2,649
Views
60
CrossRef citations to date
0
Altmetric
Original Articles

Direct and indirect effects of microplastics on bivalves, with a focus on edible species: A mini-review

, , , & ORCID Icon
Pages 2109-2143 | Published online: 17 Dec 2019

References

  • Akhbarizadeh, R., Moore, F., & Keshavarzi, B. (2018). Investigating a probable relationship between microplastics and potentially toxic elements in fish muscles from northeast of Persian Gulf. Environmental Pollution, 232, 154–163. doi:10.1016/j.envpol.2017.09.028
  • Alexander, J. A., Stoecker, D. K., Meritt, D. W., Alexander, S. T., Padeletti, A., Johns, D., … Glibert, P. M. (2008). Differential production of feces and pseudofeces by the oyster Crassostrea ariakensis when exposed to diets containing harmful dinoflagellate and raphidophyte species. Journal of Shellfish Research, 27(3), 567–579. doi:10.2983/0730-8000(2008)27[567:DPOFAP]2.0.CO;2.
  • Aljaibachi, R., & Callaghan, A. (2018). Impact of polystyrene microplastics on Daphnia magna mortality and reproduction in relation to food availability. PeerJ, 6, e4601. doi:10.7717/peerj.4601
  • Arapov, J., Ezgeta-Balić, D., Peharda, M., & Ninčević, G. Z. (2010). Bivalve feeding - How and what they eat? Ribarstvo, 68, 105–116.
  • Ashton, K., Holmes, L., & Turner, A. (2010). Association of metals with plastic production pellets in the marine environment. Marine Pollution Bulletin, 60(11), 2050–2055. doi:10.1016/j.marpolbul.2010.07.014
  • Atkinson, C. L., Julian, J. P., & Vaughn, C. C. (2014). Species and function lost: Role of drought in structuring stream communities. Biological Conservation, 176, 30–38. doi:10.1016/j.biocon.2014.04.029
  • Atkinson, C. L., Vaughn, C. C., Forshay, K. J., & Cooper, J. T. (2013). Aggregated filter-feeding consumers alter nutrient limitation: Consequences for ecosystem and community dynamics. Ecology, 94(6), 1359–1369. doi:10.1890/12-1531.1
  • Avio, C. G., Gorbi, S., Milan, M., Benedetti, M., Fattorini, D., d'Errico, G., … Regoli, F. (2015). Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environmental Pollution, 198, 211–222. doi:10.1016/j.envpol.2014.12.021
  • Bakir, A., Rowland, S. J., & Thompson, R. C. (2014). Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuarine, Coastal and Shelf Science, 140, 14–21. doi:10.1016/j.ecss.2014.01.004
  • Barboza, L. G. A., Vethaak, A. D., Lavorante, B. R. B. O., Lundebye, A.-K., & Guilhermino, L. (2018). Marine microplastic debris: An emerging issue for food security, food safety and human health. Marine Pollution Bulletin, 133, 336–348. doi:10.1016/j.marpolbul.2018.05.047
  • Barnes, P. (2006). Shellfish culture and particulate matter production and cycling: A literature review. Report for BC Aquaculture Research & Development Committee(AE 02.03-02.01). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.581.5542&rep=rep1&type=pdf
  • Baršienė, J., Šyvokienė, J., & Bjornstad, A. (2006). Induction of micronuclei and other nuclear abnormalities in mussels exposed to bisphenol A, diallyl phthalate and tetrabromodiphenyl ether-47. Aquatic Toxicology, 78, S105–S108. doi:10.1016/j.aquatox.2006.02.023
  • Beck, M. W., Brumbaugh, R. D., Airoldi, L., Carranza, A., Coen, L. D., Crawford, C., … Guo, X. (2011). Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience, 61(2), 107–116. doi:10.1525/bio.2011.61.2.5
  • Benjamin, S., Masai, E., Kamimura, N., Takahashi, K., Anderson, R. C., & Faisal, P. A. (2017). Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. Journal of Hazardous Materials, 340, 360–383. doi:10.1016/j.jhazmat.2017.06.036
  • Bergami, E., Pugnalini, S., Vannuccini, M. L., Manfra, L., Faleri, C., Savorelli, F., … Corsi, I. (2017). Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquatic Toxicology, 189, 159–169. doi:10.1016/j.aquatox.2017.06.008
  • Besseling, E., Wang, B., Lurling, M., & Koelmans, A. A. (2014). Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environmental Science & Technology, 48, 12336–12343. doi:10.1021/es503001d
  • Besseling, E., Wegner, A., Foekema, E. M., van den Heuvel-Greve, M. J., & Koelmans, A. A. (2013). Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environmental Science & Technology, 47, 593–600. doi:10.1021/es302763x
  • Bhattacharya, P., Lin, S., Turner, J. P., & Ke, P. C. (2010). Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. The Journal of Physical Chemistry C, 114(39), 16556–16561. doi:10.1021/jp1054759
