4,390
Views
132
CrossRef citations to date
0
Altmetric
Articles

Green synthesis: Photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements

, , , , &
Pages 2617-2723 | Published online: 30 Dec 2019

References

  • Abid, J. P., Wark, A. W., Brevet, P. F., & Girault, H. H. (2002). Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chemical Communications, (7), 792–793. doi:10.1039/b200272h
  • Abubacker, M. N., & Mehala, T. (2012). Decolourization of Congo red and crystal violet by bacterial consortium. Asian Pacific Journal of Environment and Cancer, 7, 21–26.
  • Acikgoz, C., Hempenius, M. A., Huskens, J., & Julius Vancso, G. (2011). Polymers in conventional and alternative lithography for the fabrication of nanostructures. European Polymer Journal, 47(11), 2033–2052. doi:10.1016/j.eurpolymj.2011.07.025
  • Adinaveen, T., Karnan, T., & Selvakumar, S. A. S. (2019). Photocatalytic and optical properties of NiO added Nephelium lappaceum L. peel extract: An attempt to convert waste to a valuable product. Heliyon, 5(5), e01751. doi:10.1016/j.heliyon.2019.e01751
  • Agrawal, P., Metha, K., Vashisth, P., Sudarshan, Bhat, P., & Goutham Visnu, B. V. (2014). Green synthesis of silver nanoparticles and their application in dental filling material. International Journal of Innovative Science Engineering and Technology, 3, 13038–13052.
  • Ahlam, J. A., & Rasha, K. H. (2014). Synthesis of gold nanoparticles via chemical reduction of Au (III) ions by Isatin in aqueous solutions: Ligand concentrations and pH effects. Baghdad Science Journal, 3, 1201–1216.
  • Ahmad, T., Irfan, M., Bustam, M. A., & Bhattacharjee, S. (2016). Effect of reaction time on green synthesis of gold nanoparticles by using aqueous extract of Elaise Guineensis (Oil palm leaves). Procedia Engineering, 148, 467–472. doi:10.1016/j.proeng.2016.06.465
  • Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., Ramani, R., Srinivas, V., & Sastry, M. (2003). Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete Rhodococus species. Nanotechnology, 14(7), 824–828. doi:10.1088/0957-4484/14/7/323
  • Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir, 19(8), 3550–3553. doi:10.1021/la026772l
  • Ahmar Rauf, M., Mohammad, O., Ravikant, R., Faraz, A., Nazoora, K., & Swaleha, Z. (2017). Bio mimetically synthesized ZnO nanoparticles attain potent antibacterial activity against less susceptible S. aureus skin infection in experimental animals. RSC Advances, 7(58), 36361–36373. doi:10.1039/C7RA05040B
  • Ahmmad, B., Kanomata, K., Hirose, F., Kurawaki, J., & Ohkubo, T. (2014). Biosynthesis of elliptical hematite microplates and their photocatalytic performance. Rangsit Journal of Arts and Science, 4, 31–38.
  • Akyol, A., Yatmaz, H. C., & Bayramoglu, M. (2004). Photocatalytic decolorization of removal red RR in aqueous ZnO suspensions. Applied Catalysis B: Environmental, 54(1), 19–24. doi:10.1016/j.apcatb.2004.05.021
  • Alagiri, M., & Hamid, S. B. A. (2014). Green synthesis of α-Fe2O3 nanoparticles for photocatalytic application. Journal of Materials Science: Materials in Electronics, 25, 3572–3577. doi:10.1007/s10854-014-2058-0
  • Ali, K., Ahmed, B., Dwivedi, S., Saquib, Q., Al-Khedhairy, A. A., & Musarrat, J. (2015). Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLos One, 10(7), e0131178.
  • Ali, M. M., Mahdi, H. S., Parveen, A., & Azam, A. (2018). Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method. AIP Conference Proceedings, 1953, 030044.
  • Ali, Z. A., Yahya, R., Sekaran, S. D., & Puteh, R. (2016). Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Advances in Materials Science and Engineering, 2016, 4102196. doi:10.1155/2016/4102196
  • Alireza, S., & Farid, M. (2018). A novel and simple micro emulsion method for synthesis of biocompatible functionalized gold nanoparticles. Journal of Molecular Liquids, 268, 849–853.
  • Alkaim, A. F., Aljeboree, A. M., Alrazaq, N. A., Baqir, S. J., Hussein, F. H., & Lilo, A. J. (2014). Effect of pH on adsorption and photocatalytic degradation efficiency of different catalysts on removal of methylene blue. Asian Journal of Chemistry, 24, 8445–8448. doi:10.14233/ajchem.2014.17908
  • Almeida, J. M. F., Oliveira, E. S., Silva, I. N., De Souza, S. P. M. C., & Fernandes, N. S. (2017). Adsorption of Erichrome Black T from aqueous solution onto expanded perlite modified with Orthophenanthroline. Revista Virtual de Química, 9, 502–513. doi:10.21577/1984-6835.20170029
  • Alsenani, G. (2013). Studies on adsorption of Crystal violet dye from aqueous solution onto Calligonum comosum leaf powder. Journal of Chemistry, 9, 30–35. doi:10.1155/2013/210239
  • Amgad, S. D., Saleh, M. M., Salih, S. A., & Awad, M. I. (2015). On the synthesis of nickel oxide nanoparticles by sol-gel technique and its electro catalytic oxidation of glucose. Journal of Power Sources., 293, 101–108.
  • Amin, M., Anwar, F., Janjua, M. R. S. A., Iqbal, M. A., & Rashid, U. (2012). Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: Characterization, antimicrobial, and urease inhibitory activities against Helicobacter pylori. International Journal of Molecular Sciences, 13(8), 9923–9941. doi:10.3390/ijms13089923
  • Aminuzzaman, M., Kei, L. M., & Liang, W. H. (2017). Green synthesis of copper oxide (CuO) nanoparticles using banana peel extract and their photocatalytic activities. AIP Conference Proceedings, 1828, 020016.
  • Aminuzzaman, M., Ying, L. P., Goh, W. S., & Watanabe, A. (2018). Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bulletin of Materials Science, 41, 50.
  • Amir, H. R., Seyed, M. K., Mohammad, R. V., & Ali, S. (2011). The effect of sonication power on the sonochemical synthesis of Titania nanoparticles. Journal of Ceramic Processing Research, 12, 299–303.
  • Amodu, O. S., Ojumu, T. V., Ntwampe, S. K., & Ayanda, O. S. (2015). Rapid adsorption of Crystal violet onto magnetic zeolite synthesized from fly ash and magnetite nanoparticles. Journal of Encapsulation and Adsorption Sciences, 5, 191–203. doi:10.4236/jeas.2015.54016
  • Amrutha, S., & Sridhar, S. (2018). Green synthesis of magnetic iron oxide nanoparticle using leaves of Glycosmis Mauritiana and their antibacterial activity against human pathogens. Journal of Innovations in Pharmaceutical and Biological Sciences, 5, 22–26.
  • An, T., Tang, J., Zhang, Y., Quan, Y., Gong, X., Al-Enizi, A. M., … Zheng, G. (2016). Photoelectrochemical conversion from graphitic C3N4 quantum dot decorated semiconductor nanowires. ACS Applied Materials & Interfaces, 8(20), 12772–12779. doi:10.1021/acsami.6b01534
  • Anandhavalli, N., Mol, B., Manikandan, S., Anusha, N., Ponnusami, V., & Rajan, K. S. (2015). Green synthesis of cupric oxide nanoparticles using water extract of Muraya koenigi and its photocatalytic activity. Asian Journal of Chemistry, 27(7), 2523–2526. doi:10.14233/ajchem.2015.17966
  • Anitha, R., Ramesh, K. V., & Sudheerkumar, K. H. (2017). Photocatalytic activity of CeO2 nanoparticles, Synthesis using Artocarpus Gomezianus fruit mediated facile green combustion method. International Journal of Pharma and Bio Sciences, 8, 933–936.
  • Anjali, M., Nanda, B., & Vijay, V. (2017). Microwave-assisted Chemical synthesis of Nickel Oxide. International Journal of Scientific Research and Education, 5, 6281–6286.
  • Ankur, P., & Manivannan, R. (2015). Chemical reduction technique for the synthesis of nickel nanoparticles. Journal of Engineering Research and Applications, 5, 96–100.
  • Ansari, R., Alaie, S., & Mohammad-Khah, A. (2011). Application of polyaniline for removal of Acid Green 25 from aqueous solutions. Journal of Scientific and Industrial Research (JSIR), 70, 804–809.
  • Antonio, F., Alessandro, M., Rita, M., Elisa, P., Enrico, B., & Luca, M. (2017). Green synthesis of Ag nanoparticles using plant metabolites. AIP Conference Proceedings, 1873, 020012.
  • Arani, F. B., Movagharnia, R., Sharifian, A., Salehi, S., & Shandiz, S. A. S. (2017). Photo-catalytic, anti-bacterial, and anti-cancer properties of phyto-mediated synthesis of silver nanoparticles from Artemisia tournefortiana Rchb extract. Journal of Photochemistry and Photobiology B: Biology, 173, 640–649. doi:10.1016/j.jphotobiol.2017.07.003
  • Arumugam, A., Karthikeyan, C., Hameed, A. S. H., Gopinath, K., Gowri, S., & Karthika, V. (2015). Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Materials Science and Engineering: C, 49, 408–415. doi:10.1016/j.msec.2015.01.042
  • Ashish, P. L., Udaya, S., & Nagabhushana, B. M. (2016). Heavy metals removal by nickel-oxide nanoparticles synthesized by lemon juice extract. International Journal of Scientific Research and Management, 6, 287–291.
  • Ashkarran, A. A. (2010). A novel method for synthesis of colloidal silver nanoparticles by arc discharge in liquid. Current Applied Physics, 10(6), 1442–1447. doi:10.1016/j.cap.2010.05.010
  • Ashok, B., Bhagyashree, J., Ravi Kumar, A., & Zinjarde, S. (2010). Banana peel extract mediated synthesis of gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 80, 45–50. doi:10.1016/j.colsurfb.2010.05.029
  • Ashok, D., Raju, S., & Rama, K. (2017). Phytomediated synthesis of silver nanoparticles using Dicrostachys cinerea leaf extract and evaluation of its antibacterial and photocatalytic activity of textile dye. International Journal of ChemTech Research, 10, 302–314.
  • Ashok, K. S., & Umesh, T. N. (2013). Microwave synthesis, characterization and photocatalytic properties of SnO2 Nanoparticles. Advances in Nanoparticles, 2, 66–70.
