1,489
Views
48
CrossRef citations to date
0
Altmetric
Articles

Microbial valorization of waste cooking oils for valuable compounds production – a review

, &
Pages 2583-2616 | Published online: 18 Dec 2019

References

  • Abdulbari, H. A., & Zuhan, N. (2018). Grease formulation from oil industry wastes. Waste and Biomass Valorization, 9(12), 2447–2457. doi:10.1007/s12649-018-0237-6
  • Abghari, A., & Chen, S. (2017). Engineering Yarrowia lipolytica for enhanced production of lipid and citric acid. Fermentation, 3, 34–56.
  • Acuña, J. M. B., Aravena-Carrasco, C., Gutierrez-Urrutia, I., Duchens, D., & Poblete-Castro, I. (2019). Enhanced synthesis of medium-chain-length poly(3-hydroxyalkanoates) by inactivating the tricarboxylate transport system of Pseudomonas putida KT2440 and process development using waste vegetable oil. Process Biochemistry, 77, 23–30. doi:10.1016/j.procbio.2018.10.012
  • Aggelis, G., Papadiotis, G., & Komaitis, M. (1997). Microbial fatty acid specificity. Folia Microbiologica, 42(2), 117–120. doi:10.1007/BF02898718
  • Almeida, D. G., Silva, R. C. F. S., Brasileiro, P. P. F., Luna, J. A., Silva, M. G. C., Rufino, R. D., … Sarubbo, L. A. (2018). Application of a biosurfactant from Candida tropicalis UCP 0996 produced in low-cost substrates for hydrophobic contaminants removal. Chemical Engineering Transactions, 64, 541–546.
  • Almeida, D. G., Silva, R. C. F. S., Luna, J. M., Rufino, R. D., Santos, V. A., & Sarubbo, L. A. (2017). Response surface methodology for optimizing the production of biosurfactant by Candida tropicalis on industrial waste substrates. Frontiers in Microbiology, 8, 1–13. doi:10.3389/fmicb.2017.00157
  • Alves, M. M., Pereira, M. A., Sousa, D. Z., Cavaleiro, A. J., Picavet, M., Smidt, H., & Stams, A. J. M. (2009). Waste lipids to energy: How to optimize methane production from long-chain fatty acids (LCFA). Microbial Biotechnology, 2(5), 538–550. doi:10.1111/j.1751-7915.2009.00100.x
  • Andrade, R. F. S., Silva, T. A. L., Ribeaux, D. R., Rodriguez, D. M., Souza, A. F., Lima, M. A. B., … Campos-Takaki, G. M. (2018). Promising biosurfactant produced by Cunninghamella echinulata UCP 1299 using renewable resources and its application in cotton fabric cleaning process. Advances in Materials Science and Engineering, 2018, 1–12.
  • Appels, L., Lauwers, J., Degrève, J., Helsen, L., Lievens, B., Willems, K., … Dewil, R. (2011). Anaerobic digestion in global bio-energy production: Potential and research challenges. Renewable and Sustainable Energy Reviews, 15(9), 4295–4301. doi:10.1016/j.rser.2011.07.121
  • Arous, F., Atitallah, I. B., Nasri, M., & Mechichi, T. (2017). A sustainable use of low-cost raw substrates for biodiesel production by the oleaginous yeast Wickerhamomyces anomalus. 3 Biotech, 7(4), 268–277. doi:10.1007/s13205-017-0903-6
  • Ashby, R. D., & Solaiman, D. K. Y. (2008). Poly(hydroxyalkanoate) biosynthesis from crude alaskan pollock (Theragra chalcogramma) oil. Journal of Polymers and the Environment, 16(4), 221–229. doi:10.1007/s10924-008-0108-5
  • Athenaki, M., Gardeli, C., Diamantopoulou, P., Tchakouteu, S. S., Sarris, D., Philippoussis, A., & Papanikolaou, S. (2017). Lipids from yeasts and fungi: Physiology, production and analytical considerations. Journal of Applied Microbiology, 124(2), 336–367. doi:10.1111/jam.13633
  • Awad, G. E. A., Mostafa, H., Danial, E. N., Abdelwahed, N. A. M., & Awad, H. M. (2015). Enhanced production of thermostable lipase from Bacillus cereus ASSCRC-P1 in waste frying oil based medium using statistical experimental design. Journal of Applied Pharmaceutical Science, 5(9), 7–15. doi:10.7324/JAPS.2015.50902
  • Batista, R. M., Rufino, R. D., Luna, J. M., Souza, J. E. G., & Sarubbo, L. A. (2010). Effect of medium components on the production of a biosurfactant from Candida tropicalis applied to the removal of hydrophobic contaminants in soil. Water Environment Research, 82(5), 418–425. doi:10.2175/106143009X12487095237279
  • Béligon, V., Christophe, G., Fontanille, P., & Larroche, C. (2016). Microbial lipids as potential source to food supplements. Current Opinion in Food Science, 7, 35–42. doi:10.1016/j.cofs.2015.10.002
  • Bellou, S., Makri, A., Triantaphyllidou, I.-E., Papanikolaou, S., & Aggelis, G. (2014). Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment. Microbiology, 160(Pt_4), 807–817. doi:10.1099/mic.0.074302-0
  • Bellou, S., Triantaphyllidou, I. E., Mizerakis, P., & Aggelis, G. (2016). High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium. Journal of Biotechnology, 234, 116–126. doi:10.1016/j.jbiotec.2016.08.001
  • Benesova, P., Kucera, D., Marova, I., & Obruca, S. (2017). Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils. Letters in Applied Microbiology, 65(2), 182–188.
