatum) fruits. Journal of Food Science, 76, C707–C713. doi:10.1111/j.1750-3841.2011.02179.x
  • Elsebai, M. F., Abass, K., Hakkola, J., Atawia, A. R., & Farag, M. A. (2016). The wild Egyptian artichoke as a promising functional food for the treatment of hepatitis C virus as revealed via UPLC-MS and clinical trials. Food & Function, 7, 3006–3016. doi:10.1039/C6FO00656F
  • Englisch, W., Beckers, C., Unkauf, M., Ruepp, M., & Zinserling, V. (2000). Efficacy of artichoke dry extract in patients with hyperlipoproteinemia. Arzneimittelforschung, 50, 260–265. doi:10.1055/s-0031-1300196
  • Espín, J. C., Larrosa, M., García-Conesa, M. T., & Tomás-Barberán, F. (2013). Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: The evidence so far. Evidence-Based Complementary and Alternative Medicine, 2013, 1–15. doi:10.1155/2013/270418
  • European Commission. (2015). An EU action plan for the circular economy. Retrieved from https://doi.org/10.1017/CBO9781107415324.004
  • European Commission. (2018). A sustainable bioeconomy for Europe: Strengthening the connection between economy, society and the environment. Retrieved from https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vksiobho2zt1
  • Fan, R., Yuan, F., Wang, N., Gao, Y., & Huang, Y. (2015). Extraction and analysis of antioxidant compounds from the residues of Asparagus officinalis L. Journal of Food Science and Technology, 52, 2690–2700. doi:10.1007/s13197-014-1360-4
  • Farhat, A., Fabiano-Tixier, A. S., Maataoui, M., El, Maingonnat, J. F., Romdhane, M., & Chemat, F. (2011). Microwave steam diffusion for extraction of essential oil from orange peel: Kinetic data, extract’s global yield and mechanism. Food Chemistry, 125(1), 255–261. doi:10.1016/j.foodchem.2010.07.110
  • Faulds, C. B., & Williamson, G. (1999). The role of hydroxycinnamates in the plant cell wall. Journal of the Science of Food and Agriculture, 79, 393–395. doi:10.1002/(SICI)1097-0010(19990301)79:3 < 393::AID-JSFA261 > 3.0.CO;2-H
  • Ferhat, M. A., Meklati, B. Y., Smadja, J., & Chemat, F. (2006). An improved microwave clevenger apparatus for distillation of essential oils from orange peel. Journal of Chromatography A, 1112(1–2), 121–126. doi:10.1016/j.chroma.2005.12.030
  • Fischer, U. A., Carle, R., & Kammerer, D. R. (2011). Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MS. Food Chemistry, 127, 807–821. doi:10.1016/j.foodchem.2010.12.156
  • Flórez, N., Conde, E., & Domínguez, H. (2015). Microwave assisted water extraction of plant compounds. Journal of Chemical Technology & Biotechnology, 90, 590–607. doi:10.1002/jctb.4519
  • Food and Agriculture Organization of the United Nations (FAO). (2014). FAOSTAT, Crop Production. FAOSTAT, Crop Production. Retrieved from http://www.fao.org/faostat/en/#data/QC
  • Frutos, M. J., Guilabert-Antón, L., Tomás-Bellido, A., & Hernández-Herrero, J. A. (2008). Effect of artichoke (Cynara scolymus L.) fiber on textural and sensory qualities of wheat bread. Food Science and Technology International, 14, 49–55. doi:10.1177/1082013208094582
  • Fuentes-Alventosa, J. M., Jaramillo-Carmona, S., Rodríguez-Gutiérrez, G., Cermeño, P., Espejo, J. A., Jiménez-Araujo, A., … Rodríguez-Arcos, R. (2008). Flavonoid profile of green asparagus genotypes. Journal of Agricultural and Food Chemistry, 56, 6977–6984. doi:10.1021/jf8009766
  • Fuentes-Alventosa, J. M., Jaramillo-Carmona, S., Rodríguez-Gutiérrez, G., Guillén-Bejarano, R., Jiménez-Araujo, A., Fernández-Bolaños, J., & Rodríguez-Arcos, R. (2013). Preparation of bioactive extracts from asparagus by-product. Food and Bioproducts Processing, 91, 74–82. doi:10.1016/j.fbp.2012.12.004
  • Fuentes-Alventosa, J. M., Jaramillo-Carmona, S., Rodríguez-Gutiérrez, G., Rodríguez-Arcos, R., Fernández-Bolaños, J., Guillén-Bejarano, R., … Jiménez-Araujo, A. (2009). Effect of the extraction method on phytochemical composition and antioxidant activity of high dietary fibre powders obtained from asparagus by-products. Food Chemistry, 116, 484–490. doi:10.1016/j.foodchem.2009.02.074
  • Fuentes-Alventosa, J. M., Rodríguez-Gutiérrez, G., Jaramillo-Carmona, S., Espejo-Calvo, J. A., Rodríguez-Arcos, R., Fernández-Bolaños, J., … Jiménez-Araujo, A. (2009). Effect of extraction method on chemical composition and functional characteristics of high dietary fibre powders obtained from asparagus by-products. Food Chemistry, 113, 665–671. doi:10.1016/j.foodchem.2008.07.075
  • Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science & Technology, 26, 68–87. doi:10.1016/j.tifs.2012.03.003
  • Galanakis, C. M. (2013). Emerging technologies for the production of nutraceuticals from agricultural by-products: A viewpoint of opportunities and challenges. Food and Bioproducts Processing, 91, 575–579. doi:10.1016/j.fbp.2013.01.004
