1,442
Views
23
CrossRef citations to date
0
Altmetric
Articles

Transport of engineered nanoparticles in porous media and its enhancement for remediation of contaminated groundwater

, , , &
Pages 2301-2378 | Published online: 26 Nov 2019

References

  • Abdel-Fattah, A. I., Dongxu, Z., Hakim, B., Sowmitri, T., S Doug, W., & Keller, A. A. (2013). Dispersion stability and electrokinetic properties of intrinsic plutonium colloids: Implications for subsurface transport. Environmental Science & Technology, 47(11), 5626–5634. doi:10.1021/es304729d
  • Abraham, P. M., Sandra, B., Thomas, B., Melanie, K., Ivleva, N. P., & Schaumann, G. E. (2013). Sorption of silver nanoparticles to environmental and model surfaces. Environmental Science & Technology, 47(10), 5083–5091. doi:10.1021/es303941e
  • Adeleye, A. S., Keller, A. A., Miller, R. J., & Lenihan, H. S. (2013). Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products. Journal of Nanoparticles Research, 15(1), 1418.
  • Adrian, Y. F., Schneidewind, U., Bradford, S. A., Simunek, J., Fernandez-Steeger, T. M., & Azzam, R. (2018). Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material. Environmental Pollution, 236, 195–207. doi:10.1016/j.envpol.2018.01.011
  • Afrooz, A. R., Das, D., Murphy, C. J., Vikesland, P., & Saleh, N. B. (2016). Co-transport of gold nanospheres with single-walled carbon nanotubes in saturated porous media. Water Research, 99, 7–15.
  • Auset, M., & Keller, A. A. (2004). Pore-scale processes that control dispersion of colloids in saturated porous media. Water Resources Research, 40(3), W03503. doi:10.1029/2003WR002800
  • Auset, M., & Keller, A. A. (2006). Pore-scale visualization of colloid straining and filtration in saturated porous media using micromodels. Water Resources Research, 42(12), W12S02. doi:10.1029/2005WR004639
  • Babakhani, P., Bridge, J., Doong, R. A., & Phenrat, T. (2017a). Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review. Advances in Colloid and Interface Science, 246, 75–104. doi:10.1016/j.cis.2017.06.002
  • Babakhani, P., Bridge, J., Doong, R. A., & Phenrat, T. (2017b). Parameterization and prediction of nanoparticle transport in porous media: A reanalysis using artificial neural network. Water Resources Research, 53(6), 4564–4585. doi:10.1002/2016WR020358
  • Babakhani, P., Fagerlund, F., Shamsai, A., Lowry, G. V., & Phenrat, T. (2018). Modified MODFLOW-based model for simulating the agglomeration and transport of polymer-modified Fe0 nanoparticles in saturated porous media. Environmental Science and Pollution Research, 25(8), 7180–7199. doi:10.1007/s11356-015-5193-0
  • Barnes, D. K. A., Francois, G., Thompson, R. C., & Morton, B. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985–1998. doi:10.1098/rstb.2008.0205
  • Basnet, M., Ghoshal, S., & Tufenkji, N. (2013). Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media. Environmental Science & Technology, 47(23), 13355–13364. doi:10.1021/es402619v
  • Basnet, M., Tommaso, C. D., Ghoshal, S., & Tufenkji, N. (2015). Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand. Water Research, 68(68), 354–363. doi:10.1016/j.watres.2014.09.039
  • Batchelor, G. K. (1976). Brownian diffusion of particles with hydrodynamic interaction. Journal of Fluid Mechanics, 74(1), 1–29. doi:10.1017/S0022112076001663
  • Bayat, A. E., Junin, R., Derahman, M. N., & Samad, A. A. (2015). TiO2 nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions. Chemosphere, 134, 7–15. doi:10.1016/j.chemosphere.2015.03.052
  • Bayat, A. E., Junin, R., Shamshirband, S., & Chong, W. T. (2015). Transport and retention of engineered Al2O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks. Science Report, 5(14264), 1–12.
  • Ben-Moshe, T., Frenk, S., Dror, I., Minz, D., & Berkowitz, B. (2013). Effects of metal oxide nanoparticles on soil properties. Chemosphere, 90(2), 640–646. doi:10.1016/j.chemosphere.2012.09.018
  • Bennett, P., He, F., Zhao, D., Aiken, B., & Feldman, L. (2010). In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Journal of Contaminant Hydrology, 116(1–4), 35–46. doi:10.1016/j.jconhyd.2010.05.006
  • Bleyl, S., Kopinke, F. D., & Mackenzie, K. (2012). Carbo-iron (R)-synthesis and stabilization of Fe(0)-doped colloidal activated carbon for in situ groundwater treatment. Chemical Engineering Journal, 191(1), 588–595. doi:10.1016/j.cej.2012.03.021
  • Boccardo, G., Marchisio, D. L., & Sethi, R. (2014). Microscale simulation of particle deposition in porous media. Journal of Colloid and Interface Science., 417(3), 227–237. doi:10.1016/j.jcis.2013.11.007
  • Bouchard, D., Zhang, W., Powell, T., & Rattanaudompol, U. S. (2012). Aggregation kinetics and transport of single-walled carbon nanotubes at low surfactant concentrations. Environmental Science & Technology, 46(8), 4458–4465. doi:10.1021/es204618v
  • Bradford, S. A., & Bettahar, M. (2006). Concentration dependent transport of colloids in saturated porous media. Journal of Contaminant Hydrology, 82(1–2), 99–117. doi:10.1016/j.jconhyd.2005.09.006
  • Bradford, S. A., Bettahar, M., Simunek, J., & Genuchten, M. T. V. (2004). Straining and attachment of colloids in physically heterogeneous porous media. Vadose Zone Journal, 3(2), 384–394. doi:10.2113/3.2.384
  • Bradford, S. A., Kim, H., Shen, C., Sasidharan, S., & Shang, J. (2017). Contributions of nanoscale roughness to anomalous colloid retention and stability behavior. Langmuir, 33(38), 10094–10105. doi:10.1021/acs.langmuir.7b02445
  • Bradford, S. A., Morales, V. L., Zhang, W., Harvey, R. W., Packman, A. I., Mohanram, A., & Welty, C. (2013). Transport and fate of microbial pathogens in agricultural settings. Critical Reviews in Environmental Science and Technology, 43(8), 775–893. doi:10.1080/10643389.2012.710449
  • Bradford, S. A., Simunek, J., Bettahar, M., Van Genuchten, M. T., & Yates, S. R. (2003). Modeling colloid attachment, straining, and exclusion in saturated porous media. Environmental Science & Technology, 37(10), 2242–2250. doi:10.1021/es025899u
  • Bradford, S. A., & Torkzaban, S. (2008). Colloid transport and retention in unsaturated porous media: A Review of interface-, collector-, and pore-scale processes and models. Vadose Zone Journal, 7(2), 667–681. doi:10.2136/vzj2007.0092
  • Bradford, S. A., Torkzaban, S., & Shapiro, A. (2013). A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media. Langmuir: The ACS Journal of Surfaces and Colloids, 29(23), 6944–6952. doi:10.1021/la4011357
  • Bradford, S. A., Torkzaban, S., & Wiegmann, A. (2011). Pore-scale simulations to determine the applied hydrodynamic torque and colloid immobilization. Vadose Zone Journal, 10(1), 252–261. doi:10.2136/vzj2010.0064
  • Bradford, S. A., Yates, S. R., Bettahar, M., & Simunek, J. (2002). Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resources Research, 38(12), 1327–1338. doi:10.1029/2002WR001340
  • Braun, A., Klumpp, E., Azzam, R., & Neukum, C. (2015). Transport and deposition of stabilized engineered silver nanoparticles in water saturated loamy sand and silty loam. Science of the Total Environment, 535, 102–112. doi:10.1016/j.scitotenv.2014.12.023
  • Busch, J., Meißner, T., Potthoff, A., Bleyl, S., Georgi, A., Mackenzie, K., … Oswald, S. E. (2015). A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. Journal of Contaminant Hydrology, 181, 59–68. doi:10.1016/j.jconhyd.2015.03.009
  • Busch, J., Meißner, T., Potthoff, A., & Oswald, S. E. (2014). Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media. Journal of Contaminant Hydrology, 164(4), 25–34. doi:10.1016/j.jconhyd.2014.05.006
  • Busch, J., Meißner, T., Potthoff, A., & Oswald, S. E. (2014). Investigations on mobility of carbon colloid supported nanoscale zero-valent iron (nZVI) in a column experiment and a laboratory 2D-aquifer test system. Environmental Science and Pollution Research, 21(18), 10908–10916. doi:10.1007/s11356-014-3049-7
  • Cai, L., Peng, S., Dan, W., & Tong, M. (2016). Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand. Environmental Pollution, 208, 637–644. doi:10.1016/j.envpol.2015.10.040
  • Cai, L., Zhu, J., Hou, Y., Tong, M., & Kim, H. (2015). Influence of gravity on transport and retention of representative engineered nanoparticles in quartz sand. Journal of Contaminant Hydrology, 181, 153–160. doi:10.1016/j.jconhyd.2015.02.005
  • Carstens, J. F., Bachmann, J., & Neuweiler, I. (2017). Effects of flow interruption on transport and retention of iron oxide colloids in ouartz sand. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 532–543. doi:10.1016/j.colsurfa.2017.02.003
  • Cernik, M., Nosek, J., Filip, J., Hrabal, J., Elliott, D. W., & Zboril, R. (2019). Electric-field enhanced reactivity and migration of iron nanoparticles with implications for groundwater treatment technologies: Proof of concept. Water Research, 154, 361–369. doi:10.1016/j.watres.2019.01.058
  • Chae, S. R., Xiao, Y., Lin, S., Noeiaghaei, T., Kim, J. O., & Wiesner, M. R. (2012). Effects of humic acid and electrolytes on photocatalytic reactivity and transport of carbon nanoparticle aggregates in water. Water Research, 46(13), 4053–4062. doi:10.1016/j.watres.2012.05.018
  • Chang, M. C., Shu, H. Y., Hsieh, W. P., & Wang, M. C. (2005). Using nanoscale zero-valent iron for the remediation of polycyclic aromatic hydrocarbons contaminated soil. Journal of the Air & Waste Management Association, 55(8), 1200–1207. doi:10.1080/10473289.2005.10464703
  • Chang, M. P., Chu, K. H., Heo, J., Her, N., Min, J., Son, A., & Yoon, Y. (2016). Environmental behavior of engineered nanomaterials in porous media: A review. Journal of Hazardous Materials, 309, 133–150. doi:10.1016/j.jhazmat.2016.02.006
  • Chang, P. Y., Bindumadhavan, K., & Doong, R. A. (2015). Size effect of ordered mesoporous carbon nanospheres for anodes in li-ion battery. Nanomaterials, 5(4), 2348–2358. doi:10.3390/nano5042348
  • Chekli, L., Brunetti, G., Marzouk, E. R., Maoz-Shen, A., Smith, E., Naidu, R., … Donner, E. (2016). Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores. Environmental Pollution, 216, 636–645. doi:10.1016/j.envpol.2016.06.025
  • Chekli, L., Phuntsho, S., Roy, M., Lombi, E., Donner, E., & Shon, H. K. (2013). Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach. Water Research, 47(13), 4585–4599. doi:10.1016/j.watres.2013.04.029
  • Chen, G., Liu, X., & Su, C. (2012). Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns. Environmental Science & Technology, 46(13), 7142–7150. doi:10.1021/es204010g
  • Chen, L., Sabatini, D. A., & Kibbey, T. C. (2012). Transport and retention of fullerene (nC60) nanoparticles in unsaturated porous media: Effects of solution chemistry and solid phase coating. Journal of Contaminant Hydrology, 138–139(9), 104–112. doi:10.1016/j.jconhyd.2012.06.009
  • Chen, L., Sabatini, D. A., & Kibbey, T. C. G. (2008). Role of the air–water interface in the retention of TiO2 nnanoparticles in porous media during primary drainage. Environmental Science & Technology, 42(6), 1916–1921. doi:10.1021/es071410r
  • Chen, M., Wang, D., Yang, F., Xu, X., Xu, N., & Cao, X. (2017). Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions. Environmental Pollution, 230, 540–549. doi:10.1016/j.envpol.2017.06.101
  • Chen, M., Xu, N., Cao, X., Zhou, K., Chen, Z., Wang, Y., & Liu, C. (2015). Facilitated transport of anatase titanium dioxides nanoparticles in the presence of phosphate in saturated sands. Journal of Colloid and Interface Science, 451, 134–143. doi:10.1016/j.jcis.2015.04.010
  • Chen, X., Yao, X., Yu, C., Su, X., Shen, C., Chen, C., … Xu, X. (2014). Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles. Environmental Science and Pollution Research, 21(7), 5201–5210. doi:10.1007/s11356-013-2089-8
  • Chiang, L. F., & Doong, R. A. (2015). Enhanced photocatalytic degradation of sulfamethoxazole by visible-light-sensitive TiO2 with low Cu addition. Separation and Purification Technology, 156, 1003–1010. doi:10.1016/j.seppur.2015.10.011
  • Chowdhury, A. I. A., O’Carroll, D. M., Xu, Y., & Sleep, B. E. (2012). Electrophoresis enhanced transport of nano-scale zero valent iron. Advances in Water Resources, 40, 71–82. doi:10.1016/j.advwatres.2012.01.014
  • Chowdhury, I., Cwiertny, D. M., & Walker, S. L. (2012). Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria. Environmental Science & Technology, 46(13), 6968–6976. doi:10.1021/es2034747
  • Chrysikopoulos, C. V., Sotirelis, N. P., & Kallithrakas-Kontos, N. G. (2017). Cotransport of graphene oxide nanoparticles and kaolinite colloids in porous media. Transport Porous Med, 219, 1–24.
