573
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Advances in characterizing microbial community change and resistance upon exposure to lead contamination: Implications for ecological risk assessment

&
Pages 2223-2270 | Published online: 23 Dec 2019

References

  • Akmal, M., Wang, H., Wu, J., Xu, J., & Xu, D. (2005). Changes in enzymes activity, substrate utilization pattern and diversity of soil microbial communities under cadmium pollution. Journal of Environmental Sciences, 17, 802–807.
  • Azarbad, H., Niklińska, M., van Gestel, C. A. M., van Straalen, N. M., Röling, W. F. M., & Laskowski, R. (2013). Microbial community structure and functioning along metal pollution gradients. Environmental Toxicology and Chemistry, 32(9), 1992–2002. doi:10.1002/etc.2269
  • Barkay, T., Fouts, D. L., & Olson, B. H. (1985). Preparation of a DNA gene probe for detection of mercury resistance genes in gram-negative bacterial communities. Applied and Environmental Microbiology, 49(3), 686–692.
  • Beard, S. J., Hashim, R., Membrillo-Hernández, J., Hughes, M. N., & Poole, R. K. (1997). Zinc(II) tolerance in Escherichia coli K-12: Evidence that the zntA gene (o732) encodes a cation transport ATPase. Molecular Microbiology, 25(5), 883–891. doi:10.1111/j.1365-2958.1997.mmi518.x
  • Beattie, R. E., Henke, W., Campa, M. F., Hazen, T. C., McAliley, L. R., & Campbell, J. H. (2018). Variation in microbial community structure correlates with heavy-metal contamination in soils decades after mining ceased. Soil Biology and Biochemistry, 126, 57–63. doi:10.1016/j.soilbio.2018.08.011
  • Bereza-Malcolm, L., Aracic, S., & Franks, A. E. (2016). Development and application of a synthetically-derived lead biosensor construct for use in gram-negative bacteria. Sensors, 16(12), 2174. doi:10.3390/s16122174
  • Bharagava, R. N., Yadav, S., & Chandra, R. (2014). Antibiotic and heavy metal resistance properties of bacteria isolated from the aeration lagoons of common effluent treatment plant (CETP) of tannery industries (Unnao, India). Indian Journal of Biotechnology, 13, 514–519.
  • Bhaskar, P. V., & Bhosle, N. B. (2006). Bacterial extracellular polymeric substance (EPS): A carrier of heavy metals in the marine food-chain. Environment International, 32(2), 191–198. doi:10.1016/j.envint.2005.08.010
  • Blindauer, C. A., Harrison, M. D., Robinson, A. K., Parkinson, J. A., Bowness, P. W., Sadler, P. J., & Robinson, N. J. (2002). Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Molecular Microbiology, 45(5), 1421–1432. doi:10.1046/j.1365-2958.2002.03109.x
  • Bitton, G., & Freihofer, V. (1977). Influence of extracellular polysaccharides on the toxicity of copper and cadmium toward Klebsiella aerogenes. Microbial Ecology, 4(2), 119–125. doi:10.1007/BF02014282
  • Borremans, B., Hobman, J. L., Provoost, A., Brown, N. L., & van Der Lelie, D. (2001). Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. Journal of Bacteriology, 183(19), 5651–5658. doi:10.1128/JB.183.19.5651-5658.2001
  • Braud, A., Hoegy, F., Jezequel, K., Lebeau, T., & Schalk, I. J. (2009). New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environmental Microbiology, 11(5), 1079–1091. doi:10.1111/j.1462-2920.2008.01838.x
  • Cartwright, B., Merry, R. H., & Tiller, K. G. (1976). Heavy metal contamination of soils around a lead smelter at Port Pirie, South Australia. Soil Research, 15(1), 69–81. doi:10.1071/SR9770069
  • Chang, J.-S., Law, R., & Chang, C.-C. (1997). Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Research, 31(7), 1651–1658. doi:10.1016/S0043-1354(97)00008-0.
  • Chen, J., He, F., Zhang, X., Sun, X., Zheng, J., & Zheng, J. (2014). Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiology Ecology, 87(1), 164–181. doi:10.1111/1574-6941.12212
  • Chen, Y., Jiang, Y., Huang, H., Mou, L., Ru, J., Zhao, J., & Xiao, S. (2018). Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments. Science of the Total Environment, 637–638, 1400–1412. doi:10.1016/j.scitotenv.2018.05.109
  • Chen, P. R., Wasinger, E. C., Zhao, J., van der Lelie, D., Chen, L. X., & He, C. (2007). Spectroscopic insights into lead(II) coordination by the selective lead(II)-binding protein PbrR691. Journal of the American Chemical Society, 129(41), 12350–12351. doi:10.1021/ja0733890
  • Chowdhury, S., Mishra, M., Adarsh, V. K., Mukherjee, A., & Thakur, A. R., Shaon R. C. (2008). Novel metal accumulator and protease secretor microbes from East Calcutta Wetland. American Journal of Biochemistry and Biotechnology, 4(3), 255–264. doi:10.3844/ajbbsp.2008.255.264
  • Chowdhury, S., Thakur, A. R., & Chaudhuri, S. R. (2011). Novel microbial consortium for laboratory scale lead removal from city effluent. Journal of Environmental Science and Technology, 4, 41–54. doi:10.3923/jest.2011.41.54
  • Collins-Fairclough, A. M., Co, R., Ellis, M. C., & Hug, L. A. (2018). Widespread antibiotic, biocide, and metal resistance in microbial communities inhabiting a municipal waste environment and anthropogenically impacted river. mSphere, 3(5), e00346–18. https://doi.org/10.1128/mSphere.00346-18
  • Corbisier, P., Thiry, E., & Diels, L. (1996). Bacterial biosensors for the toxicity assessment of solid waste. Environmental Toxicology and Water Quality, 11(3), 171–177. doi:10.1002/(Sici)1098-2256(1996)11:3 < 171::Aid-Tox1 > 3.3.Co;2-Z
  • Corbisier, P., Thiry, E., Masolijn, A., & Diels, L. (1994). Construction and development of metal ion biosensors. In A. K. Campbell, L. J. Kricka and P. E. Stanley (Eds.), Bioluminescence and chemiluminsescence: Fundamentals and applied aspects (pp. 1.50–155). Chichester: John Wiley & Sons.