  • Binzer, S. B., Lundgreen, R. B. C., Berge, T., Hansen, P. J., & Vismann, B. (2018). The blue mussel Mytilus edulis is vulnerable to the toxic dinoflagellate Karlodinium armiger-Adult filtration is inhibited and several life stages killed. PLoS One, 13(6), e0199306. doi:10.1371/journal.pone.0199306
  • Bogan, A. E. (2008). Global diversity of freshwater mussels (Mollusca, Bivalvia) in freshwater. Hydrobiologia, 595(1), 139–147. doi:10.1007/s10750-007-9011-7
  • Bour, A., Haarr, A., Keiter, S., & Hylland, K. (2018). Environmentally relevant microplastic exposure affects sediment-dwelling bivalves. Environmental Pollution, 236, 652–660. doi:10.1016/j.envpol.2018.02.006
  • Brennecke, D., Duarte, B., Paiva, F., Caçador, I., & Canning-Clode, J. (2016). Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science, 178, 189–195. doi:10.1016/j.ecss.2015.12.003
  • Brown, M. R., Barrett, S. M., Volkman, J. K., Nearhos, S. P., Nell, J. A., & Allan, G. L. (1996). Biochemical composition of new yeasts and bacteria evaluated as food for bivalve aquaculture. Aquaculture, 143(3-4), 341–360. doi:10.1016/0044-8486(96)01286-0
  • Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environmental Science & Technology, 42, 5026–5031. doi:10.1021/es800249a
  • Canesi, L., Borghi, C., Ciacci, C., Fabbri, R., Vergani, L., & Gallo, G. (2007). Bisphenol-A alters gene expression and functional parameters in molluscan hepatopancreas. Molecular and Cellular Endocrinology, 276(1-2), 36–44. doi:10.1016/j.mce.2007.06.002
  • Canesi, L., Ciacci, C., Bergami, E., Monopoli, M. P., Dawson, K. A., Papa, S., … Corsi, I. (2015). Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Marine Environmental Research, 111, 34–40. doi:10.1016/j.marenvres.2015.06.008
  • Canniff, P. M., & Hoang, T. C. (2018). Microplastic ingestion by Daphnia magna and its enhancement on algal growth. Science of the Total Environment, 633, 500–507. doi:10.1016/j.scitotenv.2018.03.176
  • Capolupo, M., Franzellitti, S., Valbonesi, P., Lanzas, C. S., & Fabbri, E. (2018). Uptake and transcriptional effects of polystyrene microplastics in larval stages of the Mediterranean mussel Mytilus galloprovincialis. Environmental Pollution, 241, 1038–1047. doi:10.1016/j.envpol.2018.06.035
  • Castorani, M. C. N., Glud, R. N., Hasler-Sheetal, H., & Holmer, M. (2015). Light indirectly mediates bivalve habitat modification and impacts on seagrass. Journal of Experimental Marine Biology and Ecology, 472, 41–53. doi:10.1016/j.jembe.2015.07.001
  • Cho, Y., Shim, W. J., Jang, M., Han, G. M., & Hong, S. H. (2019). Abundance and characteristics of microplastics in market bivalves from South Korea. Environmental Pollution, 245, 1107–1116. doi:10.1016/j.envpol.2018.11.091
  • Choi, K. S. (2008). Oyster capture-based aquaculture in the Republic of Korea. In A. Lovatelli & P. F. Holthus (Eds.), Capture-based aquaculture. Global overview (FAO Fisheries Technical Paper. No. 508, pp. 271–286). Rome: FAO.
  • Cluzard, M., Kazmiruk, T. N., Kazmiruk, V. D., & Bendell, L. I. (2015). Intertidal concentrations of microplastics and their influence on ammonium cycling as related to the shellfish industry. Archives of Environmental Contamination and Toxicology, 69(3), 310–319. doi:10.1007/s00244-015-0156-5
  • Cole, M., Lindeque, P., Fileman, E., Halsband, C., & Galloway, T. S. (2015). The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environmental Science & Technology, 49, 1130–1137. doi:10.1021/es504525u
  • Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., & Galloway, T. S. (2013). Microplastic ingestion by zooplankton. Environmental Science & Technology, 47, 6646–6655. doi:10.1021/es400663f
  • Corrales, J., Kristofco, L. A., Steele, W. B., Yates, B. S., Breed, C. S., Williams, E. S., & Brooks, B. W. (2015). Global assessment of bisphenol A in the environment: Review and analysis of its occurrence and bioaccumulation. Dose-Response, 13(3), 155932581559830. doi:10.1177/1559325815598308
  • Coutteau, P., & Sorgeloos, P. (1992). The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivalve molluscs: An international survey. Journal of Shellfish Research, 11, 467–476.
  • Cuttelod, A., Seddon, M., & Neubert, E. (2011). European red list of non-marine molluscs. Luxembourg: Publications Office of the European Union. Retrieved from http://ec.europa.eu/environment/nature/conservation/species/redlist/downloads/European_molluscs.pdf
  • Dame, R., & Kennish, M. (2012). Ecology of marine bivalves. Boca Raton, FL: CRC Press.