  • Ashraf, J. M., Ansari, M. A., Khan, H. M., Alzohairy, M. A., & Choi, I. (2016). Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Scientific Reports, 6(1), 20414. doi:10.1038/srep20414
  • Ashraf, M. W. (2016). Removal of methylene blue dye from wastewater by using supported liquid membrane technology. Polish Journal of Chemical Technology, 18(2), 26–30. doi:10.1515/pjct-2016-0025
  • Aspland, R. J. (1992). A series on dyeing, Chapter 8, Disperse dyes and their application to polyester. Text Chem Color, 24, 18–23.
  • Atalay, F. E., Asma, D., Kaya, H., Bingol, A., & Yaya, P. (2016). Synthesis of NiO nanostructures using Cladosporium cladosporioides fungi for energy storage applications. Nanomaterials and Nanotechnology, 6, 1–6.
  • Athawale, A. A., Katre, P. P., Kumar, M., & Majumdar, M. B. (2005). Synthesis of CTAB-IPA reduced copper nanoparticle. Materials Chemistry and Physics, 91(2–3), 507–512. doi:10.1016/j.matchemphys.2004.12.017
  • Baer, D. R., Gaspar, D. J., Nachimuthu, P., Techane, S. D., & Castner, D. G. (2010). Application of surface chemical analysis tools for characterization of nanoparticles. Analytical and Bioanalytical Chemistry, 396(3), 983–1002. doi:10.1007/s00216-009-3360-1
  • Bagherzade, G., Tavakoli, M. M., & Namaei, M. H. (2017). Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pacific Journal of Tropical Biomedicine, 7(3), 227–233. doi:10.1016/j.apjtb.2016.12.014
  • Bagyalakshmi, J., & Haritha, H. (2017). Green synthesis and characterization of silver nanoparticles using Pterocarpus marsupium and assessment of its in vitro antidiabetic activity. American Journal of Advanced Drug Delivery, 5, 118–130.
  • Bala, N., Saha, S., Chakraborty, M., Maiti, M., Das, S., Basu, R., & Nandy, P. (2015). Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, anti-bacterial activity, and anti-diabetic activity. RSC Advances, 5(7), 4993–5003. doi:10.1039/C4RA12784F
  • Balaji, S., & Kumar, M. B. (2017). Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Advanced Powder Technology, 28, 785–797.
  • Bamwenda, G. R., Tsubota, S., Nakamura, T., & Haruta, M. (1995). Photoassisted hydrogen production from a water ethanol solution: A comparison of activities of Au-TiO2 and Pt-TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 89(2), 177–189. doi:10.1016/1010-6030(95)04039-I
  • Bankar, A., Joshi, B., Ravi Kumar, A., & Zinjarde, S. (2010). Banana peel extract mediated novel route for the synthesis of palladium nanoparticles. Materials Letters, 64(18), 1951–1953. doi:10.1016/j.matlet.2010.06.021
  • Barkhade, T., & Banerjee, I. (2018). Photocatalytic degradation of rhodamine B dye using Fe doped TiO2 nanocomposites. AIP Conference Proceedings, 1961, 030061.
  • Barkha, R., Sathyanarayanan, P., & Niroj Kumar, S. (2018). Polyol asserted hydrothermal synthesis of SnO2 nanoparticles for the fast adsorption and photocatalytic degradation of methylene blue cationic dye. New Journal of Chemistry, 42, 943–954.
  • Barve, A. K., Gadegone, S. M., Lanjewar, M. R., & Lanjewar, R. B. (2014). Synthesis and characterization of nickel oxide-based nanocomposite material. International Journal of Research in Engineering and Technology, 3, 6–8.
  • Baskar, G., Chandhuru, J., Sheraz Fahad, K., & Praveen, A. S. (2013). Mycological synthesis, characterization and antifungal activity of zinc oxide nanoparticles. Asian Journal of Pharmacy and Technology, 3, 142–146.
  • Bazrafshan, E., Zarei, A. A., Nadi, H., & Zazouli, M. A. (2014). Adsorptive removal of methyl orange and reactive red 198 dyes by Moringa peregrine ash. Indian Journal of Chemical Technology, 21, 105–113.
  • Beccat, P., Silva, P. D., Huiban, Y., & Kasztelan, S. (1999). Quantitative surface analysis by XPS: Application to hydrotreating catalysts. Oil & Gas Science and Technology, 54(4), 487–496. doi:10.2516/ogst:1999042
  • Bertolini, T. C. R., Izidoro, J. C., Magdalena, C. P., & Fungaro, D. A. (2013). Adsorption of Crystal violet dye from aqueous solution onto zeolites from coal fly and Bottom Ashes. Orbital: Electronic Journal of Chemistry, 5, 179–191.
  • Bhakya, S., Muthukrishnan, S., Sukumaran, M., Senthill Kumar, T., & Rao, M. V. (2015). Catalytic degradation of organic dyes using synthesized silver nanoparticles: A green approach. Journal of Bioremediation and Biodegradation, 6, 1–9.
  • Bharathi, D., Vasantharaj, S., & Bhuvaneshwari, V. (2018). Green synthesis of silver nanoparticles using Cordia dichotoma fruit extract and its enhanced antibacterial, anti-biofilm, and photocatalytic activity. Mater Res Express, 5, 055404. doi:10.1088/2053-1591/aac2ef
  • Bharde, A. A., Parikh, R. Y., Baidakova, M., Jouen, S., Hannoyer, B., Enoki, T., … Sastry, M. (2008). Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir, 24(11), 5787–5794.
  • Bhattacharjee, A., & Ahmaruzzaman, M. (2015). Photocatalytic-degradation and reduction of organic compounds using SnO2 quantum dots (via a green route) under direct sunlight. RSC Advances, 5(81), 66122–66133. doi:10.1039/C5RA07578E
  • Bhau, B. S., Ghosh, S., Puri, S., Borah, B., Sarmah, D. K., & Khan, R. (2015). Green synthesis of gold nanoparticles from the leaf extract of Nepenthes khasiana and antimicrobial assay. Advanced Materials Letters, 6, 55–58.
  • Bhavana, S., Gubbiveeranna, V., Kusuma, C. G., Ravikumar, H., Sumachirayu, C. K., Nagabhushana, H., & Nagaraju, S. (2019). Facile green synthesis of SnO2 nps using Vitex altissima (l.) leaves extracts: Characterization and evaluation of antibacterial and anticancer properties. Journal of Cluster Science, 30(2), 431–437. doi:10.1007/s10876-019-01496-w
  • Bhosale, R. R., Kulakarni, A. S., Gilda, S. S., Aloorkar, N. H., Osmani, R. A., & Harkare, B. R. (2014). Innovative eco-friendly approaches for green synthesis of silver nanoparticles. ChemInform, 7, 2328–2337. doi:10.1002/chin.201539221
  • Bhumika, K. S., Dimple, V. S., & Debesh, R. R. (2018). Green synthesis of CuO nanoparticles using Azadirachta indica and its antibacterial activity for medicinal applications. Materials Research Express, 5, 095033.
  • Bhuyan, T., Mishra, K., Khanuja, M., Prasad, R., & Varma, A. (2015). Biosynthesis of zinc oxide nanoparticles from Azadiractha indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing, 32, 55–61.
  • Bishnoi, S., Kumar, A., & Selvaraj, R. (2018). Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramflora fruit extract waste and their photocatalytic degradation of methylene blue dye. Materials Research Bulletin, 97, 121–127. doi:10.1016/j.materresbull.2017.08.040
  • Bonu, V., Das, A., Sivadasan, A. K., Tyagi, A. K., & Dhara, S. (2015). Invoking forbidden modes in SnO2 nanoparticles using tip-enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 46(11), 1037–1040. doi:10.1002/jrs.4747
  • Bordbar, M. (2017). Biosynthesis of Ag/almond shell nanocomposite as a cost-effective and efficient catalyst for degradation of 4-nitrophenol and organic dyes. RSC Advances, 7(1), 180–189. doi:10.1039/C6RA24977A
  • Boruah, S. K., Boruah, P. K., Sarma, P., Medhi, C., & Medhi, O. K. (2012). Green synthesis of gold nanoparticles camellia sinensis and kinetics of the reaction. Advanced Materials Letters, 3, 481–486. doi:10.5185/amlett.2012.icnano.103
  • Brajesh, K., Smita, K., Cumbal, L., & Debut, A. (2014). Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. Journal of Saudi Chemical Society, 18, 364–369. doi:10.1016/j.jscs.2014.01.003
  • Brajesh, K., Smitha, K., Cambal, L., & Debut, A. (2014). Green approach for fabrication and applications of zinc oxide nanoparticles. Bioinorganic Chemistry and Applications, 2014, 523869. doi:10.1155/2014/523869
  • Brajesh, K., Smitha, K., & Cumbal, L. (2015). Phytosynthesis of gold nanoparticles using Andean Aji (Capsicum baccatum L.). Cogent Chemistry, 1, 1120982.
  • Brajesh, K., Smitha, K., Cumbal, L., & Debut, A. (2015). Ultrasound agitated phytofabrication of palladium nanoparticles using Andean blackberry leaf and its photocatalytic activity. Journal of Saudi Chemical Society, 19, 574–580. doi:10.1016/j.jscs.2015.05.008
  • Brajesh, K., Smitha, K., Cumbal, L., & Debut, A. (2016). One-pot synthesis and characterization of gold nanocatalyst using Sacha inchi (Plukenetia volubilis) oil: Green approach. Journal of Photochemistry and Photobiology B: Biology, 158, 55–60. doi:10.1016/j.jphotobiol.2016.02.023
  • Brajesh, K., Smitha, K., Cumbal, L., Debut, A. & Pathak, N., (2014). Sonochemical synthesis of silver nanoparticles using starch: A comparison. Bioinorganic Chemistry and Applications, 2014, 784268. doi:10.1155/2014/784268
  • Brongersma, M. L., Halas, N. J., & Nordlander, P. (2015). Plasmon-induced hot carrier science and technology. Nature Nanotechnology, 10(1), 25–34. doi:10.1038/nnano.2014.311
  • Bruno, S., & Khatib, O. (2008). Springer Handbook of robotics (1st ed.). Berlin, Germany: Springer-Verlag GmbH.
  • Brus, L. (2016). Plasmon-driven chemical synthesis, Growing gold nanoprisms with light. Nature Materials, 15(8), 824–825. doi:10.1038/nmat4698
  • Bryant, W. R., John, F. H., & Roger, C. B. (1993). Physical methods of chemistry, Investigations of surfaces and interfaces –Part A. Volume IXA. (2nd ed.). New York, NY: John Wiley & Sons Inc.
