16,268
Views
278
CrossRef citations to date
0
Altmetric
Research Article

Microplastics in the soil environment: Occurrence, risks, interactions and fate – A review

, , , , , , , , , , & show all
Pages 2175-2222 | Published online: 28 Nov 2019

References

  • Alimi, O. S., Farner Budarz, J., Hernandez, L. M., & Tufenkji, N. (2018). Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52(4), 1704–1724. doi:10.1021/acs.est.7b05559
  • Amirbahman, A., & Olson, T. M. (1995). The role of surface conformations in the deposition kinetics of humic matter-coated colloids in porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 95(2–3), 249–259. doi:10.1016/0927-7757(94)03015-R
  • Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977–1984. doi:10.1098/rstb.2008.0304
  • Awet, T. T., Kohl, Y., Meier, F., Straskraba, S., Grün, A.-L., Ruf, T., … Emmerling, C. (2018). Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environmental Sciences Europe, 30(1), 11. doi:10.1186/s12302-018-0140-6
  • Bakir, A., Rowland, S. J., & Thompson, R. C. (2014). Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environmental Pollution, 185, 16–23. doi:10.1016/j.envpol.2013.10.007
  • Bakshi, S., He, Z. L., & Harris, W. G. (2015). Natural nanoparticles: Implications for environment and human health. Critical Reviews in Environmental Science and Technology, 45(8), 861–904. doi:10.1080/10643389.2014.921975
  • Besseling, E., Foekema, E. M., Van Den Heuvel-Greve, M. J., & Koelmans, A. A. (2017). The effect of microplastic on the uptake of chemicals by the lugworm Arenicola marina (L.) under environmentally relevant exposure conditions. Environmental Science & Technology, 51(15), 8795–8804. doi:10.1021/acs.est.7b02286
  • Bläsing, M., & Amelung, W. (2018). Plastics in soil: Analytical methods and possible sources. Science of the Total Environment, 612, 422–435. doi:10.1016/j.scitotenv.2017.08.086
  • Bosker, T., Bouwman, L. J., Brun, N. R., Behrens, P., & Vijver, M. G. (2019). Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere, 226, 774–781. doi:10.1016/j.chemosphere.2019.03.163
  • Bouchard, D., Zhang, W., & Chang, X. (2013). A rapid screening technique for estimating nanoparticle transport in porous media. Water Research, 47(12), 4086–4094. doi:10.1016/j.watres.2012.10.026
  • Bradford, S. A., & Bettahar, M. (2006). Concentration dependent transport of colloids in saturated porous media. Journal of Contaminant Hydrology, 82(1-2), 99–117. doi:10.1016/j.jconhyd.2005.09.006
  • Bradford, S. A., Yates, S. R., Bettahar, M., & Simunek, J. (2002). Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resources Research, 38(12), 1327. doi:10.1029/2002WR001340
  • Brennecke, D., Duarte, B., Paiva, F., Caçador, I., & Canning-Clode, J. (2016). Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science, 178, 189–195. doi:10.1016/j.ecss.2015.12.003
  • Briassoulis, D., Babou, E., Hiskakis, M., & Kyrikou, I. (2015a). Analysis of long-term degradation behaviour of polyethylene mulching films with pro-oxidants under real cultivation and soil burial conditions. Environmental Science and Pollution Research, 22(4), 2584–2598. doi:10.1007/s11356-014-3464-9
  • Briassoulis, D., Babou, E., Hiskakis, M., & Kyrikou, I. (2015b). Degradation in soil behavior of artificially aged polyethylene films with pro-oxidants. Journal of Applied Polymer Science, 30, 132. doi:10.1002/app.42289
  • Brussaard, L. (1997). Biodiversity and ecosystem functioning in soil. Ambio, 26(8), 563–570. Retrieved from https://www.jstor.org/stable/4314670
  • Cai, L., Peng, S., Wu, D., & Tong, M. (2016). Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand. Environmental Pollution, 208, 637–644. doi:10.1016/j.envpol.2015.10.040
  • Cai, L., Wu, D., Xia, J., Shi, H., & Kim, H. (2019). Influence of physicochemical surface properties on the adhesion of bacteria onto four types of plastics. Science of the Total Environment, 671, 1101–1107. doi:10.1016/j.scitotenv.2019.03.434
  • Cao, D., Wang, X., Luo, X., Liu, G., & Zheng, H. (2017). Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. IOP Conference Series: Earth and Environmental Science, 61(1), 012148. doi:10.1088/1755-1315/61/1/012148
  • Chae, Y., & An, Y. J. (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental Pollution, 240, 387–395. doi:10.1016/j.envpol.2018.05.008
  • Chen, W., Ouyang, Z.-Y., Qian, C., & Yu, H.-Q. (2018). Induced structural changes of humic acid by exposure of polystyrene microplastics: A spectroscopic insight. Environmental Pollution, 233, 1–7. doi:10.1016/j.envpol.2017.10.027
  • Chua, E. M., Shimeta, J., Nugegoda, D., Morrison, P. D., & Clarke, B. O. (2014). Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod. Environmental Science & Technology, 48(14), 8127–8134. doi:10.1021/es405717z
  • Corcoran, P. L., Norris, T., Ceccanese, T., Walzak, M. J., Helm, P. A., & Marvin, C. H. (2015). Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record. Environmental Pollution, 204, 17–25. doi:10.1016/j.envpol.2015.04.009
  • Cornelis, G., Hund-Rinke, K., Kuhlbusch, T., van den Brink, N., & Nickel, C. (2014). Fate and bioavailability of engineered nanoparticles in soils: A review. Critical Reviews in Environmental Science and Technology, 44(24), 2720–2764. doi:10.1080/10643389.2013.829767
  • Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., & Geissen, V. (2019). Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment, 671, 411–420. doi:10.1016/j.scitotenv.2019.03.368
  • Davranche, M., Veclin, C., Pierson-Wickmann, A.-C., El Hadri, H., Grassl, B., Rowenczyk, L., … Gigault, J. (2019). Are nanoplastics able to bind significant amount of metals? The lead example. Environmental Pollution, 249, 940–948. doi:10.1016/j.envpol.2019.03.087
  • de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S., & Rillig, M. C. (2018). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24(4), 1405–1416. doi:10.1111/gcb.14020