  • Davarpanah, E., & Guilhermino, L. (2015). Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii. Estuarine, Coastal and Shelf Science, 167, 269–275. doi:10.1016/j.ecss.2015.07.023
  • Davidson, K., & Dudas, S. E. (2016). Microplastic ingestion by wild and cultured Manila clams (Venerupis philippinarum) from Baynes Sound, British Columbia. Archives of Environmental Contamination and Toxicology, 71(2), 147–156. doi:10.1007/s00244-016-0286-4
  • Deng, Y., Zhang, Y., Lemos, B., & Ren, H. (2017). Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific Reports, 7(1), 46687. doi:10.1038/srep46687
  • Deng, Y., Zhang, Y., Qiao, R., Bonilla, M. M., Yang, X., Ren, H., & Lemos, B. (2018). Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus). Journal of Hazardous Materials, 357, 348–354. doi:10.1016/j.jhazmat.2018.06.017
  • Détrée, C., & Gallardo-Escárate, C. (2018). Single and repetitive microplastics exposures induce immune system modulation and homeostasis alteration in the edible mussel Mytilus galloprovincialis. Fish & Shellfish Immunology, 83, 52–60. doi:10.1016/j.fsi.2018.09.018
  • Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., & Tassin, B. (2015). Microplastic contamination in an urban area: A case study in Greater Paris. Environmental Chemistry, 12(5), 592. doi:10.1071/EN14167
  • Duis, K., & Coors, A. (2016). Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe, 28(1), 2. doi:10.1186/s12302-015-0069-y
  • Endo, S., Yuyama, M., & Takada, H. (2013). Desorption kinetics of hydrophobic organic contaminants from marine plastic pellets. Marine Pollution Bulletin, 74(1), 125–131. doi:10.1016/j.marpolbul.2013.07.018
  • Espinosa, E. P., Perrigault, M., Ward, J. E., Shumway, S. E., & Allam, B. (2009). Lectins associated with the feeding organs of the oyster Crassostrea virginica can mediate particle selection. The Biological Bulletin, 217(2), 130–141. doi:10.1086/BBLv217n2p130
  • Everaert, G., Van Cauwenberghe, L., De Rijcke, M., Koelmans, A. A., Mees, J., Vandegehuchte, M., & Janssen, C. R. (2018). Risk assessment of microplastics in the ocean: Modelling approach and first conclusions. Environmental Pollution, 242, 1930–1938. doi:10.1016/j.envpol.2018.07.069
  • FAO (Food and Agriculture Organization of the United Nations)(1996). Manual on the production and use of live food for aquaculture (Fisheries Technical Paper, No. 361). FAO: Rome, 295 p.
  • FAO (Food and Agriculture Organization of the United Nations)(2013). Prospects for fisheries and aquaculture. Retrieved from http://www.fao.org/3/i3640e/i3640e.pdf
  • FAO (Food and Agriculture Organization of the United Nations)(2017a). GLOBEFISH - Information and analysis on world fish trade. Retrieved from www.fao.org/in-action/globefish/market-reports/resource-detail/en/c/522564/
  • FAO (Food and Agriculture Organization of the United Nations)(2017b). Microplastics in fisheries and aquaculture-Status of knowledge on their occurrence and implications for aquatic organisms and food safety. Retrieved from http://www.fao.org/3/a-i7677e.pdf
  • Figueras, M. J., Levican, A., Pujol, I., Ballester, F., Rabada Quilez, M. J., & Gomez-Bertomeu, F. (2014). A severe case of persistent diarrhoea associated with Arcobacter cryaerophilus but attributed to Campylobacter sp. and a review of the clinical incidence of Arcobacter spp. New Microbes and New Infections, 2(2), 31–37. doi:10.1002/2052-2975.35
  • Frère, L., Maignien, L., Chalopin, M., Huvet, A., Rinnert, E., Morrison, H., … Paul-Pont, I. (2018). Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size. Environmental Pollution, 242, 614–625. doi:10.1016/j.envpol.2018.07.023
  • Galbraith, H. S., Spooner, D. E., & Vaughn, C. C. (2010). Synergistic effects of regional climate patterns and local water management on freshwater mussel communities. Biological Conservation, 143(5), 1175–1183. doi:10.1016/j.biocon.2010.02.025
  • Gambardella, C., Morgana, S., Bramini, M., Rotini, A., Manfra, L., Migliore, L., … Faimali, M. (2018). Ecotoxicological effects of polystyrene microbeads in a battery of marine organisms belonging to different trophic levels. Marine Environmental Research, 141, 313–321. doi:10.1016/j.marenvres.2018.09.023
  • Gandara e Silva, P. P., Nobre, C. R., Resaffe, P., Pereira, C. D. S., & Gusmão, F. (2016). Leachate from microplastics impairs larval development in brown mussels. Water Research, 106, 364–370. doi:10.1016/j.watres.2016.10.016
  • Gao, H., Yang, B. J., Li, N., Feng, L. M., Shi, X. Y., Zhao, W. H., & Liu, S. J. (2015). Bisphenol A and hormone-associated cancers: Current progress and perspectives. Medicine, 94(1), e211–e211. doi:10.1097/MD.0000000000000211
  • Gardon, T., Reisser, C., Soyez, C., Quillien, V., & Le Moullac, G. (2018). Microplastics affect energy balance and gametogenesis in the pearl oyster Pinctada margaritifera. Environmental Science & Technology, 52, 5277–5286. doi:10.1021/acs.est.8b00168
  • Gaspar, T. R., Chi, R. J., Parrow, M. W., & Ringwood, A. H. (2018). Cellular bioreactivity of micro- and nano-plastic particles in oysters. Frontiers in Marine Science, 5, 345. doi:10.3389/fmars.2018.00345
  • Goldstein, M. C., Rosenberg, M., & Cheng, L. (2012). Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biology Letters, 8(5), 817–820. doi:10.1098/rsbl.2012.0298
  • Gopalakrishnan, S., & Vijayavel, K. (2009). Nutritional composition of three estuarine bivalve mussels, Perna viridis, Donax cuneatus and Meretrix meretrix. International Journal of Food Sciences and Nutrition, 60(6), 458–463. doi:10.1080/09637480701830412
  • Green, D. S. (2016). Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environmental Pollution, 216, 95–103. doi:10.1016/j.envpol.2016.05.043
  • Green, D. S., Boots, B., O’Connor, N. E., & Thompson, R. (2017). Microplastics affect the ecological functioning of an important biogenic habitat. Environmental Science & Technology, 51, 68–77. doi:10.1021/acs.est.6b04496
  • Green, D. S., Colgan, T. J., Thompson, R. C., & Carolan, J. C. (2019). Exposure to microplastics reduces attachment strength and alters the haemolymph proteome of blue mussels (Mytilus edulis). Environmental Pollution, 246, 423–434. doi:10.1016/j.envpol.2018.12.017
  • Gricourt, L., Mathieu, M., & Kellner, K. (2006). An insulin-like system involved in the control of Pacific oyster Crassostrea gigas reproduction: HrIGF-1 effect on germinal cell proliferation and maturation associated with expression of an homologous insulin receptor-related receptor. Aquaculture, 251(1), 85–98. doi:10.1016/j.aquaculture.2005.05.015
  • Guilhermino, L., Vieira, L. R., Ribeiro, D., Tavares, A. S., Cardoso, V., Alves, A., & Almeida, J. M. (2018). Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea. Science of the Total Environment, 622-623, 1131–1142. doi:10.1016/j.scitotenv.2017.12.020
  • Haag, W. R., & Williams, J. D. (2014). Biodiversity on the brink: An assessment of conservation strategies for North American freshwater mussels. Hydrobiologia, 735(1), 45–60. doi:10.1007/s10750-013-1524-7
  • Habib, D., Locke, D. C., & Cannone, L. J. (1998). Synthetic fibers as indicators of municipal sewage sludge, sludge products, and sewage treatment plant effluents. Water, Air, and Soil Pollution, 103(1/4), 1–8.