  • Carraway, E. R., Hoffman, A. J., & Hoffmann, M. R. (1994). Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids. Environmental Science & Technology, 28(5), 786–793. doi:10.1021/es00054a007
  • Carter, C. B., & David, B. W. (2016). Transmission electron microscopy, diffraction, imaging and spectrometry (1st ed.). Cham, Switzerland: Springer International Publishing AG.
  • Castro, L., Blázquez, M. L., Muñoz, J. A., González, F., & Ballester, A. (2013). Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnology, 7(3), 109–116. doi:10.1049/iet-nbt.2012.0041
  • Castro-Longoria, E., Moreno-Velásquez, S. D., Vilchis-Nestor, A. R., Arenas-Berumen, E., & Avalos-Borja, M. (2012). Production of platinum nanoparticles and nanoaggregates using Neurospora Crassa. Journal of Microbiology and Biotechnology, 22(7), 1000–1004. doi:10.4014/jmb.1110.10085
  • Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 22(2), 577–583. doi:10.1021/bp0501423
  • Chandan, T., Moushumi, H., Manobjyoti, B., Bhattacharya, P. Kr., & Rahul, K. (2014). Biosynthesis of Ag nanoparticles using pedicellamide and its photocatalytic activity: An eco-friendly approach. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 132, 687–691.
  • Chantes, P., Jarusutthirak, C., & Danwittayakul, S. (2015). A comparison study of photocatalytic activity of TiO2 and ZnO on the degradation of Real Batik wastewater. In International Conference on Environmental, Food, Agriculture and Bio-Technology, (BEFE-2015) May 15–16, Singapore, 8–12.
  • Charu, D., Ishan, P., Himanshu, P., Pramod, W. R., Avinash, C. P., Shanti, B. M., & Sandip, P. (2017). Electrospun nanofibrous scaffold as a potential carrier of antimicrobial therapeutics for diabetic wound healing and tissue regeneration. In Nano- and Microscale Drug Delivery Systems 147-164. .
  • Chauhan, R., Reddy, A., & Abraham, J. (2015). Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Applied Nanoscience, 5(1), 63–71. doi:10.1007/s13204-014-0292-7
  • Chauhan, A., Zubair, S., Tufail, S., Sherwani, A., Sajid, M., Raman, S. C., … Owais, M. (2011). Fungus-mediated biological synthesis of gold nanoparticles, potential in detection of liver cancer. International Journal of Nanomedicine, 6, 2305–2319.
  • Chaukura, N., Murimba, E. C., & Gwenzi, W. (2017). Synthesis, characterization and methyl orange adsorption capacity of ferric oxide-biochar nano-composites derived from pulp and paper sludge. Applied Water Science, 7(5), 2175–2186. doi:10.1007/s13201-016-0392-5
  • Chekir, N., Benhabiles, O., Tassalit, D., Laoufi, N. A., & Bentahar, F. (2016). Photocatalytic degradation of methylene blue in aqueous suspensions using TiO2 and ZnO. Desalination and Water Treatment, 57(13), 6141–6147. doi:10.1080/19443994.2015.1060533
  • Chen, S., & Murray, R. W. (1999). Electrochemical quantized capacitance charging of surface ensembles of gold nanoparticles. The Journal of Physical Chemistry B, 103(45), 9996–10000. doi:10.1021/jp992681u
  • Chen, T., Zheng, Y., Lin, J. M., & Chen, G. (2008). Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry. Journal of the American Society for Mass Spectrometry, 19(7), 997–1003. doi:10.1016/j.jasms.2008.03.008
  • Chen, X., Zheng, Z., Ke, X., Jaatinen, E., Xie, T., Wang, D., … Zhu, H. (2010). Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Green Chemistry, 12(3), 414–419. doi:10.1039/b921696k
  • Chokriwal, A., Sharma, M. M., & Singh, A. (2014). Biological synthesis of nanoparticles using bacteria and their applications. American Journal of PharmTech Research, 4, 39–61.
  • Christopher, J. S. G., Saswati, B., & Ezilrani, P. S. (2015). Optimization of parameters for biosynthesis of silver nanoparticles using leaf extract of Aegle marmelos. Brazilian Archives of Biology and Technology, 58(5), 702–710. doi:10.1590/S1516-89132015050106
  • Cody, V. C., Philipp, B., Julia, Z., George, H. M., Barry, M. L., Nicholas, J. S., … Mathew, R. F. (2016). Low energy ion scattering (LEIS). A practical introduction to its theory, instrumentation, and applications. Analytical Methods, 8, 3419–3439.
  • Correa-Llantén, D. N., Muñoz-Ibacache, S. A., Castro, M. E., Muñoz, P. A., & Blamey, J. M. (2013). Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microbial Cell Factories, 12, 1–6.
  • Cuevas, R., Durán, N., Diez, M. C., Tortella, G. R., & Rubilar, O. (2015). Extracellular biosynthesis of copper and copper Oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from Chilean forests. Journal of Nanomaterials, 2015, 1–7. doi:10.1155/2015/789089
  • Cushing, S. K., & Wu, N. (2013). Plasmon-enhanced solar energy harvesting. Interface Magazine, 22(2), 63–67. doi:10.1149/2.F08132if
  • Daneshvar, N., Salari, D., & Khataee, A. R. (2003). Photocatalytic degradation of azo dye acid red 14 in water: Investigation of the effect of operational parameters. Journal of Photochemistry and Photobiology A: Chemistry, 157(1), 111–116. doi:10.1016/S1010-6030(03)00015-7
  • Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles, assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104(1), 293–346.
  • Darya, O. P., Elena, A. V., & Vladimir, V. B. (2018). Synthesis of silver nanoparticles in the presence of polyethylene glycol and their electrochemical behavior at a graphite electrode by cyclic voltammetry. Oriental Journal of Chemistry, 34, 1130–1135.
  • Das, S. K., Das, A. R., & Guha, A. K. (2009). Gold nanoparticles: Microbial synthesis and applications in water hygiene management. Langmuir, 25(14), 8192–8199. doi:10.1021/la900585p
  • Das, J., & Velusamy, P. (2013). Biogenic synthesis of antifungal silver nanoparticles using aqueous stem extract of banana. Nano Biomedicine and Engineering, 5(1), 34–38. doi:10.5101/nbe.v5i1.p34-38
  • Dave, P. N., Kaur, S., & Khosla, E. (2011). Removal of Eriochrome black-T by adsorption on to Eucalyptus bark using green technology. Indian Journal of Chemical Technology, 18, 53–60.
  • Debashri, P., & Sudarsan, N. (2019). Synthesis, characterization and a comparative antibacterial study of CuO, NiO and CuO-NiO mixed metal oxide. Materials Research Express, 6, 055004.
  • Deborah, P., Mauro, M., Elisa, D. L., Giuseppe, B., & Pier, P. P. (2017). Platinum nanoparticles in nanobiomedicine. Chemical Society Reviews, 46, 4951–4975.
  • Deepika, B., Neeta, R. S., Joginder, S., & Rameshwar, S. K. (2017). Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology, 47, 1836–1876.
  • Devaraja, P., Kumari, P., Aarti, C., & Renganathan, A. (2013). Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 Cell Line. Journal of Nanotechnology, 2013, 598328. doi:10.1155/2013/598328
  • Dey, G. R. (2014). Transformation of carbon dioxide to useable products through free radical‐induced reactions. In Green Carbon Dioxide: Advances in CO Utilization 25-50.
  • Dey, D., Das, S., Patra, M., Kole, N., & Biswas, B. (2015). Synthesis and characterization of a flower-structure ferromagnetic nickel oxide nanoparticle, Investigation of photocatalytic activity. Journal of Organic & Inorganic Chemistry, 1(1), 8. doi:10.21767/2472-1123.100002
  • Diallo, A., Kaviyarasu, K., Ndiaye, S., Mothudi, B. M., Ishaq, A., Rajendran, V., & Maaza, M. (2018). Structural, optical and photocatalytic applications of biosynthesized NiO nanocrystals. Green Chemistry Letters and Reviews, 11(2), 166–175.
  • Dilshad, M., Yuanyu, M., & Sohrab, R. (2017). Graphitic C3N4 based noble-metal-free photocatalyst system: A review. Applied Catalysis B: Environmental, 206, 556–588.
  • Din, M. I., & Rani, A. (2016). Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: A green adeptness. International Journal of Analytical Chemistry, 2016, 3512145. doi:10.1155/2016/3512145
  • Dobrucka, R. (2017). Synthesis of titanium dioxide nanoparticles using Synthesis Echinacea purpurea Herba. Iranian Journal of Pharmaceutical Sciences, 16, 756–762.
  • Dong, K., He, J., Liu, J., Li, F., Yu, L., Zhang, Y., … Ma, H. (2017). Photocatalytic performance of Cu2O-loaded TiO2/rGO nanoheterojunctions obtained by UV reduction. Journal of Materials Science, 52(11), 6754–6766. doi:10.1007/s10853-017-0911-2
  • Dorcheh, S. K., & Vahabi, K. (2017). Biosynthesis of nanoparticles by Fungi: Large-scale production. In: Merillon JM., Ramanwat, K. (eds) Fungal Metabolites, Reference Series in Phytochemistry. Springer, Cham. 395–414.
  • Dorian, A. H. H., & Charles, C. S. (2011). Review of the anatase to rutile phase transformation. Journal of Materials Science, 46, 855–874.
  • Dreaden, E. C., Austin, L. A., Mackey, M. A., & El-Sayed, M. A. (2012). Size matters: Gold nanoparticles in targeted cancer drug delivery. Therapeutic Delivery, 3(4), 457–478. doi:10.4155/tde.12.21
  • Duan, S., & Wang, R. (2013). Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications. Progress in Natural Science: Materials International, 23(2), 113–126. doi:10.1016/j.pnsc.2013.02.001
  • Duran, N., Priscyla, D. M., Alves, O. L., De Souza, G. I. H., & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology, 3, 1–7.
  • Eid, M. M. (2015). Spectroscopic characterization of iron oxide nanoparticles functionalized with chitosan biosynthesis by a clean one pot method. Middle East Journal of Applied Sciences, 5, 18–22.
