2,314
Views
46
CrossRef citations to date
0
Altmetric
Articles

Surface and colloid properties of biochar and implications for transport in porous media

ORCID Icon, , & ORCID Icon
Pages 2484-2522 | Published online: 13 Dec 2019

References

  • Abdullah, H., & Wu, H. W. (2009). Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy & Fuels, 23(8), 4174–4181. doi:10.1021/ef900494t
  • Afrooz, A. R., & Boehm, A. B. (2016). Escherichia coli removal in biochar-modified biofilters: Effects of biofilm. PLoS One, 11(12), e0167489. doi:10.1371/journal.pone.0167489
  • Agegnehu, G., Srivastava, A. K., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119, 156–170. doi:10.1016/j.apsoil.2017.06.008
  • Ali, S., Rizwan, M., Qayyum, M. F., Ok, Y. S., Ibrahim, M., Riaz, M., … Shahzad, A. N. (2017). Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environmental Science and Pollution Research, 24(14), 12700–12712. doi:10.1007/s11356-017-8904-x
  • Aller, M. F. (2016). Biochar properties: Transport, fate, and impact. Critical Reviews in Environmental Science and Technology, 46(14–15), 1183–1296. doi:10.1080/10643389.2016.1212368
  • Ameloot, N., Graber, E. R., Verheijen, F. G. A., & De Neve, S. (2013). Interactions between biochar stability and soil organisms: Review and research needs. European Journal of Soil Science, 64(4), 379–390. doi:10.1111/ejss.12064
  • Amonette, J., & Joseph, S. (2009). Characteristics of biochar: Microchemical properties. In Biochar for Environmental Management: Science and Technology (pp. 33–52). London, UK: Earthscan.
  • Bagreev, A., Bandosz, T. J., & Locke, D. C. (2001). Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon, 39(13), 1971–1979. doi:10.1016/S0008-6223(01)00026-4
  • Batista, E., Shultz, J., Matos, T. T. S., Fornari, M. R., Ferreira, T. M., Szpoganicz, B., … Mangrich, A. S. (2018). Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Scientific Reports, 8, 10677. doi:10.1038/s41598-018-28794-z
  • Beesley, L., Moreno-Jimenez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159(12), 3269–3282. doi:10.1016/j.envpol.2011.07.023
  • Blanco-Canqui, H. (2017). Biochar and soil physical properties. Soil Science Society of America Journal, 81(4), 687–711. doi:10.2136/sssaj2017.01.0017
  • Blanco-Canqui, H. (2019). Biochar and water quality. Journal of Environment Quality, 48(1), 2–15. doi:10.2134/jeq2018.06.0248
  • Borchard, N., Schirrmann, M., Cayuela, M. L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., … Novak, J. (2019). Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Science of the Total Environment, 651, 2354–2364. doi:10.1016/j.scitotenv.2018.10.060
  • Bradford, S. A., & Torkzaban, S. (2015). Determining parameters and mechanisms of colloid retention and release in porous media. Langmuir, 31(44), 12096–12105. doi:10.1021/acs.langmuir.5b03080
  • Brodowski, S., Amelung, W., Haumaier, L., & Zech, W. (2007). Black carbon contribution to stable humus in German arable soils. Geoderma, 139(1–2), 220–228. doi:10.1016/j.geoderma.2007.02.004
  • Bruun, E. W., Hauggaard-Nielsen, H., Ibrahim, N., Egsgaard, H., Ambus, P., Jensen, P. A., & Dam-Johansen, K. (2011). Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass and Bioenergy, 35(3), 1182–1189. doi:10.1016/j.biombioe.2010.12.008
  • Byrne, C. E., & Nagle, D. C. (1997). Carbonization of wood for advanced materials applications. Carbon, 35(2), 259–266. doi:10.1016/S0008-6223(96)00136-4
  • Cao, T., Chen, W. F., Yang, T. X., He, T. Y., Liu, Z. Q., & Meng, J. (2017). Surface Characterization of Aged Biochar Incubated in Different Types of Soil. BioResources, 12(3), 6366–6377. doi:10.15376/biores.12.3.6366-6377
  • Carcaillet, C. (2001). Are Holocene wood-charcoal fragments stratified in alpine and subalpine soils? Evidence from the Alps based on AMS 14C dates. The Holocene, 11(2), 231–242. doi:10.1191/095968301674071040
  • Chen, D., Liu, X., Bian, R., Cheng, K., Zhang, X., Zheng, J., … Li, L. (2018). Effects of biochar on availability and plant uptake of heavy metals - A meta-analysis. Journal of Environmental Management, 222, 76–85. doi:10.1016/j.jenvman.2018.05.004
  • Chen, M., Wang, D., Yang, F., Xu, X., Xu, N., & Cao, X. (2017). Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions. Environmental Pollution, 230, 540–549. doi:10.1016/j.envpol.2017.06.101
  • Chen, Y., Zhang, X., Chen, W., Yang, H., & Chen, H. (2017). The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresource Technology, 246, 101–109. doi:10.1016/j.biortech.2017.08.138
  • Chen, Z., Wang, Y., Xia, D., Jiang, X., Fu, D., Shen, L., … Li, Q. B. (2016). Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition. Journal of Hazardous Materials, 311, 20–29. doi:10.1016/j.jhazmat.2016.02.069