  • Hernandez, E., Nowack, B., & Mitrano, D. M. (2017). Polyester textiles as a source of microplastics from households: A mechanistic study to understand microfiber release during washing. Environmental Science & Technology, 51, 7036–7046. doi:10.1021/acs.est.7b01750
  • Heskett, M., Takada, H., Yamashita, R., Yuyama, M., Ito, M., Geok, Y. B., … Mermoz, J. (2012). Measurement of persistent organic pollutants (POPs) in plastic resin pellets from remote islands: Toward establishment of background concentrations for International Pellet Watch. Marine Pollution Bulletin, 64(2), 445–448. doi:10.1016/j.marpolbul.2011.11.004
  • Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science & Technology, 46, 3060–3075. doi:10.1021/es2031505
  • Holmes, L. A., Turner, A., & Thompson, R. C. (2012). Adsorption of trace metals to plastic resin pellets in the marine environment. Environmental Pollution, 160, 42–48. doi:10.1016/j.envpol.2011.08.052
  • Horiguchi, T. (1995). Heterocapsa circularisquama sp. nov. (Peridiniales, Dinophyceae): A new marine dinoflagellate causing mass mortality of bivalves in Japan. Phycological Research, 43(3), 129–136. doi:10.1111/j.1440-1835.1995.tb00016.x
  • Inglis, G. J., & Gust, N. (2003). Potential indirect effects of shellfish culture on the reproductive success of benthic predators. Journal of Applied Ecology, 40(6), 1077–1089. doi:10.1111/j.1365-2664.2003.00860.x
  • Jaikumar, G., Brun, N. R., Vijver, M. G., & Bosker, T. (2019). Reproductive toxicity of primary and secondary microplastics to three cladocerans during chronic exposure. Environmental Pollution, 249, 638–646. doi:10.1016/j.envpol.2019.03.085
  • Jayasiri, H. B., Purushothaman, C. S., & Vennila, A. (2013). Plastic litter accumulation on high-water strandline of urban beaches in Mumbai, India. Environmental Monitoring and Assessment, 185(9), 7709–7719. doi:10.1007/s10661-013-3129-z
  • Jemec, A., Horvat, P., Kunej, U., Bele, M., & Kržan, A. (2016). Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environmental Pollution, 219, 201–209. doi:10.1016/j.envpol.2016.10.037
  • Jeong, C. B., Won, E. J., Kang, H. M., Lee, M. C., Hwang, D. S., Hwang, U. K., … Lee, J. S. (2016). Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environmental Science & Technology, 50, 8849–8857. doi:10.1021/acs.est.6b01441
  • Jeong, C.-B., Kang, H.-M., Lee, M.-C., Kim, D.-H., Han, J., Hwang, D.-S., … Lee, J.-S. (2017). Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana. Scientific Reports, 7(1), 41323. doi:10.1038/srep41323
  • Jin, Y., Lu, L., Tu, W., Luo, T., & Fu, Z. (2019). Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Science of the Total Environment, 649, 308–317. doi:10.1016/j.scitotenv.2018.08.353
  • Jones, A., Mandal, A., & Sharma, S. (2015). Protein-based bioplastics and their antibacterial potential. Journal of Applied Polymer Science, 132(18), 41931. doi:10.1002/app.41931
  • Juhasz, A. L., Britz, M. L., & Stanley, G. A. (1997). Degradation of benzo[a]pyrene, dibenz[a,h]anthracene and coronene by Burkholderia cepacia. Water Science and Technology, 36(10), 45–51. doi:10.1016/S0273-1223(97)00641-0
  • Karami, A., Golieskardi, A., Ho, Y. B., Larat, V., & Salamatinia, B. (2017). Microplastics in eviscerated flesh and excised organs of dried fish. Scientific Reports, 7(1), 5473–5473. doi:10.1038/s41598-017-05828-6
  • Kataoka, T., Nihei, Y., Kudou, K., & Hinata, H. (2019). Assessment of the sources and inflow processes of microplastics in the river environments of Japan. Environmental Pollution, 244, 958–965. doi:10.1016/j.envpol.2018.10.111
  • Koelmans, A. A., Bakir, A., Burton, G. A., & Janssen, C. R. (2016). Microplastic as a vector for chemicals in the aquatic environment: Critical review and model-supported reinterpretation of empirical studies. Environmental Science & Technology, 50, 3315–3326. doi:10.1021/acs.est.5b06069
  • Kolandhasamy, P., Su, L., Li, J., Qu, X., Jabeen, K., & Shi, H. (2018). Adherence of microplastics to soft tissue of mussels: A novel way to uptake microplastics beyond ingestion. Science of the Total Environment, 610-611, 635–640. doi:10.1016/j.scitotenv.2017.08.053
  • Lagarde, F., Olivier, O., Zanella, M., Daniel, P., Hiard, S., & Caruso, A. (2016). Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environmental Pollution, 215, 331–339. doi:10.1016/j.envpol.2016.05.006