  • Corbisier, P., van der Lelie, D., Borremans, B., Provoost, A., de Lorenzo, V., Brown, N. L., … Mattiasson, B. (1999). Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Analytica Chimica Acta, 387(3), 235–244. doi:10.1016/S0003-2670(98)00725-9
  • Dahlin, S., Witter, E., Martensson, A., Turner, A., & Baath, E. (1997). Where's the limit? Changes in the microbiological properties of agricultural soils at low levels of metal contamination. Soil Biology and Biochemistry, 29(9–10), 1405–1415. doi:10.1016/S0038-0717(97)00048-5
  • de Vries, W., Lofts, S., Tipping, E., Meili, M., Groenenberg, J. E., & Schutze, G. (2007). Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc, and mercury in soil and soil solution in view of ecotoxicological effects. Reviews of Environmental Contamination and Toxicology, 191, 47–89.
  • De, J., Ramaiah, N., & Vardanyan, L. (2008). Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Marine Biotechnology, 10(4), 471–477. doi:10.1007/s10126-008-9083-z
  • Diels, L. & Mergeay, M. (1990). DNA probe-mediated detection of resistant bacteria from soils highly polluted by heavy metals. Applied and Environmental Microbiology, 56(5), 1485–1491.
  • Drewniak, Ł., Skłodowska, A., Manecki, M., & Bajda, T. (2017). Solubilization of Pb-bearing apatite Pb5(PO4)3Cl by bacteria isolated from polluted environment. Chemosphere, 171, 302–307. doi:10.1016/j.chemosphere.2016.12.056
  • Du, R., Guo, M., He, X., Huang, K., Luo, Y., & Xu, W. (2019). Feedback regulation mode of gene circuits directly affects the detection range and sensitivity of lead and mercury microbial biosensors. Analytica Chimica Acta, 1084, 85–92. https://doi.org/https://doi.org/10.1016/j.aca.2019.08.006
  • Dunivin, T. K., Yeh, S. Y., & Shade, A. (2019). A global survey of arsenic-related genes in soil microbiomes. BMC Biology, 17(1), 45. https://doi.org/10.1186/s12915-019-0661-5
  • El-Sayed, M. H. (2016). Multiple heavy metal and antibiotic resistance of Acinetobacter baumannii strain HAF - 13 isolated from industrial effluents. American Journal of Microbiological Research, 4(1), 26–36. doi:10.12691/ajmr-4-1-3
  • El-Shanshoury, A. E.-R. R., Elsilk, S. E., Ateya, P. S., & Ebeid, E. M. (2012). Synthesis of lead nanoparticles by Enterobacter sp. and avirulent Bacillus anthracis PS2010. Annals of Microbiology, 62(4), 1803–1810. doi:10.1007/s13213-012-0438-3
  • Epelde, L., Lanzén, A., Blanco, F., Urich, T., & Garbisu, C. (2015). Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine. FEMS Microbiology Ecology, 91(1), 1–11. https://doi.org/10.1093/femsec/fiu007
  • Essa, A. M. M., Al Abboud, M. A., & Khatib, S. I. (2018). Metal transformation as a strategy for bacterial detoxification of heavy metals. Journal of Basic Microbiology, 58(1), 17–29. doi:10.1002/jobm.201700143
  • Fakruddin, M., & Mannan, K. S. B. (2013). Methods for analyzing diversity of microbial communities in natural environments. Ceylon Journal of Science (Biological Sciences)), 42(1), 19–33. doi:10.4038/cjsbs.v42il.5896
  • Federal Register. (2008). Rules and Regulations, National Ambient Air Quality Standards for Lead. 73, 66964–67062.
  • Federal Register. (2016). Rules and Regulations, Review of the National Ambient Air Quality Standards for Lead. 81, 71906–81943.