  • Chrysikopoulos, C. V., & Syngouna, V. I. (2014). Effect of gravity on colloid transport through water-saturated columns packed with glass beads: Modeling and experiments. Environmental Science & Technology, 48(12), 6805–6813. doi:10.1021/es501295n
  • Comba, S., Dalmazzo, D., Santagata, E., & Sethi, R. (2011). Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. Journal of Hazardous Materials, 185(2-3), 598–605. doi:10.1016/j.jhazmat.2010.09.060
  • Comba, S., & Sethi, R. (2009). Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Research, 43(15), 3717–3726. doi:10.1016/j.watres.2009.05.046
  • Cornelis, G., Hund-Rinke, K., Kuhlbusch, T., van den Brink, N., & Nickel, C. (2014). Fate and bioavailability of engineered nanoparticles in soils: A review. Critical Reviews in Environmental Science and Technology, 44(24), 2720–2764. doi:10.1080/10643389.2013.829767
  • Cornelis, G., Pang, L., Doolette, C., Kirby, J. K., & Mclaughlin, M. J. (2013). Transport of silver nanoparticles in saturated columns of natural soils. Science of the Total Environment, 463–464, 120–130. doi:10.1016/j.scitotenv.2013.05.089
  • Crampon, M., Hellal, J., Mouvet, C., Wille, G., Michel, C., Wiener, A., … Ollivier, P. (2018). Do natural biofilm impact nZVI mobility and interactions with porous media? A column study. Science of the Total Environment, 610–611, 709–719. doi:10.1016/j.scitotenv.2017.08.106
  • Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211–212, 112–125. doi:10.1016/j.jhazmat.2011.11.073
  • Díaz, J., Rendueles, M., & Díaz, M. (2010). Straining phenomena in bacteria transport through natural porous media. Environmental Science and Pollution Research, 17(2), 400–409. doi:10.1007/s11356-009-0160-2
  • Dale, A., Lowry, G., & Casman, E. (2015). Much ado about α: Reframing the debate over appropriate fate descriptors in nanoparticle environmental risk modeling. Environmental Science: Nano, 2(1), 27–32. doi:10.1039/C4EN00170B
  • Darko-Kagya, K., & Reddy, K. R. (2011). Two-dimensional transport of lactate-modified nanoscale iron particles in porous media. Remediation Journal, 21(4), 45–72. doi:10.1002/rem.20299
  • Derjaguin, B., & Landau, L. (1941). Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Progress in Surface Science, 14(6), 633–663.
  • Ding, D., Liu, C., Ji, Y., Yang, Q., Chen, L., Jiang, C., & Cai, T. (2017). Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: Identification of radicals and degradation pathway. Chemical Engineering Journal, 308, 330–339. doi:10.1016/j.cej.2016.09.077
  • Dong, H., Zeng, G., Zhang, C., Liang, J., Ahmad, K., Xu, P., … Lai, M. (2015). Interaction between Cu2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media. Journal of Environmental Sciences, 32(6), 180–188. doi:10.1016/j.jes.2014.09.043
  • Dong, S., Sun, Y., Gao, B., Shi, X., Xu, H., Wu, J., & Wu, J. (2017). Retention and transport of graphene oxide in water-saturated limestone media. Chemosphere, 180, 506–512. doi:10.1016/j.chemosphere.2017.04.052
  • Dong, Z., Zhang, W., Qiu, Y., Yang, Z., Wang, J., & Zhang, Y. (2019). Cotransport of nanoplastics (NPs) with fullerene (C60) in saturated sand: Effect of NPs/C60 ratio and seawater salinity. Water Research, 148, 469–478. doi:10.1016/j.watres.2018.10.071
  • El-Temsah, Y. S., & Joner, E. J. (2013). Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere, 92(1), 131–137. doi:10.1016/j.chemosphere.2013.02.039
  • Elimelech, M., Gregory, J., Jia, X., & Williams, R. A. (1995). Particle deposition and aggregation, measurement, modelling and simulation. Boston, MA: Butterworth-Heinemann.
  • Elimelech, M., & O'Melia, C. R. (1990). Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers. Langmuir, 6(6), 1153–1163. doi:10.1021/la00096a023
  • Elliott, D. W., & Zhang, W. X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 35(24), 4922–4926. doi:10.1021/es0108584
  • Esfahani, A. R., Firouzi, A. F., Sayyad, G., & Kiasat, A. R. (2014). Transport and retention of polymer-stabilized zero-valent iron nanoparticles in saturated porous media: Effects of initial particle concentration and ionic strength. Journal of Industrial and Engineering Chemistry, 20(5), 2671–2679. doi:10.1016/j.jiec.2013.10.054
  • Fan, W., Jiang, X., Lu, Y., Huo, M., Lin, S., & Geng, Z. (2015). Effects of surfactants on graphene oxide nanoparticles transport in saturated porous media. Journal of Environmental Sciences, 35(9), 12–19. doi:10.1016/j.jes.2015.02.007
  • Fan, W., Jiang, X. H., Yang, W., Geng, Z., Huo, M. X., Liu, Z. M., & Zhou, H. (2015). Transport of graphene oxide in saturated porous media: Effect of cation composition in mixed Na-Ca electrolyte systems. Science of the Total Environment, 511, 509–515. doi:10.1016/j.scitotenv.2014.12.099
  • Fang, G. D., Dionysiou, D. D., Al-Abed, S. R., & Zhou, D. M. (2013). Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs. Applied Catalysis B: Environmental, 129(6), 325–332. doi:10.1016/j.apcatb.2012.09.042
  • Fang, J., Shan, X. Q., Wen, B., & Huang, R. X. (2013). Mobility of TX100 suspended multiwalled carbon nanotubes (MWCNTs) and the facilitated transport of phenanthrene in real soil columns. Geoderma, 207–208(1), 1–7. doi:10.1016/j.geoderma.2013.04.035
  • Fang, J., Wang, M. H., Lin, D. H., & Shen, B. (2016). Enhanced transport of CeO2 nanoparticles in porous media by macropores. The Science of the Total Environment, 543(Pt A), 223–229. doi:10.1016/j.scitotenv.2015.11.039
  • Fang, J., Xu, M. J., Wang, D. J., Wen, B., & Han, J. Y. (2013). Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: Effects of ionic strength and pH. Water Research, 47(3), 1399–1408. doi:10.1016/j.watres.2012.12.005
  • Foppen, J. W., Herwerden, M. V., & Schijven, J. (2007). Transport of Escherichia coli in saturated porous media: Dual mode deposition and intra-population heterogeneity. Water Research, 41(8), 1743–1753. doi:10.1016/j.watres.2006.12.041
  • Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. Journal of Hazardous Materials, 267, 194–205. doi:10.1016/j.jhazmat.2013.12.062
  • Furman, O., Usenko, S., & Lau, B. L. T. (2013). Relative importance of the hhumic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles. Environmental Science & Technology, 47(3), 1349–1356. doi:10.1021/es303275g
  • Gao, B., Saiers, J. E., & Ryan, J. (2006). Pore‐scale mechanisms of colloid deposition and mobilization during steady and transient flow through unsaturated granular media. Water Resources Research, 42(1), 85–88.
  • Garner, K. L., & Keller, A. A. (2014). Emerging patterns for engineered nanomaterials in the environment: A review of fate and toxicity studies. Journal of Nanoparticle Research, 16(8), 2503. doi:10.1007/s11051-014-2503-2
  • Ghafoor, A., Koestel, J., Larsbo, M., Moeys, J., & Jarvis, N. (2013). Soil properties and susceptibility to preferential solute transport in tilled topsoil at the catchment scale. Journal of Hydrology, 492(12), 190–199.
  • Gil-Díaz, M., Alonso, J., Rodríguez-Valdés, E., Gallego, J. R., & Lobo, M. C. (2017). Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. Science of the Total Environment, 584–585, 1324–1332.