  • Chibowski, E., & Perea-Carpio, R. (2002). Problems of contact angle and solid surface free energy determination. Advances in Colloid and Interface Science, 98(2), 245–264. doi:10.1016/S0001-8686(01)00097-5
  • Chowdhury, I., Duch, M. C., Mansukhani, N. D., Hersam, M. C., & Bouchard, D. (2013). Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. Environmental Science & Technology, 47(12), 6288–6296. doi:10.1021/es400483k
  • de la Rosa, J. M., Rosado, M., Paneque, M., Miller, A. Z., & Knicker, H. (2018). Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils. Science of the Total Environment, 613–614, 969–976. doi:10.1016/j.scitotenv.2017.09.124
  • Ding, Y., Liu, Y., Liu, S., Huang, X., Li, Z., Tan, X., … Zhou, L. (2017). Potential benefits of biochar in agricultural soils: A review. Pedosphere, 27(4), 645–661. doi:10.1016/S1002-0160(17)60375-8
  • Dong, H., Zhang, C., Hou, K., Cheng, Y., Deng, J., Jiang, Z., … Zeng, G. (2017). Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution. Separation and Purification Technology, 188, 188–196. doi:10.1016/j.seppur.2017.07.033
  • Dong, X., He, L., Liu, Y., & Piao, Y. (2018). Preparation of highly conductive biochar nanoparticles for rapid and sensitive detection of 17β-estradiol in water. Electrochimica Acta, 292, 55–62. doi:10.1016/j.electacta.2018.09.129
  • Edmondson, J. L., Stott, I., Potter, J., Lopez-Capel, E., Manning, D. A., Gaston, K. J., & Leake, J. R. (2015). Black carbon contribution to organic carbon stocks in urban soil. Environmental Science & Technology, 49(14), 8339–8346. doi:10.1021/acs.est.5b00313
  • Elimelech, M., Gregory, J., & Jia, X. (2013). Particle deposition & aggregation: Measurement, modelling and simulation. Oxford, UK: Butterworth-Heinemann.
  • Fan, S., Wang, Y., Li, Y., Wang, Z., Xie, Z., & Tang, J. (2018). Removal of tetracycline from aqueous solution by biochar derived from rice straw. Environmental Science and Pollution Research, 25(29), 29529–29540. doi:10.1007/s11356-018-2976-0
  • Flury, M., & Aramrak, S. (2017). Role of air-water interfaces in colloid transport in porous media: A review. Water Resources Research, 53(7), 5247–5275. doi:10.1002/2017WR020597
  • Fu, H., Wei, C., Qu, X., Li, H., & Zhu, D. (2018). Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications. Environmental Pollution, 232, 402–410. doi:10.1016/j.envpol.2017.09.053
  • Gao, S., DeLuca, T. H., & Cleveland, C. C. (2019). Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Science of the Total Environment, 654, 463–472. doi:10.1016/j.scitotenv.2018.11.124
  • Gao, X., & Wu, H. (2014). Aerodynamic properties of biochar particles: Effect of grinding and implications. Environmental Science & Technology Letters, 1(1), 60–64. doi: 10.1021/ez400165g.
  • Gao, X., Driver, L. E., Kasin, I., Masiello, C. A., Pyle, L. A., Dugan, B., & Ohlson, M. (2017). Effect of environmental exposure on charcoal density and porosity in a boreal forest. Science of the Total Environment, 592, 316–325. doi:10.1016/j.scitotenv.2017.03.073
  • Gelardi, D. L., Li, C., & Parikh, S. J. (2019). An emerging environmental concern: Biochar-induced dust emissions and their potentially toxic properties. Science of the Total Environment, 678, 813–820. doi:10.1016/j.scitotenv.2019.05.007
  • Głąb, T., Palmowska, J., Zaleski, T., & Gondek, K. (2016). Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, 281, 11–20. doi:10.1016/j.geoderma.2016.06.028
  • Glaser, B., Haumaier, L., Guggenberger, G., & Zech, W. (2001). The 'Terra Preta' phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften, 88(1), 37–41. doi:10.1007/s001140000193
  • Goldberg, S., Forster, H. S., & Heick, E. L. (1991). Flocculation of illite/kaolinite and illite/montmorillonite mixtures as affected by sodium adsorption ratio and pH. Clays and Clay Minerals, 39(4), 375–380. doi:10.1346/CCMN.1991.0390406
  • Good, R. J. (1952). A thermodynamic derivation of Wenzel’s modification of Young’s equation for contact angles; together with a theory of hysteresis1. Journal of the American Chemical Society, 74(20), 5041–5042. doi:10.1021/ja01140a014
  • Gray, M., Johnson, M. G., Dragila, M. I., & Kleber, M. (2014). Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and Bioenergy, 61, 196–205. doi:10.1016/j.biombioe.2013.12.010
  • Gul, S., & Whalen, J. K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology and Biochemistry, 103, 1–15. doi:10.1016/j.soilbio.2016.08.001
  • Gwenzi, W., Chaukura, N., Noubactep, C., & Mukome, F. N. D. (2017). Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. Journal of Environmental Management, 197, 732–749. doi:10.1016/j.jenvman.2017.03.087
  • Hammes, K., & Schmidt, M. (2009). Changes of biochar in soil. In Biochar for environmental management: Science and technology (pp. 169–181). London, UK: Earthscan.