  • de Souza Machado, A. A., Lau, C. W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., … Rillig, M. C. (2019). Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 53(10), 6044–6052. doi:10.1021/acs.est.9b01339
  • de Souza Machado, A. A., Lau, C. W., Till, J., Kloas, W., Lehmann, A., Becker, R., & Rillig, M. C. (2018). Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology, 52(17), 9656–9665. doi:10.1021/acs.est.8b02212
  • Deshiikan, S. R., Eschenazi, E., & Papadopoulos, K. D. (1998). Transport of colloids through porous beds in the presence of natural organic matter. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 145(1-3), 93–100. doi:10.1016/S0927-7757(98)00666-9
  • Dong, H., Liu, T., Han, Z., Sun, Q., & Li, R. (2015). Determining time limits of continuous film mulching and examining residual effects on cotton yield and soil properties. Journal of Environmental Biology, 36(3), 677–684. Retrieved from http://www.jeb.co.in/journal_issues/201505_may15/paper_25.pdf
  • Dong, Z., Zhang, W., Qiu, Y., Yang, Z., Wang, J., & Zhang, Y. (2019). Cotransport of nanoplastics (NPs) with fullerene (C60) in saturated sand: Effect of NPs/C60 ratio and seawater salinity. Water Research, 148, 469–478. doi:10.1016/j.watres.2018.10.071
  • Doucette, W. J. (2003). Quantitative structure-activity relationships for predicting soil-sediment sorption coefficients for organic chemicals. Environmental Toxicology and Chemistry, 22(8), 1771–1788. doi:10.1897/01-362
  • Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., & Guo, H. (2011). TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 13(4), 822–828. doi:10.1039/c0em00611d
  • Elimelech, M., & O’Melia, C. R. (1990). Kinetics of deposition of colloidal particles in porous media. Environmental Science & Technology, 24(10), 1528–1536. doi:10.1021/es00080a012
  • Elzerman, A. W., & Coates, J. T. (1987). Hydrophobic organic compounds on sediments: Equilibria and kinetics of sorption. In R. A. Hites & S. J. Eisenreich (Eds.), Sources and fates of aquatic pollutants (pp. 263–317). Washington, D.C.: American Chemical Society. doi:10.1021/ba-1987-0216.ch010
  • Endo, S., Droge, S. T. J., & Goss, K.-U. (2011). Polyparameter linear free energy models for polyacrylate fiber − water partition coefficients to evaluate the efficiency of solid-phase microextraction. Analytical Chemistry, 83(4), 1394–1400. doi:10.1021/ac102868e
  • Endo, S., & Koelmans, A. A. (2016). Sorption of hydrophobic organic compounds to plastics in the marine environment: Equilibrium. In H. Takada & H. K. Karapanagioti (Eds.), Hazardous chemicals associated with plastics in the marine environment (pp. 185–204). Cham: Springer. doi:10.1007/698_2016_11
  • Engler, R. E. (2012). The complex interaction between marine debris and toxic chemicals in the ocean. Environmental Science & Technology, 46(22), 12302–12315. doi:10.1021/es3027105
  • Environmental Protection Agency (EPA). (2015). Urban waste water treatment in 2014: A report for the year 2014. Retrieved from http://www.epa.ie/pubs/reports/water/wastewater/2014%20waste%20water%20report_web.pdf
  • Espí, E., Salmerón, A., Fontecha, A., García, Y., & Real, A. I. (2006). Plastic films for agricultural applications. Journal of Plastic Film & Sheeting, 22(2), 85–102. doi:10.1177/8756087906064220
  • Franchi, A., & O’Melia, C. R. (2003). Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media. Environmental Science & Technology, 37(6), 1122–1129. doi:10.1021/es015566h
  • Fries, E., & Zarfl, C. (2012). Sorption of polycyclic aromatic hydrocarbons (PAHs) to low and high density polyethylene (PE). Environmental Science and Pollution Research, 19(4), 1296–1304. doi:10.1007/s11356-011-0655-5
  • Fuller, S., & Gautam, A. (2016). A procedure for measuring microplastics using pressurized fluid extraction. Environmental Science & Technology, 50(11), 5774–5780. doi:10.1021/acs.est.6b00816
  • Gigault, J., Halle, A. T., Baudrimont, M., Pascal, P.-Y., Gauffre, F., Phi, T.-L., … Reynaud, S. (2018). Current opinion: What is a nanoplastic? Environmental Pollution, 235, 1030–1034. doi:10.1016/j.envpol.2018.01.024
  • Guo, X., Chen, C., & Wang, J. (2019). Sorption of sulfamethoxazole onto six types of microplastics. Chemosphere, 228, 300–308. doi:10.1016/j.chemosphere.2019.04.155
  • Guo, X., Pang, J., Chen, S., & Jia, H. (2018). Sorption properties of tylosin on four different microplastics. Chemosphere, 209, 240–245. doi:10.1016/j.chemosphere.2018.06.100
  • Guo, X., & Wang, J. (2019). The phenomenological mass transfer kinetics model for Sr2+ sorption onto spheroids primary microplastics. Environmental Pollution, 250, 737–745. doi:10.1016/j.envpol.2019.04.091
  • Guo, X., Wang, X., Zhou, X., Kong, X., Tao, S., & Xing, B. (2012). Sorption of four hydrophobic organic compounds by three chemically distinct polymers: Role of chemical and physical composition. Environmental Science & Technology, 46(13), 7252–7259. doi:10.1021/es301386z
  • Hartmann, N. B., Hüffer, T., Thompson, R. C., Hassellöv, M., Verschoor, A., Daugaard, A. E., … Wagner, M. (2019). Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environmental Science & Technology, 53(3), 1039–1047. doi:10.1021/acs.est.8b05297
  • He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163–172. doi:10.1016/j.trac.2018.10.006
  • He, H., Wang, Z., Guo, L., Zheng, X., Zhang, J., Li, W., & Fan, B. (2018). Distribution characteristics of residual film over a cotton field under long-term film mulching and drip irrigation in an oasis agroecosystem. Soil and Tillage Research, 180, 194–203. doi:10.1016/j.still.2018.03.013
  • He, L., Wu, D., Rong, H., Li, M., Tong, M., & Kim, H. (2018). Influence of nano- and microplastic particles on the transport and deposition behaviors of bacteria in quartz sand. Environmental Science & Technology, 52(20), 11555–11563. doi:10.1021/acs.est.8b01673