  • Ferguson, J. (1983). Concentrations and speciation of lead, zinc and cadmium in seawater-like smelter effluent and adjacent marine environments, Port Pirie, South Australia. Marine and Freshwater Research, 34(3), 375–385. doi:10.1071/MF9830375
  • Feris, K., Ramsey, P., Frazar, C., Moore, J. N., Gannon, J. E., & Holben, W. E. (2003). Differences in hyporheic-zone microbial community structure along a heavy-metal contamination gradient. Applied and Environmental Microbiology, 69(9), 5563–5573. doi:10.1128/AEM.69.9.5563-5573.2003
  • Fierer, N., Leff, J. W., Adams, B. J., Nielsen, U. N., Bates, S. T., Lauber, C. L., … Caporaso, J. G. (2012). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences, 109 (52), 21390–21395. www.pnas.org/cgi/doi/10.1073/pnas.1215210110
  • Geebelen, W., Adriano, D. C., van der Lelie, D., Mench, M., Carleer, R., Clijsters, H., & Vangronsveld, J. (2003). Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant and Soil, 249(1), 217–228. doi:10.1023/A:1022534524063
  • Gillan, D. C., Danis, B., Pernet, P., Joly, G., & Dubois, P. (2005). Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Applied and Environmental Microbiology, 71(2), 679–690. doi:10.1128/AEM.71.2.679-690.2005
  • Gillan, D. C., Roosa, S., Kunath, B., Billon, G., & Wattiez, R. (2015). The long-term adaptation of bacterial communities in metal-contaminated sediments: A metaproteogenomic study. Environmental Microbiology, 17(6), 1991–2005. doi:10.1111/1462-2920.12627
  • Giller, K. E., Witter, E., & McGrath, S. P. (2009). Heavy metals and soil microbes. Soil Biology and Biochemistry, 41(10), 2031–2037. doi:10.1016/j.soilbio.2009.04.026
  • Gong, J., Zhang, Z., Bai, H., & Yang, G. (2007). Microbiological synthesis of nanophase PbS by Desulfotomaculum sp. Science in China Series E: Technological Sciences, 50(3), 302–307. doi:10.1007/s11431-007-0045-x
  • Green, V. S., Stott, D. E., & Diack, M. (2006). Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. Soil Biology and Biochemistry, 38(4), 693–701. doi:10.1016/j.soilbio.2005.06.020
  • Guo, M., Du, R., Xie, Z., He, X., Huang, K., Luo, Y., & Xu, W. (2019). Using the promoters of MerR family proteins as “rhesostats” to engineer whole-cell heavy metal biosensors with adjustable sensitivity. Journal of Biological Engineering, 13(1), 70. https://doi.org/10.1186/s13036-019-0202-3
  • Guo, J., Kang, Y., & Feng, Y. (2017). Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron. Journal of Environmental Management, 203(1), 278–285. doi:10.1016/j.jenvman.2017.07.075
  • Guo, Q., Li, N., Bing, Y., Chen, S., Zhang, Z., Chang, S., … Xie, S. (2018). Denitrifier communities impacted by heavy metal contamination in freshwater sediment. Environmental Pollution, 242, 426–432. doi:10.1016/j.envpol.2018.07.020
  • Hobman, J. L., Julian, D. J., & Brown, N. L. (2012). Cysteine coordination of Pb(II) is involved in the PbrR-dependent activation of the lead-resistance promoter, PpbrA, from Cupriavidus metallidurans CH34. BMC Microbiology, 12(1), 109. doi:10.1186/1471-2180-12-109
  • Hu, Q., & Chen, L. (2016). Virulence and antibiotic and heavy metal resistance of Vibrio parahaemolyticus isolated from crustaceans and shellfish in Shanghai. Journal of Food Protection, 79(8), 1371–1377. doi:10.4315/0362-028X.JFP-16-031
  • Hu, Q., Qi, H-y., Zeng, J-h., & Zhang, H-X. (2007). Bacterial diversity in soils around a lead and zinc mine. Journal of Environmental Sciences, 19(1), 74–79. doi:10.1016/S1001-0742(07)60012-6
  • Hynninen, A., Tonismann, K., & Virta, M. (2010). Improving the sensitivity of bacterial bioreporters for heavy metals. Bioengineered Bugs, 1(2), 132–138. doi:10.4161/bbug.1.2.10902
  • Hynninen, A., Touze, T., Pitkanen, L., Mengin-Lecreulx, D., & Virta, M. (2009). An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Molecular Microbiology, 74(2), 384–394. doi:10.1111/j.1365-2958.2009.06868.x
  • Ivask, A., Rolova, T., & Kahru, A. (2009). A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnology, 9(1), 41. doi:10.1186/1472-6750-9-41
  • Jacquiod, S., Cyriaque, V., Riber, L., Al-Soud, W. A., Gillan, D. C., Wattiez, R., & Sørensen, S. J. (2018). Long-term industrial metal contamination unexpectedly shaped diversity and activity response of sediment microbiome. Journal of Hazardous Materials, 344, 299–307. doi:10.1016/j.jhazmat.2017.09.046