  • Gil-Díaz, M., Alonso, J., Rodríguez-Valdés, E., Pinilla, P., & Lobo, M. C. (2014). Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 49(12), 1361–1369. doi:10.1080/10934529.2014.928248
  • Godinez, I. G., & Darnault, C. J. G. (2011). Aggregation and transport of nano-TiO2 in saturated porous media: Effects of pH, surfactants and flow velocity. Water Research, 45(2), 839–851. doi:10.1016/j.watres.2010.09.013
  • Gomes, H. I., Rodríguez-Maroto, J. M., Ribeiro, A. B., Pamukcu, S., & Dias-Ferreira, C. (2016). Electrokinetics and zero valent iron nanoparticles: Experimental and modeling of the transport in different porous media. In A. Ribeiro, B. E. Mateus, & P. N. Couto (Eds.), Electrokinetics across disciplines and continents (pp. 279–294). Springer.
  • Gomes, H. I., Dias-Ferreira, C., Ribeiro, A. B., & Pamukcu, S. (2013a). Direct current assisted transport and transformation of zero-valent nanoiron in porous media. Water, Air, & Soil Pollution, 224(12), 1710. doi:10.1007/s11270-013-1710-2
  • Gomes, H. I., Dias-Ferreira, C., Ribeiro, A. B., & Pamukcu, S. (2013b). Enhanced transport and transformation of zerovalent nanoiron in clay using direct electric current. Water, Air, & Soil Pollution, 224(12). doi:10.1007/s11270-013-1710-2
  • Gomes, H. I., Dias-Ferreira, C., Ribeiro, A. B., & Pamukcu, S. (2014). Influence of electrolyte and voltage on the direct current enhanced transport of iron nanoparticles in clay. Chemosphere, 99, 171–179.
  • Gomes, H. I., Rodríguez-Maroto, J. M., Ribeiro, A. B., Pamukcu, S., & Dias-Ferreira, C. (2015). Numerical prediction of diffusion and electric field-induced iron nanoparticle transport. Electrochimica Acta, 181, 5–12. doi:10.1016/j.electacta.2014.11.157
  • Gomesa, H. I., Dias-Ferreira, C., & Ribeiro, A. B. (2012). Electrokinetic enhanced transport of zero valent iron nanoparticles for chromium (VI) reduction in soils. Chemical Engineering Transactions, 28, 139–144.
  • Gong, Y., Tang, J., & Zhao, D. (2016). Application of iron sulfide particles for groundwater and soil remediation: A review. Water Research, 89, 309–320. doi:10.1016/j.watres.2015.11.063
  • Guzman, K. A., Finnegan, M. P., & Banfield, J. F. (2006). Influence of surface potential on aggregation and transport of Titania nanoparticles. Environmental Science Technology, 40(24), 7688–7693.
  • Han, B., Liu, W., Zhao, X., Cai, Z., & Zhao, D. (2017). Transport of multi-walled carbon nanotubes stabilized by carboxymethyl cellulose and starch in saturated porous media: Influences of electrolyte, clay and humic acid. Science of the Total Environment, 599–600, 188–197. doi:10.1016/j.scitotenv.2017.04.222
  • Han, P., Wang, X., Cai, L., Tong, M., & Kim, H. (2014). Transport and retention behaviors of titanium dioxide nanoparticles in iron oxide-coated quartz sand: Effects of pH, ionic strength, and humic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454(1), 119–127. doi:10.1016/j.colsurfa.2014.04.020
  • Han, P., Zhou, D., Tong, M., & Kim, H. (2016). Effect of bacteria on the transport and deposition of multi-walled carbon nanotubes in saturated porous media. Environmental Pollution, 213, 895–903.
  • He, F., Zhang, M., Qian, T., & Zhao, D. (2009). Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling. Journal of Colloid and Interface Science, 334(1), 96–102.
  • He, F., Zhao, D., & Paul, C. (2010). Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 44(7), 2360–2370.
  • He, J. Z., Li, C. C., Wang, D. J., & Zhou, D. M. (2015). Biofilms and extracellular polymeric substances mediate the transport of graphene oxide nanoparticles in saturated porous media. Journal of Hazardous Materials, 300(1), 467–474.
  • He, J. Z., Wang, D. J., Fang, H., Fu, Q. L., & Zhou, D. M. (2017). Inhibited transport of graphene oxide nanoparticles in granular quartz sand coated with Bacillus subtilis and Pseudomonas putida biofilms. Chemosphere, 169, 1–8.
  • He, N., Li, P., Zhou, Y., Ren, W., Fan, S., & Verkhozina, V. A. (2009). Catalytic dechlorination of polychlorinated biphenyls in soil by palladium–iron bimetallic catalyst. Journal of Hazardous Materials, 164(1), 126–132.
  • Hedayati, M., Sharma, P., Katyal, D., & Fagerlund, F. (2016). Transport and retention of carbon-based engineered and natural nanoparticles through saturated porous media. Journal of Nanoparticle Research, 18(3), 57–68.
  • Henry, C., Minier, J.-P., Lefèvre, G., & Hurisse, O. (2011). Numerical study on the deposition rate of hematite particle on polypropylene walls: Role of surface roughness. Langmuir, 27(8), 4603–4612. doi:10.1021/la104488a
  • Herzig, J. P., Leclerc, D. M., & Goff, P. L. (1970). Flow of suspensions through porous media—application to deep filtration. Industrial & Engineering Chemistry, 62(5), 8–35.
  • Hoch, L. B., Mack, E. J., Hydutsky, B. W., Hershman, J. M., Skluzacek, J. M., & Mallouk, T. E. (2008). Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environmental Science Technology., 42(7), 2600–2605.
  • Honetschlägerová, L., Janouškovcová, P., & Kubal, M. (2016). Enhanced transport of Si-coated nanoscale zero-valent iron particles in porous media. Environmental Technology, 37(12), 1530–1538.
  • Hoppe, M., Mikutta, R., Utermann, J., Duijnisveld, W., & Guggenberger, G. (2014). Retention of sterically and electrosterically stabilized silver nanoparticles in soils. Environmental Science Technology, 48(21), 12628–12635.
  • Horst, A. M., Neal, A. C., Mielke, R. E., Sislian, P. R., Suh, W. H., Madler, L., … Holden, P. A. (2010). Dispersion of TiO2 nanoparticle agglomerates by Pseudomonas aeruginosa. Applied and Environmental Microbiology, 76(21), 7292–7298. doi:10.1128/AEM.00324-10
  • Hosseini, S. M., & Tosco, T. (2013). Transport and retention of high concentrated nano-Fe/Cu particles through highly flow-rated packed sand column. Water Research, 47(1), 326–338. doi:10.1016/j.watres.2012.10.002
  • Hou, J., Zhang, M., Wang, P., Wang, C., Miao, L., Xu, Y., … Liu, Z. (2017a). Transport and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impacts of input concentration, grain size and flow rate. Water Research, 127, 86–95. doi:10.1016/j.watres.2017.10.017
  • Hou, J., Zhang, M., Wang, P., Wang, C., Miao, L., Xu, Y., … Liu, Z. (2017b). Transport, retention, and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impact of natural organic matters and electrolyte. Environmental Pollution, 229, 49–59. doi:10.1016/j.envpol.2017.05.059
  • Hu, Z., Zhao, J., Gao, H., Nourafkan, E., & Wen, D. (2017). Transport and deposition of carbon nanoparticles in saturated porous media. Energies, 10(8), 1151–1168. doi:10.3390/en10081151
  • Hussain, I., Zhang, Y., & Huang, S. (2014). Degradation of aniline with zero-valent iron as an activator of persulfate in aqueous solution. RSC Advances., 4(7), 3502–3511. doi:10.1039/C3RA43364A
  • Huynh, K. A., Mccaffery, J. M., & Chen, K. L. (2012). Heteroaggregation of multiwalled carbon nanotubes and hematite nanoparticles: Rates and mechanisms. Environmental Science & Technology, 46(11), 5912–5920. doi:10.1021/es2047206
  • Iqbal, M., Lyon, B. A., Ureña-Benavides, E. E., Moaseri, E., Fei, Y., McFadden, C., … Johnston, K. P. (2017). High temperature stability and low adsorption of sub-100 nm magnetite nanoparticles grafted with sulfonated copolymers on Berea sandstone in high salinity brine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 257–267. doi:10.1016/j.colsurfa.2017.01.080
  • Jaisi, D. P., Saleh, N. B., Blake, R. E., & Elimelech, M. (2008). Transport of single-walled carbon nanotubes in porous media: Filtration mechanisms and reversibility. Environmental Science & Technology, 42(22), 8317–8323. doi:10.1021/es801641v
  • Jiang, X., Tong, M., & Kim, H. (2012). Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media. Journal of Colloid and Interface Science, 386(1), 34–43. doi:10.1016/j.jcis.2012.07.002
  • Jiang, X., Tong, M., Lu, R., & Kim, H. (2012). Transport and deposition of ZnO nanoparticles in saturated porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 401(9), 29–37. doi:10.1016/j.colsurfa.2012.03.004
  • Jiang, X., Wang, X., Tong, M., & Kim, H. (2013). Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm. Environmental Pollution, 174(5), 38–49.
  • Jiemvarangkul, P., Zhang, W. X., & Lien, H. L. (2011). Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chemical Engineering Journal, 170(2–3), 482–491. doi:10.1016/j.cej.2011.02.065
  • Johnson, P. R., & Elimelech, M. (1995). Dynamics of colloid deposition in porous media: Blocking based on random sequential adsorption. Langmuir, 11(3), 801–812. doi:10.1021/la00003a023
  • Johnson, R. L., Johnson, G. O., Nurmi, J. T., & Tratnyek, P. G. (2009). Natural organic matter enhanced mobility of nano zerovalent iron. Environmental Science & Technology, 43(14), 5455–5460. doi:10.1021/es900474f
  • Johnson, R. L., Nurmi, J. T., O’Brien Johnson, G. S., Fan, D., O’Brien Johnson, R. L., Shi, Z., … Lowry, G. V. (2013). Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Environmental Science & Technology, 47(3), 1573–1580. doi:10.1021/es304564q
  • Jones, E. H., & Su, C. (2012). Fate and transport of elemental copper (Cu0) nanoparticles through saturated porous media in the presence of organic materials. Water Research, 46(7), 2445–2456. doi:10.1016/j.watres.2012.02.022
  • Joo, S. H., Feitz, A. J., & Waite, T. D. (2004). Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environmental Science & Technology, 38(7), 2242–2247. doi:10.1021/es035157g
  • Joo, S. H., & Zhao, D. (2017). Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review. Journal of Hazardous Materials, 322(16), 29–47. doi:10.1016/j.jhazmat.2016.02.068
  • Jung, B., O'Carroll, D., & Sleep, B. (2014). The influence of humic acid and clay content on the transport of polymer-coated iron nanoparticles through sand. The Science of the Total Environment, 496, 155–164. doi:10.1016/j.scitotenv.2014.06.075
  • Kadhum, M. J., Swatske, D. P., Harwell, J. H., Shiau, B., & Resasco, D. E. (2013). Propagation of interfacially active carbon nanohybrids in porous media. Energy & Fuels, 27(11), 6518–6527. doi:10.1021/ef401387j
  • Kamrani, S., Rezaei, M., Kord, M., & Baalousha, M. (2018). Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size. Water Research, 133, 338–347. doi:10.1016/j.watres.2017.08.045
  • Kanel, S. R., Flory, J., Meyerhoefer, A., Fraley, J. L., Sizemore, I. E., & Goltz, M. N. (2015). Influence of natural organic matter on fate and transport of silver nanoparticles in saturated porous media: Laboratory experiments and modeling. Journal of Nanoparticles Research, 17(3), 1–13.