  • Hammes, K., Torn, M. S., Lapenas, A. G., & Schmidt, M. W. I. (2008). Centennial black carbon turnover in a Russian steppe soil. Biogeosciences, 5(5), 1339–1350. doi:10.5194/bgd-5-661-2008
  • Harvey, O. R., Herbert, B. E., Kuo, L. J., & Louchouarn, P. (2012). Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars. Environmental Science & Technology, 46(19), 10641–10650. doi:10.1021/es302971d
  • Herath, H. M. S. K., Camps-Arbestain, M., & Hedley, M. (2013). Effect of biochar on soil physical properties in two contrasting soils: An alfisol and an andisol. Geoderma, 209-210, 188–197. doi:10.1016/j.geoderma.2013.06.016
  • Hilscher, A., Heister, K., Siewert, C., & Knicker, H. (2009). Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Organic Geochemistry, 40(3), 332–342. doi:10.1016/j.orggeochem.2008.12.004
  • Ho, S. H., Zhu, S., & Chang, J. S. (2017). Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal. Bioresource Technology, 246, 123–134. doi:10.1016/j.biortech.2017.08.061
  • Huangfu, X., Jiang, J., Ma, J., Liu, Y., & Yang, J. (2013). Aggregation kinetics of manganese dioxide colloids in aqueous solution: Influence of humic substances and biomacromolecules. Environmental Science & Technology, 47(18), 10285–10292. doi:10.1021/es4003247
  • Hunter, R. J. (2001). Foundations of colloid science (2nd ed.). New York: Oxford University Press.
  • Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., … Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406–433. doi:10.1080/10643389.2015.1096880
  • Jeffery, S., Meinders, M. B. J., Stoof, C. R., Bezemer, T. M., van de Voorde, T. F. J., Mommer, L., & van Groenigen, J. W. (2015). Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma, 251-252, 47–54. doi:10.1016/j.geoderma.2015.03.022
  • Kavitha, B., Reddy, P. V. L., Kim, B., Lee, S. S., Pandey, S. K., & Kim, K. H. (2018). Benefits and limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management, 227, 146–154. doi:10.1016/j.jenvman.2018.08.082
  • Keiblinger, K. M., Liu, D., Mentler, A., Zehetner, F., & Zechmeister-Boltenstern, S. (2015). Biochar application reduces protein sorption in soil. Organic Geochemistry, 87, 21–24. doi:10.1016/j.orggeochem.2015.06.005
  • Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 44(4), 1247–1253. doi:10.1021/es9031419
  • Kinney, T. J., Masiello, C. A., Dugan, B., Hockaday, W. C., Dean, M. R., Zygourakis, K., & Barnes, R. T. (2012). Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy, 41, 34–43. doi:10.1016/j.biombioe.2012.01.033
  • Kleber, M., Hockaday, W. C., & Nico, P. S. (2015). Characteristics of biochar: Macro-molecular properties. In Biochar for environmental management: Science, technology and implementation (pp. 111–137). New York: Routledge.
  • Koele, N., Bird, M., Haig, J., Marimon-Junior, B. H., Marimon, B. S., Phillips, O. L., … Feldpausch, T. R. (2017). Amazon Basin forest pyrogenic carbon stocks: First estimate of deep storage. Geoderma, 306, 237–243. doi:10.1016/j.geoderma.2017.07.029
  • Koutcheiko, S., Monreal, C. M., Kodama, H., McCracken, T., & Kotlyar, L. (2007). Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Bioresource Technology, 98(13), 2459–2464. doi:10.1016/j.biortech.2006.09.038
  • Kumar, M., Verma, B. B., & Gupta, R. C. (1999). Mechanical Properties of Acacia and Eucalyptus Wood Chars. Energy Sources, 21, 675–685. doi:10.1080/00908319950014425
  • Kuzyakov, Y., Bogomolova, I., & Glaser, B. (2014). Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biology and Biochemistry, 70, 229–236. doi:10.1016/j.soilbio.2013.12.021
  • Lahori, A. H., Guo, Z., Zhang, Z., Li, R., Mahar, A., Awasthi, M. K., … Jiang, S. (2017). Use of Biochar as an amendment for remediation of heavy metal-contaminated soils: Prospects and challenges. Pedosphere, 27(6), 991–1014. doi:10.1016/S1002-0160(17)60490-9
  • Lehmann, J. (2007a). A handful of carbon. Nature, 447(7141), 143–144. doi:10.1038/447143a
  • Lehmann, J. (2007b). Bio-energy in the black. Frontiers in Ecology and the Environment, 5(7), 381–387. doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2]
  • Lehmann, J., Abiven, S., Kleber, M., Pan, G., Singh, B. P., Sohi, S. P., … Joseph, S. (2015). Persistence of biochar in soil. In Biochar for environmental management: Science, technology and implementation (pp. 235–282). New York, U.S.A: Routledge.