  • Elango, G., Kumaran, S. M., Kumar, S. S., Muthuraja, S., & Roopan, S. M. (2015). Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145, 176–180. doi:10.1016/j.saa.2015.03.033
  • Elango, G., & Roopan, S. M. (2016). Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. Journal of Photochemistry and Photobiology B: Biology, 155, 34–38. doi:10.1016/j.jphotobiol.2015.12.010
  • Elemike, E. E., Onwudiwe, D. C., Ekennia, A. C., Ehiri, R. C., & Nnaji, N. J. (2017). Phytosynthesis of silver nanoparticles using aqueous leaf extracts of Lippia citriodora: Antimicrobial, larvicidal and photocatalytic evaluations. Materials Science and Engineering: C, 75, 980–989. doi:10.1016/j.msec.2017.02.161
  • Elia, P., Zach, R., Hazan, S., Kolusheva, S., Porat, Z., & Zeiri, Y. (2014). Green synthesis of gold nanoparticles using plant extracts as reducing agents. International Journal of Nanomedicine, 9, 4007–4021.
  • Eppler, A. S., Rupprechter, G., Anderson, E. A., & Somorjai, G. A. (2000). Thermal and chemical stability and adhesion strength of Pt nanoparticles arrays supported on silica studied by transmission electron microscopy and atomic force microscopy. The Journal of Physical Chemistry B, 104(31), 7286–7292. doi:10.1021/jp0006429
  • Evanoff, D. D., & Chumanov, G. (2005). Synthesis and optical properties of silver nanoparticles and arrays. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry, 6(7), 1221–1231. doi:10.1002/cphc.200500113
  • Ezhilarasi, A. A., Vijaya, J. J., Kaviyarasu, K., John Kennedy, L., Jothi Ramalingam, R., & Al-Lohendan, H. A. (2018). Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. Journal of Photochemistry and Photobiology B: Biology, 180, 39–50. doi:10.1016/j.jphotobiol.2018.01.023
  • Ezhilarasi, A. A., Vijaya, J. J., Kaviyarasu, K., Maaza, M., Ayeshamariam, A., & John Kennedy, L. (2016). Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells. Journal of Photochemistry and Photobiology B: Biology, 164, 352–360. doi:10.1016/j.jphotobiol.2016.10.003
  • Falicov, L. M., & Somorjai, G. A. (1985). Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: Theory and experimental evidence. Proceedings of the National Academy of Sciences, 82(8), 2207–2211. doi:10.1073/pnas.82.8.2207
  • Fan, W., & Leung, M. K. (2016). Recent development of plasmonic resonance-based photocatalysis and photovoltaics for solar utilization. Molecules, 21(2), 180. doi:10.3390/molecules21020180
  • Fardood, S. T., Ramazani, A., & Moradi, S. (2017). A novel green synthesis of nickel oxide nanoparticles using Arabic gum. Chemistry Journal of Moldova, 12(1), 115–118. doi:10.19261/cjm.2017.383
  • Fatemeh, J., Mohammad, E. T. Y., Mohsen, B., & Ali, E. H. (2019). Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Materials Research Express, 6, 065408.
  • Fayemi, O. E., Adekunle, A. S., & Ebenso, E. E. (2016). Electrochemical detection of phenanthrene using nickel oxide doped PANI nanofiber based modified electrodes. Journal of Nanomaterials, 2016, 1–12. doi:10.1155/2016/9614897
  • Felcia, E. B., & Dhinakar Gnanam, K. (2017). Synthesis and characterization of SnO2 nanoparticle by microwave assisted hydrothermal method. J Appli Phy National Conference on Current Advancements in Physics 3rd & 4th; 98–104.
  • Fowsiya, J., Madhumitha, G., Al-Dhabi, N. A., & Arasu, M. V. (2016). Photocatalytic degradation of congo red using Carissa edulis extract capped zinc oxide nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 162, 395–401. doi:10.1016/j.jphotobiol.2016.07.011
  • Fu, L., Zheng, Y., Ren, Q., Wang, A., & Deng, B. (2015). Green biosynthesis of SnO2 nanoparticles by Plectranthus amboinicus leaf extract their photocatalytic activity toward rhodamine B degradation. Journal of Ovonic Research, 11, 21–26.
  • Fuku, X., Thovhogi, N., & Maaza, M. (2018). Photocatalytic effect of green synthesized CuO nanoparticles on selected environmental pollutants and pathogens. AIP Conference Proceedings 1962, 040006.
  • Funda, E. A., Dilek, A., Harun, K., Alper, B., & Pinar, Y. (2016). Synthesis of NiO nanostructures using Cladosporium cladosporiodes fungi for energy storage applications. Nanomaterials and Nanotechnology, 6, 28.
  • Gabriela, B. I., Carolina, C., Ana-Maria, S., & Ligia, S. (2016). Removal of tartrazine (E102) from aqueous solutions by sorption-flotation. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 78, 137–148.
  • Gaidhani, S. V., Yeshvekar, R. K., Shedbalkar, U. U., Bellare, J. H., & Chopade, B. A. (2014). Bio-reduction of hexachloroplatinic acid to platinum nanoparticles employing Acinetobacter calcoaceticus. Process Biochemistry, 49(12), 2313–2319. doi:10.1016/j.procbio.2014.10.002
  • Ganachari, S. V., Bhat, R., Deshpande, R., & Venkataraman, A. (2012). Extracellular biosynthesis of silver nanoparticles using fungi Penicillium diversum and their antimicrobial activity studies. BioNanoScience, 2, 316–321. doi:10.1007/s12668-012-0046-5
  • Ganapathy Selvam, G., & Sivakumar, K. (2014). Phycosynthesis and photocatalytic degradation of methyl orange using silver nanoparticles synthesized by the Sargassum wightii. World Journal of Pharmaceutical Sciences, 2, 1022–1028.
  • Gandhi, A. C., & Wu, S. Y. (2017). Strong deep-level-emission photoluminescence in NiO nanoparticles. Nanomaterials, 7(8), 231. doi:10.3390/nano7080231
  • Ganesh Kumar, V., Dinesh Gokavarapu, S., Rajeswari, A., Stalin Dhas, T., Karthick, V., Kapadia, Z., … Sinha, S. (2011). Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloids and Surfaces B: Biointerfaces, 87(1), 159–163. doi:10.1016/j.colsurfb.2011.05.016
  • Gao, Z., Liu, X., Zhang, C., Tang, Z., Chen, J., & Yu, C. (2018). Electrochemical immunosensor for monocyte chemoattractant protein-1 detection based on Pt nanoparticles functionalized single-walled carbon nanohorns. International Journal of Electrochemical Science, 13, 3923–3934. doi:10.20964/2018.04.24
  • Gardea-Torresdey, L., Tiemann, K. J., Gamez, G., Dokken, K., Tehuacanero, S., & Jose-Yacaman, M. (1999). Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. Journal of Nanoparticle Research, 1(3), 397–404. doi:10.1023/A:1010008915465
  • Gary, A., Meritxell, C., Lynne, E. M., & Kevin, D. (2012). Biosynthesis of platinum nanoparticles by Escherichia coli MC4100: Can such nanoparticles exhibit intrinsic surface enantioselectivity? Langmuir, 28, 5267–5274.
  • Geetha, M. S., Nagabhushana, H., & Shivananjaiah, H. N. (2016). Green mediated synthesis and characterization ZnO nanoparticles using Euphorbia jatropha latex as reducing agent. Journal of Science: Advanced Materials and Devices, 1(3), 301–310. doi:10.1016/j.jsamd.2016.06.015
  • Geetika, S., Panwar, A., & Kaur, B. (2015). Controlled green synthesis of silver nanoparticles by Allium cepa and Musa acuminata with strong antimicrobial activity. International Nano Letters, 5, 93–100. doi:10.1007/s40089-015-0142-y
  • Ghaedi, M., Heidarpour, S., Nasiri Kokhdan, S., Sahraie, R., Daneshfar, A., & Brazesh, B. (2012). Comparison of silver and palladium nanoparticles loaded on activated carbon for efficient removal of methylene blue: Kinetic and isotherm study of removal process. Powder Technology, 228, 18–25. doi:10.1016/j.powtec.2012.04.030
  • Ghareib, M., Abdallah, W., Abu Tahon, M., & Tallima, A. (2019). Biosynthesis of copper oxide nanoparticles using the preformed biomass of Aspergillus fumigatus and their antibacterial and photocatalytic activities. Digest Journal of Nanomaterials & Biostructures (DJNB), 14, 291–303.
  • Ghidan, A. Y., Al-Antary, T. M., & Awwad, A. M. (2016). Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: Effect on green peach aphid. Environmental Nanotechnology, Monitoring and Management, 6, 95–98. doi:10.1016/j.enmm.2016.08.002
  • Ghidan, A. Y., Al-Antary, T. M., Salem, N. M., & Awwad, A. M. (2017). Facile green synthetic route to the zinc oxide (ZnO NPs) nanoparticles, Effect on green peach aphid and antibacterial activity. Journal of Agricultural Science, 9, 131–138. doi:10.5539/jas.v9n2p131
  • Ghosh, D., & Bhattacharyya, K. G. (2002). Adsorption of methylene blue on Kaolinite. Applied Clay Science, 20(6), 295–300. doi:10.1016/S0169-1317(01)00081-3
  • Gitanjali, B. S., & Ashok, M. C. (2014). Extracellular biological synthesis, characterization, and stability of gold nanoparticles using the Fungus Helminthosporium tetramera. International Journal of Pure & Applied Bioscience, 2, 281–285.
  • Gitanjali, H., & Ashok, C. (2015). Synthesis, characterization, and stability of gold nanoparticles using the fungus fusarium oxysporum and its impact on seed germination. International Journal of Recent Scientific Research, 6, 3181–3185.
  • Gnanaprakasam, A., Sivakumar, V. M., & Thirumarimurugan, M. (2015). Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst: A Review. Indian Journal of Materials Science, 2015, 601827. doi:10.1155/2015/601827
  • Gondal, A. L. M. A., Dastageer, M. A., & Al-Adel, F. F. (2018). Experimental parameters affecting the photocatalytic reduction performance of CO2 to methanol: A review. International Journal of Energy Research, 42, 2031–2049. doi:10.1002/er.3965
  • Gong, M., Jiang, X., Du, J., Li, X., Han, X., Yang, L., & Zhao, B. (2015). Anatase TiO2 nanoparticles with controllable crystallinity as a substrate for SERS: Improved charge-transfer contribution. RSC Advances, 5, 80275–80629.