  • Hodson, M. E., Duffus-Hodson, C. A., Clark, A., Prendergast-Miller, M. T., & Thorpe, K. L. (2017). Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environmental Science & Technology, 51(8), 4714–4721. doi:10.1021/acs.est.7b00635
  • Holmes, L. A., Turner, A., & Thompson, R. C. (2012). Adsorption of trace metals to plastic resin pellets in the marine environment. Environmental Pollution, 160(1), 42–48. doi:10.1016/j.envpol.2011.08.052
  • Holmes, L. A., Turner, A., & Thompson, R. C. (2014). Interactions between trace metals and plastic production pellets under estuarine conditions. Marine Chemistry, 167, 25–32. doi:10.1016/j.marchem.2014.06.001
  • Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127–141. doi:10.1016/j.scitotenv.2017.01.190
  • Hu, C. W., Li, M., Cui, Y. B., Li, D. S., Chen, J., & Yang, L. Y. (2010). Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biology and Biochemistry, 42(4), 586–591. doi:10.1016/j.soilbio.2009.12.007
  • Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., … Geissen, V. (2017). Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 220, 523–531. doi:10.1016/j.envpol.2016.09.096
  • Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., Van Der Ploeg, M., … Geissen, V. (2016). Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50(5), 2685–2691. doi:10.1021/acs.est.5b05478
  • Huerta Lwanga, E., Mendoza Vega, J., Ku Quej, V., Chi, J. D L A., Sanchez del Cid, L., Chi, C., … Geissen, V. (2017). Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 7(1), 14071. doi:10.1038/s41598-017-14588-2
  • Huerta Lwanga, E., Thapa, B., Yang, X., Gertsen, H., Salánki, T., Geissen, V., & Garbeva, P. (2018). Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. Science of the Total Environment, 624, 753–757. doi:10.1016/j.scitotenv.2017.12.144
  • Hüffer, T., & Hofmann, T. (2016). Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environmental Pollution, 214, 194–201. doi:10.1016/j.envpol.2016.04.018
  • Hüffer, T., Metzelder, F., Sigmund, G., Slawek, S., Schmidt, T. C., & Hofmann, T. (2019). Polyethylene microplastics influence the transport of organic contaminants in soil. Science of the Total Environment, 657, 242–247. doi:10.1016/j.scitotenv.2018.12.047
  • Hüffer, T., Weniger, A.-K., & Hofmann, T. (2018). Sorption of organic compounds by aged polystyrene microplastic particles. Environmental Pollution, 236, 218–225. doi:10.1016/j.envpol.2018.01.022
  • Hurley, R. R., & Nizzetto, L. (2018). Fate and occurrence of micro(nano)plastics in soils: Knowledge gaps and possible risks. Current Opinion in Environmental Science & Health, 1, 6–11. doi:10.1016/j.coesh.2017.10.006
  • Ivar do Sul, J. A., & Costa, M. F. (2014). The present and future of microplastic pollution in the marine environment. Environmental Pollution, 185, 352–364. doi:10.1016/j.envpol.2013.10.036
  • Jemec Kokalj, A., Horvat, P., Skalar, T., & Kržan, A. (2018). Plastic bag and facial cleanser derived microplastic do not affect feeding behaviour and energy reserves of terrestrial isopods. Science of the Total Environment, 615, 761–766. doi:10.1016/j.scitotenv.2017.10.020
  • Jiang, X., Chen, H., Liao, Y., Ye, Z., Li, M., & Klobučar, G. (2019). Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution, 250, 831–838. doi:10.1016/j.envpol.2019.04.055
  • Jiang, X. J., Liu, W., Wang, E., Zhou, T., & Xin, P. (2017). Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China. Soil and Tillage Research, 166, 100–107. doi:10.1016/j.still.2016.10.011
  • Johansen, M. P., Cresswell, T., Davis, J., Howard, D. L., Howell, N., & Prentice, E. (2019). Biofilm-enhanced adsorption of strong and weak cations onto different microplastic sample types: Use of spectroscopy, microscopy and radiotracer methods. Water Research, 158, 392–400. doi:10.1016/j.watres.2019.04.029
  • Ju, H., Zhu, D., & Qiao, M. (2019). Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida. Environmental Pollution, 247, 890–897. doi:10.1016/j.envpol.2019.01.097
  • Kang, P., Hu, Q., Lu, Y., Lei, B., He, G., & Wang, C. (2013). Residual plastic film in typical maize planting areas in Lijiang City of Yunnan Province. Hunan Agricultural Sciences, 3, 56–58. doi:10.16498/j.cnki.hnnykx.2013.03.034
  • Karnjanapiboonwong, A., Morse, A. N., Maul, J. D., & Anderson, T. A. (2010). Sorption of estrogens, triclosan, and caffeine in a sandy loam and a silt loam soil. Journal of Soils and Sediments, 10(7), 1300–1307. doi:10.1007/s11368-010-0223-5
  • Kim, S. W., & An, Y.-J. J. (2019). Soil microplastics inhibit the movement of springtail species. Environment International, 126, 699–706. doi:10.1016/j.envint.2019.02.067
  • Kim, S. W., Kim, D., Chae, Y., Kim, D., & An, Y. J. (2019). Crop-dependent changes in water absorption of expanded polystyrene in soil environments. Chemosphere, 219, 345–350. doi:10.1016/j.chemosphere.2018.12.057
  • Kiyama, Y., Miyahara, K., & Ohshima, Y. (2012). Active uptake of artificial particles in the nematode Caenorhabditis elegans. Journal of Experimental Biology, 215(7), 1178–1183. doi:10.1242/jeb.067199
  • Kobayashi, M., Nanaumi, H., & Muto, Y. (2009). Initial deposition rate of latex particles in the packed bed of zirconia beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347(1-3), 2–7. doi:10.1016/j.colsurfa.2008.09.054
  • Law, K. L., & Thompson, R. C. (2014). Microplastics in the seas. Science, 345(6193), 144–145. doi:10.1126/science.1254065
  • Leboeuf, E. J., & Weber, W. J. (1997). A distributed reactivity model for sorption by soils and sediments. 8. Sorbent organic domains: Discovery of a humic acid glass transition and an argument for a polymer-based model. Environmental Science & Technology, 31(6), 1697–1702. doi:10.1021/es960626i
  • Lee, H., Shim, W. J., & Kwon, J. H. (2014). Sorption capacity of plastic debris for hydrophobic organic chemicals. Science of the Total Environment, 470–471, 1545–1552. doi:10.1016/j.scitotenv.2013.08.023