  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota: A review. Soil Biology and Biochemistry, 43(9), 1812–1836. doi:10.1016/j.soilbio.2011.04.022
  • Leifeld, J., Fenner, S., & Müller, M. (2007). Mobility of black carbon in drained peatland soils. Biogeosciences, 4(3), 425–432. doi:10.5194/bgd-4-871-2007
  • Leng, L., & Huang, H. (2018). An overview of the effect of pyrolysis process parameters on biochar stability. Bioresource Technology, 270, 627–642. doi:10.1016/j.biortech.2018.09.030
  • Leng, L., Huang, H., Li, H., Li, J., & Zhou, W. (2019). Biochar stability assessment methods: A review. Science of the Total Environment, 647, 210–222. doi:10.1016/j.scitotenv.2018.07.402
  • Li, C., Bair, D. A., & Parikh, S. J. (2018). Estimating potential dust emissions from biochar amended soils under simulated tillage. Science of the Total Environment, 625, 1093–1101. doi:10.1016/j.scitotenv.2017.12.249
  • Li, D. C., & Jiang, H. (2017). The thermochemical conversion of non-lignocellulosic biomass to form biochar: A review on characterizations and mechanism elucidation. Bioresource Technology, 246, 57–68. doi:10.1016/j.biortech.2017.07.029
  • Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466–478. doi:10.1016/j.chemosphere.2017.03.072
  • Li, K., & Chen, Y. (2012). Effect of natural organic matter on the aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: Measurements and modeling. Journal of Hazardous Materials, 209-210, 264–270. doi:10.1016/j.jhazmat.2012.01.013
  • Li, L., Zhang, K., Chen, L., Huang, Z., Liu, G., Li, M., & Wen, Y. (2017). Mass preparation of micro/nano-powders of biochar with water-dispersibility and their potential application. New Journal of Chemistry, 41(18), 9649–9657. doi:10.1039/C7NJ00742F
  • Li, R., Wang, J. J., Gaston, L. A., Zhou, B., Li, M., Xiao, R., … Zhang, X. (2018). An overview of carbothermal synthesis of metal-biochar composites for the removal of oxyanion contaminants from aqueous solution. Carbon, 129, 674–687. doi:10.1016/j.carbon.2017.12.070
  • Li, S. M., Harris, S., Anandhi, A., & Chen, G. (2019). Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. Journal of Cleaner Production, 215, 890–902. doi:10.1016/j.jclepro.2019.01.106
  • Lian, F., & Xing, B. (2017). Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk. Environmental Science & Technology, 51(23), 13517–13532. doi:10.1021/acs.est.7b02528
  • Lian, F., Sun, B., Song, Z., Zhu, L., Qi, X., & Xing, B. (2014). Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chemical Engineering Journal, 248, 128–134. doi:10.1016/j.cej.2014.03.021
  • Lin, Y., Munroe, P., Joseph, S., Henderson, R., & Ziolkowski, A. (2012). Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere, 87(2), 151–157. doi:10.1016/j.chemosphere.2011.12.007
  • Liu, G., Zheng, H., Jiang, Z., & Wang, Z. (2018). Effects of biochar input on the properties of soil nanoparticles and dispersion/sedimentation of natural mineral nanoparticles in aqueous phase. Science of the Total Environment, 634, 595–605. doi:10.1016/j.scitotenv.2018.04.019
  • Liu, G., Zheng, H., Jiang, Z., Zhao, J., Wang, Z., Pan, B., & Xing, B. (2018). Formation and physicochemical characteristics of nano biochar: Insight into chemical and colloidal stability. Environmental Science & Technology, 52(18), 10369–10379. doi:10.1021/acs.est.8b01481
  • Liu, L., Liu, G., Zhou, J., Wang, J., & Jin, R. (2019). Cotransport of biochar and Shewanella oneidensis MR-1 in saturated porous media: Impacts of electrostatic interaction, extracellular electron transfer and microbial taxis. Science of the Total Environment, 658, 95–104. doi:10.1016/j.scitotenv.2018.12.031
  • Liu, Y., Lonappan, L., Brar, S. K., & Yang, S. (2018). Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Science of the Total Environment, 645, 60–70. doi:10.1016/j.scitotenv.2018.07.099
  • Liu, Z. L., Dugan, B., Masiello, C. A., Barnes, R. T., Gallagher, M. E., & Gonnermann, H. (2016). Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar-sand mixtures. Journal of Hydrology, 533, 461–472. doi:10.1016/j.jhydrol.2015.12.007
  • Liu, Z., Dugan, B., Masiello, C. A., Wahab, L. M., Gonnermann, H. M., & Nittrouer, J. A. (2018). Effect of freeze-thaw cycling on grain size of biochar. PLoS One, 13(1), e0191246. doi:10.1371/journal.pone.0191246
  • Lonappan, L., Rouissi, T., Das, R. K., Brar, S. K., Ramirez, A. A., Verma, M., … Valero, J. R. (2016). Adsorption of methylene blue on biochar microparticles derived from different waste materials. Waste Management, 49, 537–544. doi:10.1016/j.wasman.2016.01.015
  • Luo, M., Huang, Y., Zhu, M., Tang, Y-N., Ren, T., Ren, J., … Li, F. (2018). Properties of different natural organic matter influence the adsorption and aggregation behavior of TiO2 nanoparticles. Journal of Saudi Chemical Society, 22(2), 146–154. doi:10.1016/j.jscs.2016.01.007