  • Beopoulos, A., Chardot, T., & Nicaud, J. M. (2009). Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie, 91(6), 692–696. doi:10.1016/j.biochi.2009.02.004
  • Beopoulos, A., Haddouche, R., Kabran, P., Dulermo, T., Chardot, T., & Nicaud, J.-M. (2012). Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA: Diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts. Applied Microbiology and Biotechnology, 93(4), 1523–1537. doi:10.1007/s00253-011-3506-x
  • Böhm, A., & Boos, W. (2004). Gene regulation in prokaryotes by subcellular relocalization of transcription factors. Current Opinion in Microbiology, 7(2), 151–156. doi:10.1016/j.mib.2004.02.009
  • Calvey, C. H., Su, Y. K., Willis, L. B., McGee, M., & Jeffries, T. W. (2016). Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi. Bioresource Technology, 200, 780–788. doi:10.1016/j.biortech.2015.10.104
  • Camargo, F. P., Menezes, A. J., Tonello, P. S., Santos, A. C. A., & Duarte, I. C. S. (2018). Characterization of biosurfactant from yeast using residual soybean oil under acidic conditions and their use in metal removal processes. FEMS Microbiology Letters, 365(10), 1–8. doi:10.1093/femsle/fny098
  • Campos, J. M., Stamford, T. L. M., & Sarubbo, L. A. (2014). Production of a bioemulsifier with potential application in the food industry. Applied Biochemistry and Biotechnology, 172(6), 3234–3252. doi:10.1007/s12010-014-0761-1
  • Carsanba, E., Papanikolaou, S., & Erten, H. (2018). Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica. Critical Reviews in Biotechnology, 38(8), 1230–1243. doi:10.1080/07388551.2018.1472065
  • Chang, C., Wu, G., Zhang, H., Jin, Q., & Wang, X. (2019). Deep-fried flavor: Characteristics, formation mechanisms, and influencing factors. Critical Reviews in Food Science and Nutrition, 11, 1–9. doi:10.1080/10408398.2019.1575792
  • Chee, J.-Y., Yoga, S.-S., Lau, N., Ling, S., Abed, R. M. M., & Sudesh, K. (2010). Bacterially produced polyhydroxyalkanoate (PHA): Converting renewable resources into bioplastics. In A. Méndez-Vilas (Ed.), Current research, technology and education topics in applied microbiology and microbial biotechnology (pp. 1395–1404). Badajoz: Formatex Research Center.
  • Chen, C., Sun, N., Li, D., Long, S., Tang, X., Xiao, G., & Wang, L. (2018). Optimization and characterization of biosurfactant production from kitchen waste oil using Pseudomonas aeruginosa. Environmental Science and Pollution Research, 25(15), 14934–14943. doi:10.1007/s11356-018-1691-1
  • Chen, R.-X., & Wang, W.-C. (2019). The production of renewable aviation fuel from waste cooking oil. Part I: Bio-alkane conversion through hydro-processing of oil. Renewable Energy, 135, 819–835. doi:10.1016/j.renene.2018.12.048
  • Cruz, M. V., Freitas, F., Paiva, A., Mano, F., Dionísio, M., Ramos, A. M., & Reis, M. A. M. (2016). Valorization of fatty acids-containing wastes and byproducts into short- and medium-chain length polyhydroxyalkanoates. New Biotechnology, 33(1), 206–215.
  • Cruz, M. V., Sarraguça, M. C., Freitas, F., Lopes, J. A., & Reis, M. A. M. (2015). Online monitoring of P(3HB) produced from used cooking oil with near-infrared spectroscopy. Journal of Biotechnology, 194, 1–9. doi:10.1016/j.jbiotec.2014.11.022
  • Csutak, O., Corbu, V., Stoica, I., & Vassu, T. (2018). Fatty acids effect on lipase and biosurfactant induction in Rhodotorula Glutinis CMGB-RG5. “Agriculture for Life, Life for Agriculture” Conference Proceedings, 1(1), 515–522. doi:10.2478/alife-2018-0081
  • Csutak, O., Corbu, V., & Vassu, T. (2017). Studies on the correlation between biosurfactant and lipid synthesis in Candida tropicalis CMGB114 using hydrocarbons and vegetable oil wastes. Revista de Chimie (Bucharest), 68(2), 255–259.
  • Darvishi, F., Fathi, Z., Ariana, M., & Moradi, H. H. (2017). Yarrowia lipolytica as a workhorse for biofuel production. Biochemical Engineering Journal, 127, 87–96.