  • Lei, L., Liu, M., Song, Y., Lu, S., Hu, J., Cao, C., … He, D. (2018). Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans. Environmental Science: Nano, 5(8), 2009–2020. doi:10.1039/C8EN00412A
  • Lei, L., Wu, S., Lu, S., Liu, M., Song, Y., Fu, Z., … He, D. (2018). Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Science of the Total Environment, 619–620, 1–8. doi:10.1016/j.scitotenv.2017.11.103
  • Li, K., Ma, D., Wu, J., Chai, C., & Shi, Y. (2016). Distribution of phthalate esters in agricultural soil with plastic film mulching in Shandong Peninsula, East China. Chemosphere, 164, 314–321. doi:10.1016/j.chemosphere.2016.08.068
  • Li, J., Jiang, L., Xiang, X., Xu, S., Wen, R., & Liu, X. (2013). Competitive sorption between 17α-ethinyl estradiol and bisphenol A/4-n-nonylphenol by soils. Journal of Environmental Sciences (China), 25(6), 1154–1163. doi:10.1016/S1001-0742(12)60165-X
  • Li, J., Zhang, K., & Zhang, H. (2018). Adsorption of antibiotics on microplastics. Environmental Pollution, 237, 460–467. doi:10.1016/j.envpol.2018.02.050
  • Li, M., He, L., Zhang, M., Liu, X., Tong, M., & Kim, H. (2019). Cotransport and deposition of iron oxides with different-sized plastic particles in saturated quartz sand. Environmental Science & Technology, 53(7), 3547–3557. doi:10.1021/acs.est.8b06904
  • Li, X., & Johnson, W. P. (2005). Nonmonotonic variations in deposition rate coefficients of microspheres in porous media under unfavorable deposition conditions. Environmental Science & Technology, 39(6), 1658–1665. doi:10.1021/es048963b
  • Liu, E. K., He, W. Q., & Yan, C. R. (2014). White revolution’ to ‘white pollution’—agricultural plastic film mulch in China. Environmental Research Letters, 9(9), 091001. doi:10.1088/1748-9326/9/9/091001
  • Liu, F.-F., Liu, G., Zhu, Z., Wang, S., & Zhao, F. (2019). Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry. Chemosphere, 214, 688–694. doi:10.1016/j.chemosphere.2018.09.174
  • Liu, F., Xu, B., He, Y., Brookes, P. C., Tang, C., & Xu, J. (2018). Differences in transport behavior of natural soil colloids of contrasting sizes from nanometer to micron and the environmental implications. Science of the Total Environment, 634, 802–810. doi:10.1016/j.scitotenv.2018.03.381
  • Liu, F., Xu, B., He, Y., Brookes, P. C., & Xu, J. (2019). Co-transport of phenanthrene and pentachlorophenol by natural soil nanoparticles through saturated sand columns. Environmental Pollution, 249, 406–413. doi:10.1016/j.envpol.2019.03.052
  • Liu, G., Zhu, Z., Yang, Y., Sun, Y., Yu, F., & Ma, J. (2019). Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater. Environmental Pollution, 246, 26–33. doi:10.1016/j.envpol.2018.11.100
  • Liu, H., Yang, X., Liu, G., Liang, C., Xue, S., Chen, H., … Geissen, V. (2017). Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 185, 907–917. doi:10.1016/j.chemosphere.2017.07.064
  • Liu, J., Ma, Y., Zhu, D., Xia, T., Qi, Y., Yao, Y., … Chen, W. (2018). Polystyrene nanoplastics-enhanced contaminant transport: Role of irreversible adsorption in glassy polymeric domain. Environmental Science & Technology, 52(5), 2677–2685. doi:10.1021/acs.est.7b05211
  • Liu, J., Zhang, T., Tian, L., Liu, X., Qi, Z., Ma, Y., … Chen, W. (2019). Aging significantly affects mobility and contaminant-mobilizing ability of nanoplastics in saturated loamy sand. Environmental Science & Technology, 53(10), 5805–5815. doi:10.1021/acs.est.9b00787
  • Liu, L., Fokkink, R., & Koelmans, A. A. (2016). Sorption of polycyclic aromatic hydrocarbons to polystyrene nanoplastic. Environmental Toxicology and Chemistry, 35(7), 1650–1655. doi:10.1002/etc.3311
  • Liu, M., Lu, S., Song, Y., Lei, L., Hu, J., Lv, W., … He, D. (2018). Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, 242, 855–862. doi:10.1016/j.envpol.2018.07.051
  • Liu, X., Xu, J., Zhao, Y., Shi, H., & Huang, C.-H. (2019). Hydrophobic sorption behaviors of 17β-Estradiol on environmental microplastics. Chemosphere, 226, 726–735. doi:10.1016/j.chemosphere.2019.03.162
  • Llorca, M., Schirinzi, G., Martínez, M., Barceló, D., & Farré, M. (2018). Adsorption of perfluoroalkyl substances on microplastics under environmental conditions. Environmental Pollution, 235, 680–691. doi:10.1016/j.envpol.2017.12.075
  • Lv, W., Zhou, W., Lu, S., Huang, W., Yuan, Q., Tian, M., … He, D. (2019). Microplastic pollution in rice-fish co-culture system: A report of three farmland stations in Shanghai, China. Science of the Total Environment, 652, 1209–1218. doi:10.1016/j.scitotenv.2018.10.321
  • Ma, H., Mei, X., Yan, C., He, W., & Li, K. (2008). The residue of mulching plastic film of cotton field in north. China. Journal of Agro-Environment Science, 02(2), 570–573. Retrieved from http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHBH200802034.htm
  • Maaß, S., Daphi, D., Lehmann, A., & Rillig, M. C. (2017). Transport of microplastics by two collembolan species. Environmental Pollution, 225, 456–459. doi:10.1016/j.envpol.2017.03.009
  • Mai, L., Bao, L.-J., Wong, C. S., & Zeng, E. Y. (2018). Microplastics in the terrestrial environment. In E. Y. Zeng (Ed.), Microplastic contamination in aquatic environments: An emerging matter of environmental urgency (pp. 365–378). Amsterdam: Elsevier. doi:10.1016/B978-0-12-813747-5.00012-6
  • Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., & Kaminuma, T. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental Science & Technology, 35(2), 318–324. doi:10.1021/es0010498
  • Milinovic, J., Lacorte, S., Vidal, M., & Rigol, A. (2015). Sorption behaviour of perfluoroalkyl substances in soils. Science of the Total Environment, 511, 63–71. doi:10.1016/j.scitotenv.2014.12.017
  • Müller, A., Becker, R., Dorgerloh, U., Simon, F. G., & Braun, U. (2018). The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics. Environmental Pollution, 240, 639–646. doi:10.1016/j.envpol.2018.04.127
  • National Bureau of Statistics of China (NBSC). (2019). National data. Retrieved from http://data.stats.gov.cn.