  • Galaz, P., Valdenegro, M., Ramírez, C., Nuñez, H., Almonacid, S., & Simpson, R. (2017). Effect of drum drying temperature on drying kinetic and polyphenol contents in pomegranate peel. Journal of Food Engineering, 208, 19–27. doi:10.1016/j.jfoodeng.2017.04.002
  • Ge, X. Y., Qian, H., & Zhang, W. G. (2009). Improvement of L-lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp. Bioresource Technology, 100, 1872–1874. doi:10.1016/j.biortech.2008.09.049
  • Gebhardt, R., & Fausel, M. (1997). Antioxidant and hepatoprotective effects of artichoke extracts and constituents in cultured rat hepatocytes. Toxicology in Vitro, 11, 669–672. doi:10.1016/S0887-2333(97)00078-7
  • Gerschenson, L. N., Deng, Q., & Cassano, A. (2015). Conventional macroscopic pretreatment. In C. M. Galanakis (Ed.), Food waste recovery: Processing technologies and industrial techniques (pp. 85–103). Cambridge, MA: Academic Press. doi:10.1016/B978-0-12-800351-0.00004-3
  • Gibson, G. R., Beatty, E. R., Wang, X., & Cummings, J. H. (1995). Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology, 108(4), 975–982. doi:10.1016/0016-5085(95)90192-2
  • Gil-Chávez, G. J., Villa, J. A., Ayala-Zavala, J. F., Heredia, J. B., Sepulveda, D., Yahia, E. M., & González-Aguilar, G. A. (2013). Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Comprehensive Reviews in Food Science and Food Safety, 12(1), 5–23. doi:10.1111/1541-4337.12005
  • Girotto, F., Alibardi, L., & Cossu, R. (2015). Food waste generation and industrial uses: A review. Waste Management, 45, 32–41. doi:10.1016/j.wasman.2015.06.008
  • Glazer, I., Masaphy, S., Marciano, P., Bar-Ilan, I., Holland, D., Kerem, Z., & Amir, R. (2012). Partial identification of antifungal compounds from Punica granatum peel extracts. Journal of Agricultural and Food Chemistry, 60, 4841–4848. doi:10.1021/jf300330y
  • Golden, J. S., & Handfield, R. B. (2014). Opportunities in the emerging bioeconomy. Washington, DC: U.S. Department of Agriculture.
  • González-Aguilar, G., Robles-Sánchez, R. M., Martínez-Téllez, M. A., Olivas, G. I., Alvarez-Parrilla, E., & De La Rosa, L. A. (2008). Bioactive compounds in fruits: Health benefits and effect of storage conditions. Stewart Postharvest Review, 4, 1–10. doi:10.2212/spr.2008.3.8
  • Goula, A. M. (2013). Ultrasound-assisted extraction of pomegranate seed oil – Kinetic modeling. Journal of Food Engineering, 117, 492–498. doi:10.1016/j.jfoodeng.2012.10.009
  • Goula, A. M., & Lazarides, H. N. (2015). Integrated processes can turn industrial food waste into valuable food by-products and/or ingredients: The cases of olive mill and pomegranate wastes. Journal of Food Engineering, 167, 45–50. doi:10.1016/j.jfoodeng.2015.01.003
  • Goula, A. M., Papatheodorou, A., Karasavva, S., & Kaderides, K. (2018). Ultrasound-assisted aqueous enzymatic extraction of oil from pomegranate seeds. Waste and Biomass Valorization, 9(1), 1–11. doi:10.1007/s12649-016-9740-9
  • Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste: Extent, causes and prevention. Rome: FAO.
  • Hamdi, A., Jaramillo-Carmona, S., Srairi Beji, R., Tej, R., Zaoui, S., Rodríguez-Arcos, R., … Guillén-Bejarano, R. (2017). The phytochemical and bioactivity profiles of wild Asparagus albus L. Plant. Food Research International, 99, 720–729. doi:10.1016/j.foodres.2017.06.027
  • Hamid, M. & Khalil-Ur-Rehman, (2009). Potential applications of peroxidases. Food Chemistry, 115, 1177–1186. doi:10.1016/j.foodchem.2009.02.035
  • Hasnaoui, N., Wathelet, B., & Jiménez-Araujo, A. (2014). Valorization of pomegranate peel from 12 cultivars: Dietary fibre composition, antioxidant capacity and functional properties. Food Chemistry, 160, 196–203. doi:10.1016/j.foodchem.2014.03.089
  • Ismail, T., Akhtar, S., Riaz, M., Hameed, A., Afzal, K., & Sattar Sheikh, A. (2016). Oxidative and microbial stability of pomegranate peel extracts and bagasse supplemented cookies. Journal of Food Quality, 39, 658–668. doi:10.1111/jfq.12231
  • Ismail, T., Akhtar, S., Riaz, M., & Ismail, A. (2014). Effect of pomegranate peel supplementation on nutritional, organoleptic and stability properties of cookies. International Journal of Food Sciences and Nutrition, 65, 661–666. doi:10.3109/09637486.2014.908170
  • Iqbal, S., Haleem, S., Akhtar, M., Zia-Ul-Haq, M., & Akbar, J. (2008). Efficiency of pomegranate peel extracts in stabilization of sunflower oil under accelerated conditions. Food Research International, 41, 194–200. doi:10.1016/j.foodres.2007.11.005
  • Jaakola, L., Määttä-Riihinen, K., Kärenlampi, S., & Hohtola, A. (2004). Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) Leaves. Planta, 218, 721–728. doi:10.1007/s00425-003-1161-x
  • Jacociunas, L. V., De Andrade, H. H. R., Lehmann, M., Pedersini, L. W., Ferraz, A. D. B. F., Da Silva, J., & Dihl, R. R. (2013). Protective activity of Cynara scolymus L. leaf extract against chemically induced complex genomic alterations in CHO cells. Phytomedicine 20(12), 1131–1134. doi:10.1016/j.phymed.2013.06.003.