  • Domínguez, A., Deive, F. J., Sanromán, M. A., & Longo, M. A. (2010). Biodegradation and utilization of waste cooking oil by Yarrowia lipolytica CECT 1240. European Journal of Lipid Science and Technology, 112(11), 1200–1208. doi:10.1002/ejlt.201000049
  • Donot, F., Fontana, A., Baccou, J. C., Strub, C., & Schorr-Galindo, S. (2014). Single cell oils (SCOs) from oleaginous yeasts and moulds: Production and genetics. Biomass and Bioenergy, 68, 135–150. doi:10.1016/j.biombioe.2014.06.016
  • Dourou, M., Mizerakis, P., Papanikolaou, S., & Aggelis, G. (2017). Storage lipid and polysaccharide metabolism in Yarrowia lipolytica and Umbelopsis isabellina. Applied Microbiology and Biotechnology, 101(19), 7213–7226. doi:10.1007/s00253-017-8455-6
  • Durval, I. J. B., Resende, A. H. M., Figueiredo, M. A., Luna, J. M., Rufino, R. D., & Sarubbo, L. A. (2019). Studies on biosurfactants produced using Bacillus cereus isolated from seawater with biotechnological potential for marine oil-spill bioremediation. Journal of Surfactants and Detergents, 22(2), 349–363. doi:10.1002/jsde.12218
  • Dzięgielewska, E., & Adamczak, M. (2013). Evaluation of waste products in the synthesis of surfactants by yeasts. Chemical Papers, 67(9), 1113–1122.
  • El Bialy, H., Gomaa, O. M., & Azab, K. S. (2011). Conversion of oil waste to valuable fatty acids using oleaginous yeast. World Journal of Microbiology and Biotechnology, 27(12), 2791–2798. doi:10.1007/s11274-011-0755-x
  • Elazzazy, A. M., Abdelmoneim, T. S., & Almaghrabi, O. A. (2015). Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi Journal of Biological Sciences, 22(4), 466–475. doi:10.1016/j.sjbs.2014.11.018
  • European Parliament and the Council of the European Union_2008_DIRECTIVE 2008/98/EC of 19 November 2008 on waste and repealing certain Directives. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=EN.
  • Ekpenyong, M. G., Antai, S. P., & Asitok, A. D. (2016). A Pseudomonas aeruginosa strain Ikw1 roduces an unusual polymeric surface-active compound in waste frying oil-minimal medium. International Journal of Sciences, 5, 108–123.
  • Félix, S., Araújo, J., Pires, A. M., & Sousa, A. C. (2017). Soap production: A green prospective. Waste Management, 66, 190–195. doi:10.1016/j.wasman.2017.04.036
  • Fernandes, F. C., Kirwan, K., Lehane, D., & Coles, S. R. (2017). Epoxy resin blends and composites from waste vegetable oil. European Polymer Journal, 89, 449–460. doi:10.1016/j.eurpolymj.2017.02.005
  • Feng, G., Hu, L., Ma, Y., Jia, P., Hu, Y., Zhang, M., … Zhou, Y. (2018). An efficient bio-based plasticizer for poly(vinyl chloride) from waste cooking oil and citric acid: Synthesis and evaluation in PVC films. Journal of Cleaner Production, 189, 334–343. doi:10.1016/j.jclepro.2018.04.085
  • Fickers, P., Benetti, P. H., Waché, Y., Marty, A., Mauersberger, S., Smit, M. S., & Nicaud, J. M. (2005). Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Research, 5(6-7), 527–543. doi:10.1016/j.femsyr.2004.09.004
  • Frega, N., Mozzon, M., & Lercker, G. (1999). Effects of free fatty acids on oxidative stability of vegetable oil. Journal of the American Oil Chemists’ Society, 76(3), 325–329. doi:10.1007/s11746-999-0239-4
  • Follonier, S., Goyder, M. S., Silvestri, A.-C., Crelier, S., Kalman, F., Riesen, R., & Zinn, M. (2014). Fruit pomace and waste frying oil as sustainable resources for thebioproduction of medium-chain-length polyhydroxyalkanoates. International Journal of Biological Macromolecules, 71, 42–52. doi:10.1016/j.ijbiomac.2014.05.061
  • Gamal, R. F., Abdelhady, H. M., Khodair, T. A., El-Tayeb, T. S., Hassan, E. A., & Aboutaleb, K. A. (2013). Semi-scale production of PHAs from waste frying oil by Pseudomonas fluorescens S48. Brazilian Journal of Microbiology, 44(2), 539–549. doi:10.1590/S1517-83822013000200034
  • George, S., & Jayachandran, K. (2013). Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. Journal of Applied Microbiology, 114(2), 373–383.
  • Gillatt, P. (2001). Flavour and aroma development in frying and fried food. In J. B. Rossel (Ed.), Frying: Improving quality (pp. 266–334). Cambridge: Woodhead Publising Limited.
  • Guerrero, C. A., Guerrero-Romero, F. A., & Sierra, F. E. (2011). Biodiesel production from waste cooking oil. In D. M. Stoytcheva (Ed.), Biodiesel—Feedstocks and processing technologies (pp 22–44). Rijeka: InTech.
  • Hajfarajollah, H., Mokhtarani, B., Mortaheb, H., & Afaghi, A. (2015). Vitamin B12 biosynthesis over waste frying sunflower oil as a cost effective and renewable substrate. Journal of Food Science and Technology, 52(6), 3273–3282. doi:10.1007/s13197-014-1383-x
  • Hanisah, K., Kumar, S., & Tajul, A. (2013). The management of waste cooking oil: A preliminary survey. Health and the Environment Journal, 4(1), 76–81.