  • Ng, E.-L., Huerta Lwanga, E., Eldridge, S. M., Johnston, P., Hu, H.-W., Geissen, V., & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627, 1377–1388. doi:10.1016/j.scitotenv.2018.01.341
  • O’Connor, D., Pan, S., Shen, Z., Song, Y., Jin, Y., Wu, W.-M., & Hou, D. (2019). Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environmental Pollution, 249, 527–534. doi:10.1016/j.envpol.2019.03.092
  • Orgiazzi, A., Bardgett, R. D., Barrios, E., Behan-Pelletier, V., Briones, M. J. I., Chotte, J.-L., … Wall, D. H. (2016). Global soil biodiversity atlas. Luxembourg: European Commission, Publications Office of the European Union. doi:10.2788/2613
  • Pan, M., & Chu, L. M. (2016). Adsorption and degradation of five selected antibiotics in agricultural soil. Science of the Total Environment, 545–546, 48–56. doi:10.1016/j.scitotenv.2015.12.040
  • Parthasarathy, A., Tyler, A. C., Hoffman, M. J., Savka, M. A., & Hudson, A. O. (2019). Is plastic pollution in aquatic and terrestrial environments a driver for the transmission of pathogens and the evolution of antibiotic resistance?. Environmental Science & Technology, 53(4), 1744–1745. doi:10.1021/acs.est.8b07287
  • Pelley, A. J., & Tufenkji, N. (2008). Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media. Journal of Colloid and Interface Science, 321(1), 74–83. doi:10.1016/j.jcis.2008.01.046
  • Peng, S., Wu, D., Ge, Z., Tong, M., & Kim, H. (2017). Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media. Environmental Pollution, 225, 141–149. doi:10.1016/j.envpol.2017.03.064
  • Piehl, S., Leibner, A., Löder, M. G. J., Dris, R., Bogner, C., & Laforsch, C. (2018). Identification and quantification of macro- and microplastics on an agricultural farmland. Scientific Reports, 8(1), 17950. doi:10.1038/s41598-018-36172-y
  • Pinto da Costa, J., Paço, A., Santos, P. S. M., Duarte, A. C., & Rocha-Santos, T. (2019). Microplastics in soils: Assessment, analytics and risks. Environmental Chemistry, 16(1), 18. doi:10.1071/EN18150
  • Prendergast-Miller, M. T., Katsiamides, A., Abbass, M., Sturzenbaum, S. R., Thorpe, K. L., & Hodson, M. E. (2019). Polyester-derived microfibre impacts on the soil-dwelling earthworm Lumbricus terrestris. Environmental Pollution, 251, 453–459. doi:10.1016/j.envpol.2019.05.037
  • Qi, Y., Yang, X., Pelaez, A. M., Huerta Lwanga, E., Beriot, N., Gertsen, H., … Geissen, V. (2018). Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment, 645, 1048–1056. doi:10.1016/j.scitotenv.2018.07.229
  • Qian, H., Zhang, M., Liu, G., Lu, T., Qu, Q., Du, B., & Pan, X. (2018). Effects of soil residual plastic film on soil microbial community structure and fertility. Water, Air, & Soil Pollution, 229(8), 261. doi:10.1007/s11270-018-3916-9
  • Qiu, C., He, Y., Brookes, P., & Xu, J. (2017). The systematic characterization of nanoscale bamboo charcoal and its sorption on phenanthrene:A comparison with microscale. Science of the Total Environment, 578, 399–407. doi:10.1016/j.scitotenv.2016.10.196
  • Ramos, L., Berenstein, G., Hughes, E. A., Zalts, A., & Montserrat, J. M. (2015). Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Science of the Total Environment, 523, 74–81. doi:10.1016/j.scitotenv.2015.03.142
  • Razanajatovo, R. M., Ding, J., Zhang, S., Jiang, H., & Zou, H. (2018). Sorption and desorption of selected pharmaceuticals by polyethylene microplastics. Marine Pollution Bulletin, 136, 516–523. doi:10.1016/j.marpolbul.2018.09.048
  • Revitt, D. M., Balogh, T., & Jones, H. (2015). Sorption behaviours and transport potentials for selected pharmaceuticals and triclosan in two sterilised soils. Journal of Soils and Sediments, 15(3), 594–606. doi:10.1007/s11368-014-1025-y
  • Rillig, M. C. (2012). Microplastic in terrestrial ecosystems and the soil?. Environmental Science & Technology, 46(12), 6453–6454. doi:10.1021/es302011r
  • Rillig, M. C., & Bonkowski, M. (2018). Microplastic and soil protists: A call for research. Environmental Pollution, 241, 1128–1131. doi:10.1016/j.envpol.2018.04.147
  • Rillig, M. C., de Souza Machado, A. A., Lehmann, A., & Klümper, U. (2019). Evolutionary implications of microplastics for soil biota. Environmental Chemistry, 16(1), 3. doi:10.1071/EN18118
  • Rillig, M. C., Ingraffia, R., & de Souza Machado, A. A. (2017). Microplastic incorporation into soil in agroecosystems. Frontiers in Plant Science, 8, 8–11. doi:10.3389/fpls.2017.01805
  • Rillig, M. C., Lehmann, A., Souza Machado, A. A., & Yang, G. (2019). Microplastic effects on plants. New Phytologist, 223(3), 1066–1070. doi:10.1111/nph.15794
  • Rillig, M. C., Ziersch, L., & Hempel, S. (2017). Microplastic transport in soil by earthworms. Scientific Reports, 7(1), 1–6. doi:10.1038/s41598-017-01594-7
  • Rochman, C. M., Manzano, C., Hentschel, B. T., Simonich, S. L. M., & Hoh, E. (2013). Polystyrene plastic: A source and sink for polycyclic aromatic hydrocarbons in the marine environment. Environmental Science & Technology, 47(24), 13976–13984. doi:10.1021/es403605f
  • Rodríguez-Seijo, A., da Costa, J. P., Rocha-Santos, T., Duarte, A. C., & Pereira, R. (2018). Oxidative stress, energy metabolism and molecular responses of earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics. Environmental Science and Pollution Research, 25(33), 33599–33610. doi:10.1007/s11356-018-3317-z