  • Lyu, H. H., Gao, B., He, F., Zimmerman, A. R., Ding, C., Tang, J. C., & Crittenden, J. C. (2018). Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chemical Engineering Journal, 335, 110–119. doi:10.1016/j.cej.2017.10.130
  • Lyu, H., Gao, B., He, F., Zimmerman, A. R., Ding, C., Huang, H., & Tang, J. (2018). Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environmental Pollution, 233, 54–63. doi:10.1016/j.envpol.2017.10.037
  • Lyu, H., Yu, Z., Gao, B., He, F., Huang, J., Tang, J., & Shen, B. (2019). Ball-milled biochar for alternative carbon electrode. Environmental Science and Pollution Research, 26(14), 14693–14702. doi:10.1007/s11356-019-04899-4
  • Major, J., Lehmann, J., Rondon, M., & Goodale, C. (2010). Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Global Change Biology, 16(4), 1366–1379. doi:10.1111/j.1365-2486.2009.02044.x
  • Manikandan, A., Subramanian, K. S., & Pandian, K. (2013). Effect of high energy ball milling on particle size and surface area of adsorbents for efficient loading of fertilizer. An Asian Journal of Soil Science, 3, 249–254.
  • Mia, S., Dijkstra, F. A., & Singh, B. (2017). Long-term aging of biochar: A molecular understanding with agricultural and environmental implications. In Advances in agronomy (pp. 1–51). Amsterdam, Netherlands: Elsevier.
  • Mohanty, S. K., & Boehm, A. B. (2014). Escherichia coli removal in biochar-augmented biofilter: Effect of infiltration rate, initial bacterial concentration, biochar particle size, and presence of compost. Environmental Science & Technology, 48(19), 11535–11542. doi:10.1021/es5033162
  • Mrad, R., & Chehab, G. (2019). Mechanical and microstructure properties of biochar-based mortar: An internal curing agent for PCC. Sustainability, 11(9), 2491. doi:10.3390/su11092491
  • Mukherjee, A., Zimmerman, A. R., & Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163(3–4), 247–255. doi:10.1016/j.geoderma.2011.04.021
  • Mukherjee, A., Zimmerman, A. R., Hamdan, R., & Cooper, W. T. (2014). Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging. Solid Earth, 5(2), 693–704. doi:10.5194/se-5-693-2014
  • Nemati, M. R., Simard, F., Fortin, J. P., & Beaudoin, J. (2015). Potential use of biochar in growing media. Vadose Zone Journal, 14(6), 4–8. doi:10.2136/vzj2014.06.0074
  • Nguyen, B. T., Lehmann, J., Kinyangi, J., Smernik, R., Riha, S. J., & Engelhard, M. H. (2008). Long-term black carbon dynamics in cultivated soil. Biogeochemistry, 89(3), 295–308. doi:10.1007/s10533-008-9220-9
  • Nguyen, T. T. N., Xu, C.-Y., Tahmasbian, I., Che, R., Xu, Z., Zhou, X., … Bai, S. H. (2017). Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma, 288, 79–96. doi:10.1016/j.geoderma.2016.11.004
  • Obia, A., Borresen, T., Martinsen, V., Cornelissen, G., & Mulder, J. (2017). Vertical and lateral transport of biochar in light-textured tropical soils. Soil and Tillage Research, 165, 34–40. doi:10.1016/j.still.2016.07.016
  • Ojeda, G., Mattana, S., Àvila, A., Alcañiz, J. M., Volkmann, M., & Bachmann, J. (2015). Are soil–water functions affected by biochar application? Geoderma, 249-250, 1–11. doi:10.1016/j.geoderma.2015.02.014
  • Palansooriya, K. N., Ok, Y. S., Awad, Y. M., Lee, S. S., Sung, J. K., Koutsospyros, A., & Moon, D. H. (2019). Impacts of biochar application on upland agriculture: A review. Journal of Environmental Management, 234, 52–64. doi:10.1016/j.jenvman.2018.12.085
  • Peiris, C., Gunatilake, S. R., Mlsna, T. E., Mohan, D., & Vithanage, M. (2017). Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review. Bioresource Technology, 246, 150–159. doi:10.1016/j.biortech.2017.07.150
  • Pietikainen, J., Kiikkila, O., & Fritze, H. (2000). Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 89(2), 231–242. doi:10.1034/j.1600-0706.2000.890203.x
  • Pituello, C., Dal Ferro, N., Francioso, O., Simonetti, G., Berti, A., Piccoli, I., … Morari, F. (2018). Effects of biochar on the dynamics of aggregate stability in clay and sandy loam soils. European Journal of Soil Science, 69(5), 827–842. doi:10.1111/ejss.12676
  • Qian, L., Zhang, W., Yan, J., Han, L., Gao, W., Liu, R., & Chen, M. (2016). Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures. Bioresource Technology, 206, 217–224. doi:10.1016/j.biortech.2016.01.065
  • Qu, X., Fu, H., Mao, J., Ran, Y., Zhang, D., & Zhu, D. (2016). Chemical and structural properties of dissolved black carbon released from biochars. Carbon, 96, 759–767. doi:10.1016/j.carbon.2015.09.106
  • Ravi, S., Sharratt, B. S., Li, J., Olshevski, S., Meng, Z., & Zhang, J. (2016). Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential. Scientific Reports, 6, 35984. doi:10.1038/srep35984