  • Kang, J.-K., Yi, I.-G., Park, J.-A., Kim, S.-B., Kim, H., Han, Y., … Jo, E. (2015). Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses. Journal of Contaminant Hydrology, 177–178, 194–205. doi:10.1016/j.jconhyd.2015.04.009
  • Karn, B., Kuiken, T., & Otto, M. (2011). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Ciencia & Saude Coletiva, 16(1), 165–178. doi:10.1590/s1413-81232011000100020
  • Kasel, D., Bradford, S. A., Šimůnek, J., Heggen, M., Vereecken, H., & Klumpp, E. (2013). Transport and retention of multi-walled carbon nanotubes in saturated porous media: Effects of input concentration and grain size. Water Research, 47(2), 933–944. doi:10.1016/j.watres.2012.11.019
  • Katzourakis, V. E., & Chrysikopoulos, C. V. (2017). Fitting the transport and attachment of dense biocolloids in onedimensional porous media: ColloidFit. Groundwater, 55(2), 156–159. doi:10.1111/gwat.12501
  • Keller, A. A., & Auset, M. (2007). A review of visualization techniques of biocolloid transport processes at the pore scale under saturated and unsaturated conditions. Advances in Water Resources, 30(6–7), 1392–1407. doi:10.1016/j.advwatres.2006.05.013
  • Keller, A. A., Wang, H., Zhou, D., Lenihan, H. S., Cherr, G., Cardinale, B. J., … Ji, Z. (2010). Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environmental Science & Technology, 44(6), 1962–1967. doi:10.1021/es902987d
  • Keller, A. A., & Sirivithayapakorn, S. (2004). Transport of colloids in unsaturated porous media: Explaining large-scale behavior based on pore-scale mechanisms. Water Resources Research, 40(12), W12403. doi:10.1029/2004WR003315
  • Keller, A. A., Sirivithayapakorn, S., & Chrysikopoulos, C. V. (2004). Early breakthrough of colloids and bacteriophage MS2 in a water-saturated sand column. Water Resources Research, 40(40), W08304. doi:10.1029/2003WR002676
  • Kim, C., & Lee, S. (2014). Effect of seepage velocity on the attachment efficiency of TiO2 nanoparticles in porous media. Journal of Hazardous Materials, 279, 163–168. doi:10.1016/j.jhazmat.2014.06.072
  • Kim, H. J., Phenrat, T., Tilton, R. D., & Lowry, G. V. (2009). Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environmental Science & Technology, 43(10), 3824–3830. doi:10.1021/es802978s
  • Kim, H. J., Phenrat, T., Tilton, R. D., & Lowry, G. V. (2012). Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. Journal of Colloid and Interface Science., 370(1), 1–10. doi:10.1016/j.jcis.2011.12.059
  • Kini, G. C., Yu, J., Wang, L., Kan, A. T., Biswal, S. L., Tour, J. M., … Wong, M. S. (2014). Salt- and temperature-stable quantum dot nanoparticles for porous media flow. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443(4), 492–500. doi:10.1016/j.colsurfa.2013.11.042
  • Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., … Lead, J. R. (2008). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27(9), 1825–1851. doi:10.1897/08-090.1
  • Kocur, C. M., Chowdhury, A. I., Sakulchaicharoen, N., Boparai, H. K., Weber, K. P., Sharma, P., … O’Carroll, D. M. (2014). Characterization of nZVI mobility in a field scale test. Environmental Science & Technology, 48(5), 2862–2869. doi:10.1021/es4044209
  • Kozma, G., Rónavári, A., Kónya, Z., & Kukovecz, A. (2016). Environmentally benign synthesis methods of zero-valent iron nanoparticles. ACS Sustainable Chemistry & Engineering, 4(1), 291–297. doi:10.1021/acssuschemeng.5b01185
  • Kretzschmar, R., Borkovec, M., Grolimund, D., & Elimelech, M. (1999). Mobile subsurface colloids and their role in contaminant transport. Advances in Agronomy, 66(8), 121–193.
  • Kumahor, S. K., Hron, P., Metreveli, G., Schaumann, G. E., Klitzke, S., Lang, F., & Vogel, H. J. (2016). Transport of soil-aged silver nanoparticles in unsaturated sand. Journal of Contaminant Hydrology, 195, 31–39. doi:10.1016/j.jconhyd.2016.10.001
  • Kumar, N., Labille, J., Bossa, N., Auffan, M., Doumenq, P., Rose, J., & Bottero, J. Y. (2017). Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: Surface modifications, reactivity, and particle traveling distances. Environmental Science and Pollution Research, 24(10), 9269–9277. doi:10.1007/s11356-017-8597-1
  • Kurlanda-Witek, H., Ngwenya, B. T., & Butler, I. B. (2015). The influence of biofilms on the mobility of bare and capped zinc oxide nanoparticles in saturated sand and glass beads. Journal of Contaminant Hydrology, 179, 160–170. doi:10.1016/j.jconhyd.2015.06.009
  • Lanphere, J. D., Rogers, B., Luth, C., Bolster, C. H., & Walker, S. L. (2014). Stability and transport of graphene oxide nanoparticles in groundwater and surface water. Environmental Engineering Science, 31(7), 350–359. doi:10.1089/ees.2013.0392
  • Laumann, S., Micić, V., & Hofmann, T. (2014). Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes. Water Research, 50(1), 70–79. doi:10.1016/j.watres.2013.11.040
  • Laumann, S., Micić, V., Lowry, G. V., & Hofmann, T. (2013). Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Environmental Pollution, 179(8), 53–60. doi:10.1016/j.envpol.2013.04.004
  • Lead, J. R., & Wilkinson, K. J. (2006). Aquatic colloids and nanoparticles: Current knowledge and future trends. Environmental Chemistry, 3(3), 159–171. doi:10.1071/EN06025
  • Lerner, R. N., Lu, Q., Zeng, H., & Liu, Y. (2012). The effects of biofilm on the transport of stabilized zerovalent iron nanoparticles in saturated porous media. Water Research, 46(4), 975–985. doi:10.1016/j.watres.2011.11.070
  • Li, H., Zhao, Y. S., Han, Z. T., & Hong, M. (2015). Transport of sucrose-modified nanoscale zero-valent iron in saturated porous media: Role of media size, injection rate and input concentration. Water Science and Technology, 72(9), 1463–1471. doi:10.2166/wst.2015.308
  • Li, J., Bhattacharjee, S., & Ghoshal, S. (2015). The effects of viscosity of carboxymethyl cellulose on aggregation and transport of nanoscale zerovalent iron. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481, 451–459. doi:10.1016/j.colsurfa.2015.05.023
  • Li, J., & Ghoshal, S. (2016). Comparison of the transport of the aggregates of nanoscale zerovalent iron under vertical and horizontal flow. Chemosphere, 144, 1398–1407. doi:10.1016/j.chemosphere.2015.09.103
  • Li, J., Rajajayavel, S. R., & Ghoshal, S. (2016). Transport of carboxymethyl cellulose-coated zerovalent iron nanoparticles in a sand tank: Effects of sand grain size, nanoparticle concentration and injection velocity. Chemosphere, 150, 8–16. doi:10.1016/j.chemosphere.2015.12.075
  • Li, L., & Schuster, M. (2014). Influence of phosphate and solution pH on the mobility of ZnO nanoparticles in saturated sand. The Science of the Total Environment, 472, 971–978. doi:10.1016/j.scitotenv.2013.11.057
  • Li, M., He, L., Zhang, M., Liu, X., Tong, M., & Kim, H. (2019). Cotransport and deposition of iron oxides with different-sized plastic particles in saturated quartz sand. Environmental Science & Technology, 53(7), 3547–3557. doi:10.1021/acs.est.8b06904
  • Li, X., & Logan, B. E. (1997). Collision frequencies of microbial aggregates with small particles by differential sedimentation. Environmental Science & Technology, 31(4), 1229–1236. doi:10.1021/es960771w
  • Li, Z., Sahle-Demessie, E., Hassan, A. A., & Sorial, G. A. (2011). Transport and deposition of CeO nanoparticles in water-saturated porous media. Water Research, 45(15), 4409–4418. doi:10.1016/j.watres.2011.05.025
  • Liang, B., Xie, Y., Fang, Z., & Tsang, E. P. (2014). Assessment of the transport of polyvinylpyrrolidone-stabilised zero-valent iron nanoparticles in a silica sand medium. Journal of Nanoparticle Research, 16(7), 1–11.
  • Liang, L., Ju, L., Hu, J., Zhang, W., & Wang, X. (2016). Transport of sodium dodecylbenzene sulfonate (SDBS)-dispersed carbon nanotubes and enhanced mobility of tetrabromobisphenol A (TBBPA) in saturated porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 497, 205–213. doi:10.1016/j.colsurfa.2016.03.019
  • Liang, Q., Zhao, D., Qian, T., Freeland, K., & Feng, Y. (2012). Effects of stabilizers and water chemistry on arsenate sorption by polysaccharide-stabilized magnetite nanoparticles. Industrial & Engineering Chemistry Research, 51(5), 2407–2418. doi:10.1021/ie201801d
  • Liang, Y., Bradford, S. A., Simunek, J., Heggen, M., Vereecken, H., & Klumpp, E. (2013). Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil. Environmental Science & Technology, 47(21), 12229–12237. doi:10.1021/es402046u
  • Liang, Y., Bradford, S. A., Simunek, J., Vereecken, H., & Klumpp, E. (2013). Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors. Water Research, 47(7), 2572–2582.