  • Jaramillo-Carmona, S., Lopez, S., Vazquez-Castilla, S., Rodriguez-Arcos, R., Jimenez-Araujo, A., & Guillen-Bejarano, R. (2013). Asparagus byproducts as a new source of peroxidases. Journal of Agricultural and Food Chemistry, 61, 6167–6174. doi:10.1021/jf4011609
  • Jiménez, S., Gascón, S., Luquin, A., Laguna, M., Ancin-Azpilicueta, C., & Rodríguez-Yoldi, M. J. (2016). Rosa canina extracts have antiproliferative and antioxidant effects on Caco-2 human colon cancer. PLoS One, 11, e0159136–14. doi:10.1371/journal.pone.0159136
  • Jiménez, S., Jiménez-Moreno, N., Luquin, A., Laguna, M., Rodríguez-Yoldi, M. J., & Ancín-Azpilicueta, C. (2017). Chemical composition of rosehips from different Rosa species: An alternative source of antioxidants for the food industry. Food Additives & Contaminants: Part A, 34, 1121–1130. doi:10.1080/19440049.2017.1319071
  • Jiménez-Escrig, A., Dragsted, L. O., Daneshvar, B., Pulido, R., & Saura-Calixto, F. (2003). In vitro antioxidant activities of edible artichoke (Cynara scolymus L.) and effect on biomarkers of antioxidants in rats. Journal of Agricultural and Food Chemistry, 51, 5540–5545. doi:10.1021/jf030047e
  • Jiménez-Escrig, A., Santos-Hidalgo, A. B., & Saura-Calixto, F. (2006). Common sources and estimated intake of plant sterols in the Spanish diet. Journal of Agricultural and Food Chemistry, 54, 3462–3471. doi:10.1021/jf053188k
  • Justesen, U., Knuthsen, P., & Leth, T. (1998). Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. Journal of Chromatography A, 799(1–2), 101–110. doi:10.1016/S0021-9673(97)01061-3
  • Kaderides, K., Goula, A. M., & Adamopoulos, K. G. (2015). A process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation. Innovative Food Science & Emerging Technologies, 31, 204–215. doi:10.1016/j.ifset.2015.08.006
  • Kalamara, E., Goula, A. M., & Adamopoulos, K. G. (2015). An integrated process for utilization of pomegranate wastes – Seeds. Innovative Food Science & Emerging Technologies, 27, 144–153. doi:10.1016/j.ifset.2014.12.001
  • Kanatt, S. R., Chander, R., & Sharma, A. (2010). Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. International Journal of Food Science & Technology, 45, 216–222. doi:10.1111/j.1365-2621.2009.02124.x
  • Kazemi, M., Karim, R., Mirhosseini, H., & Abdul Hamid, A. (2016). Optimization of pulsed ultrasound-assisted technique for extraction of phenolics from pomegranate peel of malas variety: Punicalagin and hydroxybenzoic acids. Food Chemistry, 206, 156–166. doi:10.1016/j.foodchem.2016.03.017
  • Khatib, M., Giuliani, C., Rossi, F., Adessi, A., Al-Tamimi, A., Mazzola, G., … Mulinacci, N. (2017). Polysaccharides from by-products of the wonderful and laffan pomegranate varieties: New insight into extraction and characterization. Food Chemistry, 235, 58–66. doi:10.1016/j.foodchem.2017.05.041
  • Khoddami, A., Bin Che Man, Y., & Roberts, T. H. (2014). Physico-chemical properties and fatty acid profile of seed oil from pomegranate (Punica granatum L.) extracted by cold pressing. European Journal of Lipid Science and Technology, 226, 553–562. doi:10.1002/ejlt.201300416
  • Koyama, S., Cobb, L. J., Mehta, H. H., Seeram, N. P., Heber, D., Pantuck, A. J., & Cohen, P. (2010). Pomegranate extract induces apoptosis in human prostate cancer cells by modulation of the IGF–IGFBP axis. Growth Hormone & IGF Research, 20(1), 55–62. doi:10.1016/j.ghir.2009.09.003.Pomegranate
  • Kukić, J., Popović, V., Petrović, S., Mucaji, P., Ćirić, A., Stojković, D., & Soković, M. (2008). Antioxidant and antimicrobial activity of Cynara cardunculus extracts. Food Chemistry, 107, 861–868. doi:10.1016/j.foodchem.2007.09.005
  • Larrosa, M., Llorach, R., Espín, J. C., & Tomás-Barberán, F. A. (2002). Increase of antioxidant activity of tomato juice upon functionalisation with vegetable byproduct extracts. LWT - Food Science and Technology 35(6), 532–542. doi:10.1006/fstl.2002.0907.