  • Langdon, C. J., & Newell, R. I. E. (1989). Utilization of detritus and bacteria as food sources by two bivalve suspension-feeders, the oyster Crassostrea virginica and the mussel Geukensia demissa. Marine Ecology Progress Series, 58, 299–310. doi:10.3354/meps058299
  • Lee, K. W., Shim, W. J., Kwon, O. Y., & Kang, J. H. (2013). Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environmental Science & Technology, 47, 11278–11283. doi:10.1021/es401932b
  • Lehane, C., & Davenport, J. (2002). Ingestion of mesozooplankton by three species of bivalve; Mytilus edulis, Cerastoderma edule and Aequipecten opercularis. Journal of the Marine Biological Association of the United Kingdom, 82(4), 615–619. doi:10.1017/S0025315402005957
  • Leys, N. M. E. J., Ryngaert, A., Bastiaens, L., Verstraete, W., Top, E. M., & Springael, D. (2004). Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 70(4), 1944. doi:10.1128/AEM.70.4.1944-1955.2004
  • Li, J., Yang, D., Li, L., Jabeen, K., & Shi, H. (2015). Microplastics in commercial bivalves from China. Environmental Pollution, 207, 190–195. doi:10.1016/j.envpol.2015.09.018
  • Lithner, D., Nordensvan, I., & Dave, G. (2012). Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile–butadiene–styrene, and epoxy to Daphnia magna. Environmental Science and Pollution Research, 19(5), 1763–1772. doi:10.1007/s11356-011-0663-5
  • Liu, Y., Guan, Y., Mizuno, T., Tsuno, H., & Zhu, W. (2009). A pretreatment method for GC–MS determination of endocrine disrupting chemicals in mollusk tissues. Chromatographia, 69(1-2), 65–71. doi:10.1365/s10337-008-0852-7
  • Lohmann, R. (2017). Microplastics are not important for the cycling and bioaccumulation of organic pollutants in the oceans-but should microplastics be considered POPs themselves? Integrated Environmental Assessment and Management, 13(3), 460–465. doi:10.1002/ieam.1914
  • Lu, L., Wan, Z., Luo, T., Fu, Z., & Jin, Y. (2018). Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Science of the Total Environment, 631-632, 449–458. doi:10.1016/j.scitotenv.2018.03.051
  • Lyakurwa, D. J. (2017). Uptake and effects of microplastic particles in selected marine microalgae species; Oxyrrhis marina and Rhodomonas baltica (Master of Science Thesis). Department of Biology, Norwegian University of Science and Technology (NUST), pp. 1–65.
  • Lydeard, C., Cowie, R. H., Ponder, W. F., Bogan, A. E., Bouchet, P., Clark, S. A., … Thompson, F. G. (2004). The global decline of nonmarine mollusks. BioScience, 54(4), 321–330.[0321:TGDONM]2.0.CO;2 doi:10.1641/0006-3568(2004)054
  • Magni, S., Gagné, F., André, C., Della Torre, C., Auclair, J., Hanana, H., … Binelli, A. (2018). Evaluation of uptake and chronic toxicity of virgin polystyrene microbeads in freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia). Science of the Total Environment, 631-632, 778–788. doi:10.1016/j.scitotenv.2018.03.075
  • Martínez, I., Partal, P., García-Morales, M., Guerrero, A., & Gallegos, C. (2013). Development of protein-based bioplastics with antimicrobial activity by thermo-mechanical processing. Journal of Food Engineering, 117(2), 247–254. doi:10.1016/j.jfoodeng.2013.02.014
  • Masó, M., Garcés, E., Pagès, F., & Camp, J. (2003). Drifting plastic debris as a potential vector for dispersing harmful algal bloom (HAB) Species, Scientia Marina 67, 107–111. doi:10.3989/scimar.2003.67n1107
  • Mathalon, A., & Hill, P. (2014). Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Marine Pollution Bulletin, 81(1), 69–79. doi:10.1016/j.marpolbul.2014.02.018
  • Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., & Kaminuma, T. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental Science & Technology, 35, 318–324. doi:10.1021/es0010498
  • Matsuguma, Y., Takada, H., Kumata, H., Kanke, H., Sakurai, S., Suzuki, T., … Newman, B. (2017). Microplastics in sediment cores from Asia and Africa as indicators of temporal trends in plastic pollution. Archives of Environmental Contamination and Toxicology, 73(2), 230–239. doi:10.1007/s00244-017-0414-9
  • McCormick, A. R., Hoellein, T. J., London, M. G., Hittie, J., Scott, J. W., & Kelly, J. J. (2016). Microplastic in surface waters of urban rivers: Concentration, sources, and associated bacterial assemblages. Ecosphere, 7(11), e01556. doi:10.1002/ecs2.1556