  • Janssen, P. J., Van Houdt, R., Moors, H., Monsieurs, P., Morin, N., Michaux, A., … Mergeay, M. (2010). The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One, 5(5), e10433. doi:10.1371/journal.pone.0010433
  • Jaiswal, D., & Pandey, J. (2018). Impact of heavy metal on activity of some microbial enzymes in the riverbed sediments: Ecotoxicological implications in the Ganga River (India). Ecotoxicology and Environmental Safety, 150, 104–115. doi:10.1016/j.ecoenv.2017.12.015
  • Jaroslawiecka, A., & Piotrowska-Seget, Z. (2014). Lead resistance in micro-organisms. Microbiology, 160(Pt_1), 12–25. doi:10.1099/mic.0.070284-0
  • Jencova, V., Strnad, H., Chodora, Z., Ulbrich, P., Vlcek, C., Hickey, W. J., & Paces, V. (2008). Nucleotide sequence, organization and characterization of the (halo)aromatic acid catabolic plasmid pA81 from Achromobacter xylosoxidans A8. Research in Microbiology, 159(2), 118–127. doi:10.1016/j.resmic.2007.11.018
  • Jia, X., Zhao, T., Liu, Y., Bu, R., & Wu, K. (2018). Gene circuit engineering to improve the performance of whole-cell lead biosensor. FEMS Microbiology Letters, 365. doi:10.1093/femsle/fny157
  • Jiang, B., Adebayo, A., Jia, J., Xing, Y., Deng, S., Guo, L., … Zhang, D. (2019). Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. Journal of Hazardous Materials, 362, 187–195. doi:10.1016/j.jhazmat.2018.08.060
  • Jie, S., Li, M., Gan, M., Zhu, J., Yin, H., & Liu, X. (2016). Microbial functional genes enriched in the Xiangjiang River sediments with heavy metal contamination. BMC Microbiology, 16(1), 179. doi:10.1186/s12866-016-0800-x
  • Kang, C.-H., Oh, S. J., Shin, Y., Han, S.-H., Nam, I.-H., & So, J.-S. (2015). Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea. Ecological Engineering, 74, 402–407. doi:10.1016/j.ecoleng.2014.10.009
  • Karimpour, M., Ashrafi, S. D., Taghavi, K., Mojtahedi, A., Roohbakhsh, E., & Naghipour, D. (2018). Adsorption of cadmium and lead onto live and dead cell mass of Pseudomonas aeruginosa: A dataset. Data in Brief, 18, 1185–1192. doi:10.1016/j.dib.2018.04.014
  • Koc, S., Kabatas, B., & Icgen, B. (2013). Multidrug and heavy metal-resistant Raoultella planticola isolated from surface water. Bulletin of Environmental Contamination and Toxicology, 91(2), 177–183. doi:10.1007/s00128-013-1031-6
  • Koh, T.-S., & Judson, G. J. (1986). Trace-elements in sheep grazing near a lead-zinc smelting complex at Port Pirie, South Australia. Bulletin of Environmental Contamination and Toxicology, 37(1), 87–95. doi:10.1007/BF01607734
  • Kulkybaev, G. A., Dyusembin, K. D., & Konkabaeva, A. E. (2002). Contents of cadmium, lead, and copper in blood and breast milk of mothers living in a region of ecological tension (the towns of Balkhash and Karaganda are used as examples). Human Physiology, 38(3), 378–379.
  • Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K., Lee, Y. B., & Naidu, R. (2016). Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation. Journal of Hazardous Materials, 317, 169–179. doi:10.1016/j.jhazmat.2016.05.066
  • Lee, S. W., Glickmann, E., & Cooksey, D. A. (2001). Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Applied and Environmental Microbiology, 67(4), 1437–1444. doi:10.1128/AEM.67.4.1437-1444.2001
  • Leedjarv, A., Ivask, A., & Virta, M. (2008). Interplay of different transporters in the mediation of divalent heavy metal resistance in Pseudomonas putida KT2440. Journal of Bacteriology, 190(8), 2680–2689. doi:10.1128/JB.01494-07
  • Lenart, A., & Wolny-Koładka, K. (2013). The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within ArcelorMittal Poland steelworks in Cracow. Bulletin of Environmental Contamination and Toxicology, 90(1), 85–90. doi:10.1007/s00128-012-0869-3
  • Li, X., Meng, D., Li, J., Yin, H., Liu, H., Liu, X., … Yan, M. (2017). Response of soil microbial communities and microbial interactions to long-term heavy metal contamination. Environmental Pollution, 231, 908–917. doi:10.1016/j.envpol.2017.08.057
  • Li, X., Peng, W., Jia, Y., Lu, L., & Fan, W. (2016). Bioremediation of lead contaminated soil with Rhodobacter sphaeroides. Chemosphere, 156, 228–235. doi:10.1016/j.chemosphere.2016.04.098