  • Lansky, E. P., & Newman, R. A. (2007). Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. Journal of Ethnopharmacology, 109, 177–206. doi:10.1016/j.jep.2006.09.006
  • Lattanzio, V., Kroon, P. A., Linsalata, V., & Cardinali, A. (2009). Globe artichoke: A functional food and source of nutraceutical ingredients. Journal of Functional Foods, 1, 131–144. doi:10.1016/j.jff.2009.01.002
  • Laufenberg, G., Kunz, B., & Nystroem, M. (2003). Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresource Technology, 87, 167. doi:10.1016/S0960-8524(02)00167-0
  • Le, H. V., & Le, V. V. M. (2012). Comparison of enzyme-assisted and ultrasound-assisted extraction of vitamin C and phenolic compounds from acerola (Malpighia emarginata DC.) fruit. International Journal of Food Science & Technology, 47, 1206–1214. doi:10.1111/j.1365-2621.2012.02960.x
  • Lee, E. J., Yoo, K. S., & Patil, B. S. (2010). Development of a rapid HPLC-UV method for simultaneous quantification of protodioscin and rutin in white and green asparagus spears. Journal of Food Science, 75, C703–C709. doi:10.1111/j.1750-3841.2010.01824.x
  • Leroy, G., Grongnet, J. F., Mabeau, S., Corre, D. L., & Baty-Julien, C. (2010). Changes in inulin and soluble sugar concentration in artichokes (Cynara scolymus L.) during storage. Journal of the Science of Food and Agriculture, 90, 1203–1209. doi:10.1002/jsfa.3948
  • Liu, G., Xu, X., Hao, Q., & Gao, Y. (2009). Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. LWT – Food Science and Technology, 42, 1491–1495. doi:10.1016/j.lwt.2009.04.011
  • Liu, X. Y., Chi, Z., Liu, G. L., Wang, F., Madzak, C., & Chi, Z. M. (2010). Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metabolic Engineering, 12, 469–476. doi:10.1016/j.ymben.2010.04.004
  • Liu, Z., Zhang, M., & Wang, Y. (2016). Drying of restructured chips made from the old stalks of Asparagus officinalis: Impact of different drying methods. Journal of the Science of Food and Agriculture, 96, 2815–2824. doi:10.1002/jsfa.7449
  • Llorach, R., Espín, J. C., Tomás-Barberán, F. A., & Ferreres, F. (2002). Artichoke (Cynara scolymus L.) byproducts as a potential source of health-promoting antioxidant phenolics. Journal of Agricultural and Food Chemistry, 50, 3458–3464. doi:10.1021/jf0200570
  • Llorach, R., TomS-BarberN, F. A., & Ferreres, F. (2005). Functionalisation of commercial chicken soup with enriched polyphenol extract from vegetable by-products. European Food Research and Technology, 220(1), 31–36. doi:10.1007/s00217-004-1054-7
  • Lombardo, S., Pandino, G., Mauromicale, G., Knödler, M., Carle, R., & Schieber, A. (2010). Influence of genotype, harvest time and plant part on polyphenolic composition of globe artichoke [Cynara cardunculus L. Var. scolymus (L.) Fiori]. Food Chemistry, 119, 1175–1181. doi:10.1016/j.foodchem.2009.08.033
  • López-Molina, D., Navarro-Martínez, M. D., Melgarejo, F. R., Hiner, A. N. P., Chazarra, S., & Rodríguez-López, J. N. (2005). Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.). Phytochemistry, 66, 1476–1484. doi:10.1016/j.phytochem.2005.04.003
  • Luengo, E., Álvarez, I., & Raso, J. (2013). Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innovative Food Science & Emerging Technologies, 17, 79–84. doi:10.1016/j.ifset.2012.10.005
  • Machado, M. T. C., Eça, K. S., Vieira, G. S., Menegalli, F. C., Martínez, J., & Hubinger, M. D. (2015). Prebiotic oligosaccharides from artichoke industrial waste: Evaluation of different extraction methods. Industrial Crops and Products, 76, 141–148. doi:10.1016/j.indcrop.2015.06.047
  • Maietta, M., Colombo, R., Lavecchia, R., Sorrenti, M., Zuorro, A., & Papetti, A. (2017). Artichoke (Cynara cardunculus L. Var. scolymus) waste as a natural source of carbonyl trapping and antiglycative agents. Food Research International, 100(1), 780–790. doi:10.1016/j.foodres.2017.08.007
  • Marathe, S. J., Jadhav, S. B., Bankar, S. B., Dubey, K. K., & Singhal, R. S. (2019). Improvements in the extraction of bioactive compounds by enzymes. Current Opinion in Food Science, 25, 62–72. doi:10.1016/j.cofs.2019.02.009
  • Mármol, I., Sánchez-De-Diego, C., Jiménez-Moreno, N., Ancín-Azpilicueta, C., & Rodríguez-Yoldi, M. (2017). Therapeutic applications of rose hips from different Rosa species. International Journal of Molecular Sciences, 18, 1137–1137. doi:10.3390/ijms18061137
  • Medina-Meza, I. G., & Barbosa-Cánovas, G. V. (2015). Assisted extraction of bioactive compounds from plum and grape peels by ultrasonics and pulsed electric fields. Journal of Food Engineering, 166, 268–275. doi:10.1016/j.jfoodeng.2015.06.012
  • Megías, M. D., Hernández, F., Madrid, J., & Martínez-Teruel, A. (2002). Feeding value, in vitro digestibility and in vitro gas production of different by-products for ruminant nutrition. Journal of the Science of Food and Agriculture, 82, 567–572. doi:10.1002/jsfa.1081
  • Misra, N. N., Cullen, P. J., Barba, F. J., Hii, C. L., Jaeger, H., Schmidt, J., … Yoshida, H. (2015). Emerging macroscopic pretreatment. In C. M. Galanakis (Ed.), Food waste recovery: Processing technologies and industrial techniques(pp.197–225). Cambridge, MA: Academic Press. doi:10.1016/B978-0-12-800351-0.00009-2
  • Moorthy, I. G., Maran, J. P., Surya, S. M., Naganyashree, S., & Shivamathi, C. S. (2015). Response surface optimization of ultrasound assisted extraction of pectin from pomegranate peel. International Journal of Biological Macromolecules, 72, 1323–1328. doi:10.1016/j.ijbiomac.2014.10.037
  • Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17–46. doi:10.1016/j.addr.2016.04.003
  • Mushtaq, M., Sultana, B., Anwar, F., Adnan, A., & Rizvi, S. S. H. (2015). Enzyme-assisted supercritical fluid extraction of phenolic antioxidants from pomegranate peel. The Journal of Supercritical Fluids, 104, 122–131. doi:10.1016/j.supflu.2015.05.020
  • Nadar, S. S., Rao, P., & Rathod, V. K. (2018). Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Research International, 108, 309–330. doi:10.1016/j.foodres.2018.03.006
  • Nakabayashi, R., Yang, Z., Nishizawa, T., Mori, T., & Saito, K. (2015). Top-down targeted metabolomics reveals a sulfur-containing metabolite with inhibitory activity against angiotensin-converting enzyme in Asparagus officinalis. Journal of Natural Products, 78, 1179–1183. doi:10.1021/acs.jnatprod.5b00092
  • Naveena, B. M., Sen, A. R., Vaithiyanathan, S., Babji, Y., & Kondaiah, N. (2008). Comparative efficacy of pomegranate juice, pomegranate rind powder extract and BHT as antioxidants in cooked chicken patties. Meat Science, 80, 1304–1308. doi:10.1016/j.meatsci.2008.06.005
  • Nawaz, H., Shi, J., Mittal, G. S., & Kakuda, Y. (2006). Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Separation and Purification Technology, 48, 176–181. doi:10.1016/j.seppur.2005.07.006
  • Nayak, A., & Bhushan, B. (2019). An overview of the recent trends on the waste valorization techniques for food wastes. Journal of Environmental Management, 233, 352–370. doi:10.1016/j.jenvman.2018.12.041
  • Oreopoulou, V., & Russ, W. (Eds.). (2007). Utilization of by-products and treatment of waste in the food industry. Freising, Germany: Springer.