  • Helal, S. E., Abdelhady, H. M., Abou-Taleb, K. A., Hassan, M. G., & Amer, M. M. (2017). Evaluation of factors affecting the fungal lipase production using one factor at a time approach and response surface methodology. Egyptian Journal of Microbiology, 52(1), 1–16. doi:10.21608/ejm.2017.602.1012
  • Hentati, D., Chebbi, A., Hadrich, F., Frikha, I., Rabanal, F., Sayadi, S., … Chamkha, M. (2019). Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5. Ecotoxicology and Environmental Safety, 167, 441–449. doi:10.1016/j.ecoenv.2018.10.036
  • Ibrahim, H. M. M. (2018). Characterization of biosurfactants produced by novel strains of Ochrobactrum anthropi HM-1 and Citrobacter freundii HM-2 from used engine oil-contaminated soil. Egyptian Journal of Petroleum, 27(1), 21–29. doi:10.1016/j.ejpe.2016.12.005
  • Iboyo, A. E., Asitok, A. D., Ekpenyong, M. G., & Antai, S. P. (2017). Selection of Enterobacter cloacae strain POPE6 for fermentative production of extracellular lipase on palm kernel oil processing effluent. International Journal of Sciences, 6, 1–17. doi:10.18483/ijSci.1482
  • Junior, R. B. R., Meira, H. M., Almeida, D. G., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2018). Application of a low-cost biosurfactant in heavy metal remediation processes. Biodegradation, 30, 215–233. doi:10.1007/s10532-018-9833-1
  • Khairuddin, N. F., Mulok, T. E. T. Z., Khalil, K. A., Omar, W. S. A. W., & Saleh, S. H. (2016). Screening of medium with different range of waste frying oil (WFO), sodium nitrate (NaNO3) and sodium chloride (NaCl) for biosurfactant production by thermophilic Anoxybacillus sp. using fractional factorial design (FFD). In M. Yusoff, N. Hamid, M. Arshad, A. Arshad, A. Ridzuan, & H. Awang (Eds), InCIEC 2015 (pp. 9–19). Singapore: Springer.
  • Kamilah, H., Al-Gheethi, A., Yang, T. A., & Sudesh, K. (2018). The use of palm oil-based waste cooking oil to enhance the production of polyhydroxybutyrate [P(3HB)] by Cupriavidus necator H16 strain. Arabian Journal for Science and Engineering, 43(7), 3453–3463. doi:10.1007/s13369-018-3118-1
  • Kanna, R. (2018). Enhanced and cost-effective biosurfactant production for marine remediation contaminated with oil spill. International Journal of Civil Engineering and Technology, 9(7), 373–381.
  • Katre, G., Ajmera, N., Zinjarde, S., & Kumar, A. R. (2017). Mutants of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil as a biofactory for biodiesel production. Microbial Cell Factories, 16(1), 176–189. doi:10.1186/s12934-017-0790-x
  • Katre, G., Joshi, C., Khot, M., Zinjarde, S., & Ravikumar, A. (2012). Evaluation of single cell oil (SCO) from a tropical marine yeast Yarrowia lipolytica NCIM 3589 as a potential feedstock for biodiesel. AMB Express, 2(1), 36–49. doi:10.1186/2191-0855-2-36
  • Kempka, A. P., Mocelin, A., Cazagranda, C., Goulart, F. C., Heinzen, V. D., & Prestes, R. C. (2017). Influence of different inductors and operating conditions in the production of lipase from Aspergillus niger using cassava peel: A short study. Engevista, 19(1), 9–18. doi:10.22409/engevista.v19i1.791
  • Kourmentza, C., Costa, J., Azevedo, Z., Servin, C., Grandfils, C., Freitas, V., & Reis, M. A. M. (2018). Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Bioresource Technology, 247, 829–837. doi:10.1016/j.biortech.2017.09.138
  • Kumar, P., & Kim, B. S. (2019). Paracoccus sp. strain LL1 as a single cell factory for the conversion of waste cooking oil to polyhydroxyalkanoates and carotenoids. Applied Food Biotechnology, 6(1), 53–60.
  • Lam, S. S., Liew, R. K., Jusoh, A., Chong, C. T., Ani, F. N., & Chase, H. A. (2016). Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renewable and Sustainable Energy Reviews, 53, 741–753. doi:10.1016/j.rser.2015.09.005
  • Lan, G., Fan, Q., Liu, Y., Chen, C., Li, G., Liu, Y., & Yin, X. (2015). Rhamnolipid production from waste cooking oil using Pseudomonas SWP-4. Biochemical Engineering Journal, 101, 44–54. doi:10.1016/j.bej.2015.05.001
  • Ledesma-Amaro, R., & Nicaud, J.-N. (2016). Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Progress in Lipid Research, 61, 40–50. doi:10.1016/j.plipres.2015.12.001
  • Liu, J., Peng, K., Huang, X., Lu, L., Cheng, H., Yang, D., … Deng, H. (2011). Application of waste frying oils in the biosynthesis of biodemulsifier by a demulsifying strain Alcaligenes sp. S-XJ-1. Journal of Environmental Sciences, 23(6), 1020–1026.