  • Rechberger, M. V., Kloss, S., Rennhofer, H., Tintner, J., Watzinger, A., Soja, G., … Zehetner, F. (2017). Changes in biochar physical and chemical properties: Accelerated biochar aging in an acidic soil. Carbon, 115, 209–219. doi:10.1016/j.carbon.2016.12.096
  • Reddy, K. R., Gopakumar, A., Chetri, J. K., Kumar, G., & Grubb, D. G. (2019). Sequestration of landfill gas emissions using basic oxygen furnace slag: Effects of moisture content and humid gas flow conditions. Journal of Environmental Engineering, 145(7), 04019033. doi:10.1061/(ASCE)EE.1943-7870.0001539
  • Richard, S., Rajadurai, J. S., & Manikandan, V. (2016). Influence of particle size and particle loading on mechanical and dielectric properties of biochar particulate-reinforced polymer nanocomposites. International Journal of Polymer Analysis and Characterization, 21(6), 462–477. doi:10.1080/1023666X.2016.1168602
  • Richard, S., Rajadurai, J. S., & Manikandan, V. (2017). Effects of particle loading and particle size on tribological properties of biochar particulate reinforced polymer composites. Journal of Tribology, 139, 012202. doi:10.1115/1.4033131
  • Rodionov, A., Amelung, W., Haumaier, L., Urusevskaja, I., & Zech, W. (2006). Black carbon in the zonal steppe soils of Russia. Journal of Plant Nutrition and Soil Science, 169(3), 363–369. doi:10.1002/jpln.200521813
  • Rosales, E., Meijide, J., Pazos, M., & Sanroman, M. A. (2017). Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems. Bioresource Technology, 246, 176–192. doi:10.1016/j.biortech.2017.06.084
  • Saleh, N. B., Pfefferle, L. D., & Elimelech, M. (2008). Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: Measurements and environmental implications. Environmental Science & Technology, 42(21), 7963–7969. doi:10.1021/es801251c
  • Saleh, N. B., Pfefferle, L. D., & Elimelech, M. (2010). Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environmental Science & Technology, 44(7), 2412–2418. doi:10.1021/es903059t
  • Shaaban, M., Van Zwieten, L., Bashir, S., Younas, A., Núñez-Delgado, A., Chhajro, M. A., … Hu, R. (2018). A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management, 228, 429–440. doi:10.1016/j.jenvman.2018.09.006
  • Shang, J., Flury, M., Harsh, J. B., & Zollars, R. L. (2008). Comparison of different methods to measure contact angles of soil colloids. Journal of Colloid and Interface Science., 328(2), 299–307. doi:10.1016/j.jcis.2008.09.039
  • Shen, C., Bradford, S. A., Li, T., Li, B., & Huang, Y. (2018). Can nanoscale surface charge heterogeneity really explain colloid detachment from primary minima upon reduction of solution ionic strength? Journal of Nanoparticle Research, 20, 165. doi:10.1007/s11051-018-4265-8
  • Shen, C., Jin, Y., Zhuang, J., Li, T., & Xing, B. (2019). Role and importance of surface heterogeneities in transport of particles in saturated porous media. Critical Reviews in Environmental Science and Technology, 1–86. doi:10.1080/10643389.2019.1629800
  • Shrestha, G., Traina, S., & Swanston, C. (2010). Black carbon’s properties and role in the environment: A comprehensive review. Sustainability, 2(1), 294–320. doi:10.3390/su2010294
  • Sigmund, G., Jiang, C. J., Hofmann, T., & Chen, W. (2018). Environmental transformation of natural and engineered carbon nanoparticles and implications for the fate of organic contaminants. Environmental Science: Nano, 5(11), 2500–2518. doi:10.1039/C8EN00676H
  • Sigua, G. C., Novak, J. M., Watts, D. W., Cantrell, K. B., Shumaker, P. D., Szogi, A. A., & Johnson, M. G. (2014). Carbon mineralization in two ultisols amended with different sources and particle sizes of pyrolyzed biochar. Chemosphere, 103, 313–321. doi:10.1016/j.chemosphere.2013.12.024
  • Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research, 48(7), 516–525. doi:10.1071/SR10058
  • Smetanová, A., Dotterweich, M., Diehl, D., Ulrich, U., & Fohrer, N. (2013). Influence of biochar and terra preta substrates on wettability and erodibility of soils. Zeitschrift Für Geomorphologie, Supplementary Issues, 57, 111–134. doi:10.1127/0372-8854/2012/S-00117
  • Song, B., Chen, M., Zhao, L., Qiu, H., & Cao, X. (2019). Physicochemical property and colloidal stability of micron- and nano-particle biochar derived from a variety of feedstock sources. Science of the Total Environment, 661, 685–695. doi:10.1016/j.scitotenv.2019.01.193
  • Spokas, K. A. (2010). Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Management, 1(2), 289–303. doi:10.4155/cmt.10.32
  • Spokas, K. A., Novak, J. M., Masiello, C. A., Johnson, M. G., Colosky, E. C., Ippolito, J. A., & Trigo, C. (2014). Physical disintegration of biochar: An overlooked process. Environmental Science & Technology Letters, 1(8), 326–332. doi:10.1021/ez500199t
  • Suliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A. M., Dallmeyer, I., & Garcia-Perez, M. (2017). The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Science of the Total Environment, 574, 139–147. doi:10.1016/j.scitotenv.2016.09.025
  • Trigo, C., Cox, L., & Spokas, K. (2016). Influence of pyrolysis temperature and hardwood species on resulting biochar properties and their effect on azimsulfuron sorption as compared to other sorbents. Science of the Total Environment, 566-567, 1454–1464. doi:10.1016/j.scitotenv.2016.06.027
  • Uchimiya, M., Pignatello, J. J., White, J. C., Hu, S. L., & Ferreira, P. J. (2017). Surface interactions between gold nanoparticles and biochar. Scientific Reports, 7(1), 5027. doi:10.1038/s41598-017-03916-1
  • van Oss, C. J. (1995). Hydrophobicity of biosurfaces: Origin, quantitative determination and interaction energies. Colloids and Surfaces B: Biointerfaces, 5(3-4), 91–110. doi:10.1016/0927-7765(95)01217-7
  • Van Oss, C. J. (2006). Interfacial forces in aqueous media (2nd ed.). Boca Raton, FL: CRC Press.
  • Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., … Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327(1–2), 235–246. doi:10.1007/s11104-009-0050-x
  • Vithanage, M., Herath, I., Joseph, S., Bundschuh, J., Bolan, N., Ok, Y. S., … Rinklebe, J. (2017). Interaction of arsenic with biochar in soil and water: A critical review. Carbon, 113, 219–230. doi:10.1016/j.carbon.2016.11.032
  • Wang, B., Gao, B., & Fang, J. (2017). Recent advances in engineered biochar productions and applications. Critical Reviews in Environmental Science and Technology, 47(22), 2158–2207. doi:10.1080/10643389.2017.1418580
  • Wang, B., Gao, B., & Wan, Y. (2018). Entrapment of ball-milled biochar in Ca-alginate beads for the removal of aqueous Cd(II). Journal of Industrial and Engineering Chemistry, 61, 161–168. doi:10.1016/j.jiec.2017.12.013
  • Wang, B., Gao, B., Zimmerman, A. R., Zheng, Y., & Lyu, H. (2018). Novel biochar-impregnated calcium alginate beads with improved water holding and nutrient retention properties. Journal of Environmental Management, 209, 105–111. doi:10.1016/j.jenvman.2017.12.041
  • Wang, D., Zhang, W., & Zhou, D. (2013). Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand. Environmental Science & Technology, 47(10), 5154–5161. doi:10.1021/es305337r
  • Wang, D., Zhang, W., Hao, X., & Zhou, D. (2013). Transport of biochar particles in saturated granular media: Effects of pyrolysis temperature and particle size. Environmental Science & Technology, 47(2), 821–828. doi:10.1021/es303794d
  • Wang, M., Zhu, Y., Cheng, L., Andserson, B., Zhao, X., Wang, D., & Ding, A. (2018). Review on utilization of biochar for metal-contaminated soil and sediment remediation. Journal of Environmental Sciences, 63, 156–173. doi:10.1016/j.jes.2017.08.004
  • Wang, X., Li, C., Li, Z., Yu, G., & Wang, Y. (2019). Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Ecotoxicology and Environmental Safety, 168, 45–52. doi:10.1016/j.ecoenv.2018.10.022
  • Wang, Y., Zhang, W., Shang, J., Shen, C., & Joseph, S. D. (2019). Chemical aging changed aggregation kinetics and transport of biochar colloids. Environmental Science & Technology, 53(14), 8136–8146. doi:10.1021/acs.est.9b00583
  • Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240–261. doi:10.1016/j.fuel.2017.12.054
  • Wu, S., He, H., Inthapanya, X., Yang, C., Lu, L., Zeng, G., & Han, Z. (2017). Role of biochar on composting of organic wastes and remediation of contaminated soils-a review. Environmental Science and Pollution Research, 24(20), 16560–16577. doi:10.1007/s11356-017-9168-1
  • Xu, F., Wei, C., Zeng, Q., Li, X., Alvarez, P. J. J., Li, Q., … Zhu, D. (2017). Aggregation behavior of dissolved black carbon: Implications for vertical mass flux and fractionation in aquatic systems. Environmental Science & Technology, 51(23), 13723–13732. doi:10.1021/acs.est.7b04232
  • Yang, F., Gao, Y., Sun, L., Zhang, S., Li, J., & Zhang, Y. (2018). Effective sorption of atrazine by biochar colloids and residues derived from different pyrolysis temperatures. Environmental Science and Pollution Research, 25(19), 18528–18539. doi:10.1007/s11356-018-2077-0
  • Yang, W., Bradford, S. A., Wang, Y., Sharma, P., Shang, J., & Li, B. (2019). Transport of biochar colloids in saturated porous media in the presence of humic substances or proteins. Environmental Pollution, 246, 855–863. doi:10.1016/j.envpol.2018.12.075
  • Yang, W., Feng, T., Flury, M., Li, B., & Shang, J. (2019). Effect of sulfamethazine on surface characteristics of biochar colloids and its implications for transport in porous media. Environ. Pollut, in press.