  • Orgil, O., Schwartz, E., Baruch, L., Matityahu, I., Mahajna, J., & Amir, R. (2014). The antioxidative and anti-proliferative potential of non-edible organs of the pomegranate fruit and tree. LWT – Food Science and Technology, 58, 571–577. doi:10.1016/j.lwt.2014.03.030
  • Ortiz Martinez, C., Pereira Ruiz, S., Carvalho Fenelon, V., Rodrigues de Morais, G., Luciano Baesso, M., & Matioli, G. (2016). Characterization of curdlan produced by Agrobacterium Sp. IFO 13140 cells immobilized in a loofa sponge matrix, and application of this biopolymer in the development of functional yogurt. Journal of the Science of Food and Agriculture, 96, 2410–2417. doi:10.1002/jsfa.7357
  • Oudane, B., Boudemagh, D., Bounekhel, M., Sobhi, W., Vidal, M., & Broussy, S. (2018). Isolation, characterization, antioxidant activity, and protein-precipitating capacity of the hydrolyzable tannin punicalagin from pomegranate yellow peel (Punica granatum). Journal of Molecular Structure, 1156, 390–396. doi:10.1016/j.molstruc.2017.11.129
  • Pandino, G., Lombardo, S., & Mauromicale, G. (2013). Globe artichoke leaves and floral stems as a source of bioactive compounds. Industrial Crops and Products, 44, 44–49. doi:10.1016/j.indcrop.2012.10.022
  • Pandino, G., Lombardo, S., Mauromicale, G., & Williamson, G. (2011). Profile of polyphenols and phenolic acids in bracts and receptacles of globe artichoke (Cynara cardunculus Var. scolymus) germplasm. Journal of Food Composition and Analysis, 24, 148–153. doi:10.1016/j.jfca.2010.04.010
  • Parfitt, J., Barthel, M., & MacNaughton, S. (2010). Food waste within food supply chains: Quantification and potential for change to 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3065–3081.doi:10.1098/rstb.2010.0126
  • Pasqualone, A., Punzi, R., Trani, A., Summo, C., Paradiso, V. M., Caponio, F., & Gambacorta, G. (2017). Enrichment of fresh pasta with antioxidant extracts obtained from artichoke canning by-products by ultrasound-assisted technology and quality characterisation of the end product. International Journal of Food Science & Technology, 52, 2078–2087. doi:10.1111/ijfs.13486
  • Pathak, P. D., Mandavgane, S. A., & Kulkarni, B. D. (2017). Valorization of pomegranate peels: A biorefinery approach. Waste and Biomass Valorization, 8, 1127–1137. doi:10.1007/s12649-016-9668-0
  • Pellegrini, N., Serafini, M., Colombi, B., Del Rio, D., Salvatore, S., Bianchi, M., & Brighenti, F. (2003). Total antioxidant capacity of plant foods, beverages and oils consumed in italy assessed by three different in vitro assays. The Journal of Nutrition, 133, 2812–2819. doi:10.1093/jn/133.9.2812
  • Pereira, C. G., & Meireles, M. A. A. (2010). Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food and Bioprocess Technology, 3, 340–372. doi:10.1007/s11947-009-0263-2
  • Pereira, P. H. F., Oliveira, T. Í. S., Rosa, M. F., Cavalcante, F. L., Moates, G. K., Wellner, N., … Azeredo, H. M. C. (2016). Pectin extraction from pomegranate peels with citric acid. International Journal of Biological Macromolecules, 88, 373–379. doi:10.1016/j.ijbiomac.2016.03.074
  • Perussello, C. A., Zhang, Z., Marzocchella, A., & Tiwari, B. K. (2017). Valorization of apple pomace by extraction of valuable compounds. Comprehensive Reviews in Food Science and Food Safety, 16, 776–796. doi:10.1111/1541-4337.12290
  • Pfaltzgraff, L. A., De Bruyn, M., Cooper, E. C., Budarin, V., & Clark, J. H. (2013). Food waste biomass: A resource for high-value chemicals. Green Chemistry, 15, 307. doi:10.1039/c2gc36978h
  • Pinelli, P., Agostini, F., Comino, C., Lanteri, S., Portis, E., & Romani, A. (2007). Simultaneous quantification of caffeoyl esters and flavonoids in wild and cultivated cardoon leaves. Food Chemistry, 105, 1695–1701. doi:10.1016/j.foodchem.2007.05.014
  • Plazzotta, S., Manzocco, L., & Nicoli, M. C. (2017). Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends in Food Science & Technology, 63, 51–59. doi:10.1016/j.tifs.2017.02.013
  • Pool-Zobel, B. L. (2005). Inulin-type fructans and reduction in colon cancer risk: Review of experimental and human data. British Journal of Nutrition, 93, S73. doi:10.1079/BJN20041349
  • Prado, J. M., Vardanega, R., Debien, I. C. N., Meireles, M. A., de, A., Gerschenson, L. N., Sowbhagya, H. B., & … Hemat, S. (2015). Conventional extraction. In C. M. Galanakis (Ed.), Food waste recovery: Processing technologies and industrial techniques(pp.127–148). Cambridge, MA: Academic Press. doi:10.1016/B978-0-12-800351-0.00006-7
  • Prakash, A., Mathur, K., Vishwakarma, A., Vuppu, S., & Mishra, B. (2013). Comparative assay of antioxidant and antibacterial properties of indian culinary seasonal fruit peel extracts obtained from vellore. Tamilnadu. International Journal of Pharmaceutical Sciences Review and Research, 19(1), 131–135.