  • Gonnelli, C., Cacioppo, F., Giordano, C., Capozzoli, L., Salvatici, M. C., Colzi, I., … Ristori, S. (2015). Cucurbita pepo L. Extracts as a versatile hydrotrophic source for the synthesis of gold nanoparticles with different shapes. Green Chemistry Letters and Reviews, 8(1), 39–47. doi:10.1080/17518253.2015.1027288
  • Gopinath, K., Karthika, V., Sundaravadivelan, C., Gowri, S., & Arumugam, A. (2015). Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. Journal of Nanostructure in Chemistry, 5(3), 295–303. doi:10.1007/s40097-015-0161-2
  • Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 844–851. doi:10.1080/21691401.2019.1577878
  • Goutam, S. P., Saxena, G., Singh, V., Yadav, A. K., Bharagava, R. N., & Thapa, K. B. (2018). Green synthesis of TiO2 NPs using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chemical Engineering Journal, 336, 386–396. doi:10.1016/j.cej.2017.12.029
  • Grammatikopoulos, P., Steinhauer, S., Vernieres, J., Singh, V., & Sowwan, M. (2016). Nanoparticle design by gas-phase synthesis. Advances in Physics: X, 1, 81–100. doi:10.1080/23746149.2016.1142829
  • Gurunathan, S. (2019). Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. Arabian Journal of Chemistry, 12(2), 168–180. doi:10.1016/j.arabjc.2014.11.014
  • Ha, J. W., Ruberu, T. P. A., Han, R., Dong, B., Vela, J., & Fang, N. (2014). Super-resolution mapping of photogenerated electron and hole separation in single metal-semiconductor nanocatalysts. Journal of the American Chemical Society, 136(4), 1398–1408. doi:10.1021/ja409011y
  • Halim, H. N. A., & Yatim, N. S. M. (2011). Removal of acid green 25 from aqueous solution using coconut husk as adsorbent. International Conference on Environment and Industrial Innovation IPCBEE, 12, 268–272.
  • Hany, M. M., Mohamed, H. E. M., & El-Aziz, M. M. A. (2014). Biosynthesis of silver nanoparticles using fungi and biological evaluation of mycosynthesized silver nanoparticles. Egyptian Journal of Experimental Biology, 10, 1–12.
  • Haque, E., Jun, J. W., & Jhung, S. H. (2011). Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). Journal of Hazardous Materials, 185(1), 507–511. doi:10.1016/j.jhazmat.2010.09.035
  • Harifi-Mood, A. R., & Hadavand-Mirzaie, F. (2015). Adsorption of Basic violet 16 from aqueous solutions by waste sugar beet pulp: Kinetic, thermodynamic, and equilibrium isotherm studies. Chemical Speciation & Bioavailability, 27(1), 8–14.
  • Haritha, E., Roopan, S. M., Madhavi, G., Elango, G., Al-Dhabi, N. A., & Arasu, M. V. (2017). Environmental friendly synthesis of palladium nanoparticles and its photocatalytic activity against diazo dye to sustain the natural Source. Journal of Cluster Science, 28(3), 1225–1236. doi:10.1007/s10876-016-1136-2
  • Haritha, E., Roopan, S. M., Madhavi, G., Elango, G., Al-Dhabi, N. A., & Valan Arasu, M. (2016). Green chemical approach towards the synthesis of SnO2 NPs in argument with photocatalytic degradation of diazo dye and its kinetic studies. Journal of Photochemistry and Photobiology B: Biology, 162, 441–447. doi:10.1016/j.jphotobiol.2016.07.010
  • Hasan, S. S., Singh, S., Parikh, Y. R. Y., Dharne, M. S., Patole, M. S., Prasad, B. L. V., & Shouche, Y. S. (2008). Bacterial synthesis of copper/copper oxide nanoparticles. Journal of Nanoscience and Nanotechnology, 8, 3191–3196. doi:10.1166/jnn.2008.095
  • Hasanpoor, M., Aliofkhazraei, M., & Delavari, H. (2015). Microwave-assisted synthesis of zinc oxide nanoparticles. Procedia Materials Science, 11, 320–325. doi:10.1016/j.mspro.2015.11.101
  • Hasnidawani, J. N., Azlina, H. N., Norita, H., Bonnia, N. N., Ratim, S., & Ali, E. S. (2016). Synthesis of ZnO nanostructures using sol-gel method. Procedia Chemistry, 19, 211–216. doi:10.1016/j.proche.2016.03.095
  • Hassan, S. S. M., El Azab, W. I. M., Ali, H. R., & Mansour, M. S. M. (2015). Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6, 045012. doi:10.1088/2043-6262/6/4/045012
  • Hayat, K., Gondal, M. A., Khaled, M. M., & Ahmed, S. (2010). Kinetic study of laser- induced photocatalytic degradation of dye (alizarin yellow) from wastewater using nanostructured ZnO. Journal of Environmental Science and Health, Part A, 45(11), 1413–1420.
  • He, Y., Li, X., Zheng, Y., Wang, Z., Ma, Z., Yang, Q., … Zhang, H. (2018). A green approach for synthesizing silver nanoparticles, and their antibacterial and cytotoxic activities. New Journal of Chemistry, 42(4), 2882–2888. doi:10.1039/C7NJ04224H
  • Helan, V., Joseph Prince, J., Al-Dhabi, N. A., Arasu, M. V., Ayeshamariam, A., Madhumitha, G., … Jayachandran, M. (2016). Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis. Results in Physics, 6, 712–718. doi:10.1016/j.rinp.2016.10.005
  • Heydari, R., & Rashidipour, M. (2015). Green synthesis of silver nanoparticles using extract of Oak fruit hull (Jaft): Synthesis and in vitro cytotoxic effect on MCF-7 cells. International Journal of Breast Cancer, 2015, 1–6. doi:10.1155/2015/846743
  • Ho Park, H., Zhang, X., Choi, Y.-J., Ho Park, H., & Hill, R. H. (2011). Synthesis of Ag nanostructures by photochemical reduction using citrate-capped Pt seeds. Journal of Nanomaterials, 2011, 265287. doi:10.1155/2011/265287
  • Hoffman, A. J., Carraway, E. R., & Hoffmann, M. R. (1994). Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids. Environmental Science & Technology, 28(5), 776–785. doi:10.1021/es00054a006
  • Honary, S., Barabadi, H., Fathabad, E. G., & Naghibi, F. (2013). Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Tropical Journal of Pharmaceutical Research, 12, 7–11.
  • Honary, S., Barabadi, H., Gharaei-Fathabad, E., & Naghibi, F. (2012). Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, penicillium citrinum and Penicillium waksmanii. Digest Journal of Nanomaterials and Biostructures, 7, 999–1005.
  • Honary, S., Fathabad, E. G., Paji, Z. K., & Eslamifar, M. (2012). A novel biological synthesis of gold nanoparticle by Enterobacteriaceae family. Tropical Journal of Pharmaceutical Research, 11, 887–891.
  • Hongyu, L., Huan, Z., Jie, W., & Junfu, W. (2017). Effect of temperature on the size of biosynthesized silver nanoparticle: Deep insight into microscopic kinetic analysis. Arabian Journal of Chemistry, 10.1016/j.arabjc.2017.09.004.
  • Hornymak, G. L., Dutta, J., Tibbals, H. F., & Rao, A. (2008). Introduction to nanoscience. 1st edition. Nanotool, Characterization methods, 108-173..
  • Hou, W., Hung, W. H., Pavaskar, P., Goeppert, A., Aykol, M., & Cronin, S. B. (2011). Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catalysis, 1(8), 929–936. doi:10.1021/cs2001434
  • Hu, J. (2015). Biosynthesis of SnO2 Nanoparticles by Fig (Ficus Carica) leaf extract for electrochemically determining Hg (II) in water samples. International Journal of Electrochemical Science, 10, 10668–10676.
  • Hudlikar, M., Joglekar, S., Dhaygude, M., & Kodam, K. (2012). Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. latex. Materials Letters, 75, 196–199. doi:10.1016/j.matlet.2012.02.018
  • Husen, A., & Iqbal, M. (2019). Nanomaterials and plant potential. Springer, 3–29.
  • Husseiny, S. M., Taher, A. S., & Anter, H. A. (2015). Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef University Journal of Basic and Applied Sciences, 4, 225–231. doi:10.1016/j.bjbas.2015.07.004
  • Ibrahim, H. M. M. (2015). Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Sciences, 8, 265–275. doi:10.1016/j.jrras.2015.01.007
  • Ibrahim, K., Khalid, S., & Idress, K. (2017). Nanoparticles: Properties, applications, and toxicities. Arabian Journal of Chemistry, 12, 908–931. http://dx.doi.org/10.1016/j.arabjc.2017.05.011.
  • Imran Din, M., Arshad, F., Rani, A., Aihetasham, A., Mukhtar, M., & Mehmood, H. A. (2017). Single step green synthesis of stable copper oxide nanoparticles as efficient photocatalyst material. Journal of Optoelectronic and Biomedical Materials, 9, 41–48.
  • Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: Chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6), 385–406.
  • Izadiyan, Z., Shameli, K., Miyake, M., Hara, H., Mohamad, S. E. B., Kalantari, K., Rasouli, E. (2018). Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arabian Journal of Chemistry, 10.1016/j.arabjc.2018.02.019.
  • Jain, S. N., Parag, R., & Gogate, P. R. (2018). Efficient removal of acid green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: Batch and column studies. Journal of Environmental Management, 210, 226–238. doi:10.1016/j.jenvman.2018.01.008
  • Jaise, M. G., Arun, A., & Beena, M. (2018). Metal oxide nanoparticles in electrochemical sensing and biosensing, a review. Microchimica Acta, 185, 358.
  • Jalpa, A. V., Pragnesh, N. D., & Shalini, C. (2019). The catalytic activity of transition metal oxide nanoparticles on thermal decomposition of ammonium perchlorate. Defence Techonology, 15(4), 629–635. 10.1016/j.dt.2019.04.002.
  • Javed, I., Banzeer, A.A., Tariq, M., Safia, H., Akthar, M., & Sobia, K. (2019). Green synthesis and characterizations of nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Applied Organometallic Chemistry 33, e4950.
  • Jayaseelan, C., Rahuman, A. A., Roopan, S. M., Kirthi, A. V., Venkatesan, J., Kim, S. K., … Siva, C. (2013). Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 107, 82–89. doi:10.1016/j.saa.2012.12.083
  • Jayaseelan, C., Rahuman, A. A., Vishnu Kirthi, A., Marimuthu, S., Santhoshkumar, T., Bagavan, A., … Rao, K. V. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90, 78–84. doi:10.1016/j.saa.2012.01.006
  • Jayshree, N., Pauline, C., & Amarnath, K. (2013). Bacopa monnieri phytochemicals mediated synthesis of platinum nanoparticles and its neurorescue effect on 1-Methyl 4-Phenyl 1,2,3,6 Tetrahydropyridine-induced experimental Parkinsonism in Zebrafish. Journal of Neurodegenerative Diseases, 2013, 972391. doi:10.1155/2013/972391
  • Jerushka, S. M., Suresh Babu, N. K., Karen, P., & Patrik, G. (2018). Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9, 015011.