  • Rodríguez-Seijo, A., Lourenço, J., Rocha-Santos, T. A. P., da Costa, J., Duarte, A. C., Vala, H., & Pereira, R. (2017). Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environmental Pollution, 220, 495–503. doi:10.1016/j.envpol.2016.09.092
  • Rodríguez-Seijo, A., Santos, B., Ferreira da Silva, E., Cachada, A., & Pereira, R. (2019). Low-density polyethylene microplastics as a source and carriers of agrochemicals to soil and earthworms. Environmental Chemistry, 16(1), 8. doi:10.1071/EN18162
  • Scheurer, M., & Bigalke, M. (2018). Microplastics in Swiss floodplain soils. Environmental Science & Technology, 52(6), 3591–3598. doi:10.1021/acs.est.7b06003
  • Schwarzenbach, R. P., & Westall, J. (1981). Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies. Environmental Science & Technology, 15(11), 1360–1367. doi:10.1021/es00093a009
  • Seidensticker, S., Grathwohl, P., Lamprecht, J., & Zarfl, C. (2018). A combined experimental and modeling study to evaluate pH-dependent sorption of polar and non-polar compounds to polyethylene and polystyrene microplastics. Environmental Sciences Europe, 30(1), 1–12. doi:10.1186/s12302-018-0155-z
  • Seidensticker, S., Zarfl, C., Cirpka, O. A., Fellenberg, G., & Grathwohl, P. (2017). Shift in mass transfer of wastewater contaminants from microplastics in the presence of dissolved substances. Environmental Science & Technology, 51(21), 12254–12263. doi:10.1021/acs.est.7b02664
  • Sforzini, S., Oliveri, L., Chinaglia, S., & Viarengo, A. (2016). Application of biotests for the determination of soil ecotoxicity after exposure to biodegradable plastics. Frontiers in Environmental Science, 4, 1–12. doi:10.3389/fenvs.2016.00068
  • Shani, C., Weisbrod, N., & Yakirevich, A. (2008). Colloid transport through saturated sand columns: Influence of physical and chemical surface properties on deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 316(1-3), 142–150. doi:10.1016/j.colsurfa.2007.08.047
  • Shen, X.-C., Li, D.-C., Sima, X.-F., Cheng, H.-Y., & Jiang, H. (2018). The effects of environmental conditions on the enrichment of antibiotics on microplastics in simulated natural water column. Environmental Research, 166, 377–383. doi:10.1016/j.envres.2018.06.034
  • Shi, M., Sun, Y., Wang, Z., He, G., Quan, H., & He, H. (2019). Plastic film mulching increased the accumulation and human health risks of phthalate esters in wheat grains. Environmental Pollution, 250, 1–7. doi:10.1016/j.envpol.2019.03.064
  • Song, Y., Cao, C., Qiu, R., Hu, J., Liu, M., Lu, S., … He, D. (2019). Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure. Environmental Pollution, 250, 447–455. doi:10.1016/j.envpol.2019.04.066
  • Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Jung, S. W., & Shim, W. J. (2017). Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environmental Science & Technology, 51(8), 4368–4376. doi:10.1021/acs.est.6b06155
  • Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J., … Schaumann, G. E. (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?. Science of the Total Environment, 550, 690–705. doi:10.1016/j.scitotenv.2016.01.153
  • Swift, M. J., Heal, O. W., & Anderson, J. M. (1979). Decomposition in terrestrial environments. Berkeley, CA: University of California Press.
  • ter Halle, A., Ladirat, L., Martignac, M., Mingotaud, A. F., Boyron, O., & Perez, E. (2017). To what extent are microplastics from the open ocean weathered?. Environmental Pollution, 227, 167–174. doi:10.1016/j.envpol.2017.04.051
  • Teuten, E. L., Rowland, S. J., Galloway, T. S., & Thompson, R. C. (2007). Potential for plastics to transport hydrophobic contaminants. Environmental Science & Technology, 41(22), 7759–7764. doi:10.1021/es071737s
  • Thompson, R. C., Olson, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., … Russell, A. E. (2004). Lost at sea: Where is all the plastic? Science, 304(5672), 838. doi:10.1126/science.1094559
  • Tong, M., & Johnson, W. P. (2006). Excess colloid retention in porous media as a function of colloid size, fluid velocity, and grain angularity. Environmental Science & Technology, 40(24), 7725–7731. doi:10.1021/es061201r
  • Torkzaban, S., Bradford, S. A., van Genuchten, M. T., & Walker, S. L. (2008). Colloid transport in unsaturated porous media: The role of water content and ionic strength on particle straining. Journal of Contaminant Hydrology, 96(1-4), 113–127. doi:10.1016/j.jconhyd.2007.10.006
  • Tufenkji, N., & Elimelech, M. (2005). Breakdown of colloid filtration theory: Role of the secondary energy minimum and surface charge heterogeneities. Langmuir, 21(3), 841–852. doi:10.1021/la048102g
  • Turner, A., & Holmes, L. A. (2015). Adsorption of trace metals by microplastic pellets in fresh water. Environmental Chemistry, 12(5), 600–610. doi:10.1071/EN14143
  • UNEP. (2018). Plastic planet: How tiny plastic particles are polluting our soil. Retrieved from https://www.unenvironment.org/news-and-stories/story/plastic-planet-how-tiny-plastic-particles-are-polluting-our-soil.