  • Liao, P., Li, W., Wang, D., Jiang, Y., Pan, C., Fortner, J. D., & Yuan, S. (2017). Effect of reduced humic acid on the transport of ferrihydrite nanoparticles under anoxic conditions. Water Research, 109, 347–357. doi:10.1016/j.watres.2016.11.069
  • Limousin, G., Gaudet, J. P., Charlet, L., Szenknect, S., Barthes, V., & Krimissa, M. (2007). Sorption isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry, 22(2), 249–275. doi:10.1016/j.apgeochem.2006.09.010
  • Lin, S., Cheng, Y., Liu, J., & Wiesner, M. R. (2012). Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces. Langmuir, 28(9), 4178–4186. doi:10.1021/la202884f
  • Lin, S., & Wiesner, M. R. (2012). Deposition of aggregated nanoparticles — a theoretical and experimental study on the effect of aggregation state on the affinity between nanoparticles and a collector surface. Environmental Science & Technology, 46(24), 13270–13277. doi:10.1021/es3041225
  • Lin, Y.-H., Tseng, H.-H., Wey, M.-Y., & Lin, M.-D. (2010). Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. The Science of the Total Environment, 408(10), 2260–2267. doi:10.1016/j.scitotenv.2010.01.039
  • Liu, C., Xu, N., Feng, G., Zhou, D., Cheng, X., & Li, Z. (2017). Hydrochars and phosphate enhancing the transport of nanoparticle silica in saturated sands. Chemosphere, 189, 213–223. doi:10.1016/j.chemosphere.2017.09.066
  • Liu, G., Zhong, H., Jiang, Y., Brusseau, M. L., Huang, J., Shi, L., … Zeng, G. (2017). Effect of low‐concentration rhamnolipid biosurfactant on Pseudomonas aeruginosa transport in natural porous media. Water Resources Research, 53(1), 361–375. doi:10.1002/2016WR019832
  • Liu, L., Gao, B., Wu, L., Morales, V. L., Yang, L., Zhou, Z., & Wang, H. (2013). Deposition and transport of graphene oxide in saturated and unsaturated porous media. Chemical Engineering Journal, 229(4), 444–449. doi:10.1016/j.cej.2013.06.030
  • Liu, Q., Lazouskaya, V., He, Q., & Jin, Y. (2010). Effect of particle shape on colloid retention and release in saturated porous media. Journal of Environment Quality, 39(2), 500–508. doi:10.2134/jeq2009.0100
  • Liu, W., Tian, S., Xiao, Z., Xie, W., Gong, Y., & Zhao, D. (2015). Application of stabilized nanoparticles for in situ remediation of metal-contaminated soil and groundwater: A critical review. Current Pollution Reports, 1(4), 280–291.
  • Lohwacharin, J., Takizawa, S., & Punyapalakul, P. (2015). Carbon black retention in saturated natural soils: Effects of flow conditions, soil surface roughness and soil organic matter. Environmental Pollution, 205, 131–138. doi:10.1016/j.envpol.2015.05.036
  • Lowry, G. V., & Johnson, K. M. (2004). Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science & Technology, 38(19), 5208–5216. doi:10.1021/es049835q
  • Lu, R., Yang, K., & Lin, D. (2014). Transport of surfactant-facilitated multiwalled carbon nanotube suspensions in columns packed with sized soil particles. Environmental Pollution, 192, 36–43. doi:10.1016/j.envpol.2014.05.008
  • Lu, T., Xia, T., Qi, Y., Zhang, C., & Chen, W. (2017). Effects of clay minerals on transport of graphene oxide in saturated porous media. Environmental Toxicology and Chemistry, 36(3), 1–6.
  • Luna, M., Gastone, F., Tosco, T., Sethi, R., Velimirovic, M., Gemoets, J., … Bastiaens, L. (2015). Pressure-controlled injection of guar gum stabilized microscale zerovalent iron for groundwater remediation. Journal of Contaminant Hydrology, 181, 46–58. doi:10.1016/j.jconhyd.2015.04.007
  • Lv, X., Gao, B., Sun, Y., Dong, S., Wu, J., Jiang, B., & Shi, X. (2016). Effects of grain size and structural heterogeneity on the transport and retention of nano-TiO2 in saturated porous media. Science of the Total Environment, 563–564, 987–995. doi:10.1016/j.scitotenv.2015.12.128
  • Lv, X., Gao, B., Sun, Y., Shi, X., Xu, H., & Wu, J. (2014). Effects of humic acid and solution chemistry on the retention and transport of cerium dioxide nanoparticles in saturated porous media. Water, Air, & Soil Pollution, 225(10), 2167–2176. doi:10.1007/s11270-014-2167-7
  • Ma, H., Pazmino, E. F., & Johnson, W. P. (2011). Gravitational settling effects on unit cell predictions of colloidal retention in porous media in the absence of energy barriers. Environmental Science & Technology, 45(19), 8306–8312. doi:10.1021/es200696x
  • Majedi, S. M., Kelly, B. C., & Lee, H. K. (2014). Combined effects of water temperature and chemistry on the environmental fate and behavior of nanosized zinc oxide. The Science of the Total Environment, 496, 585–593. doi:10.1016/j.scitotenv.2014.07.082
  • Makselon, J., Zhou, D., Engelhardt, I., Jacques, D., & Klumpp, E. (2017). Experimental and numerical investigations of silver nanoparticle transport under variable flow and ionic strength in soil. Environmental Science & Technology, 51(4), 2096–2104. doi:10.1021/acs.est.6b04882
  • Matheson, L. J., & Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology, 28(12), 2045–2053. doi:10.1021/es00061a012
  • May, R., & Li, Y. (2013). The effects of particle size on the deposition of fluorescent nanoparticles in porous media: Direct observation using laser scanning cytometry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 418(5), 84–91. doi:10.1016/j.colsurfa.2012.11.028
  • Mehmani, Y., & Balhoff, M. T. (2015a). Mesoscale and hybrid models of fluid flow and solute transport. Reviews in Mineralogy and Geochemistry, 80(1), 433–459. doi:10.2138/rmg.2015.80.13
  • Mehmani, Y., & Balhoff, M. T. (2015b). Eulerian network modeling of longitudinal dispersion. Water Resources Research, 51(10), 8586–8606. doi:10.1002/2015WR017543
  • Mekonen, A., Sharma, P., & Fagerlund, F. (2014). Transport and mobilization of multiwall carbon nanotubes in quartz sand under varying saturation. Environmental Earth Sciences, 71(8), 3751–3760. doi:10.1007/s12665-013-2769-1
  • Meng, Z., Hashmi, S. M., & Elimelech, M. (2013). Aggregation rate and fractal dimension of fullerene nanoparticles via simultaneous multiangle static and dynamic light scattering measurement. Journal of Colloid and Interface Science, 392(1), 27–33. doi:10.1016/j.jcis.2012.09.088
  • Mitzel, M. R., Sand, S., Whalen, J. K., & Tufenkji, N. (2016). Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand. Water Research, 92, 113–120. doi:10.1016/j.watres.2016.01.026
  • Mitzel, M. R., & Tufenkji, N. (2014). Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age. Environmental Science & Technology, 48(5), 2715–2723. doi:10.1021/es404598v
  • Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science (New York, N.Y.), 311(5761), 622–627. doi:10.1126/science.1114397
  • Neukum, C., Braun, A., & Azzam, R. (2014). Transport of stabilized engineered silver (Ag) nanoparticles through porous sandstones. Journal of Contaminant Hydrology, 158, 1–13. doi:10.1016/j.jconhyd.2013.12.002
  • O’Carroll, D. M., Liu, X., Mattison, N. T., & Petersen, E. J. (2013). Impact of diameter on carbon nanotube transport in sand. Journal of Colloid and Interface Science., 390(1), 96–104. doi:10.1016/j.jcis.2012.09.034
  • Pamukcu, S., Hannum, L., & Wittle, J. K. (2008). Delivery and activation of nano-iron by DC electric field. Journal of Environmental Science and Health, Part A, 43(8), 934–944. doi:10.1080/10934520801974483
  • Park, C. M., Heo, J., Her, N., Chu, K. H., Jang, M., & Yoon, Y. (2016). Modeling the effects of surfactant, hardness, and natural organic matter on deposition and mobility of silver nanoparticles in saturated porous media. Water Research, 103, 38–47. doi:10.1016/j.watres.2016.07.022
  • Parks, G. A. (1965). The isoelectric points of solid oxides, solid hydroxides, and aqueoushydroxo complex systems. Chemical Reviews, 65(2), 177–198. doi:10.1021/cr60234a002
  • Patil, S. S., Shedbalkar, U. U., Truskewycz, A., Chopade, B. A., & Ball, A. S. (2016). Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions. Environmental Technology & Innovation, 5, 10–21. doi:10.1016/j.eti.2015.11.001
  • Pelley, A. J., & Tufenkji, N. (2008). Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media. Journal of Colloid and Interface Science, 321(1), 74–83. doi:10.1016/j.jcis.2008.01.046
  • Peszynska, M., Trykozko, A., Iltis, G., Schlueter, S., & Wildenschild, D. (2016). Biofilm growth in porous media: Experiments, computational modeling at the porescale, and upscaling. Advances in Water Resources, 95(5), 288–301. doi:10.1016/j.advwatres.2015.07.008
  • Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Menachem, E., & Nathalie, T. (2010). Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions. Environmental Science & Technology, 44(17), 6532–6549. doi:10.1021/es100598h
  • Petosa, A. R., Ohl, C., Rajput, F., & Tufenkji, N. (2013). Mobility of nanosized cerium dioxide and polymeric capsules in quartz and loamy sands saturated with model and natural groundwaters. Water Research, 47(15), 5889–5900. doi:10.1016/j.watres.2013.07.006
  • Phenrat, T., Cihan, A., Kim, H. J., Mital, M., Illangasekare, T., & Lowry, G. V. (2010). Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. Environmental Science Technology., 44(23), 9086–9093.
  • Phenrat, T., Kim, H. J., Fagerlund, F., Illangasekare, T., Lowry, G. V., Kibbey, T. C. G., & O'Carroll, D. M. (2010). Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. Journal of Contaminant Hydrology, 118(3–4), 152–164. doi:10.1016/j.jconhyd.2010.09.002
  • Phenrat, T., Kim, H. J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe(0) nanoparticles in sand columns. Environmental Science & Technology, 43(13), 5079–5085. doi:10.1021/es900171v
  • Phenrat, T., Song, J. E., Cisneros, C. M., Schoenfelder, D. P., Tilton, R. D., & Lowry, G. V. (2010). Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: Development of an empirical model. Environmental Science & Technology, 44(12), 4531–4538. doi:10.1021/es903959c
  • Phenrat, T., Thongboot, T., & Lowry, G. V. (2016). Electromagnetic induction of zerovalent iron (ZVI) powder and nanoscale zerovalent iron (NZVI) particles enhances dechlorination of trichloroethylene in contaminated groundwater and soil: Proof of concept. Environmental Science & Technology, 50(2), 872–880. doi:10.1021/acs.est.5b04485
  • Ping, Z., Fan, C., Lu, H., Kan, A. T., & Tomson, M. B. (2011). Synthesis of crystalline-phase silica-based calcium phosphonate nanomaterials and their transport in carbonate and sandstone porous media. Industrial & Engineering Chemistry Research, 50(4), 1819–1830. doi:10.1021/ie101439x
  • Porubcan, A. A., & Xu, S. (2011). Colloid straining within saturated heterogeneous porous media. Water Research, 45(4), 1796–1806. doi:10.1016/j.watres.2010.11.037
  • Prédélus, D., Lassabatere, L., Louis, C., Gehan, H., Brichart, T., Winiarski, T., & Angulo-Jaramillo, R. (2017). Nanoparticle transport in water-unsaturated porous media: Effects of solution ionic strength and flow rate. Journal of Nanoparticle Research, 19(3), 104–121.