  • Liu, X., Lv, J., Xu, J., Zhang, T., Deng, Y., & He, J. (2015). Citric acid production in Yarrowia lipolytica SWJ-1b yeast when grown on waste cooking oil. Applied Biochemistry and Biotechnology, 175(5), 2347–2356. doi:10.1007/s12010-014-1430-0
  • Lopes, M., Miranda, S. M., Alves, J. M., Pereira, A. S., & Belo, I. (2019). Waste cooking oils as feedstock for lipase and lipid-rich biomass production. European Journal of Lipid Science and Technology, 121(1), 1800188–1800196. doi:10.1002/ejlt.201800188
  • Luo, Z., Yuan, X-Z., Zhong, H., Zeng, G-M., Liu, Z-F., Ma, X-L., & Zhu, Y-y. (2013). Optimizing rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 grown on waste frying oil using response surface method and batch-fed fermentation. Journal of Central South University, 20(4), 1015–1021. doi:10.1007/s11771-013-1578-8
  • Lukasiewicz, B., Basnett, P., Nigmatullin, R., Matharu, R., Knowles, J. C., & Roy, I. (2018). Binary polyhydroxyalkanoate systems for soft tissue engineering. Acta Biomaterialia, 71, 225–234. doi:10.1016/j.actbio.2018.02.027
  • Maddikeri, G. L., Gogate, P. R., & Pandit, A. B. (2015). Improved synthesis of Sophorolipids from waste frying oil using fed batch approach in the presence of ultrasound. Chemical Engineering Journal, 263, 479–487. doi:10.1016/j.cej.2014.11.010
  • Maotsela, T., Danha, G., & Muzenda, E. (2019). Utilization of waste cooking oil and tallow for production of toilet “bath” soap. Procedia Manufacturing, 35, 541–545. doi:10.1016/j.promfg.2019.07.008
  • Marchant, R., & Banat, I. M. (2012). Microbial biosurfactants: Challenges and opportunities for future exploitation. Trends in Biotechnology, 30(11), 558–565. doi:10.1016/j.tibtech.2012.07.003
  • MarketsandMarkets_2019_Lipase Market by Source (Microbial Lipases, Animal Lipases), Application (Animal Feed, Dairy, Bakery, Confectionery, Others), & by Geography (North America, Europe, Asia-Pacific, Latin America, RoW) - Global Forecast to 2020. Retrieved from https://www.marketsandmarkets.com/PressReleases/lipase.asp
  • Martino, L., Cruz, M. V., Scoma, A., Freitas, F., Bertin, L., Scandola, M., & Reis, M. A. M. (2014). Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. International Journal of Biological Macromolecules, 71, 117–123.
  • Muhammadi, S., Afzal, M., & Hameed, S. (2015). Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications. Green Chemistry Letters and Reviews, 8(3-4), 56–77. doi:10.1080/17518253.2015.1109715
  • Nanda, S., Rana, R., Hunter, H. H., Fang, Z., Dalai, A. K., & Kozinski, J. A. (2019). Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production. Chemical Engineering Science, 195, 935–945. doi:10.1016/j.ces.2018.10.039
  • Nanou, K., & Roukas, T. (2011). Stimulation of the biosynthesis of carotenes by oxidative stress in Blakeslea trispora induced by elevated dissolved oxygen in the culture medium. Bioresource Technology, 102(17), 8159–8164. doi:10.1016/j.biortech.2011.06.027
  • Nanou, K., & Roukas, T. (2016). Waste cooking oil: A new substrate for carotene production by Blakeslea trispora in submerged fermentation. Bioresource Technology, 203, 198–203. doi:10.1016/j.biortech.2015.12.053
  • Nanou, K., Roukas, T., & Papadakis, E. (2012). Improved production of carotenes from synthetic medium by Blakeslea trispora in a bubble column reactor. Biochemical Engineering Journal, 67, 203–207. doi:10.1016/j.bej.2012.06.018
  • Nanou, K., Roukas, T., Papadakis, E., & Kotzekidou, P. (2017). Carotene production from waste cooking oil by Blakeslea trispora in a bubble column reactor: The role of oxidative stress. Engineering in Life Sciences, 17(7), 775–780. doi:10.1002/elsc.201600228
  • Nayak, P. K., Dash, U., Rayaguru, K., & Krishnan, K. R. (2016). Physio-chemical changes during repeated frying of cooked oil: A review. Journal of Food Biochemistry, 40(3), 371–390. doi:10.1111/jfbc.12215
  • Niu, Y., Wu, J., Wang, W., & Chen, Q. (2019). Production and characterization of a new glycolipid, mannosylerythritol lipid, from waste cooking oil biotransformation by Pseudozyma aphidis ZJUDM34. Food Science & Nutrition, 7(3), 1–12. doi:10.1002/fsn3.880
  • Nor, F. M., Mohamed, S., Idris, N. A., & Ismail, R. (2008). Antioxidative properties of Pandanus amaryllifolius leaf extracts in accelerated oxidation and deep frying studies. Food Chemistry, 110(2), 319–327. doi:10.1016/j.foodchem.2008.02.004
  • Nunes, P. M. B., Martins, A. B., Brígida, A. I. S., Rocha-Leão, M. H. M., & Amaral, P. (2014). Intracellular lipase production by Yarrowia lipolytica using different carbon sources. Chemical Engineering Transactions, 38, 421–426.
  • Obruca, S., Marova, I., Snajdar, O., Mravcova, L., & Svoboda, Z. (2010). Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnology Letters, 32(12), 1925–1932. doi:10.1007/s10529-010-0376-8
  • Obruca, S., Snajdar, O., Svoboda, Z., & Marova, I. (2013). Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil. World Journal of Microbiology and Biotechnology, 29(12), 2417–2428. doi:10.1007/s11274-013-1410-5
  • Ojha, N., & Das, N. (2018). A Statistical approach to optimize the production of polyhydroxyalkanoates from Wickerhamomyces anomalus VIT-NN01 using Response Surface Methodology. International Journal of Biological Macromolecules, 107, 2157–2170.