  • Li, Y., Wang, Y., Gou, X., Su, Y., & Wang, G. (2006). Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China. Journal of Environmental Sciences, 18(6), 1124–1134. doi:10.1016/S1001-0742(06)60050-8
  • Li, Z., Yao, T., Tian, L., Xu, B., & Li, Y. (2006). Atmospheric Pb variations in Central Asia since 1955 from Muztagata ice core record, eastern Pamirs. Chinese Science Bulletin, 51(16), 1996–2000. doi:10.1007/s11434-006-2061-9
  • Liu, J., Dutta, S. J., Stemmler, A. J., & Mitra, B. (2006). Metal-binding affinity of the transmembrane site in ZntA: Implications for metal selectivity. Biochemistry, 45(3), 763–772. doi:10.1021/bi051836n
  • Liu, C., Lin, H., Dong, Y., Li, B., & Liu, Y. (2018). Investigation on microbial community in remediation of lead-contaminated soil by Trifolium repens L. Ecotoxicology and Environmental Safety, 165, 52–60. doi:10.1016/j.ecoenv.2018.08.054
  • Macaskie, L. E., & Dean, A. C. R. (1987). Use of immobilized biofilm of Citrobacter sp for the removal of uranium and lead from aqueous flows. Enzyme and Microbial Technology, 9(1), 2–4. doi:10.1016/0141-0229(87)90042-1
  • Matyar, F. (2012). Antibiotic and heavy metal resistance in bacteria isolated from the Eastern Mediterranean Sea coast. Bulletin of Environmental Contamination and Toxicology, 89(3), 551–556. doi:10.1007/s00128-012-0726-4
  • Matyar, F., Gülnaz, O., Guzeldag, G., Mercimek, H. A., Akturk, S., Arkut, A., & Sumengen, M. (2014). Antibiotic and heavy Antibiotic and heavy metal resistance in Gram-negative bacteria isolated from the Seyhan Dam Lake and Seyhan River in Turkey. Annals Microbiol, 64(3), 1035–1040. doi:10.1007/s13213-013-0740-8
  • Marvasi, M., Visscher, P. T., & Casillas Martinez, L. (2010). Exopolymeric substances (EPS) from Bacillus subtilis: Polymers and genes encoding their synthesis. FEMS Microbiology Letters, 313(1), 1–9. doi:10.1111/j.1574-6968.2010.02085.x
  • Maynard, E., Thomas, R., Simon, D., Phipps, C., Ward, C., & Calder, I. (2003). An evaluation of recent blood lead levels in Port Pirie, South Australia. Science of the Total Environment, 303(1-2), 25–33. doi:10.1016/S0048-9697(02)00359-5
  • Mergeay, M., Nies, D., Schlegel, H. G., Gerits, J., Charles, P., & Vangijsegem, F. (1985). Alcaligenes-Eutrophus Ch34 is a facultative chemolithotroph with plasmid-bound resistance to heavy-metals. Journal of Bacteriology, 162(1), 328–334. doi:10.1128/jb.169.10.4865-4868.1987
  • Mire, C. E., Tourjee, J. A., O'Brien, W. F., Ramanujachary, K. V., & Hecht, G. B. (2004). Lead precipitation by Vibrio harveyi: Evidence for novel quorum-sensing interactions. Applied and Environmental Microbiology, 70(2), 855–864. doi:10.1128/AEM.70.2.855-864.2004
  • Monchy, S., Benotmane, M. A., Janssen, P., Vallaeys, T., Taghavi, S., van der Lelie, D., & Mergeay, M. (2007). Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. Journal of Bacteriology, 189(20), 7417–7425. doi:10.1128/JB.00375-07
  • Monsieurs, P., Moors, H., Van Houdt, R., Janssen, P. J., Janssen, A., Coninx, I., … Leys, N. (2011). Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. BioMetals, 24(6), 1133–1151. doi:10.1007/s10534-011-9473-y
  • Murthy, S., Bali, G., & Sarangi, S. K. (2011). Effect of lead on metallothionein concentration in lead-resistant bacteria Bacillus cereus isolated from industrial effluent. African Journal of Biotechnology, 10(71), 15966–15972. doi:10.5897/ajb11.1645
  • Naik, M. M., & Dubey, S. K. (2011). Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Current Microbiology, 62(2), 409–414. doi:10.1007/s00284-010-9722-2
  • Naik, M. M., & Dubey, S. K. (2013). Lead resistant bacteria: Lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicology and Environmental Safety, 98, 1–7. doi:10.1016/j.ecoenv.2013.09.039
  • Naik, M. M., Pandey, A., & Dubey, S. K. (2012a). Biological characterization of lead-enhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B. Biodegradation, 23(5), 775–783. doi:10.1007/s10532-012-9552-y
  • Naik, M. M., Pandey, A., & Dubey, S. K. (2012b). Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicology and Environmental Safety, 79, 129–133. doi:10.1016/j.ecoenv.2011.12.015
  • Naik, M. M., Shamim, K., & Dubey, S. K. (2012c). Biological characterization of lead-resistant bacteria to explore role of bacterial metallothionein in lead resistance. Current Science, 103(4), 426–429.