  • Praetorius, A., Tufenkji, N., Goss, K. U., Scheringer, M., Kammer, F. V. D., & Elimelech, M. (2014). The road to nowhere: Equilibrium partition coefficients for nanoparticles. Environmental Science: Nano, 1(4), 317–323. doi:10.1039/C4EN00043A
  • Quevedo, I. R., & Tufenkji, N. (2012). Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand. Environmental Science & Technology, 46(8), 4449–4457. doi:10.1021/es2045458
  • Quik, J. T. K., Velzeboer, I., Wouterse, M., Koelmans, A. A., & Meent, D. V. D. (2014). Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Research, 48(1), 269–279. doi:10.1016/j.watres.2013.09.036
  • Racles, C., Iacob, M., Butnaru, M., Sacarescu, L., & Cazacu, M. (2014). Aqueous dispersion of metal oxide nanoparticles, using siloxane surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 448(1), 160–168. doi:10.1016/j.colsurfa.2014.02.029
  • Rahman, T., Millwater, H., & Shipley, H. J. (2014). Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: Effects of ionic strength, flow rate, and nanoparticle concentration. Science of the Total Environment, 499, 402–412. doi:10.1016/j.scitotenv.2014.08.073
  • Rahman, T., George, J., & Shipley, H. J. (2013). Transport of aluminum oxide nanoparticles in saturated sand: Effects of ionic strength, flow rate, and nanoparticle concentration. Science of the Total Environment, 463–464, 565–571. doi:10.1016/j.scitotenv.2013.06.049
  • Rajput, S., Pittman, C. U., & Mohan, D. (2016). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346. doi:10.1016/j.jcis.2015.12.008
  • Rasmuson, A., Pazmino, E., Assemi, S., & Johnson, W. P. (2017). Contribution of nano- to microscale roughness to heterogeneity: Closing the gap between unfavorable and favorable colloid attachment conditions. Environmental Science & Technology, 51(4), 2151–2160. doi:10.1021/acs.est.6b05911
  • Raychoudhury, T., Naja, G., & Ghoshal, S. (2010). Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media. Journal of Contaminant Hydrology, 118(3–4), 143–151. doi:10.1016/j.jconhyd.2010.09.005
  • Raychoudhury, T., Tufenkji, N., & Ghoshal, S. (2012). Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Research, 46(6), 1735–1744.
  • Raychoudhury, T., Tufenkji, N., & Ghoshal, S. (2014). Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Water Research, 50(3), 80–89.
  • Reddy, A. V. B., Yusop, Z., Jaafar, J., Reddy, Y. V. M., Aris, A. B., Majid, Z. A., … Madhavi, G. (2016). Recent progress on Fe-based nanoparticles: Synthesis, properties, characterization and environmental applications. Journal of Environmental Chemical Engineering, 4(3), 3537–3553. doi:10.1016/j.jece.2016.07.035
  • Ren, D., & Smith, J. A. (2013). Retention and transport of silver nanoparticles in a ceramic porous medium used for point-of-use water treatment. Environmental Science & Technology, 47(8), 3825–3832. doi:10.1021/es4000752
  • Rosales, E., Loch, J. P. G., & Dias-Ferreira, C. (2014). Electro-osmotic transport of nano zero-valent iron in Boom Clay. Electrochimica Acta, 127, 27–33. doi:10.1016/j.electacta.2014.01.164
  • Ryan, J. N., & Elimelech, M. (1996). Colloid mobilization and transport in groundwater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107(95), 1–56.
  • Saberinasr, A., Rezaei, M., Nakhaei, M., & Hosseini, S. M. (2016). Transport of CMC-stabilized nZVI in saturated sand column: The effect of particle concentration and soil frain size. Water, Air, & Soil Pollution, 227(10), 394–410. doi:10.1007/s11270-016-3097-3
  • Sagee, O., Dror, I., & Berkowitz, B. (2012). Transport of silver nanoparticles (AgNPs) in soil. Chemosphere, 88(5), 670–675. doi:10.1016/j.chemosphere.2012.03.055
  • Saiers, J. E., Hornberger, G. M., & Liang, L. (1994). First- and second-order kinetics approaches for modeling the transport of colloidal particles in porous media. Water Resources Research, 30(9), 2499–2506. doi:10.1029/94WR01046
  • Sajid, M., Ilyas, M., Basheer, C., Tariq, M., Daud, M., Baig, N., & Shehzad, F. (2015). Impact of nanoparticles on human and environment: Review of toxicity factors, exposures, control strategies, and future prospects. Environmental Science and Pollution Research, 22(6), 4122–4143. doi:10.1007/s11356-014-3994-1
  • Salama, A., Negara, A., Amin, M. E., & Sun, S. (2015). Numerical investigation of nanoparticles transport in anisotropic porous media. Journal of Contaminant Hydrology, 181, 114–130. doi:10.1016/j.jconhyd.2015.06.010
  • Saleh, N., Kim, H.-J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0nanoparticles in water-saturated sand columns. Environmental Science & Technology, 42(9), 3349–3355. doi:10.1021/es071936b
  • Sasidharan, S., Torkzaban, S., Bradford, S. A., Cook, P. G., & Gupta, V. V. (2017). Temperature dependency of virus and nanoparticle transport and retention in saturated porous media. Journal of Contaminant Hydrology, 196, 10–20. doi:10.1016/j.jconhyd.2016.11.004
  • Sasidharan, S., Torkzaban, S., Bradford, S. A., Dillon, P. J., & Cook, P. G. (2014). Coupled effects of hydrodynamic and solution chemistry on long-term nanoparticle transport and deposition in saturated porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457(457), 169–179. doi:10.1016/j.colsurfa.2014.05.075
  • Schijven, J. F., Hassanizadeh, S. M., & Bruin, R. H. A. M. D. (2002). Two-site kinetic modeling of bacteriophages transport through columns of saturated dune sand. Journal of Contaminant Hydrology, 57(3–4), 259–279.
  • Seymour, M. B., Chen, G., Su, C., & Li, Y. (2013). Transport and retention of colloids in porous media: Does shape really matter? Environmental Science & Technology, 47(15), 8391–8398. doi:10.1021/es4016124
  • Sharma, P., Bao, D., & Fagerlund, F. (2014). Deposition and mobilization of functionalized multiwall carbon nanotubes in saturated porous media: Effect of grain size, flow velocity and solution chemistry. Environmental Earth Sciences, 72(8), 3025–3035. doi:10.1007/s12665-014-3208-7
  • Shen, C., Jin, Y., Li, B., Zheng, W., & Huang, Y. (2014). Facilitated attachment of nanoparticles at primary minima by nanoscale roughness is susceptible to hydrodynamic drag under unfavorable chemical conditions. Science of the Total Environment, 466–467(1), 1094–1102.
  • Shen, C., Lazouskaya, V., Zhang, H., Li, B., Jin, Y., & Huang, Y. (2013). Influence of surface chemical heterogeneity on attachment and detachment of microparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 433(35), 14–29.
  • Shen, C., Li, B., Wang, C., Huang, Y., & Jin, Y. (2011). Surface roughness effect on deposition of nano- and micro-sized colloids in saturated columns at different solution ionic strengths. Vadose Zone Journal, 10(3), 1071–1081. doi:10.2136/vzj2011.0011
  • Shen, C., Wang, F., Li, B., Jin, Y., Wang, L. P., & Huang, Y. (2012). Application of DLVO energy map to evaluate interactions between spherical colloids and rough surfaces. Langmuir, 28(41), 14681–14692. doi:10.1021/la303163c
  • Sim, Y., & Chrysikopoulos, C. V. (1995). Analytical models for one‐dimensional virus transport in saturated porous media. Water Resources Research, 31(5), 1429–1437. doi:10.1029/95WR00199
  • Singh, R., Misra, V., & Singh, R. P. (2012). Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes. Bulletin of Environmental Contamination and Toxicology, 88(2), 210–214. doi:10.1007/s00128-011-0425-6
  • Singh, R., & Misra, V. (2014). Application of zero-valent iron nanoparticles for environmental clean up. In A. Tiwari & M. Syväjärvi (Eds.), Advanced materials for agriculture, food, and environmental safety (pp. 385–420). Marblehead, MA: John Wiley & Sons, Inc.
  • Sirivithayapakorn, S., & Keller, A. (2003a). Transport of colloids in saturated porous media: A pore-scale observation of the size exclusion effect and colloid acceleration. Water Resources Research, 39(39), 1255–1256. doi:10.1029/2002WR001583
  • Sirivithayapakorn, S., & Keller, A. (2003b). Transport of colloids in unsaturated porous media: A pore-scale observation of processes during the dissolution of air-water interface. Water Resources Research, 39(12), 1346. doi:10.1029/2003WR002487
  • Solovitch, N., Labille, J., Rose, J., Chaurand, P., Borschneck, D., Wiesner, M. R., & Bottero, J. Y. (2010). Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environmental Science & Technology, 44(13), 4897–4902. doi:10.1021/es1000819
  • Sotirelis, N. P., & Chrysikopoulos, C. V. (2017). Heteroaggregation of graphene oxide nanoparticles and kaolinite colloids. Science of the Total Environment, 579, 736–744. doi:10.1016/j.scitotenv.2016.11.034
  • Soukupova, J., Zboril, R., Medrik, I., Filip, J., Safarova, K., Ledl, R., … Cernik, M. (2015). Highly concentrated, reactive and stable dispersion of zero-valent iron nanoparticles: Direct surface modification and site application. Chemical Engineering Journal, 262, 813–822. doi:10.1016/j.cej.2014.10.024
  • Strutz, T. J., Hornbruch, G., Dahmke, A., & Köber, R. (2016a). Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media. Journal of Contaminant Hydrology, 191, 54–65. doi:10.1016/j.jconhyd.2016.04.008
  • Strutz, T. J., Hornbruch, G., Dahmke, A., & Köber, R. (2016b). Influence of permeability on nanoscale zero-valent iron particle transport in saturated homogeneous and heterogeneous porous media. Environmental Science and Pollution Research International, 23(17), 1–10.
  • Su, Y., Adeleye, A. S., Huang, Y., Sun, X., Dai, C., Zhou, X., … Keller, A. A. (2014). Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Research, 63, 102–111. doi:10.1016/j.watres.2014.06.008
  • Su, Y., Adeleye, A. S., Huang, Y., Zhou, X., Keller, A. A., & Zhang, Y. (2016). Direct synthesis of novel and reactive sulfide-modified nano iron through nanoparticle seeding for improved cadmium-contaminated water treatment. Scientific Reports, 6, 24358. doi:10.1038/srep24358
  • Su, Y., Adeleye, A. S., Keller, A. A., Huang, Y., Dai, C., Zhou, X., & Zhang, Y. (2015). Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. Water Research, 74, 47–57.