  • Oliveira, J. G., & Garcia-Cruz, C. H. (2013). Properties of a biosurfactant produced by Bacillus pumilus using vinasse and waste frying oil as alternative carbon sources. Brazilian Archives of Biology and Technology, 56(1), 155–160. doi:10.1590/S1516-89132013000100020
  • Ozdal, M., Gurkok, S., & Ozdal, O. G. (2017). Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone. 3 Biotech, 7(2), 117–124. doi:10.1007/s13205-017-0774-x
  • Pan, L. X., Yang, D. F., Shao, L., Li, W., Chen, G. G., & Liang, Z. Q. (2009). Isolation of the oleaginous yeasts from the soil and studies of their lipid producing capacities. Food Technology and Biotechnology, 47, 215–220.
  • Panadare, D. C., & Rathod, V. K. (2015). Applications of waste cooking oil other than biodiesel: A review. Iranian Journal of Chemical Engineering, 12(3), 55–76.
  • Papanikolaou, S., & Aggelis, G. (2010). Yarrowia lipolytica: A model microorganism used for the production of tailor-made lipids. European Journal of Lipid Science and Technology, 112(6), 639–654. doi:10.1002/ejlt.200900197
  • Papanikolaou, S., & Aggelis, G. (2011a). Lipids of oleaginous yeasts. Part II: Technology and potential applications. European Journal of Lipid Science and Technology, 113(8), 1052–1073. doi:10.1002/ejlt.201100015
  • Papanikolaou, S., & Aggelis, G. (2011b). Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 113(8), 1031–1051. doi:10.1002/ejlt.201100014
  • Papanikolaou, S., Dimou, A., Fakas, S., Diamantopoulou, P., Philippoussis, A., Galiotou-Panayotou, M., & Aggelis, G. (2011). Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. Journal of Applied Microbiology, 110(5), 1138–1150. doi:10.1111/j.1365-2672.2011.04961.x
  • Patel, A., & Matsakas, L. (2018). A comparative study on de novo and ex novo lipid fermentation by oleaginous yeast using glucose and sonicated waste cooking oil. Ultrasonics Sonochemistry, 52, 364–374. doi:10.1016/j.ultsonch.2018.12.010
  • Pernicova, I., Enev, V., Marova, I., & Obruca, S. (2019). Interconnection of waste chicken feather biodegradation and keratinase and mcl-PHA production employing Pseudomonas putida KT2440. Applied Food Biotechnology, 6(1), 83–90.
  • Pinto, M. I. S., Ribeiro, B. G., Guerra, J. M. C., Rufino, R. D., Sarubbo, L. A., Santos, V. A., & Luna, J. M. (2018). Production in bioreactor, toxicity and stability of a low-cost Biosurfactant. Chemical Engineering Transactions, 64, 595–600.
  • Rakicka, M., Lazar, Z., Dulermo, T., Fickers, P., & Nicaud, J. M. (2015). Lipid production by the oleaginous yeast Yarrowia lipolytica using industrial by-products under different culture conditions. Biotechnology for Biofuels, 8(1), 104–113. doi:10.1186/s13068-015-0286-z
  • Rao, U., Sridhar, R., & Sehgal, P. K. (2010). Biosynthesis and biocompatibility of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidus necator from spent palm oil. Biochemical Engineering Journal, 49(1), 13–20. doi:10.1016/j.bej.2009.11.005
  • Rincón, L. A., Cadavid, J. G., & Orjuela, A. (2019). Used cooking oils as potential oleochemical feedstock for urban biorefineries – Study case in Bogota, Colombia. Waste Management, 88, 200–210. doi:10.1016/j.wasman.2019.03.042
  • Rodrigues, C. V., Nespeca, M. G., Sakamoto, I. K., de Oliveira, J. E., Amâncio Varesche, M. B., & Maintinguer, S. I. (2018). Bioconversion of crude glycerol from waste cooking oils into hydrogen by sub-tropical mixed and pure cultures. International Journal of Hydrogen Energy, 44(1), 1–11. doi:10.1016/j.ijhydene.2018.02.174
  • Rodriguez-Perez, S., Serrano, A., Pantión, A. A., & Alonso-Fariñas, B. (2018). Challenges of scaling-up PHA production from waste streams. A review. Journal of Environmental Management, 205, 215–230. doi:10.1016/j.jenvman.2017.09.083
  • Rubio-Ribeaux, D., Andrade, R. F. S., Silva, G. S., Holanda, R. A., Pele, M. A., Nunes, P., & Vilar, J. C. (2017). Promising biosurfactant produced by a new Candida tropicalis UCP 1613 strain using substrates from renewable-resources. African Journal of Microbiology Research, 11(23), 981–991. doi:10.5897/AJMR2017.8486
  • Ruggieri, L., Artola, A., Gea, T., & Sánchez, A. (2008). Biodegradation of animal fats in a co-composting process with wastewater sludge. International Biodeterioration & Biodegradation, 62(3), 297–303. doi:10.1016/j.ibiod.2008.02.004
  • Salihu, A., & Alam, M. Z. (2015). Solvent tolerant lipases: A review. Process Biochemistry, 50(1), 86–96. doi:10.1016/j.procbio.2014.10.019
  • Salleh, W. N. F. W., Tahir, S. M., & Mohamed, N. S. (2018). Synthesis of waste cooking oil-based polyurethane for solid polymer electrolyte. Polymer Bulletin, 75(1), 109–120. doi:10.1007/s00289-017-2019-x
  • Santos, E. F., Teixeira, M. F. S., Converti, A., Porto, A. L. F., & Sarubbo, L. A. (2019). Production of a new lipoprotein biosurfactant by Streptomyces sp. DPUA1566 isolated from lichens collected in the Brazilian Amazon using agroindustry wastes. Biocatalysis and Agricultural Biotechnology, 17, 142–150. doi:10.1016/j.bcab.2018.10.014
  • Serikovna, S. Z., Serikovich, K. S., Sakenovna, A. S., Murzakhmetovich, S. S., & Khamitovich, A. K. (2013). Screening of lipid degrading microorganisms for wastewater treatment. Malaysian Journal of Microbiology, 9(3), 219–226.