  • Naidu, S. A., Ranga Rao, V., & Ramu, K. (2018). Microplastics in the benthic invertebrates from the coastal waters of Kochi, Southeastern Arabian Sea. Environmental Geochemistry and Health, 40(4), 1377–1383. doi:10.1007/s10653-017-0062-z
  • Naji, A., Nuri, M., & Vethaak, A. D. (2018). Microplastics contamination in molluscs from the northern part of the Persian Gulf. Environmental Pollution, 235, 113–120. doi:10.1016/j.envpol.2017.12.046
  • Nolte, T. M., Hartmann, N. B., Kleijn, J. M., Garnaes, J., van de Meent, D., Jan Hendriks, A., & Baun, A. (2017). The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquatic Toxicology, 183, 11–20. doi:10.1016/j.aquatox.2016.12.005
  • Ogilvie, S. C., Ross, A. H., & Schiel, D. R. (2000). Phytoplankton biomass associated with mussel farms in Beatrix Bay, New Zealand. Aquaculture, 181(1-2), 71–80. doi:10.1016/S0044-8486(99)00219-7
  • Ogonowski, M., Motiei, A., Ininbergs, K., Hell, E., Gerdes, Z., Udekwu, K. I., … Gorokhova, E. (2018). Evidence for selective bacterial community structuring on microplastics. Environmental Microbiology, 20(8), 2796–2808. doi:10.1111/1462-2920.14120
  • Oliveira, P., Barboza, L. G. A., Branco, V., Figueiredo, N., Carvalho, C., & Guilhermino, L. (2018). Effects of microplastics and mercury in the freshwater bivalve Corbicula fluminea (Müller, 1774): Filtration rate, biochemical biomarkers and mercury bioconcentration. Ecotoxicology and Environmental Safety, 164, 155–163. doi:10.1016/j.ecoenv.2018.07.062
  • Pathak, J., Rajneesh, Maurya, P. K., Singh, S. P., Häder, D. P., & Sinha, R. P. (2018). Cyanobacterial farming for environment friendly sustainable agriculture practices: innovations and perspectives. Frontiers in Environmental Science, 6, 7. doi:10.3389/fenvs.2018.00007
  • Paul-Pont, I., Lacroix, C., González Fernández, C., Hégaret, H., Lambert, C., Le Goïc, N., … Soudant, P. (2016). Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation. Environmental Pollution, 216, 724–737. doi:10.1016/j.envpol.2016.06.039
  • Pauly, J. L., Stegmeier, S. J., Allaart, H. A., Cheney, R. T., Zhang, P. J., Mayer, A. G., & Streck, R. J. (1998). Inhaled cellulosic and plastic fibers found in human lung tissue. Cancer Epidemiol Biomarkers Prev, 7(5), 419–428.
  • Peng, G., Zhu, B., Yang, D., Su, L., Shi, H., & Li, D. (2017). Microplastics in sediments of the Changjiang Estuary, China. Environmental Pollution, 225, 283–290. doi:10.1016/j.envpol.2016.12.064
  • Phuong, N. N., Poirier, L., Pham, Q. T., Lagarde, F., & Zalouk-Vergnoux, A. (2018). Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: Location, season and/or mode of life? Marine Pollution Bulletin, 129(2), 664–674. doi:10.1016/j.marpolbul.2017.10.054
  • Pittura, L., Avio, C. G., Giuliani, M. E., d'Errico, G., Keiter, S. H., Cormier, B., … Regoli, F. (2018). Microplastics as vehicles of environmental PAHs to marine organisms: Combined chemical and physical hazards to the mediterranean mussels, Mytilus galloprovincialis. Frontiers in Marine Science, 5, 103. doi:10.3389/fmars.2018.00103
  • Plastics Europe. (2018). Plastics – The facts 2018: An analysis of European plastics production, demand and waste data. Brussels: Plastics Europe Market, Research Group.
  • Qu, X., Su, L., Li, H., Liang, M., & Shi, H. (2018). Assessing the relationship between the abundance and properties of microplastics in water and in mussels. Science of the Total Environment, 621, 679–686. doi:10.1016/j.scitotenv.2017.11.284
  • Rainieri, S., Conlledo, N., Larsen, B. K., Granby, K., & Barranco, A. (2018). Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio). Environmental Research, 162, 135–143. doi:10.1016/j.envres.2017.12.019
  • Renzi, M., Guerranti, C., & Blašković, A. (2018). Microplastic contents from maricultured and natural mussels. Marine Pollution Bulletin, 131, 248–251. doi:10.1016/j.marpolbul.2018.04.035
  • Revel, M., Lagarde, F., Perrein-Ettajani, H., Bruneau, M., Akcha, F., Sussarellu, R., … Mouneyrac, C. (2019). Tissue-specific biomarker responses in the blue mussel Mytilus spp. exposed to a mixture of microplastics at environmentally relevant concentrations. Frontiers in Environmental Science, 7, 14. doi:10.3389/fenvs.2019.00033
  • Ribeiro, F., Garcia, A. R., Pereira, B. P., Fonseca, M., Mestre, N. C., Fonseca, T. G., … Bebianno, M. J. (2017). Microplastics effects in Scrobicularia plana. Marine Pollution Bulletin, 122(1-2), 379–391. doi:10.1016/j.marpolbul.2017.06.078