  • Prasad, K. N., Spigno, G., Jauregi, P., Misra, N. N., & Cullen, P. J. (2015). Emerging macro- and micromolecules separation. In C. M. Galanakis (Ed.), Food waste recovery: Processing technologies and industrial techniques(pp. 227–248). Cambridge, MA: Academic Press. doi:10.1016/B978-0-12-800351-0/00010-9
  • Pulito, C., Mori, F., Sacconi, A., Casadei, L., Ferraiuolo, M., Valerio, M. C., … Strano, S. (2015). Cynara scolymus affects malignant pleural mesothelioma by promoting apoptosis and restraining invasion. Oncotarget, 6, 18134–18150. doi:10.18632/oncotarget.4017
  • Puri, M., Sharma, D., & Barrow, C. J. (2012). Enzyme-assisted extraction of bioactives from plants. Trends in Biotechnology, 30(1), 37–44. doi:10.1016/j.tibtech.2011.06.014
  • Rabelo, R. S., Machado, M. T. C., Martínez, J., & Hubinger, M. D. (2016). Ultrasound assisted extraction and nanofiltration of phenolic compounds from artichoke solid wastes. Journal of Food Engineering, 178, 170–180. doi:10.1016/j.jfoodeng.2016.01.018
  • Renard, C. M. G. C. (2018). Extraction of bioactives from fruit and vegetables: State of the art and perspectives. LWT– Food Science and Technology, 93, 390–395. doi:10.1016/j.lwt.2018.03.063
  • Rezende, Y. R. R. S., Nogueira, J. P., & Narain, N. (2017). Comparison and optimization of conventional and ultrasound assisted extraction for bioactive compounds and antioxidant activity from agro-industrial acerola (Malpighia emarginata DC) residue. LWT – Food Science and Technology, 85, 158–169. doi:10.1016/j.lwt.2017.07.020
  • Rivero, C. P., Hu, Y., Kwan, T. H., Webb, C., Theodoropoulos, C., Daoud, W., & Lin, C. S. K. (2017). Bioplastics from solid waste. In J. Wong, R. Tyagi, & A. Pandey (Eds.), Current developments in biotechnology and bioengineering: Solid waste management (pp. 1–26). Amsterdam, The Netherlands: Elsevier B.V. doi:10.1016/B978-0-444-63664-5.00001-0
  • Roberfroid, M. B. (2000). Concepts and strategy of functional food science: The European perspective. American Journal of Clinical Nutrition, 71, 1660–1664.
  • Roggeveen, K. (2014). Tomato journeys from farm to fruit shop. Local Environment, 19(1), 77–102. doi:10.1080/13549839.2012.738653
  • Rombaut, N., Tixier, A.S.,Bily, A., & Chemat, F. (2014). Green extraction processes of natural products as tools for biorefinery. Biofuels, Bioproducts and Biorefining, 8, 530–544. doi:10.1002/bbb.1486
  • Roohinejad, S., Oey, I., Everett, D. W., & Niven, B. E. (2014). Evaluating the effectiveness of β-carotene extraction from pulsed electric field-treated carrot pomace using oil-in-water microemulsion. Food and Bioprocess Technology, 7, 3336–3348. doi:10.1007/s11947-014-1334-6
  • Rosado-Álvarez, C., Molinero-Ruiz, L., Rodríguez-Arcos, R., & Basallote-Ureba, M. J. (2014). Antifungal activity of asparagus extracts against phytopathogenic Fusarium oxysporum. Scientia Horticulturae, 171, 51–57. doi:10.1016/j.scienta.2014.03.037
  • Ruiz-Aceituno, L., García-Sarrió, J., Alonso-Rodríguez, A., Ramos, L., & Sanz, M. L. (2016). Extraction of bioactive carbohydrates from artichoke (Cynara scolymus L.) external bracts using microwave assisted extraction and pressurized liquid extraction. Food Chemistry, 196, 1156–1162. doi:10.1016/j.foodchem.2015.10.046
  • Saffarzadeh-Matin, S., & Khosrowshahi, F. M. (2017). Phenolic compounds extraction from iranian pomegranate (Punica granatum) industrial waste applicable to pilot plant scale. Industrial Crops and Products, 108, 583–597. doi:10.1016/j.indcrop.2017.07.022
  • Şahin, S., Samli, R., Tan, A. S. B., Barba, F. J., Chemat, F., Cravotto, G., & Lorenzo, J. M. (2017). Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: Antioxidant and antimicrobial properties. Molecules, 22, 1056. doi:10.3390/molecules22071056
  • Sanz, T., Salvador, A., Jiménez, A., & Fiszman, S. M. (2008). Yogurt enrichment with functional asparagus fibre. Effect of fibre extraction method on rheological properties, colour, and sensory acceptance. European Food Research and Technology, 227, 1515–1521. doi:10.1007/s00217-008-0874-2
  • Seeram, N. P., Henning, S. M., Zhang, Y., Suchard, M., Li, Z., & Heber, D. (2006). Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours. The Journal of Nutrition, 136, 2481–2485. doi:10.1093/jn/136.10.2481
  • Segovia, F. J., Corral-Pérez, J. J., & Almajano, M. P. (2016). Avocado seed: Modeling extraction of bioactive compounds. Industrial Crops and Products, 85, 213–220. doi:10.1016/j.indcrop.2016.03.005
  • Sharif, M. K., & Khalid, R. (2018). Nutraceuticals: Myths versus realities. In A. M. Holban & A. M. Grumezescu (Eds.), Therapeutic foods volume 8. Handbook of food bioengineering (pp. 3–21). Cambridge, MA: Academic Press.