  • Sharma, P. K., Munir, R. I., Kievit, T., & Levin, D. B. (2017). Synthesis of Polyhydroxyalkanoates (PHAs) from vegetable oils and free fatty acids by wild type and mutant strains of Pseudomonas chlororaphis. Canadian Journal of Microbiology, 63(12), 1009–1016. doi:10.1139/cjm-2017-0412
  • Silva, R. C. F. S., Almeida, D. G., Brasileiro, P. P. F., Rufino, R. D., Luna, J. M., & Sarubbo, L. A. (2018). Production, formulation and cost estimation of a commercial biosurfactant. Biodegradation, 30, 191–201. doi:10.1007/s10532-018-9830-4
  • Silva, R. C. F. S., Almeida, D. G., Meira, H. M., Silva, E. J., Farias, C. B. B., Rufino, R. D., … Sarubbo, L. A. (2017). Production and characterization of a new biosurfactant from Pseudomonas cepacia grown in low-cost fermentative medium and its application in the oil industry. Biocatalysis and Agricultural Biotechnology, 12, 206–215. doi:10.1016/j.bcab.2017.09.004
  • Singh, P., Patil, Y., & Rale, V. (2019). Biosurfactant production: Emerging trends and promising strategies. Journal of Applied Microbiology, 126(1), 2–13. doi:10.1111/jam.14057
  • Sipaut, C. S., Murni, S., Saalah, S., Hoon, T. C., Ibrahim, M. M. N., Rahman, I. A., & Abdullah, A. A. (2012). Synthesis and characterization of polyols from refined cooking oil for polyurethane foam formation. Cellular Polymers, 31(1), 19–38. doi:10.1177/026248931203100102
  • Song, J. H., Jeon, C. O., Choi, M. H., Yoon, S. C., & Park, W. (2008). Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. Journal of Microbiology and Biotechnology, 18(8), 1408–1415.
  • Souza, P. M., Silva, N. R. A., Souza, D. G., Silva, T. A. L., Freitas-Silva, M. C., Andrade, R. F. S., … Campos-Takaki, G. M. (2018). Production of a biosurfactant by Cunninghamella echinulata using renewable substrates and its applications in enhanced oil spill recovery. Colloids and Interfaces, 2(4), 63–74. doi:10.3390/colloids2040063
  • Sulieman, A. E.-R. M., EL-Makhzangy, A., & Ramadan, M. F. (2006). Antiradical performance and physicochemical characteristics of vegetable oils upon frying French fries: A preliminary comparative study. Journal of Food Lipids, 13(3), 259–276. doi:10.1111/j.1745-4522.2006.00050.x
  • Suzuki, A. H., Botelho, B. G., Oliveira, L. S., & Franca, A. S. (2018). Sustainable synthesis of epoxidized waste cooking oil and its application as a plasticizer for polyvinyl chloride films. European Polymer Journal, 99, 142–149. doi:10.1016/j.eurpolymj.2017.12.014
  • Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683–710. doi:10.1016/j.apenergy.2012.11.061
  • Tamilarasan, K., & Kumar, M. D. (2011). Optimization of medium components and operating conditions for the production of solvent-tolerant lipase by Bacillus sphaericus MTCC 7542. African Journal of Biotechnology, 10(66), 15051–15057. doi:10.5897/AJB11.1143
  • Tarmizi, A. H., Niranjan, K., & Gordon, M. (2013). Physicochemical changes occurring in oil when atmospheric frying is combined with post frying vacuum application. Food Chemistry, 136, 902–908. doi:10.1016/j.foodchem.2012.08.001
  • Taskin, M., Ucar, M. H., Unver, Y., Kara, A. A., Ozdemir, M., & Ortucu, S. (2016). Lipase production with free and immobilized cells of cold-adapted yeast Rhodotorula glutinis HL25. Biocatalysis and Agricultural Biotechnology, 8, 97–103. doi:10.1016/j.bcab.2016.08.009
  • Teixeira, M. R., Nogueira, R., & Nunes, L. M. (2018). Quantitative assessment of the valorisation of used cooking oils in 23 countries. Waste Management, 78, 611–620. doi:10.1016/j.wasman.2018.06.039
  • Tompkins, C., & Perkins, E. G. (2000). Frying performance of low-linolenic acid soybean oil. Journal of the American Oil Chemists' Society, 77(3), 223–229. doi:10.1007/s11746-000-0036-2
  • Tufail, S., Munir, S., & Jamil, N. (2017). Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons. Brazilian Journal of Microbiology, 48(4), 629–636. doi:10.1016/j.bjm.2017.02.008
  • Tsoutsos, T. D., Tournaki, S., Paraíba, O., & Kaminaris, S. D. (2016). The used cooking oil-to-biodiesel chain in Europe assessment of best practices and environmental performance. Renewable and Sustainable Energy Reviews, 54, 74–83. doi:10.1016/j.rser.2015.09.039