  • Nayar, S., Goh, B. P., & Chou, L. M. (2004). Environmental impact of heavy metals from dredged and resuspended sediments on phytoplankton and bacteria assessed in in situ mesocosms. Ecotoxicology and Environmental Safety, 59(3), 349–369. doi:10.1016/j.ecoenv.2003.08.015
  • Naz, N., Young, H. K., Ahmed, N., & Gadd, G. M. (2005). Cadmium accumulation and DNA homology with metal resistance genes in sulfate-reducing bacteria. Applied and Environmental Microbiology, 71(8), 4610–4618. doi:10.1128/AEM.71.8.4610-4618.2005
  • Neilands, J. B. (1995). Siderophores: Structure and function of microbial iron transport compounds. Journal of Biological Chemistry, 270(45), 26723–26726. doi:10.1074/jbc.270.45.26723
  • Nelson, Y. M., Lo, W., Lion, L. W., Shuler, M. L., & Ghiorse, W. C. (1995). Lead distribution in a simulated aquatic environment: Effects of bacterial biofilms and iron oxide. Water Research, 29(8), 1934–1944. doi:10.1016/0043-1354(94)00351-7
  • O'Brien, S., Hodgson, D. J., & Buckling, A. (2014). Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa. Proceedings of the Royal Society. Biological sciences, 281(1787). doi:10.1098/rspb.2014.0858
  • Ohore, O. E., Addo, F. G., Zhang, S., Han, N., & Anim-Larbi, K. (2018). Distribution and relationship between antimicrobial resistance genes and heavy metals in surface sediments of Taihu Lake, China. Journal of Environmental Sciences, 77, 323–335. doi:10.1016/j.jes.2018.09.004
  • Olafson, R. W. (1986). Physiological and chemical characterization of cyanobacterial metallothioneins. Environmental Health Perspectives, 65, 71–75. doi:10.1289/ehp.866571
  • Pal, C., Asiani, K., Arya, S., Rensing, C., Stekel, D. J., Larsson, D. G. J., & Hobman, J. L. (2017). Metal resistance and its association with antibiotic resistance. Advances in Microbial Physiology, 70, 261–313. doi:10.1016/bs.ampbs.2017.02.001
  • Pan, X., Chen, Z., Li, L., Rao, W., Xu, Z., & Guan, X. (2017). Microbial strategy for potential lead remediation: A review study. World Journal of Microbiology and Biotechnology, 33(2), 35. doi:10.1007/s11274-017-2211-z
  • Pirela, M. L. R., Suárez, W. A. B., & Vargas, M. M. B. (2014). Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela. Revista Colombiana de biotecnología, 16(2), 141–149.
  • Reddy, B., & Dubey, S. K. (2019). River Ganges water as reservoir of microbes with antibiotic and metal ion resistance genes: High throughtput metagenomic approach. Environmental Pollution, 246, 443–451. https://doi.org/10.1016/j.envpol.2018.12.022
  • Ren, Y., Niu, J., Huang, W., Peng, D., Xiao, Y., Zhang, X., … Yin, H. (2016). Comparison of microbial taxonomic and functional shift pattern along contamination gradient. BMC Microbiology, 16(1), 110. doi:10.1186/s12866-016-0731-6
  • Rensing, C., Mitra, B., & Rosen, B. (1997). The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14326–14331. doi:10.1073/pnas.94.26.14326
  • Rensing, C., Sun, Y., Mitra, B., & Rosen, B. P. (1998). Pb(II)-translocating P-type ATPases. Journal of Biological Chemistry, 273(49), 32614–32617. doi:10.1074/jbc.273.49.32614
  • Revich, B. (2010). Social inequality and environmental health in the Russian Federation. In Environment and health risks: A review of the influence and effects of social inequalities (pp. 251–262). Geneva: World Health Organization.
  • Riether, K., Dollard, M. A., & Billard, P. (2001). Assessment of heavy metal bioavailability using Escherichia coli zntAp::lux and copAp::lux-based biosensors. Applied Microbiology and Biotechnology, 57(5-6), 712–716. doi:10.1007/s00253-001-0852-0
  • Roane, T. M. (1999). Lead resistance in two bacterial isolates from heavy metal–contaminated soils. Microbial Ecology, 37(3), 218–224. doi:10.1007/s002489900145
  • Robinson, N. J., Gupta, A., Fordham-Skelton, A. P., Croy, R. R. D., Whitton, B. A., & Huckle, J. W. (1990). Prokaryotic metallothionein gene characterization and expression: Chromosome crawling by ligation-mediated PCR. Proceedings of the Royal Society of London. Series B: Biological Sciences, 242, 241–247.
  • Roosa, S., Wattiez, R., Prygiel, E., Lesven, L., Billon, G., & Gillan, D. C. (2014). Bacterial metal resistance genes and metal bioavailability in contaminated sediments. Environmental Pollution, 189, 143–151. doi:10.1016/j.envpol.2014.02.031
  • Roosa, S., Wauven, C. V., Billon, G., Matthijs, S., Wattiez, R., & Gillan, D. C. (2014). The Pseudomonas community in metal-contaminated sediments as revealed by quantitative PCR: A link with metal bioavailability. Research in Microbiology, 165(8), 647–656. doi:10.1016/j.resmic.2014.07.011
  • Sauvé, S., McBride, M. B., & Hendershot, W. H. (1997). Speciation of lead in contaminated soils. Environmental Pollution, 98(2), 149–155. doi:10.1016/S0269-7491(97)00139-5
  • Seiler, S., & Berendonk, T. U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology, 3, 1–9. (Article 399), doi:10.3389/fmicb.2012.00399
  • Sharma, J., Shamim, K., Dubey, S. K., & Meena, R. M. (2017). Metallothionein assisted periplasmic lead sequestration as lead sulfite by Providencia vermicola strain SJ2A. Science of the Total Environment, 579, 359–365. doi:10.1016/j.scitotenv.2016.11.089