  • Rist, S. E., Assidqi, K., Zamani, N. P., Appel, D., Perschke, M., Huhn, M., & Lenz, M. (2016). Suspended micro-sized PVC particles impair the performance and decrease survival in the Asian green mussel Perna viridis. Marine Pollution Bulletin, 111(1-2), 213–220. doi:10.1016/j.marpolbul.2016.07.006
  • Rochman, C. M., Hoh, E., Kurobe, T., & Teh, S. J. (2013). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific Reports, 3(1), 3263. doi:10.1038/srep03263
  • Rochman, C. M., Tahir, A., Williams, S. L., Baxa, D. V., Lam, R., Miller, J. T., … Teh, S. J. (2015). Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific Reports, 5(1), 14340. doi:10.1038/srep14340
  • Santana, M. F. M., Moreira, F. T., Pereira, C. D. S., Abessa, D. M. S., & Turra, A. (2018). Continuous exposure to microplastics does not cause physiological effects in the cultivated mussel Perna perna. Archives of Environmental Contamination and Toxicology, 74(4), 594–604. doi:10.1007/s00244-018-0504-3
  • Schirinzi, G. F., Pérez-Pomeda, I., Sanchís, J., Rossini, C., Farré, M., & Barceló, D. (2017). Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environmental Research, 159, 579–587. doi:10.1016/j.envres.2017.08.043
  • Schwab, F., Bucheli, T. D., Lukhele, L. P., Magrez, A., Nowack, B., Sigg, L., & Knauer, K. (2011). Are carbon nanotube effects on green algae caused by shading and agglomeration? Environmental Science & Technology, 45, 6136–6144. doi:10.1021/es200506b
  • SEAFISH. (2015). Responsible sourcing guide: Farmed mussels. Retrieved from https://www.seafish.org/media/1403306/_2_mussels_rsg-cocker_04-15kg.pdf
  • Seafood Watch. (2018). Clams: Worldwide bottom and off-bottom culture. Retrieved from https://www.seafoodwatch.org/-/m/sfw/pdf/reports/c/mba_seafoodwatch_farmedclamsreport.pdf
  • Sivarooban, T., Hettiarachchy, N. S., & Johnson, M. G. (2008). Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Research International, 41(8), 781–785. doi:10.1016/j.foodres.2008.04.007
  • Sjollema, S. B., Redondo-Hasselerharm, P., Leslie, H. A., Kraak, M. H. S., & Vethaak, A. D. (2016). Do plastic particles affect microalgal photosynthesis and growth? Aquatic Toxicology, 170, 259–261. doi:10.1016/j.aquatox.2015.12.002
  • Smith, M., Love, D. C., Rochman, C. M., & Neff, R. A. (2018). Microplastics in seafood and the implications for human health. Current Environmental Health Reports, 5(3), 375–386. doi:10.1007/s40572-018-0206-z
  • Soriguer, F., Serna, S., Valverde, E., Hernando, J., Martín-Reyes, A., Soriguer, M., … Esteva, I. (1997). Lipid, protein, and calorie content of different Atlantic and Mediterranean fish, shellfish, and molluscs commonly eaten in the south of Spain. European Journal of Epidemiology, 13(4), 451–463.
  • Spooner, D., & Vaughn, C. (2006). Context-dependent effects of freshwater mussels on stream benthic communities. Freshwater Biology, 51(6), 1016–1024. doi:10.1111/j.1365-2427.2006.01547.x
  • Su, L., Xue, Y., Li, L., Yang, D., Kolandhasamy, P., Li, D., & Shi, H. (2016). Microplastics in Taihu Lake, China. Environmental Pollution, 216, 711–719. doi:10.1016/j.envpol.2016.06.036
  • Sussarellu, R., Suquet, M., Thomas, Y., Lambert, C., Fabioux, C., Pernet, M. E. J., … Huvet, A. (2016). Oyster reproduction is affected by exposure to polystyrene microplastics. Proceedings of the National Academy of Sciences of the United States of America, 113(9), 2430–2435. doi:10.1073/pnas.1519019113
  • Teuten, E. L., Rowland, S. J., Galloway, T. S., & Thompson, R. C. (2007). Potential for plastics to transport hydrophobic contaminants. Environmental Science & Technology, 41, 7759–7764. doi:10.1021/es071737s
  • Teuten, E. L., Saquing, J. M., Knappe, D. R. U., Barlaz, M. A., Jonsson, S., Björn, A., … Takada, H. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2027–2045. doi:10.1098/rstb.2008.0284
  • Thrush, S. F., Hewitt, J. E., Lohrer, A. M., & Chiaroni, L. D. (2013). When small changes matter: The role of cross-scale interactions between habitat and ecological connectivity in recovery. Ecological Applications, 23(1), 226–238. doi:10.1890/12-0793.1
  • Tisdell, C., & Poirine, B. (2008). Economics of pearl farming. In. J. L. Paul Southgate (Ed.), The pearl oyster (pp. 473–496). Oxford: Elsevier Science.