  • Yang, W., Shang, J., Sharma, P., Li, B., Liu, K., & Flury, M. (2019). Colloidal stability and aggregation kinetics of biochar colloids: Effects of pyrolysis temperature, cation type, and humic acid concentrations. Science of the Total Environment, 658, 1306–1315. doi:10.1016/j.scitotenv.2018.12.269
  • Yang, W., Wang, Y., Shang, J., Liu, K., Sharma, P., Liu, J., & Li, B. (2017). Antagonistic effect of humic acid and naphthalene on biochar colloid transport in saturated porous media. Chemosphere, 189, 556–564. doi:10.1016/j.chemosphere.2017.09.060
  • Yang, W., Wang, Y., Sharma, P., Li, B., Liu, K., Liu, J., … Shang, J. (2017). Effect of naphthalene on transport and retention of biochar colloids through saturated porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 530, 146–154. doi:10.1016/j.colsurfa.2017.07.010
  • Yi, P., Pignatello, J. J., Uchimiya, M., & White, J. C. (2015). Heteroaggregation of cerium oxide nanoparticles and nanoparticles of pyrolyzed biomass. Environmental Science & Technology, 49(22), 13294–13303. doi:10.1021/acs.est.5b03541
  • Yin, Q., Zhang, B., Wang, R., & Zhao, Z. (2017). Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: A review. Environmental Science and Pollution Research, 24(34), 26297–26309. doi:10.1007/s11356-017-0338-y
  • Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., … Gao, B. (2019). Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management, 232, 8–21. doi:10.1016/j.jenvman.2018.10.117
  • Yu, K. L., Lau, B. F., Show, P. L., Ong, H. C., Ling, T. C., Chen, W.-H., … Chang, J.-S. (2017). Recent developments on algal biochar production and characterization. Bioresource Technology, 246, 2–11. doi:10.1016/j.biortech.2017.08.009
  • Yuan, P., Wang, J., Pan, Y., Shen, B., & Wu, C. (2019). Review of biochar for the management of contaminated soil: Preparation, application and prospect. Science of the Total Environment, 659, 473–490. doi:10.1016/j.scitotenv.2018.12.400
  • Yue, L., Lian, F., Han, Y., Bao, Q., Wang, Z., & Xing, B. (2019). The effect of biochar nanoparticles on rice plant growth and the uptake of heavy metals: Implications for agronomic benefits and potential risk. Science of the Total Environment, 656, 9–18. doi:10.1016/j.scitotenv.2018.11.364
  • Zabaniotou, A., Stavropoulos, G., & Skoulou, V. (2008). Activated carbon from olive kernels in a two-stage process: Industrial improvement. Bioresource Technology, 99(2), 320–326. doi:10.1016/j.biortech.2006.12.020
  • Zhang, G., Zhang, Q., Sun, K., Liu, X., Zheng, W., & Zhao, Y. (2011). Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures. Environmental Pollution, 159(10), 2594–2601. doi:10.1016/j.envpol.2011.06.012
  • Zhang, W., Niu, J. Z., Morales, V. L., Chen, X. C., Hay, A. G., Lehmann, J., & Steenhuis, T. S. (2010). Transport and retention of biochar particles in porous media: Effect of pH, ionic strength, and particle size. Ecohydrology, 3(4), 497–508. doi:10.1002/eco.160
  • Zhou, Z., Chen, B., Qu, X., Fu, H., & Zhu, D. (2018). Dissolved black carbon as an efficient sensitizer in the photochemical transformation of 17β-estradiol in aqueous solution. Environmental Science & Technology, 52(18), 10391–10399. doi:10.1021/acs.est.8b01928
  • Zhu, X., Chen, B., Zhu, L., & Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution, 227, 98–115. doi:10.1016/j.envpol.2017.04.032
  • Zhu, Y., Tang, W., Jin, X., & Shan, B. (2019). Using biochar capping to reduce nitrogen release from sediments in eutrophic lakes. Science of the Total Environment, 646, 93–104. doi:10.1016/j.scitotenv.2018.07.277
  • Zimmerman, A. R., Gao, B., & Ahn, M. Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43(6), 1169–1179. doi:10.1016/j.soilbio.2011.02.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.