  • van Gestel, C. A. M., & Selonen, S. (2018). Ecotoxicological effects of microplastics in soil: Comments on the paper by Zhu. (2018). Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition.’ Soil Biology & Biochemistry 116, 302-310. Soil Biology and Biochemistry, 124, 116–117. doi:10.1016/j.soilbio.2018.05.032
  • Velzeboer, I., Kwadijk, C. J. A. F., & Koelmans, A. A. (2014). Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environmental Science & Technology, 48(9), 4869–4876. doi:10.1021/es405721v
  • Vollertsen, J., & Hansen, A. A. (2017). Microplastic in Danish wastewater: Sources, occurrences and fate. Retrieved from https://www.researchgate.net/publication/316966942. doi:10.3390/w11091935
  • Wan, J., & Wilson, J. L. (1994). Colloid transport in unsaturated porous media. Water Resources Research, 30(4), 857–864. doi:10.1029/93WR03017
  • Wan, Y., Wu, C., Xue, Q., & Hui, X. (2019). Effects of plastic contamination on water evaporation and desiccation cracking in soil. Science of the Total Environment, 654, 576–582. doi:10.1016/j.scitotenv.2018.11.123
  • Wang, F. F., Wong, C. S., Chen, D., Lu, X., Wang, F. F., & Zeng, E. Y. (2018). Interaction of toxic chemicals with microplastics: A critical review. Water Research, 139, 208–219. doi:10.1016/j.watres.2018.04.003
  • Wang, F., Shih, K. M., & Li, X. Y. (2015). The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics. Chemosphere, 119, 841–847. doi:10.1016/j.chemosphere.2014.08.047
  • Wang, H.-T., Ding, J., Xiong, C., Zhu, D., Li, G., Jia, X.-Y., … Xue, X.-M. (2019). Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica. Environmental Pollution, 251, 110–116. doi:10.1016/j.envpol.2019.04.054
  • Wang, J., Chen, G., Christie, P., Zhang, M., Luo, Y., & Teng, Y. (2015). Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses. Science of the Total Environment, 523, 129–137. doi:10.1016/j.scitotenv.2015.02.101
  • Wang, J., Coffin, S., Sun, C., Schlenk, D., & Gan, J. (2019). Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environmental Pollution, 249, 776–784. doi:10.1016/j.envpol.2019.03.102
  • Wang, J., Liu, X., & Liu, G. (2019). Sorption behaviors of phenanthrene, nitrobenzene, and naphthalene on mesoplastics and microplastics. Environmental Science and Pollution Research, 26(12), 12563–12573. doi:10.1007/s11356-019-04735-9
  • Wang, J., Liu, X., Liu, G., Zhang, Z., Wu, H., Cui, B., … Zhang, W. (2019). Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene. Ecotoxicology and Environmental Safety, 173, 331–338. doi:10.1016/j.ecoenv.2019.02.037
  • Wang, J., Lv, S., Zhang, M., Chen, G., Zhu, T., Zhang, S., … Luo, Y. (2016). Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere, 151, 171–177. doi:10.1016/j.chemosphere.2016.02.076
  • Wang, W., & Wang, J. (2018). Different partition of polycyclic aromatic hydrocarbon on environmental particulates in freshwater: Microplastics in comparison to natural sediment. Ecotoxicology and Environmental Safety, 147, 648–655. doi:10.1016/j.ecoenv.2017.09.029
  • Wang, Z., Chen, M., Zhang, L., Wang, K., Yu, X., Zheng, Z., & Zheng, R. (2018). Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, southeastern China. Science of the Total Environment, 628–629, 1617–1626. doi:10.1016/j.scitotenv.2018.02.146
  • Wardle, D. A. (2002). Communities and ecosystems. Linking the aboveground and belowground components. Princeton, NJ: Princeton University Press.
  • Weithmann, N., Möller, J. N., Löder, M. G. J., Piehl, S., Laforsch, C., & Freitag, R. (2018). Organic fertilizer as a vehicle for the entry of microplastic into the environment. Science Advances, 4(4), eaap8060. doi:10.1126/sciadv.aap8060
  • Wu, C., Zhang, K., Huang, X., & Liu, J. (2016). Sorption of pharmaceuticals and personal care products to polyethylene debris. Environmental Science and Pollution Research, 23(9), 8819–8826. doi:10.1007/s11356-016-6121-7
  • Wu, L., Gao, B., Muñoz-Carpena, R., & Pachepsky, Y. A. (2012). Single collector attachment efficiency of colloid capture by a cylindrical collector in laminar overland flow. Environmental Science & Technology, 46(16), 8878–8886. doi:10.1021/es301365f
  • Wu, P., Cai, Z., Jin, H., & Tang, Y. (2019). Adsorption mechanisms of five bisphenol analogues on PVC microplastics. Science of the Total Environment, 650, 671–678. doi:10.1016/j.scitotenv.2018.09.049
  • Xu, B., Lian, Z., Liu, F., Yu, Y., He, Y., Brookes, P. C., & Xu, J. (2019). Sorption of pentachlorophenol and phenanthrene by humic acid-coated hematite nanoparticles. Environmental Pollution, 248, 929–937. doi:10.1016/j.envpol.2019.02.088
  • Xu, B., Liu, F., Brookes, P. C., & Xu, J. (2018a). Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter. Environmental Pollution, 240, 87–94. doi: 10.1016/j.envpol.2018.04.113
  • Xu, B., Liu, F., Brookes, P. C., & Xu, J. (2018b). The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics. Marine Pollution Bulletin, 131, 191–196. doi:10.1016/j.marpolbul.2018.04.027
  • Xu, G., Li, F., & Wang, Q. (2008). Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China. Science of the Total Environment, 393(2-3), 333–340. doi:10.1016/j.scitotenv.2008.01.001
  • Xu, J., Wu, L., & Chang, A. C. (2009). Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere, 77(10), 1299–1305. doi:10.1016/j.chemosphere.2009.09.063
  • Yang, F., Wang, M., & Wang, Z. (2013). Sorption behavior of 17 phthalic acid esters on three soils: Effects of pH and dissolved organic matter, sorption coefficient measurement and QSPR study. Chemosphere, 93(1), 82–89. doi:10.1016/j.chemosphere.2013.04.081