  • Shi, W., Bischoff, M., Turco, R., & Konopka, A. (2002). Long-term effects of chromium and lead upon the activity of soil microbial communities. Applied Soil Ecology, 21(2), 169–177. doi:10.1016/S0929-1393(02)00062-8
  • Sobolev, D., & Begonia, M. F. T. (2008). Effects of heavy metal contamination upon soil microbes: Lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. International Journal of Environmental Research and Public Health, 5(5), 450–456. doi:10.3390/ijerph5050450
  • Taghavi, S., Lesaulnier, C., Monchy, S., Wattiez, R., Mergeay, M., & van der Lelie, D. (2009). Lead(II) resistance in Cupriavidus metallidurans CH34: Interplay between plasmid and chromosomally-located functions. Antonie Van Leeuwenhoek, 96(2), 171–182. doi:10.1007/s10482-008-9289-0
  • Takatera, K., Osaki, N., Yamaguchi, H., & Watanabe, T. (1994). HPLC/ICP mass spectrometric study of the selenium incorporation into cyanobacterial metallothionein induced under heavy-metal stress. Analytical Sciences, 10(4), 567–572. doi:10.2116/analsci.10.567
  • Tauriainen, S., Karp, M., Chang, W., & Virta, M. (1998). Luminescent bacterial sensor for cadmium and lead. Biosensors and Bioelectronics, 13(9), 931–938. doi:10.1016/S0956-5663(98)00027-X
  • Tipayno, S. C., Truu, J., Samaddar, S., Truu, M., Preem, J.-K., Oopkaup, K., … Sa, T. (2018). The bacterial community structure and functional profile in the heavy metal contaminated paddy soils, surrounding a nonferrous smelter in South Korea. Ecology and Evolution, 8(12), 6157–6168. doi:10.1002/ece3.4170
  • Tomova, I., Stoilova-Disheva, M., Lazarkevich, I., & Vasileva-Tnkova, E. (2015). Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Frontiers in Life Science, 8(4), 348–357. doi:0.1080/21553769.2015.1044130 doi:10.1080/21553769.2015.1044130
  • Tong, S., von Schirnding, Y. E., & Prapamontol, T. (2000). Environmental lead exposure: A public health problem of global dimensions. Bulletin of the World Health Organization, 78(9), 1068–1077.
  • Trajanovska, S., Britz, M. L., & Bhave, M. (1997). Detection of heavy metal ion resistance genes in Gram-positive and Gram-negative bacteria isolated from a lead-contaminated site. Biodegradation, 8(2), 113–124.
  • Turner, J. S., Morby, A. P., Whitton, B. A., Gupta, A., & Robinson, N. J. (1993). Construction of Zn2+/Cd2+hypersensitive cyanobacterial mutants lacking a functional metallothioinein locus. The Journal of Biological Chemistry, 268(6), 4494–4498.
  • U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. (2007). Toxicology profile for Lead. Retrieved from https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf
  • U.S. Environmental Protection Agency (U.S. EPA). (2001). Hazard standards for lead in paint, dust and soil (TSCA Section 403). Retrieved from https://www.epa.gov/lead/hazard-standards-lead-paint-dust-and-soil-tsca-section-403
  • U.S. EPA. (2003). Attachment 1-2, Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs): Assessment of Whether to Develop Ecological Soil Screening Levels for Microbes and Microbial Processes. OSWER Directive 92857-55. Retrieved from https://www.epa.gov/sites/production/files/2015-09/documents/ecossl_attachment_1-2.pdf
  • U.S. EPA. (2007a). Framework for the metals risk assessment. EPA 120/R-07/, 001. Retrieved from https://www.epa.gov/sites/production/files/2013-09/documents/metals-risk-assessment-final.pdf
  • U.S. EPA. (2007b). Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment. OSWER 9285.7-80. Retrieved from https://nepis.epa.gov/Exe/ZyNET.exe/93001C3I.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2006+Thru+2010&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C06thru10%5CTxt%5C00000033%5C93001C3I.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
  • U.S. EPA. (2019). Lead at superfund sites: Risk assessment. Retrieved from https://www.epa.gov/superfund/lead-superfund-sites-risk-assessment.
  • U.S. Executive Office of the President. (2018). President’s Task Force on Environmental Health Risks and Safety Risks to Children. Federal Action Plan to Reduce Childhood Lead Exposures and Associated Health Impacts. Retrieved from https://www.epa.gov/sites/production/files/2018-12/documents/fedactionplan_lead_final.pdf
  • Udachin, V., Williamson, B. J., Purvis, O. W., Spiro, B., Dubbin, W., Brooks, S., … Mikhailova, I. (2003). Assessment of environmental impacts of active smelter operations and abandoned mines in Karabash, Ural mountains of Russia. Sustain Develop, 11, 1–10. doi:10.1002/sd.211
  • van der Lelie, D., Tibarzawa, C., Corbisier, P., Vangronsveld, J., & Mench, M. (2000). Bacterial biosensors to quantify bioavailable concentration of heavy metals in polluted soils to predict their risk of transfer to the food chain. In J. Nriagu (Ed.), 11th annual international conference on heavy metals in the environment (pp. 1–4). Ann Arbor, MI: University of Michigan, School of Public Health.
  • Van Der Lelie, D., Verschaeve, L., Regniers, L., & Corbisier, P. (2000). Use of bacterial tests (the VITOTOX® genotoxicity test and the BIOMET heavy metal test) to analyze chemicals and environmental samples. In G. Persoone, C. Janssen, & W. De Coen (Eds.), New microbiotests for routine toxicity screening and biomonitoring. Springer, Boston, MA.