  • Tzirita, M., Papanikolaou, S., Chatzifragkou, A., & Quilty, B. (2018). Waste fat biodegradation and biomodification by Yarrowia lipolytica and a bacterial consortium composed of Bacillus spp. and Pseudomonas putida. Engineering in Life Sciences, 18(12), 932–942. doi:10.1002/elsc.201800067
  • Vedaraman, N., & Venkatesh, N. (2011). Production of surfactin by Bacillus subtilis MTCC 2423 from waste frying oils. Brazilian Journal of Chemical Engineering, 28(2), 175–180. doi:10.1590/S0104-66322011000200001
  • Venkatesh, N. M., & Vedaraman, N. (2012). Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Annals of Microbiology, 62(1), 85–91. doi:10.1007/s13213-011-0230-9
  • Verlinden, R. A., Hill, D. J., Kenward, M. A., Williams, C. D., Piotrowska-Seget, Z., & Radecka, I. K. (2011). Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express, 1(1), 11–11. doi:10.1186/2191-0855-1-11
  • Wadekar, S. D., Kale, S. B., Lali, A. M., Bhowmick, D. N., & Pratap, A. P. (2012). Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source. Preparative Biochemistry and Biotechnology, 42(3), 249–266. doi:10.1080/10826068.2011.603000
  • Wallace, T., Gibbons, D., O’Dwyer, M., & Curran, T. P. (2017). International evolution of fat, oil and grease (FOG) waste management—A review. Journal of Environmental Management, 187, 424–435. doi:10.1016/j.jenvman.2016.11.003
  • Wei, S. P., Zheng, W. J., Zhao, F., Jiang, Z. L., & Zhou, D. S. (2013). Microbial conversion of waste cooking oil into riboflavin by Ashbya Gossypii. Bioscience Journal, 29(4), 1000–1006.
  • Xia, W.-J., Luo, Z-B., Dong, H.-P., Yu, L., Cui, Q.-F., & Bi, Y.-Q. (2012). Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous Pseudomonas aeruginosa WJ-1 using waste vegetable oils. Applied Biochemistry and Biotechnology, 166(5), 1148–1166. doi:10.1007/s12010-011-9501-y
  • Xiaoyan, L., Xinjun, Y., Jinshun, L., Jiaxing, X., Jun, X., Zhen, W., … Yuanfang, D. (2017). A cost-effective process for the coproduction of erythritol and lipase with Yarrowia lipolytica M53 from waste cooking oil. Food and Bioproducts Processing, 103, 86–94.
  • Xiong, Y., Miao, W., Wang, N., Chen, H., Wang, X., Wang, J., … Chen, S. (2019). Solid alcohol based on waste cooking oil: Synthesis, properties, micromorphology and simultaneous synthesis of biodiesel. Waste Management, 85, 295–303. doi:10.1016/j.wasman.2018.12.036
  • Xu, J., Long, F., Jiang, J., Li, F., Zhai, Q., Wang, F., … Li, J. (2019). Integrated catalytic conversion of waste triglycerides to liquid hydrocarbons for aviation biofuels. Journal of Cleaner Production, 222, 784–792. doi:10.1016/j.jclepro.2019.03.094
  • Yang, Z. M., Lu, R., Song, H. L., Zhang, Y., Tang, J. N., & Zhou, N. (2017). Effect of different cooking methods on the formation of aroma components and heterocyclic amines in pork loin. Journal of Food Processing and Preservation, 41(3), e12981–8. doi:10.1111/jfpp.12981
  • Zadeh, P. H., Moghimi, H., & Hamedi, J. (2017). Biosurfactant production by Mocur circinelloides on waste frying oil and possible uses in crude oil remediation. Water Science & Technology, 76(7), 1–9.
  • Zenati, B., Chebbi, A., Badis, A., Eddouaouda, K., Boutoumi, H., El Hattab, M., … Franzetti, A. (2018). A non-toxic microbial surfactant from Marinobacter hydrocarbonoclasticus SdK644 for crude oil solubilization enhancement. Ecotoxicology and Environmental Safety, 154, 100–107. doi:10.1016/j.ecoenv.2018.02.032
  • Zhang, Q., Wan, C., Wang, C., Chen, H., Liu, Y., Li, S., … Qin, W. (2018). Evaluation of the non-aldehyde volatile compounds formed during deep-fat frying process. Food Chemistry, 243, 151–161. doi:10.1016/j.foodchem.2017.09.121
  • Zhang, X., Xu, D., Zhu, C., Lundaa, T., & Scherr, K. E. (2012). Isolation and identification of biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains. Chemical Engineering Journal, 209, 138–146. doi:10.1016/j.cej.2012.07.110
  • Zheng, T., Wu, Z., Xie, Q., Fang, J., Hu, Y., Lu, M., … Ji, J. (2018). Structural modification of waste cooking oil methyl esters as cleaner plasticizer to substitute toxic dioctyl phthalate. Journal of Cleaner Production, 186, 1021–1030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.