  • Todd, P. A., Ong, X., & Chou, L. M. (2010). Impacts of pollution on marine life in Southeast Asia. Biodiversity and Conservation, 19(4), 1063–1082. doi:10.1007/s10531-010-9778-0
  • U.S. Environmental Protection Agency (USEPA). (2006). Inventory update reporting (IUR): Non-confidential 2006 TSCA inventory update rule (IUR) records. Retrieved from https://www.epa.gov/sites/production/files/2015-09/documents/phthalates_actionplan_revised_2012-03-14.pdf
  • USEPA. (2019). Regional screening levels (RSLs) - Generic tables. Retrieved from https://semspub.epa.gov/work/HQ/199432.pdf
  • Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B., & Janssen, C. R. (2015). Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environmental Pollution, 199, 10–17. doi:10.1016/j.envpol.2015.01.008
  • Van Cauwenberghe, L., & Janssen, C. R. (2014). Microplastics in bivalves cultured for human consumption. Environmental Pollution, 193, 65–70. doi:10.1016/j.envpol.2014.06.010
  • Vandenberg, L. N., Hauser, R., Marcus, M., Olea, N., & Welshons, W. V. (2007). Human exposure to bisphenol A (BPA). Reproductive Toxicology, 24(2), 139–177. doi:10.1016/j.reprotox.2007.07.010
  • van der Hal, N., Ariel, A., & Angel, D. L. (2017). Exceptionally high abundances of microplastics in the oligotrophic Israeli Mediterranean coastal waters. Marine Pollution Bulletin, 116(1-2), 151–155. doi:10.1016/j.marpolbul.2016.12.052
  • Vaughn, C. C. (2018). Ecosystem services provided by freshwater mussels. Hydrobiologia, 810(1), 15–27. doi:10.1007/s10750-017-3139-x
  • Vaughn, C. C., Atkinson, C. L., & Julian, J. P. (2016). Drought-induced changes in flow regimes lead to long-term losses in mussel-provided ecosystem services. Ecology and Evolution, 6(16), 6019. 6019- doi:10.1002/ece3.1442
  • von Moos, N., Burkhardt-Holm, P., & Köhler, A. (2012). Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environmental Science & Technology, 46, 11327–11335. doi:10.1021/es302332w
  • Ward, J. E., & Kach, D. J. (2009). Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Marine Environmental Research, 68(3), 137–142. doi:10.1016/j.marenvres.2009.05.002
  • Waser, A. M., Deuzeman, S., Kangeri, A. K. W., van Winden, E., Postma, J., de Boer, P., … Ens, B. J. (2016). Impact on bird fauna of a non-native oyster expanding into blue mussel beds in the Dutch Wadden Sea. Biological Conservation, 202, 39–49. doi:10.1016/j.biocon.2016.08.007
  • Wegner, A., Besseling, E., Foekema, E. M., Kamermans, P., & Koelmans, A. A. (2012). Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.). Environmental Toxicology and Chemistry, 31(11), 2490–2497. doi:10.1002/etc.1984
  • White, J. R., & Turnbull, A. (1994). Weathering of polymers: Mechanisms of degradation and stabilization, testing strategies and modelling. Journal of Materials Science, 29(3), 584–613. doi:10.1007/BF00445969
  • Wright, S. L., & Kelly, F. J. (2017). Plastic and human health: A micro issue? Environmental Science & Technology, 51, 6634–6647. doi:10.1021/acs.est.7b00423
  • Xu, Q., & Yang, H. (2007). Food sources of three bivalves living in two habitats of Jiaozhou Bay (Qingdao, China): Indicated by lipid biomarkers and stable isotope analysis. Journal of Shellfish Research, 26(2), 561–567.[561:FSOTBL]2.0.CO;2 doi:10.2983/0730-8000(2007)26
  • Xu, X. Y., Lee, W. T., Chan, A. K. Y., Lo, H. S., Shin, P. K. S., & Cheung, S. G. (2017). Microplastic ingestion reduces energy intake in the clam Atactodea striata. Marine Pollution Bulletin, 124(2), 798–802. doi:10.1016/j.marpolbul.2016.12.027
  • Yuan, W., Liu, X., Wang, W., Di, M., & Wang, J. (2019). Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Ecotoxicology and Environmental Safety, 170, 180–187. doi:10.1016/j.ecoenv.2018.11.126
  • Yurtsever, M., Kırkan, E. Ö., Sevindik, T. O., & Tunca, H. (2017). The impact of PS microplastics on green algae Chlorella vulgaris growth. Paper presented at the 15th International Conference on Environmental Science and Technology, Rhodes, Greece.
  • Zhang, C., Chen, X., Wang, J., & Tan, L. (2017). Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae. Environmental Pollution, 220, 1282–1288. doi:10.1016/j.envpol.2016.11.005
  • Zhang, Q., Qu, Q., Lu, T., Ke, M., Zhu, Y., Zhang, M., … Qian, H. (2018). The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth. Environmental Pollution, 243, 1106–1112. doi:10.1016/j.envpol.2018.09.073
  • Zhang, W., Xiong, B., Sun, W. F., An, S., Lin, K. F., Guo, M. J., & Cui, X. H. (2014). Acute and chronic toxic effects of bisphenol A on Chlorella pyrenoidosa and Scenedesmus obliquus. Environmental Toxicology, 29(6), 714–722. doi:10.1002/tox.21806
  • Zhao, S., Zhu, L., Wang, T., & Li, D. (2014). Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution. Marine Pollution Bulletin, 86(1-2), 562–568. doi:10.1016/j.marpolbul.2014.06.032
  • Zhu, C., Southgate, P. C., & Li, T. (2019). Production of pearls. In A. C. Smaal, J. G. Ferreira, J. Grant, J. K. Petersen, & Ø. Strand (Eds.), Goods and services of marine bivalves (pp. 73–93). Cham: Springer International Publishing.
  • Ziajahromi, S., Kumar, A., Neale, P. A., & Leusch, F. D. L. (2017). Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: Implications of single and mixture exposures. Environmental Science & Technology, 51, 13397–13406. doi:10.1021/acs.est.7b03574
  • Ziccardi, L. M., Edgington, A., Hentz, K., Kulacki, K. J., & Kane Driscoll, S. (2016). Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: A state-of-the-science review. Environmental Toxicology and Chemistry, 35(7), 1667–1676. doi:10.1002/etc.3461

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.