  • Su, Y., Adeleye, A. S., Zhou, X., Dai, C., Zhang, W., Keller, A. A., & Zhang, Y. (2014). Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron. Journal of Hazardous Materials, 280, 504–513. doi:10.1016/j.jhazmat.2014.08.040
  • Subramanian, S. K., Li, Y., & Cathles, L. M. (2013). Assessing preferential flow by simultaneously injecting nanoparticle and chemical tracers. Water Resources Research, 49(1), 29–42. doi:10.1029/2012WR012148
  • Sun, P., Shijirbaatar, A., Fang, J., Owens, G., Lin, D., & Zhang, K. (2015). Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns. Science of the Total Environment, 505(505), 189–198. doi:10.1016/j.scitotenv.2014.09.095
  • Sun, Y., Gao, B., Bradford, S. A., Lei, W., Hao, C., Shi, X., & Wu, J. (2015). Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size. Water Research, 68, 24–33. doi:10.1016/j.watres.2014.09.025
  • Sygouni, V., & Chrysikopoulos, C. V. (2015). Characterization of TiO2 nanoparticle suspensions in aqueous solutions and TiO2 nanoparticle retention in water-saturated columns packed with glass beads. Chemical Engineering Journal, 262, 823–830. doi:10.1016/j.cej.2014.10.044
  • Taghavy, A., Mittelman, A., Wang, Y., Pennell, K. D., & Abriola, L. M. (2013). Mathematical modeling of the transport and dissolution of citrate-stabilized silver nanoparticles in porous media. Environmental Science & Technology, 47(15), 8499–8507. doi:10.1021/es400692r
  • Taghavy, A., Pennell, K. D., & Abriola, L. M. (2015). Modeling coupled nanoparticle aggregation and transport in porous media: A Lagrangian approach. Journal of Contaminant Hydrology, 172, 48–60. doi:10.1016/j.jconhyd.2014.10.012
  • Tan, C., Gao, N., Yang, D., Jing, D., Zhou, S., Li, J., & Xin, X. (2014). Radical induced degradation of acetaminophen with Fe 3 O 4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate. Journal of Hazardous Materials, 276(9), 452–460. doi:10.1016/j.jhazmat.2014.05.068
  • Tee, Y. H., Grulke, E., & Bhattacharyya, D. (2005). Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Industrial & Engineering Chemistry Research, 44(18), 7062–7070. doi:10.1021/ie050086a
  • Thompson, R. C., Moore, C., Saal, F. V., & Swan, S. H. (2009). Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153–2166. doi:10.1098/rstb.2009.0053
  • Tian, Y., Gao, B., Morales, V. L., Wang, Y., & Wu, L. (2012). Effect of surface modification on single-walled carbon nanotube retention and transport in saturated and unsaturated porous media. Journal of Hazardous Materials, 239–240(22), 333–339. doi:10.1016/j.jhazmat.2012.09.003
  • Tian, Y., Gao, B., Wu, L., Muñozcarpena, R., & Huang, Q. (2012). Effect of solution chemistry on multi-walled carbon nanotube deposition and mobilization in clean porous media. Journal of Hazardous Materials, 231(6), 79–87. doi:10.1016/j.jhazmat.2012.06.039
  • Tian, Y., Gao, B., & Ziegler, K. J. (2011). High mobility of SDBS-dispersed single-walled carbon nanotubes in saturated and unsaturated porous media. Journal of Hazardous Materials, 186(2–3), 1766–1772. doi:10.1016/j.jhazmat.2010.12.072
  • Tiraferri, A., & Sethi, R. (2009). Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. Journal of Nanoparticle Research, 11(3), 635–645. doi:10.1007/s11051-008-9405-0
  • Toloni, I., Lehmann, F., & Ackerer, P. (2014). Modeling the effects of water velocity on TiO2 nanoparticles transport in saturated porous media. Journal of Contaminant Hydrology, 171, 42–48. doi:10.1016/j.jconhyd.2014.10.004
  • Tong, M., Ding, J., Shen, Y., & Zhu, P. (2010). Influence of biofilm on the transport of fullerene (C60) nanoparticles in porous media. Water Research, 44(4), 1094–1103. doi:10.1016/j.watres.2009.09.040
  • Torkzaban, S., & Bradford, S. A. (2016). Critical role of surface roughness on colloid retention and release in porous media. Water Research, 88, 274–284. doi:10.1016/j.watres.2015.10.022
  • Torkzaban, S., Wan, J., Tokunaga, T. K., & Bradford, S. A. (2012). Impacts of bridging complexation on the transport of surface-modified nanoparticles in saturated sand. Journal of Contaminant Hydrology, 136–137(5), 86–95. doi:10.1016/j.jconhyd.2012.05.004
  • Tosco, T., Bosch, J., Meckenstock, R. U., & Sethi, R. (2012). Transport of ferrihydrite nanoparticles in saturated porous media: Role of ionic strength and flow rate. Environmental Science & Technology, 46(7), 4008–4015. doi:10.1021/es202643c
  • Tosco, T., Coisson, M., Xue, D., & Sethi, R. (2012). Zerovalent iron nanoparticles for groundwater remediation: Surface and magnetic properties, colloidal stability, and perspectives for field application. In M. Sangermano & A. Chiolerio (Eds.), Nanoparticles featuring electromagnetic properties: From science to engineering (pp. 201–203). Kerala: Research Signpost.
  • Tosco, T., & Sethi, R. (2010). Transport of non-Newtonian suspensions of highly concentrated micro-and nanoscale iron particles in porous media: A modeling approach. Environmental Science & Technology, 44(23), 9062–9068. doi:10.1021/es100868n
  • Tripathi, S., Champagne, D., & Tufenkji, N. (2012). Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm. Environmental Science & Technology, 46(13), 6942–6949. doi:10.1021/es202833k
  • Tufenkji, N., & Elimelech, M. (2004). Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environmental Science & Technology, 38(2), 529–536. doi:10.1021/es034049r
  • Tufenkji, N., & Elimelech, M. (2005a). Breakdown of colloid filtration theory: Role of the secondary energy minimum and surface charge heterogeneities. Langmuir, 21(3), 841–852. doi:10.1021/la048102g
  • Tufenkji, N., & Elimelech, M. (2005b). Spatial distributions of Cryptosporidium oocysts in porous media: Evidence for dual mode deposition. Environmental Science & Technology, 39(10), 3620–3629. doi:10.1021/es048289y
  • Tufenkji, N., Miller, G. F., Ryan, J. N., Harvey, R. W., & Elimelech, M. (2004). Transport of Cryptosporidium oocysts in porous media: Role of straining and physicochemical filtration. Environmental Science & Technology, 38(22), 5932–5938. doi:10.1021/es049789u
  • Van, K. F., Van, H. L., & Du, L. G. (2016). Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment. Journal of Environmental Economics and Management, 168, 210–218.
  • Vecchia, E. D., Luna, M., & Sethi, R. (2009). Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum. Environmental Science & Technology, 43(23), 8942–8947. doi:10.1021/es901897d
  • Velimirovic, M., Tosco, T., Uyttebroek, M., Luna, M., Gastone, F., De Boer, C., … Bastiaens, L. (2014). Field assessment of guar gum stabilized microscale zerovalent iron particles for in-situ remediation of 1,1,1-trichloroethane. Journal of Contaminant Hydrology, 164(4), 88–99. doi:10.1016/j.jconhyd.2014.05.009
  • Verwey, E. J. (1947). Theory of the stability of lyophobic colloids. The Journal of Physical and Colloid Chemistry, 51(3), 631–636. doi:10.1021/j150453a001
  • Vigneswaran, S. (2005). Deep bed filtration: Mathematical models and observations. Critical Reviews in Environmental Science and Technology, 35(6), 515–569. doi:10.1080/10643380500326432
  • Wan, J., & Tokunaga, T. K. (1997). Film straining of colloids in unsaturated porous media: Conceptual model and experimental testing. Environmental Science & Technology, 31(8), 2413–2420. doi:10.1021/es970017q
  • Wang, C., Bobba, A. D., Attinti, R., Shen, C., Lazouskaya, V., Wang, L. P., & Jin, Y. (2012). Retention and transport of silica nanoparticles in saturated porous media: Effect of concentration and particle size. Environmental Science & Technology, 46(13), 7151–7158. doi:10.1021/es300314n
  • Wang, D., Bradford, S. A., Harvey, R. W., Gao, B., Cang, L., & Zhou, D. (2012). Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand. Environmental Science & Technology, 46(5), 2738–2745. doi:10.1021/es203784u
  • Wang, D., Ge, L., He, J., Zhang, W., Jaisi, D. P., & Zhou, D. (2014). Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol. Journal of Contaminant Hydrology, 164(4), 35–48. doi:10.1016/j.jconhyd.2014.05.007
  • Wang, D., Jaisi, D. P., Yan, J., Jin, Y., & Zhou, D. (2015). Transport and retention of polyvinylpyrrolidone-coated silver nanoparticles in natural soils. Vadose Zone Journal, 14(7), 0–13. doi:10.2136/vzj2015.01.0007
  • Wang, D., Jin, Y., & Jaisi, D. P. (2015). Effect of size-selective retention on the cotransport of hydroxyapatite and goethite nanoparticles in saturated porous media. Environmental Science & Technology, 49(14), 8461–8470. doi:10.1021/acs.est.5b01210
  • Wang, D., Shen, C., Yan, J., Su, C., Chu, L., & Zhou, D. (2017). Role of solution chemistry in the retention and release of graphene oxide nanomaterials in uncoated and iron oxide-coated sand. Science of the Total Environment, 579, 776–785. doi:10.1016/j.scitotenv.2016.11.029
  • Wang, D., Su, C., Liu, C., & Zhou, D. (2014). Transport of fluorescently labeled hydroxyapatite nanoparticles in saturated granular media at environmentally relevant concentrations of surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 58–66.
  • Wang, D., Zhang, W., & Zhou, D. (2013). Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand. Environmental Science & Technology, 47(10), 5154–5161. doi:10.1021/es305337r
  • Wang, D., Bradford, S. A., Paradelo, M., Peijnenburg, W. J. G. M., & Zhou, D. (2012). Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand. Soil Science Society of America Journal, 76(2), 375–388. doi:10.2136/sssaj2011.0203
  • Wang, H., Dong, Y. N., Zhu, M., Li, X., Keller, A. A., Wang, T., & Li, F. (2015). Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments. Water Research, 80, 130–138. doi:10.1016/j.watres.2015.05.023
  • Wang, M., Gao, B., & Tang, D. (2016). Review of key factors controlling engineered nanoparticle transport in porous media. Journal of Hazardous Materials, 318, 233–246. doi:10.1016/j.jhazmat.2016.06.065
  • Wang, M., Gao, B., Tang, D., Sun, H., Yin, X., & Yu, C. (2017). Effects of temperature on graphene oxide deposition and transport in saturated porous media. Journal of Hazardous Materials, 331, 28–35. doi:10.1016/j.jhazmat.2017.02.014
  • Wang, M., Gao, B., Tang, D., Sun, H., Yin, X., & Yu, C. (2018). Effects of temperature on aggregation kinetics of graphene oxide in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 63–72. doi:10.1016/j.colsurfa.2017.10.061
  • Wang, M., Gao, B., Tang, D., & Yu, C. (2018). Concurrent aggregation and transport of graphene oxide in saturated porous media: Roles of temperature, cation type, and electrolyte concentration. Environmental Pollution, 235, 350–357. doi:10.1016/j.envpol.2017.12.063
  • Wang, T. (2015). Co-transport of carboxyl-functionalized multi-walled carbon nanotubes and kaolinite in saturated porous media (Master). Rice University.