  • Jessica, T. D., & Yuji, A. (2015). Environmental geochemistry of cerium: Applications and toxicology of cerium oxide nanoparticles. International Journal of Environmental Research and Public Health, 12, 1253–1278.
  • Jian, Z., & Xuefeng, B. (2017). Microwave-assisted synthesis of Pd nanoparticles and catalysis application for Suzuki coupling reactions. The Open Materials Science Journal, 11, 1–8.
  • Jiang, R., Li, B., Fang, C., & Wang, J. (2014). Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Advanced Materials, 26(31), 5274–5309. doi:10.1002/adma.201400203
  • Jiang, J., Oberdorster, G., & Biswas, P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research, 11(1), 77–89. doi:10.1007/s11051-008-9446-4
  • Jirankova, H., Mrazek, J., Dolecek, P., & Cakl, J. (2010). Organic dye removal by combined adsorption-membrane separation process. Desalination and Water Treatment, 20(1–3), 96–101. doi:10.5004/dwt.2010.1170
  • Jishma, P., Thomas, R., Snigdha, S., & Radhakrishnan, E. K. (2018). Kinetic study of gold nanoparticle mediated photocatalytic degradation of Victoria blue. 3 Biotech, 8(2), 97. doi:10.1007/s13205-018-1116-3
  • Jiulong, L., Qinghao, L., Xiaoqiong, M., Bing, T., Tao, L., Jiangliu, Y., … Yuejin, H. (2016). Biosynthesis of gold nanoparticles by the extreme bacterium Deinoco ccus radiodurans and an evaluation of their antibacterial properties. International Journal of Nanomedicine, 11, 5931–5944. doi:10.2147/IJN.S119618
  • John, C. H. S. (2013). High resolution electron microscopy (4th ed.). Oxford, UK, Oxford University Press.
  • Jositta, S., Annie, S., & Maheshwaran, R. (2016). Biological synthesis of iron oxide nanoparticles using Streptomyces sp. and its antibacterial activity. Journal of Chemical and Pharmaceutical Sciences, 8, 58–60.
  • Jun, J. Z., Xue, H. L., Xiao, N. Z., & Hong, Y. C. (2001). Preparation of silver nanorods by electrochemical methods. Materials Letters, 49, 91–95.
  • Jyothi, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9, 217–227. doi:10.1016/j.jrras.2015.10.002
  • Jyothi, S., & Beena, J. (2008). A study removal of Congo Red dye from the effluents of textile industry using rice husk carbon activated by steam. Rasayan Journal of Chemistry, 1, 936–942.
  • Kalaiselvi, A., Roopan, S. M., Madhumitha, G., Ramalingam, C., & Elango, G. (2015). Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 116–119. doi:10.1016/j.saa.2014.07.010
  • Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., & Sangiliyandi, G. (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials Letters, 62(29), 4411–4413. doi:10.1016/j.matlet.2008.06.051
  • Kalpana, V. N., Bala Anoop, S. K., Sravani, N., Vigneshwari, T., Paneerselvam, A., & Devi Rajeswari, V. (2018). Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. OpenNano, 3, 48–55. doi:10.1016/j.onano.2018.06.001
  • Kamaraj, P., Vennila, R., Arthanareeswari, M., & Devikala, S. (2014). Biological activities of tin oxide nanoparticles synthesized using plant extract. World Journal of Pharmaceutical Sciences, 3, 382–388.
  • Kamat, P. V. (1993). Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chemical Reviews, 93(1), 267–300. doi:10.1021/cr00017a013
  • Kamat, P. V. (2002). Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. The Journal of Physical Chemistry B, 106(32), 7729–7744. doi:10.1021/jp0209289
  • Kanagasubbulakshmi, S., & Kadirvelu, K. (2017). Green synthesis of iron oxide nanoparticles using Lagenaria Siceraria and evaluation of its antimicrobial activity. Defence Life Science Journal, 2(4), 422–427. doi:10.14429/dlsj.2.12277
  • Karim, A. B., Mounir, B., Hachkar, M., Bakasse, M., & Yaacoubi, A. (2017). Adsorption/desorption behavior of cationic dyes on Moroccan clay: Equilibrium and mechanism. Journal of Materials and Environmental Science, 8, 1082–1096.
  • Karnan, T., & Selvakumar, S. A. S. (2016). Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye. Journal of Molecular Structure, 1125, 358–365. doi:10.1016/j.molstruc.2016.07.029
  • Karpagavinayagam, P., & Vedhi, C. (2019). Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum, 160, 286–292. doi:10.1016/j.vacuum.2018.11.043
  • Karthik, L., Gaurav, K., & Rao, K. V. B. (2012). Marine Actinobacterial mediated TiO2 NPs synthesis. International Conference on Nano Science and Technology (ICONSAT-2012) Conducted by International Advanced Research Centre for Powder Metallurgury and New Materials (ARCI), Hyderabad on January 20–23.
  • Karthik, R., Govindasamy, M., Chen, S. M., Cheng, Y. H., Muthukrishnan, P., Padmavathy, S., & Elangovan, A. (2017). Biosynthesis of silver nanoparticles by using Camellia japonica leaf extract for the electrocatalytic reduction of nitrobenzene and photocatalytic degradation of Eosin-Y. Journal of Photochemistry and Photobiology B: Biology, 170, 164–172. doi:10.1016/j.jphotobiol.2017.03.018
  • Karthikeyan, V., Ragunathan, R., Jesteena, J., & Kabesh, K. (2019). Green synthesis of silver nanoparticles and application in dye decolorization by Pleurotus ostreatus (MH591763). Global Journal of Bio-Science and BioTechnology, 8, 80–86.
  • Karuppiah, C., Muthupandi, K., Chen, S. M., Ajmal Ali, M., Palanisamy, S., Rajan, A., … Lou, B. S. (2015). Green synthesized silver nanoparticles decorated on reduced graphene oxide for enhanced electrochemical sensing of nitrobenzene in wastewater samples. RSC Advances, 5(39), 31139–31146. doi:10.1039/C5RA00992H
  • Kathiravan, V. (2018). Green synthesis of silver nanoparticles using different volumes of Trichodesma indicum leaf extract and their antibacterial and photocatalytic activities. Research on Chemical Intermediates, 44(9), 4999–5012. doi:10.1007/s11164-018-3405-1
  • Kaushik, U., & Joshi, S. C. (2015). Silver nanoparticles: Green synthesis, optical properties, antimicrobial activity and its mechanism using Citrus sinesis. Asian Journal of Pharmaceutical and Clinical Research, 8, 179–184.
  • Kaushik, R., Sarkar, C. K., & Ghosh, C. K. (2015). Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 146, 286–291. doi:10.1016/j.saa.2015.02.058
  • Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 107(3), 668–677.
  • Kenneth, M. E., Xavier, S. N., Blessing, M., Nkemakolam, N., & Rui Werner, M. K. (2019). Green synthesis of zinc oxide nanoparticles using Solanum torvum (L) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles–hydrogel composite in Wistar albino rats. International Nano Letters, 9, 99–107.
  • Khalil, M. M. H., Ismail, E. H., El-Baghdady, K. Z., & Mohamed, D. (2014). Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry, 7(6), 1131–1139. doi:10.1016/j.arabjc.2013.04.007
  • Khalil, M. M. H., Ismail, E. H., & El-Magdoub, F. (2012). Biosynthesis of Au nanoparticles using olive leaf extract. Arabian Journal of Chemistry, 5(4), 431–437. doi:10.1016/j.arabjc.2010.11.011
  • Khalil, M. M. H., Mostafa, Y. M., & Torad, E. (2014). Biosynthesis and characterization of Pt and Au-Pt nanoparticles and their photocatalytic degradation of methylene blue. International Journal of Advanced Research (IJAR), 2, 694–703.
  • Khamparia, S., & Jaspal, D. (2016). Adsorptive removal of Direct Red 81 dye from aqueous solution onto Argemone Mexicana. Sustainable Environment Research, 26(3), 117–123. doi:10.1016/j.serj.2016.04.002
  • Khan, M. Z. H., Tarek, F. K., Nuzat, M., Momin, M. A., & Hasan, M. R. (2017). Rapid biological synthesis of silver nanoparticles from Ocimum sanctum and their characterization. Journal of Nanoscience, 2017, 1–6. doi:10.1155/2017/1693416
  • Khan, A. U., Yuan, Q., Wei, Y., Khan, G. M., Khan, Z. U. H., Khan, S., Ali, F., … Khan, F. U. (2016). Photocatalytic and antibacterial response of biosynthesized gold nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 162, 273–277. doi:10.1016/j.jphotobiol.2016.06.055
  • Khan, A. U., Yuan, Q., Wei, Y., Khan, Z. U. H., Tahir, K., Khan, S. U., … Khan, F. U. (2016). Ultra-efficient photocatalytic deprivation of methylene blue and biological activities of biogenic silver nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 159, 49–58. doi:10.1016/j.jphotobiol.2016.03.017
  • Kholoud, M. M. A. E., Eftaiha, A., Abdulrhman, A. W., & Reda, A. A. A. (2010). Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry, 3, 135–140. doi:10.1016/j.arabjc.2010.04.008
  • Kim, D., Lee, J. S., Barry, C. M. F., & Mead, J. L. (2007). Effect of fill factor and validation of characterizing the degree of mixing in polymer nanocomposites. Polymer Engineering & Science, 47(12), 2049–2056. doi:10.1002/pen.20920
  • Kochuveedu, S. T., Jang, Y. H., & Kim, D. H. (2013). A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chemical Society Reviews, 42(21), 8467–8493. doi:10.1039/c3cs60043b
  • Koh, J. (2011). Dyeing with disperse dyes. In P. J. Hauser (Ed.), Textile Dyeing (1st ed., pp. 195–220). Rijeka. Croatia: InTech.
  • Kohli, R. (2012). Methods for monitoring and measuring cleanliness of surface. In Developments in surface contamination and cleaning 12, 23-105.
  • Kokila, T., Ramesh, P. S., & Geetha, D. (2014–2015). A biogenic approach for green synthesis of silver nanoparticles using peel extract of Citrus sinensis and its application. International Journal of ChemTech Research, 7, 804–813.