  • Simsek, M., Sumnu, G., & Sahin, S. (2012). Microwave assisted extraction of phenolic compounds from sour cherry pomace. Separation Science and Technology, 47, 1248–1254. doi:10.1080/01496395.2011.644616
  • Singh, R. D., Banerjee, J., & Arora, A. (2015). Prebiotic potential of oligosaccharides: A focus on xylan derived oligosaccharides. Bioactive Carbohydrates and Dietary Fibre, 5(1), 19–30. doi:10.1016/j.bcdf.2014.11.003
  • Solana, M., Boschiero, I., Dall’Acqua, S., & Bertucco, A. (2015). A comparison between supercritical fluid and pressurized liquid extraction methods for obtaining phenolic compounds from Asparagus officinalis L. The Journal of Supercritical Fluids, 100, 201–208. doi:10.1016/j.supflu.2015.02.014
  • Soto-Maldonado, C., & Zúñiga-Hansen, M. E. (2017). Enzyme-assisted extraction of phenolic compounds. In H. Dominguez Gonzalez & M. J. González Muñoz (Eds.), Water extraction of bioactive compounds. From plants to drug development (pp. 369–384). Cambridge, MA.
  • Sparg, S. G., Light, M. E., & Van Staden, J. (2004). Biological activities and distribution of plant saponins. Journal of Ethnopharmacology, 94, 219–243. doi:10.1016/j.jep.2004.05.016
  • Spilmont, M., Léotoing, L., Davicco, M. J., Lebecque, P., Mercier, S., Miot-Noirault, E., … Coxam, V. (2013). Pomegranate seed oil prevents bone loss in a mice model of osteoporosis, through osteoblastic stimulation, osteoclastic inhibition and decreased inflammatory status. The Journal of Nutritional Biochemistry, 24, 1840–1848. doi:10.1016/j.jnutbio.2013.04.005
  • Stenmarck, A., Jensen, C., Quested, T., & Moates, G. (2016). Estimates of European Food Waste Levels. FUSIONS EU Project – Reducing Food Waste through Social Innovation.
  • Strati, I. F., Gogou, E., & Oreopoulou, V. (2015). Enzyme and high pressure assisted extraction of carotenoids from tomato waste. Food and Bioproducts Processing, 94, 668–674. doi:10.1016/j.fbp.2014.09.012
  • Talekar, S., Patti, A. F., Singh, R., Vijayraghavan, R., & Arora, A. (2018). From waste to wealth: High recovery of nutraceuticals from pomegranate seed waste using a green extraction process. Industrial Crops and Products, 112, 790–802. doi:10.1016/j.indcrop.2017.12.023
  • Tezcan, F., Gültekin-Özgüven, M., Diken, T., Özçelik, B., & Erim, F. B. (2009). Antioxidant activity and total phenolic, organic acid and sugar content in commercial pomegranate juices. Food Chemistry, 115, 873–877. doi:10.1016/j.foodchem.2008.12.103
  • Tian, Y., Xu, Z., Zheng, B., & Martin Lo, Y. (2013). Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrasonics Sonochemistry, 20(1), 202–208. doi:10.1016/j.ultsonch.2012.07.010
  • Uçkun Kiran, E., Trzcinski, A. P., Ng, W. J., & Liu, Y. (2014). Bioconversion of food waste to energy: A review. Fuel, 134, 389–399. doi:10.1016/j.fuel.2014.05.074
  • Uddin, M. S., Sarker, M. Z. I., Ferdosh, S., Akanda, M. J. H., Easmin, M. S., Bt Shamsudin, S. H., & Yunus, K. B. (2015). Phytosterols and their extraction from various plant matrices using supercritical carbon dioxide: A review. Journal of the Science of Food and Agriculture, 95, 1385–1394. doi:10.1002/jsfa.6833
  • Uragami, A., Murakami, K., Kunihisa, M., Aizawa, S., & Tokuda, S. (2012). Nematotoxic effects of a hot water extract of waste asparagus rootstocks on root-lesion nematode (Pratylenchus penetrans). Acta Horticulturae, 933, 539–546. doi:10.17660/ActaHortic.2012.933.70
  • Van De Wiele, T., Boon, N., Possemiers, S., Jacobs, H., & Verstraete, W. (2007). Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. Journal of Applied Microbiology, 102, 452–460. doi:10.1111/j.1365-2672.2006.03084.x
  • Van Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30, 1458–1480. doi:10.1016/j.biotechadv.2012.03.002
  • Vázquez-Castilla, S., Jaramillo-Carmona, S., Fuentes-Alventosa, J. M., Jiménez-Araujo, A., Rodriguez-Arcos, R., Cermeño-Sacristán, P., … Guillén-Bejarano, R. (2013). Optimization of a method for the profiling and quantification of saponins in different green Asparagus genotypes. Journal of Agricultural and Food Chemistry, 61, 6250–6258. doi:10.1021/jf401462w
  • Viganó, J., da Fonseca Machado, A. P., & Martínez, J. (2015). Sub- and supercritical fluid technology applied to food waste processing. The Journal of Supercritical Fluids, 96, 272–286. doi:10.1016/j.supflu.2014.09.026
  • Viuda-Martos, M., Ruiz-Navajas, Y., Martin-Sánchez, A., Sánchez-Zapata, E., Fernández-López, J., Sendra, E., … Pérez-Álvarez, J. A. (2012). Chemical, physico-chemical and functional properties of pomegranate (Punica granatum L.) bagasses powder co-product. Journal of Food Engineering, 110, 220–224. doi:10.1016/j.jfoodeng.2011.05.029