  • Yang, X., Bento, C. P. M., Chen, H., Zhang, H., Xue, S., Lwanga, E. H., … Geissen, V. (2018). Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil. Environmental Pollution, 242, 338–347. doi:10.1016/j.envpol.2018.07.006
  • Yu, M., van der Ploeg, M., Lwanga, E. H., Yang, X., Zhang, S., Ma, X., … Geissen, V. (2019). Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows. Environmental Chemistry, 16(1), 31–40. doi:10.1071/EN18161
  • Yu, Y., Liu, Y., & Wu, L. (2013). Sorption and degradation of pharmaceuticals and personal care products (PPCPs) in soils. Environmental Science and Pollution Research, 20(6), 4261–4267. doi:10.1007/s11356-012-1442-7
  • Zettler, E. R., Mincer, T. J., & Amaral-Zettler, L. A. (2013). Life in the “plastisphere”: microbial communities on plastic marine debris. Environmental Science & Technology, 47(13), 7137–7146. doi:10.1021/es401288x
  • Zhan, Z., Wang, J., Peng, J., Xie, Q., Huang, Y., & Gao, Y. (2016). Sorption of 3,3′,4,4′-tetrachlorobiphenyl by microplastics: A case study of polypropylene. Marine Pollution Bulletin, 110(1), 559–563. doi:10.1016/j.marpolbul.2016.05.036
  • Zhang, D., Hu, W., Liu, H., Du, L., Xu, Y., Cheng, Z., … Wang, H. (2016). Characteristics of residual mulching film and residual coefficient of typical crops in North China. Transactions of the Chinese Society of Agricultural Engineering, 32(3), 1–5. doi:10.11975/j.issn.1002-6819.2016.03.001
  • Zhang, D., Liu, H., Hu, W., Qin, X., Ma, X., Yan, C., & Wang, H. (2016). The status and distribution characteristics of residual mulching film in Xinjiang, China. Journal of Integrative Agriculture, 15(11), 2639–2646. doi:10.1016/S2095-3119(15)61240-0
  • Zhang, G. S., & Liu, Y. F. (2018). The distribution of microplastics in soil aggregate fractions in southwestern China. Science of the Total Environment, 642, 12–20. doi:10.1016/j.scitotenv.2018.06.004
  • Zhang, G. S., Zhang, F. X., & Li, X. T. (2019). Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment. Science of the Total Environment, 670, 1–7. doi:10.1016/j.scitotenv.2019.03.149
  • Zhang, H., Wang, J., Zhou, B., Zhou, Y., Dai, Z., Zhou, Q., … Luo, Y. (2018). Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environmental Pollution, 243, 1550–1557. doi:10.1016/j.envpol.2018.09.122
  • Zhang, K., Shi, H., Peng, J., Wang, Y., Xiong, X., Wu, C., & Lam, P. K. S. (2018). Microplastic pollution in China’s inland water systems: A review of findings, methods, characteristics, effects, and management. Science of the Total Environment, 630, 1641–1653. doi:10.1016/j.scitotenv.2018.02.300
  • Zhang, Q., Raoof, A., & Hassanizadeh, S. M. (2015). Pore-scale study of flow rate on colloid attachment and remobilization in a saturated micromodel. Journal of Environment Quality, 44(5), 1376. doi:10.2134/jeq2015.01.0058
  • Zhang, S., Yang, X., Gertsen, H., Peters, P., Salánki, T., & Geissen, V. (2018). A simple method for the extraction and identification of light density microplastics from soil. Science of the Total Environment, 616–617, 1056–1065. doi:10.1016/j.scitotenv.2017.10.213
  • Zhang, X., Zheng, M., Wang, L., Lou, Y., Shi, L., & Jiang, S. (2018). Sorption of three synthetic musks by microplastics. Marine Pollution Bulletin, 126, 606–609. doi:10.1016/j.marpolbul.2017.09.025
  • Zhao, L., Qu, M., Wong, G., & Wang, D. (2017). Transgenerational toxicity of nanopolystyrene particles in the range of μg L−1 in the nematode Caenorhabditis elegans. Environmental Science: Nano, 4(12), 2356–2366. doi:10.1039/C7EN00707H
  • Zhou, Q., Zhang, H., Fu, C., Zhou, Y., Dai, Z., Li, Y., … Luo, Y. (2018). The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma, 322, 201–208. doi:10.1016/j.geoderma.2018.02.015
  • Zhou, Q., Zhang, H., Zhou, Y., Li, Y., Xue, Y., Fu, C., … Luo, Y. (2016). Separation of microplastics from a coastal soil and their surface microscopic features. Chinese Science Bulletin, 61(14), 1604–1611. doi:10.1360/N972015-01098
  • Zhu, B.-K., Fang, Y.-M., Zhu, D., Christie, P., Ke, X., & Zhu, Y.-G. (2018). Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus. Environmental Pollution, 239, 408–415. doi:10.1016/j.envpol.2018.04.017
  • Zhu, D., Bi, Q.-F., Xiang, Q., Chen, Q.-L., Christie, P., Ke, X., … Zhu, Y.-G. (2018). Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida. Environmental Pollution, 235, 150–154. doi:10.1016/j.envpol.2017.12.058
  • Zhu, D., Chen, Q.-L., An, X.-L., Yang, X.-R., Christie, P., Ke, X., … Zhu, Y.-G. (2018). Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biology and Biochemistry, 116, 302–310. doi:10.1016/j.soilbio.2017.10.027
  • Ziccardi, L. M., Edgington, A., Hentz, K., Kulacki, K. J., & Kane Driscoll, S. (2016). Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: A state-of-the-science review. Environmental Toxicology and Chemistry, 35(7), 1667–1676. doi:10.1002/etc.3461
  • Zielińska, A., & Oleszczuk, P. (2016). Attenuation of phenanthrene and pyrene adsorption by sewage sludge-derived biochar in biochar-amended soils. Environmental Science and Pollution Research, 23(21), 21822–21832. doi:10.1007/s11356-016-7382-x
  • Zuo, L.-Z., Li, H.-X., Lin, L., Sun, Y.-X., Diao, Z.-H., Liu, S., … Xu, X.-R. (2019). Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate co-terephtalate) microplastics. Chemosphere, 215, 25–32. doi:10.1016/j.chemosphere.2018.09.173

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.