  • Kong, F. Y., Zhang, J. W., Li, R. F., Wang, Z. X., Wang, W. J., & Wang, W. (2017). Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules, 22, 1445–1457.
  • Kormann, C., Bahnemann, D. W., & Hoffmann, M. R. (1988). Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO, and desert sand. Environmental Science & Technology, 22(7), 798–806. doi:10.1021/es00172a009
  • Koswojo, R., Utomo, R. P., Ju, Y. H., Ayucitra, A., Soetaredjo, F. E., Sunarso, J., & Ismadji, S. (2010). Acid Green 25 removal from wastewater by organo-bentonite from Pacitan. Applied Clay Science, 48(1–2), 81–86.
  • Kothaplamoottil, S. S., Vinod, V. T. P., Chandra, S., Rajendra, P., Kunjumon, S., Bini, G., … Miroslav, C. (2018). Green synthesis of high temperature stable anatase titanium dioxide nanoparticles using gum Kondagogu: Characterization and solar driven photocatalytic degradation of organic dye. Nanomaterials, 8, 1002.
  • Kovács, G., Pap, Z., Coteț, C., Coșoveanu, V., Baia, L., & Danciu, V. (2015). Photocatalytic, morphological and structural properties of the TiO2-SiO2-Ag porous structures based system. Materials, 8(3), 1059–1073. doi:10.3390/ma8031059
  • Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S. K., & Paknikar, K. M. (2003). Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast train MKY3. Nanotechnology, 14(1), 95–100. doi:10.1088/0957-4484/14/1/321
  • Kuhad, R. C., Sood, N., Tripathi, K. K., Singh, A., & Ward, O. P. (2004). Developments in microbial methods for the treatment of dye effluents. Advances in Applied Microbiology, 56, 185–213. doi:10.1016/S0065-2164(04)56006-9
  • Kumar, R., Ghoshal, G., Jain, A., & Goyal, M. (2017). Rapid Green Synthesis of silver nanoparticles (AgNPs) using (Prunus persica) plants extract: Exploring its antimicrobial and catalytic activities. Journal of Nanomedicine and Nanotechnology, 8, 1000452.
  • Kumar, P., Govindaraju, M., Senthamilselvi, S., & Premkumar, K. (2013). Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactua. Colloids and Surfaces B: Biointerfaces, 103, 658–661. doi:10.1016/j.colsurfb.2012.11.022
  • Kumar, S. P., Ramalingam, S., & Sathishkumar, K. (2011). Removal of methylene blue dye from aqueous solution by activated carbon prepared from cashew nutshell as a new low-cost adsorbent. Korean Journal of Chemical Engineering, 28(1), 149–155. doi:10.1007/s11814-010-0342-0
  • Kumar, A., Schuerings, C., Kumar, S., Kumar, A., & Krishnan, V. (2018). Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation. Beilstein Journal of Nanotechnology, 9, 671–685. doi:10.3762/bjnano.9.62
  • Kumar, V., Singh, D. K., Mohan, S., & Hasan, S. H. (2016). Photo-induced biosynthesis of silver nanoparticles using aqueous extract of Erigeron bonariensis and its catalytic activity against Acridine Orange. Journal of Photochemistry and Photobiology B: Biology, 155, 39–50. doi:10.1016/j.jphotobiol.2015.12.011
  • Lakshmi Das, V., Thomas, R., Varghese, R. T., Soniya, E. V., Mathew, J., & Radhakrishnan, E. K. (2014). Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech, 4, 121–126. doi:10.1007/s13205-013-0130-8
  • Lakshmipathy, R., Palakshi Reddy, B., Sarada, N. C., Chidambaram, K., & Khadeer Pasha, S. (2015). Watermelon rind-mediated green synthesis of noble palladium nanoparticles: Catalytic application. Applied Nanoscience, 5(2), 223–228. doi:10.1007/s13204-014-0309-2
  • Lalithambika, K. C., Thayumanavan, A., Ravichandran, K., & Sriram, S. (2017). Photocatalytic and antibacterial activities of eco-friendly green synthesized ZnO and NiO nanoparticles. Journal of Materials Science: Materials in Electronics, 28, 2062–2068. doi:10.1007/s10854-016-5767-8
  • Lee, S. G., Lee, S., & Lee, H. I. (2001). Photocatalytic production of hydrogen from aqueous solution containing CN- as a hole scavenger. Applied Catalysis A: General, 207(1–2), 173–181. doi:10.1016/S0926-860X(00)00671-2
  • Lee, S. W., Mao, C., Flynn, C., & Belcher, A. M. (2002). Ordering of quantum dots using genetically engineered viruses. Science, 296(5569), 892–895. doi:10.1126/science.1068054
  • Lee, H., Park, S. H., Park, Y. K., Kim, B. H., Kim, S. J., & Jung, S. C. (2013). Rapid destruction of the rhodamine B using TiO2 photocatalyst in the liquid phase plasma. Chemistry Central Journal, 7(1), 156. doi:10.1186/1752-153X-7-156
  • Lengke, M. F., Fleet, M. E., & Southam, G. (2006). Synthesis of Platinum nanoparticles by reaction of Filamentous cyanobacteria with platinum (IV) - chloride complex. Langmuir, 22(17), 7318–7323. doi:10.1021/la060873s
  • Lengke, M., & Southam, G. (2006). Bioaccumulation of gold by sulphate-reducing bacteria cultured in the presence of gold (I)-thiosulfate complex. Geochimica et Cosmochimica Acta, 70(14), 3646–3661. 2006, doi:10.1016/j.gca.2006.04.018
  • Li, C., Liu, Y., Li, L., Du, Z., Xu, S., Zhang, M., … Wang, T. (2008). A Novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose. Talanta, 19, 455–459. doi:10.1016/j.talanta.2008.06.048
  • Li, J., & Wu, N. (2014). Biosensors based on nanomaterials and nanodevices (1st ed.). Boca Raton, FL: CRC Press.
  • Li, X., Niu, Q., Li, G., Zhan, T., & Sun, W. (2011). Electropolymerization of Brilliant cresyl blue on carbon ionic liquid electrode and electrocatalytic application for the voltammetric determination of ascorbic acid. Journal of the Brazilian Chemical Society, 22, 422–427. doi:10.1590/S0103-50532011000300003
  • Li, Q., Tang, X., Sun, Y., Wang, Y., Long, Y., Jiang, J., & Xu, H. (2015). Removal of Rhodamine B from wastewater by modified Volariella volvacea: Batch and column study. RSC Advances, 5(32), 25337–25347. doi:10.1039/C4RA17319H
  • Li, Y., Wu, T. Y., Chen, S. M., Ali, M. A., & AlHemaid, F. M. A. (2012). Green synthesis and electrochemical characterizations of gold nanoparticles using leaf extract of Magnolia Kobus. International Journal of Electrochemical Science, 7, 12742–12751.
  • Lim, S. H., Ahn, E. Y., & Park, Y. (2016). Green synthesis and catalytic activity of gold nanoparticles synthesized by Artemisia capillaris water extract. Nanoscale Research Letters, 11, 474.
  • Linda, S., David, T. G., & Gregory, F. M. (2008). Polymer microscopy (3rd ed.). New York, NY: Springer.
  • Lingampalli, S. R., Ayyub, M. M., & Rao, C. N. R. (2017). Recent progress in the photocatalytic reduction of carbon dioxide. ACS Omega, 2(6), 2740–2748. doi:10.1021/acsomega.7b00721
  • Lingaraju, K., Raja Naika, H., Manjunath, K., Nagaraju, G., Suresh, D., & Nagabhushana, H. (2015). Rauvolfia serpentina-mediated green synthesis of CuO nanoparticles and its multidisciplinary studies. Acta Metallurgica Sinica (English Letters), 28(9), 1134–1140. doi:10.1007/s40195-015-0304-y
  • Liu, L., Li, P., Adisak, B., Ouyang, S., Umezawa, N., Ye, J., … Abe, H. (2014). Gold photosensitized SrTiO3 for visible-light water oxidation induced by Au interband transitions. Journal of Materials Chemistry A, 2(25), 9875–9882. doi:10.1039/c4ta01988a
  • Liu, P., & Zhao, M. (2009). Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP). Applied Surface Science, 255(7), 3989–3993. doi:10.1016/j.apsusc.2008.10.094
  • Lu, J., Zhang, P., Li, A., Su, F., Wang, T., Liu, Y., & Gong, J. (2013). Mesoporous anatase TiO2 nanocups with plasmonic metal decoration for highly active-visible-light photocatalysis. Chemical Communications, 49(52), 5817–5819. doi:10.1039/c3cc42029a
  • Luo, L. B., Wang, X. H., Xie, C., Li, Z. J., Lu, R., Yang, X. B., & Lu, J. (2014). One-dimensional CuO nanowire: synthesis, electrical, and optoelectronic devices application. Nanoscale Research Letters, 9(1), 637. doi:10.1186/1556-276X-9-637
  • Luza, L., Gual, A., Eberhardt, D., Teixeira, S. R., Chiaro, S. S. X., & Dupont, J. (2013). Imprinting catalytically active Pd nanoparticles onto ionic‐liquid‐modified Al2O3 supports. ChemCatChem, 5, 2471–2478. doi:10.1002/cctc.201300123
  • Maćkowska, E., Gogolin, R., Dumczal, W., & Gaca, J. (2003). Studies of the kinetics of dye decomposition in water solutions. Polish Journal of Environmental Studies, 12, 425–429.
  • Madkour, & Loutfy, M. H. (2019). Introduction to nanotechnology (NT) and nanomaterials (NMs) nanoelectronic mateials, 1–47.
  • Magdi, H. M., Mourad, M. H. E., & Abd El–Aziz, M. M. (2014). Biosynthesis of silver nanoparticles using fungi and biological evaluation of mycosynthesized silver nanoparticles. Egyptian Journal of Experimental Biology (Botany), 10, 1–12.
  • Mahalingam, S., Ponnaiah, G. P., & Vijay, M. (2017). Synthesis and characterization of GO-ZnO nanocomposite material exhibiting photocatalytic degradation of dye wastewater. Journal of Scientific and Industrial Research (JSIR), 76, 44–49.