  • Van Houdt, R., Monchy, S., Leys, N., & Mergeay, M. (2009). New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie Van Leeuwenhoek, 96(2), 205–226. doi:10.1007/s10482-009-9345-4
  • Von Braun, M. D., von Lindern, I. H., Khristoforova, N. K., Kachur, A. H., Yelpatyevsky, P. V., Elpatyevskaya, V. P., & Spalinger, S. M. (2002). Environmental lead contamination in the Rudnaya Pristan—Dalnegorsk mining and smelter district, Russian Far East. Environmental Research, 88(3), 164–173. doi:10.1006/enrs.2002.4329
  • Williamson, B. J., Udachin, V., Purvis, O. W., Spiro, B., Cressey, G. & Jones, G. C. (2004). Characterisation of airborne particulate pollution in the Cu smelter and former mining town of Karabash, South Ural Mountains of Russia. Environmental Monitoring and Assessment , 98, 235–259. doi:10.1023/B:EMAS.0000038189.45002.78
  • White, C., Tancos, M., & Lytle, D. A. (2011). Microbial community profile of a lead service line removed from a drinking water distribution system. Applied Environmental Microbiology, 77(15), 5557–5561. doi:10.1128/AEM.02446-10
  • Wilson, D., Esterman, A., Lewis, M., Roder, D., & Calder, I. (1986). Children's blood lead levels in the lead smelting town of Port Pirie, South Australia. Archives of Environmental Health, 41(4), 245–250. doi:10.1080/00039896.1986.9938340
  • Wei, W., Liu, X., Sun, P., Wang, X., Zhu, H., Hong, M., … Zhao, J. (2014). Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon. Environmental Science & Technology, 48(6), 3363–3371. doi:10.1021/es4046567
  • World Health Organization. (2011). Lead in Drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality, WHO/SDE/WSH/03.04/09/Rev/1. Retrieved from https://www.who.int/water_sanitation_health/dwq/chemicals/lead.pdf
  • World Health Organization, International Agency for Research on Cancer (WHO/IARC). (2006). Inorganic and Organic Lead Compounds, IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2004: Lyon, France), volume 87, 1–506. Retrieved from https://monographs.iarc.fr/wp-content/uploads/2018/06/mono87.pdf
  • Woszczyk, M., Spychalski, W., & Boluspaeva, L. (2018). Trace metal (Cd, Cu, Pb, Zn) fractionation in urban-industrial soils of Ust-Kamenogorsk (Oskemen), Kazakhstan—implications for the assessment of environmental quality. Environmental Monitoring and Assessment, 190(6), 362. https://doi.org/10.1007/s10661-018-6733-0
  • Xavier, J. C., Costa, P. E. S., Hissa, D. C., Melo, V. M. M., Falcão, R. M., Balbino, V. O., … Verde, L. C. L. (2019). Evaluation of the microbial diversity and heavy metal resistance genes of a microbial community on contaminated environment. Applied Geochemistry, 105, 1–6. https://doi.org/10.1016/j.apgeochem.2019.04.012
  • Xu, Y., Seshadri, B., Bolan, N., Sarkar, B., Ok, Y. S., Zhang, W., … Dong, Z. (2019). Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environment International, 125, 478–488. doi:10.1016/j.envint.2019.01.071
  • Xu, Y., Seshadri, B., Sarkar, B., Wang, H., Rumpel, C., Sparks, D., … Bolan, N. (2018). Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Science of the Total Environment, 621, 148–159. doi:10.1016/j.scitotenv.2017.11.214
  • Xu, X., Zhang, Z., Hu, S., Ruan, Z., Jiang, J., Chen, C., & Shen, Z. (2017). Response of soil bacterial communities to lead and zinc pollution revealed by Illumina MiSeq sequencing investigation. Environmental Science and Pollution Research, 24(1), 666–675. doi:10.1007/s11356-016-7826-3
  • Yang, Y., Liu, G., Song, W., Ye, C., Lin, H., Li, Z., & Liu, W. (2019). Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environment International, 123, 79–86. doi:10.1016/j.envint.2018.11.061
  • Yin, H., Niu, J., Ren, Y., Cong, J., Zhang, X., Fan, F., … Liu, X. (2015). An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Scientific Reports, 5(1), 14266. doi:10.1038/srep14266
  • Zhang, X., Qin, B., Deng, J., & Wells, M. (2017). Whole-cell bioreporters and risk assessment of environmental pollution: A proof-of-concept study using lead. Environmental Pollution, 229, 902–910. doi:10.1016/j.envpol.2017.07.068
  • Zhang, H., Wan, Z., Ding, M., Wang, P., Xu, X., & Jiang, Y. (2018). Inherent bacterial community response to multiple heavy metals in sediment from river-lake systems in the Poyang Lake, China. Ecotoxicology and Environmental Safety, 165, 314–324. doi:10.1016/j.ecoenv.2018.09.010
  • Zhang, C., Xu, Y., Zhao, M., Rong, H., & Zhang, K. (2018). Influence of inoculating white-rot fungi on organic matter transformations and mobility of heavy metals in sewage sludge based composting. Journal of Hazardous Materials, 344, 163–168. doi:10.1016/j.jhazmat.2017.10.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.