  • Wadhwa, M. (2015). Wastes to worth: Value added products from fruit and vegetable wastes. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 10, 1–25. doi:10.1079/PAVSNNR201510043
  • Wang, J., Liu, Y., Zhao, J., Zhang, W., & Pang, X. (2013). Saponins extracted from by-product of Asparagus officinalis L. suppress tumour cell migration and invasion through targeting Rho GTPase Signalling Pathway. Journal of the Science of Food and Agriculture, 93, 1492–1498. doi:10.1002/jsfa.5922
  • Wang, W., Du, G., Li, C., Zhang, H., Long, Y., & Ni, Y. (2016). Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water pickering emulsion. Carbohydrate Polymers, 151, 1–8. doi:10.1016/j.carbpol.2016.05.052
  • Wang, Z., Pan, Z., Ma, H., & Atungulu, G. G. (2011). Extract of phenolics from pomegranate peels. The Open Food Science Journal, 5(1), 17–25. doi:10.2174/1874256401105010017
  • Wei, W., Wu, K., Qin, Y., Xie, Z., & Zhu, X. (2001). Intergeneric protoplast fusion between Kluyveromyces and Saccharomyces cerevisiae – To produce sorbitol from Jerusalem artichokes. Biotechnology Letters, 23, 799–803. doi:10.1023/A:1010310601876
  • Wenling, W., Wuguang Le Huiying, W., & Shiyuan, W. (1999). Continuous preparation of fructose syrups from Jerusalem artichoke tuber using immobilized intracellular inulinase from Kluyveromyces sp. Y-85. Process Biochemistry, 34, 643–646. doi:10.1016/S0032-9592(98)00140-X
  • Wittemer, S. M., Ploch, M., Windeck, T., Müller, S. C., Drewelow, B., Derendorf, H., & Veit, M. (2005). Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of artichoke leaf extracts in humans. Phytomedicine, 12(1–2), 28–38. doi:10.1016/j.phymed.2003.11.002
  • Wu, S., & Tian, L. (2017). Diverse phytochemicals and bioactivities in the ancient fruit and modern functional food pomegranate (Punica granatum). Molecules, 22, 1606. doi:10.3390/molecules2210
  • Xi, J., He, L., & Yan, L. (2017). Continuous extraction of phenolic compounds from pomegranate peel using high voltage electrical discharge. Food Chemistry, 230, 354–361. doi:10.1016/j.foodchem.2017.03.072
  • Yi, C., Shi, J., Xue, S. J., Jiang, Y., & Li, D. (2009). Effects of supercritical fluid extraction parameters on lycopene yield and antioxidant activity. Food Chemistry, 113, 1088–1094. doi:10.1016/j.foodchem.2008.08.083
  • Zainal-Abidin, M. H., Hayyan, M., Hayyan, A., & Jayakumar, N.S. (2017). New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Analytica Chimica Acta 979, 1–23. doi:10.1016/j.aca.2017.05.012.
  • Zaman, M. A., Oparil, S., & Calhoun, D. A. (2002). Drugs targeting the renin–angiotensin–aldosterone system. Nature Reviews Drug Discovery, 1, 621–636.
  • Zhan, X. B., Lin, C. C., & Zhang, H. T. (2012). Recent advances in curdlan biosynthesis, biotechnological production, and applications. Applied Microbiology and Biotechnology, 93, 525–531. doi:10.1007/s00253-011-3740-2
  • Zhang, T., Chi, Z., Zhao, C. H., Chi, Z. M., & Gong, F. (2010). Bioethanol production from hydrolysates of inulin and the tuber meal of jerusalem artichoke by Saccharomyces sp. W0. Bioresource Technology, 101, 8166–8170. doi:10.1016/j.biortech.2010.06.013
  • Zhao, C. H., Cui, W., Liu, X. Y., Chi, Z. M., & Madzak, C. (2010). Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials. Metabolic Engineering, 12, 510–517. doi:10.1016/j.ymben.2010.09.001
  • Zhao, J., Zhang, W., Zhu, X., Zhao, D., Wang, K., Wang, R., & Qu, W. (2011). The aqueous extract of Asparagus officinalis L. by-product exerts hypoglycaemic activity in streptozotocin-induced diabetic rats. Journal of the Science of Food and Agriculture, 91, 2095–2099. doi:10.1002/jsfa.4429
  • Zhou, Y., Zhao, X., & Huang, H. (2015). Effects of pulsed electric fields on anthocyanin extraction yield of blueberry processing by-products. Journal of Food Processing and Preservation, 39, 1898–1904. doi:10.1111/jfpp.12427
  • Zhu, X., Zhang, W., Zhao, J., Wang, J., & Qu, W. (2010). Hypolipidaemic and hepatoprotective effects of ethanolic and aqueous extracts from Asparagus officinalis L. by-products in mice fed a high-fat diet. Journal of the Science of Food and Agriculture, 90, 1129–1135. doi:10.1002/jsfa.3923
  • Zuorro, A., Maffei, G., & Lavecchia, R. (2014). Effect of solvent type and extraction conditions on the recovery of phenolic compounds from artichoke waste. Chemical Engineering Transactions, 39, 463–468. doi:10.3303/CET1439078

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.