  • Wang, X., Li, C., Han, P., Lin, D., Kim, H., & Tong, M. (2014). Cotransport of multi-walled carbon nanotubes and titanium dioxide nanoparticles in saturated porous media. Environmental Pollution, 195, 31–38. doi:10.1016/j.envpol.2014.08.011
  • Wang, Y., Gao, B., Morales, V. L., Tian, Y., Wu, L., Gao, J., … Yang, L. (2012). Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions. Journal of Nanoparticle Research, 14(9), 1–9.
  • Wang, Y., Li, Y., Costanza, J., Abriola, L. M., & Pennell, K. D. (2012). Enhanced mobility of fullerene (C60) nanoparticles in the presence of stabilizing agents. Environmental Science & Technology, 46(21), 11761–11769. doi:10.1021/es302541g
  • Wang, Y., Li, Y., Fortner, J. D., Hughes, J. B., Abriola, L. M., & Pennell, K. D. (2008). Transport and retention of nanoscale C60 aggregates in water-saturated porous media. Environmental Science & Technology, 42(10), 3588–3594. doi:10.1021/es800128m
  • Wang, Z., Chen, M., Zhang, L., Wang, K., Yu, X., Zheng, Z., & Zheng, R. (2018). Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, southeastern China. Science of the Total Environment, 628–629, 1617–1626.
  • Wang, Z., Jin, Y., Shen, C., Li, T., Huang, Y., & Li, B. (2016). Spontaneous detachment of colloids from primary energy minima by Brownian diffusion. PLos One, 11(1), e0147368. doi:10.1371/journal.pone.0147368
  • Wu, L., Liu, L., Gao, B., Muñoz-Carpena, R., Zhang, M., Chen, H., … Wang, H. (2013). Aggregation kinetics of graphene oxides in aqueous solutions: Experiments, mechanisms, and modeling. Langmuir, 29(49), 15174–15181. doi:10.1021/la404134x
  • Xia, T., Fortner, J. D., Zhu, D., Qi, Z., & Chen, W. (2015). Transport of sulfide-reduced graphene oxide in saturated quartz sand: Cation-dependent retention mechanisms. Environmental Science & Technology, 49(19), 11468. doi:10.1021/acs.est.5b02349
  • Xiao, Y., & Wiesner, M. R. (2013). Transport and retention of selected engineered nanoparticles by porous media in the presence of a biofilm. Environmental Science & Technology, 47(5), 2246–2253. doi:10.1021/es304501n
  • Xie, Y., Dong, H., Zeng, G., Tang, L., Jiang, Z., Zhang, C., … Zhang, Y. (2017). The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review. Journal of Hazardous Materials, 321, 390–407. doi:10.1016/j.jhazmat.2016.09.028
  • Xin, J., Han, J., Zheng, X., Shao, H., & Kolditz, O. (2015). Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles. Journal of Environmental Management, 150, 420–426. doi:10.1016/j.jenvman.2014.12.022
  • Xin, J., Tang, F., Zheng, X., Shao, H., & Kolditz, O. (2016). Transport and retention of xanthan gum-stabilized microscale zero-valent iron particles in saturated porous media. Water Research, 88, 199–206. doi:10.1016/j.watres.2015.10.005
  • Xu, N., Cheng, X., Zhou, K., Xu, X., Li, Z., Chen, J., … Li, D. (2018). Facilitated transport of titanium dioxide nanoparticles via hydrochars in the presence of ammonium in saturated sands: Effects of pH, ionic strength, and ionic composition. Science of the Total Environment, 612, 1348–1357. doi:10.1016/j.scitotenv.2017.09.023
  • Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., … Liu, Z. F. (2012). Use of iron oxide nanomaterials in wastewater treatment: A review. Science of the Total Environment, 424(4), 1–10. doi:10.1016/j.scitotenv.2012.02.023
  • Xu, X., Nan, X., Cheng, X., Peng, G., Chen, Z., & Wang, D. (2017). Transport and aggregation of rutile titanium dioxide nanoparticles in saturated porous media in the presence of ammonium. Chemosphere, 169, 9–17. doi:10.1016/j.chemosphere.2016.11.033
  • Xue, D., & Sethi, R. (2012). Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles. Journal of Nanoparticle Research, 14(11), 1239.
  • Xue, W., Huang, D., Zeng, G., Wan, J., Cheng, M., Zhang, C., … Li, J. (2018). Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: A review. Chemosphere, 210, 1145–1156. doi:10.1016/j.chemosphere.2018.07.118
  • Xue, Z., Foster, E., Wang, Y., Nayak, S., Cheng, V., Ngo, V. W., … Johnston, K. P. (2014). Effect of grafted copolymer composition on iron oxide nanoparticle stability and transport in porous media at high salinity. Energy & Fuels, 28(6), 3655–3665. doi:10.1021/ef500340h
  • Yan, J., Gao, W., Dong, M., Han, L., Qian, L., Nathanail, C. P., & Chen, M. (2016). Degradation of trichloroethylene by activated persulfate using a reduced graphene oxide supported magnetite nanoparticle. Chemical Engineering Journal, 295, 309–316. doi:10.1016/j.cej.2016.01.085
  • Yang, G., Tu, H., & Hung, C. (2007). Stability of nanoiron slurries and their transport in the subsurface environment. Separation and Purification Technology, 58(1), 166–172.
  • Yang, J., Bitter, J. L., Smith, B. A., Fairbrother, D. H., & Ball, W. P. (2013). Transport of oxidized multi-walled carbon nanotubes through silica based porous media: Influences of aquatic chemistry, surface chemistry, and natural organic matter. Environmental Science & Technology, 47(24), 14034–14043. doi:10.1021/es402448w
  • Yang, X., Lin, S., & Wiesner, M. R. (2014). Influence of natural organic matter on transport and retention of polymer coated silver nanoparticles in porous media. Journal of Hazardous Materials, 264(2), 161–168.
  • Yao, K. M., Habibian, M. T., & O'Melia, C. R. (1971). Water and waste water filtration. Concepts and applications. Environmental Science Technology, 5(11), 1105–1112.
  • Yecheskel, Y., Dror, I., & Berkowitz, B. (2016). Transport of engineered nanoparticles in partially saturated sand columns. Journal of Hazardous Materials, 311, 254–262.
  • Yecheskel, Y., Dror, I., & Berkowitz, B. (2018). Silver nnanoparticle (Ag-NP) retention and release in partially saturated soil: Column experiments and modelling. Environmental Science: Nano, 5(2), 422–435. doi:10.1039/C7EN00990A
  • Yin, K., Lo, I. M., Dong, H., Rao, P., & Mak, M. S. (2012). Lab-scale simulation of the fate and transport of nano zero-valent iron in subsurface environments: Aggregation, sedimentation, and contaminant desorption. Journal of Hazardous Materials, 227–228, 118–125. doi:10.1016/j.jhazmat.2012.05.019
  • Zhan, J., Kolesnichenko, I., Sunkara, B., He, J., Mcpherson, G. L., Piringer, G., & John, V. T. (2011). Multifunctional iron-carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology, 45(5), 1949–1954. doi:10.1021/es103493e
  • Zhan, J., Zheng, T., Piringer, G., Day, C., McPherson, G. L., Lu, Y., … John, V. T. (2008). Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environmental Science & Technology, 42(23), 8871–8876.
  • Zhang, J., Zhi, D., & Shu, A. (2005). Preparation and characterization of a new class of starchstabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science Technology, 39(9), 3314–3320.
  • Zhang, L., Lei, H., Wang, L., Kan, A. T., Wei, C., & Tomson, M. B. (2012). Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: Controlling factors and modeling. Environmental Science Technology, 46(13), 7230–7238.
  • Zhang, M., Bradford, S. A., Šimůnek, J., Vereecken, H., & Klumpp, E. (2016). Do goethite surfaces really control the transport and retention of multi-walled carbon nanotubes in chemically heterogeneous porous media? Environmental Science Technology, 50(23), 12713–12721.
  • Zhang, M., Bradford, S. A., Šimůnek, J., Vereecken, H., & Klumpp, E. (2017). Roles of cation valance and exchange on the retention and colloid-facilitated transport of functionalized multi-walled carbon nanotubes in a natural soil. Water Research, 109, 358–366. doi:10.1016/j.watres.2016.11.062
  • Zhang, M., He, F., Zhao, D., & Hao, X. (2017). Transport of stabilized iron nanoparticles in porous media: Effects of surface and solution chemistry and role of adsorption. Journal of Hazardous Materilas, 322, 284–291.
  • Zhang, R., Zhang, H., Tu, C., Hu, X., Li, L., Luo, Y., & Christie, P. (2015). Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions. Journal of Nanoparticle Research, 17(4), 1–11.
  • Zhang, W., Isaacson, C. W., Rattanaudompol, U. S., Powell, T. B., & Bouchard, D. (2012). Fullerene nanoparticles exhibit greater retention in freshwater sediment than in model porous media. Water Research, 46(9), 2992–3004.
  • Zhang, Z., Gao, P., Qiu, Y., Liu, G., Feng, Y., & Wiesner, M. (2016). Transport of cerium oxide nanoparticles in saturated silica media: Influences of operational parameters and aqueous chemical conditions. Scientific Reports, 6, 34135–34146.
  • Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., & Zhao, D. (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 100, 245–266. doi:10.1016/j.watres.2016.05.019
  • Zheng, T., Zhan, J., He, J., Day, C., Lu, Y., McPherson, G. L., … John, V. T. (2008). Reactivity characteristics of nanoscale zerovalent iron − silica composites for trichloroethylene remediation. Environmental Science & Technology, 42(12), 4494–4499. doi:10.1021/es702214x
  • Zhong, H., Liu, G., Jiang, Y., Yang, J., Liu, Y., Yang, X., … Zeng, G. (2017). Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: A review. Biotechnology Advances, 35(4), 490–504. doi:10.1016/j.biotechadv.2017.03.009
  • Zhou, D., Abdel-Fattah, A. I., & Keller, A. A. (2012). Clay particles destabilize engineered nanoparticles in aqueous environments. Environmental Science Technology., 46(14), 7520–7526.
  • Zhou, D., & Keller, A. A. (2010). Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Research, 44(9), 2948–2956. doi:10.1016/j.watres.2010.02.025
  • Zhou, J., Zhang, W., Liu, D., Wang, Z., & Li, S. (2016). Influence of humic acid on the transport and deposition of colloidal silica under different hydrogeochemical conditions. Water, 9(1), 10–22.
  • Zhu, H., Han, J., Xiao, J. Q., & Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 10(6), 713–717.
  • Zhu, Y., Ma, L. Q., Dong, X., Harris, W. G., Bonzongo, J. C., & Han, F. (2014). Ionic strength reduction and flow interruption enhanced colloid-facilitated Hg transport in contaminated soils. Journal of Hazardous Materials, 264(2), 286–292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.