  • Mahdavi, M., Ahmad, M., Haron, M., Namvar, F., Nadi, B., Rahman, M., & Amin, J. (2013). Synthesis, surface modification and characterization of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 18(7), 7533–7548. doi:10.3390/molecules18077533
  • Mahto, T. K., Roy, A., Sahoo, B., & Sahu, S. K. (2015). Citric acid functionalized magnetic ferrite nanoparticles for photocatalytic degradation of azo dye. Journal of Nanoscience and Nanotechnology, 15(1), 273–280. doi:10.1166/jnn.2015.9223
  • Mai, A., Soraya, S., Hanan, G., Ahmed, A. E.G., & Everett, E.C. (2016). Microbial-Physical Synthesis of Fe and Fe3O4 magnetic nanoparticles using Aspergillus niger YESM1 and supercritical condition of ethanol. Journal of Nanomaterials, 2016, 9174891.
  • Makarov, V. V., Makarova, S. S., Love, A. J., Sinitsyna, O. V., Dudnik, A. O., Yaminsky, I. V., … Kalinina, N. O. (2014). Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir, 30(20), 5982–5988. doi:10.1021/la5011924
  • Malarkodi, C., Chitra, K., Rajeshkumar, S., Gnanajobitha, G., Paulkumar, K., Vanaja, M., & Annadura, G. (2013). Novel eco-friendly synthesis of titanium oxide nanoparticles by using planomicrobium sp. and its antimicrobial evaluation. Der Pharmacia Sinica, 4, 59–96.
  • Malarkodi, C., Rajeshkumar, S., Paulkumar, K., Gnanajobitha, G., Vanaja, M., & Annadurai, G. (2013). Bacterial synthesis of silver nanoparticles by using optimized biomass growth of Bacillus sp. Isrn Nanomaterials, 3, 26–32. doi:10.1155/2013/317963
  • Malarkodi, C., Vidhu, M., & Uma, S. (2018). Synthesis of Fe2O3 using Emblica officinalis extract and its photocatalytic efficiency. Material Science Research India, 16, 1–10.
  • Malik, P., Shankar, R., Malik, V., Sharma, N., & Mukherjee, T. K. (2014). Green chemistry Based Benign routes for nanoparticle synthesis. Journal of Nanoparticles, 2014, 1–14. doi:10.1155/2014/302429
  • Mani, S., & Bharagava, R. N. (2016). Exposure to Crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. Reviews of Environmental Contamination and Toxicology, 237, 71–104. doi:10.1007/978-3-319-23573-8_4
  • Manjari, G., Saran, S., Arun, T., Vijaya Bhaskara Rao, A., & Devipriya, S. P. (2017). Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract. Journal of Saudi Chemical Society, 21(5), 610–618. doi:10.1016/j.jscs.2017.02.004
  • Manjunatha, A. S., Sukhdev, A. & Puttaswamy, (2013). Oxidative decolorization of methyl red dye with chloramine-T-Kinetic and mechanistic chemistry. Isrn Physical Chemistry, 20, 416–422. doi:10.1155/2013/738932
  • Mankamna Kumari, R., Nikita, T., Nidhi, G., Ajeet, K., & Surendra, N. (2016). Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using Cordia dichotoma leaf extract. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7, 045009. doi:10.1088/2043-6262/7/4/045009
  • Manuel, S., Simone, B., Harpreet Kaur, L., Rita, B., & Elena, B. (2018). Energy dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. European Journal of Histochemistry, 62, 2841.
  • Maqbool, Q., Nazar, M., Naz, S., Hussain, T., Jabeen, N., Kausar, R., … Jan, T. (2016). Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. International Journal of Nanomedicine, 11, 5015–5025. doi:10.2147/IJN.S113508
  • Marandi, R., & Sepehr, S. M. B. (2011). Removal of Orange 7 dye from wastewater used by natural adsorbent of Moringa Oleifera seeds. American Journal of Environmental Engineering, 1, 1–9. doi:10.5923/j.ajee.20110101.01
  • Maria, B. S., Aiswarya, D., Vidya, S. K., & Saidutta, M. B. (2017). Solar photocatalytically active, engineered silver nanoparticle synthesis using aqueous extract of mesocarp of Cocos nucifera (Red spicata dwarf). Journal of Experimental Nanoscience, 12, 14–32.
  • Masahiro, K. (1997). Defects in crystals studied by Raman scattering. Critical Reviews in Solid State and Materials Sciences, 22, 275–349.
  • Mavukkandy, M. O., Chakraborty, S., Abbasi, T., & Abbasi, S. A. (2016). A clean-green synthesis of platinum nanoparticles utilizing a pernicious weed lantana (Lantana Camara). American Journal of Engineering and Applied Sciences, 9(1), 84–90. doi:10.3844/ajeassp.2016.84.90
  • Mengstu, E. A., Gebrekidan, M. T., Gebretinase, Y. N., & Tesfakiros, W. G. (2018). Structural, optical, and photocatalytic activities of Ag-doped and Mn-doped ZnO nanoparticles. Journal of Nanomaterials, 2018, 9425938.
  • Meyers, M. A., Mishra, A., & Benson, D. J. (2006). Mechanical properties of nanocrystalline material. Progress in Materials Science, 51(4), 427–556. doi:10.1016/j.pmatsci.2005.08.003
  • Meziti, C., & Boukerroui, A. (2012). Removal of a basic textile dye from aqueous solution by adsorption on regenerated clay. Procedia Engineering, 33, 303–312. doi:10.1016/j.proeng.2012.01.1208
  • Miao, J. J., Wang, H., Li, Y. R., Zhu, J. M., & Zhu, J. J. (2005). Ultrasonic-induced synthesis of CeO2 nanotubes. Journal of Crystal Growth, 281(2–4), 525–529. doi:10.1016/j.jcrysgro.2005.04.058
  • Misra, M., Kapur, P., & Singla, M. L. (2014). Surface plasmon quenched of near band edge emission and enhanced visible photocatalytic activity of Au@ZnO core-shell nanostructure. Applied Catalysis B: Environmental, 150–151, 605–611.
  • Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356. doi:10.1016/j.biotechadv.2013.01.003
  • Mobeen Amanulla, A., & Sundaram, R. (2019). Green synthesis of TiO2 nanoparticles using orange peel extract for anti-bacterial, cytotoxicity and humidity sensor applications. Materials Today: Proceedings, 8, 323–331. doi:10.1016/j.matpr.2019.02.118
  • Moeinpour, F., Alimoradi, A., & Kazemi, M. (2014). Efficient removal of Eriochrome black-T from aqueous solution using NiFe2O4 magnetic nanoparticles. Journal of Environmental Health Science & Engineering, 12, 112.
  • Moghaddam, A. B., Namvar, F., Moniri, M., Md.Tahir, P., Azizi, S., & Mohamad, R. (2015). Nanoparticles biosynthesized by fungi and yeast: A review of their preparation, properties, and medical applications. Molecules, 20, 16540–16565. doi:10.3390/molecules200916540
  • Moghaddama, S. S., Moghaddama, M. R. A., & Arami, M. (2010). Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology. Journal of Hazardous Materials, 175, 651–657. doi:10.1016/j.jhazmat.2009.10.058
  • Mohamed, J. S. M., & Denthaje, K. B. (2017). A facile microwave approach to synthesize RGO-BaWO4 composites for high performance visible light induced photocatalytic degradation of dyes. AIMS Materials Science, 4, 487–502.
  • Mohamed, A., Migaku, T., & CheolGi, K. (2013). Facile sonochemical synthesis of high-moment magnetite (Fe3O4) nanocube. Journal of Nanoparticle Research, 15, 1354.
  • Mohamad, F. R. S., Nurfatien, B., & Suriati, S. (2019). Recent development of graphitic carbon nitride-based photocatalyst for environmental pollution remediation.Nanocatalysts 1–15
  • Mohammad, H. S., Narges, S., Ava, H., & Mohammad, R. R. (2018). Bio-synthesis of palladium nanoparticle using Spirulina platensis alga extract and its application as adsorbent. Surface and Interface Analysis, 10, 136–143.
  • Mohammadlou, M., Maghsoudi, H., & Jafarizadeh Malmiri, H. (2016). A review on green silver nanoparticles based on plants: Synthesis, potential applications, and eco-friendly approach. International Food Research Journal, 23, 446–463.
  • Mohammed, I. N., & Krishnan, K. (2018). Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatalysis and Agricultural Biotechnology, 15, 56–62.
  • Mohana, S., & Shanmugam, S. (2018). Biosynthesis of palladium nanoparticles using Saccharomyces cerevisiae extract and its photocatalytic degradation behavior. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9, 025018.
  • Mojtaba, T., Maryam, R., & Mehran, A. (2018). Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium. Bioimpacts, 8, 81–89.
  • Mondal, K., & Sharma, A. (2014). Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials-A-mini-review. Nanoscience and Nanotechnology, 5, 36–72.
  • Monika, J. R., Tomislav, F., & Audrey, M. (2016). One-step, solvent-free mechanosynthesis of silver nanoparticle-infused lignin composites for use as highly active multidrug resistant antibacterial filters. RSC Advances, 6, 58365.
  • Moskovits, M. (2015). The case for plasmon-derived hot carrier devices. Nature Nanotechnology, 10(1), 6–8. doi:10.1038/nnano.2014.280
  • Muchuweni, E., Sathiaraj, T. S., & Nyakotyo, H. (2017). Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon, 3(4), e00285. doi:10.1016/j.heliyon.2017.e00285
  • Muniandy, S. S., Kaus, N. H. M., Jiang, Z. T., Altarawneh, M., & Lee, H. L. (2017). Green synthesis of mesoporous anatase TiO2 nanoparticles and their photocatalytic activities. RSC Advances, 7, 48083–48094. doi:10.1039/C7RA08187A
  • Munmi, H., Debajit, B., Popymita, B., Ana, R. S., & Pankaj, D. (2017). Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent. PLOS One, 12, e0184936.
  • Munusamy, S., Bhakyaraj, L., Vijayalakshmi, L., Stephen, A., & Narayanan, V. (2014). Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties. International Journal of Innovative Science Engineering and Technology, 2, 318-323.
  • Murai, K., Watanabe, Y., Saitoa, Y., Nakayama, T., Suematsu, H., Jiang, W., … Niihara, K. (2007). Preparation of copper nanoparticles with an organic coating by a pulsed wire discharge method. Journal of Ceramic Processing Research, 8, 114–118.
  • Muthukumar, H., & Matheswaran, M. (2015). Amaranthus spinosus leaf extract mediated FeO nanoparticles: Physicochemical traits, photocatalytic and antioxidant activity. ACS Sustainable Chemistry & Engineering, 3(12), 3149–3156. doi:10.1021/acssuschemeng.5b00722
  • Muthuraman, G., & Teng, T. T. (2009). Extraction of methyl red from industrial wastewater using xylene as an extractant. Progress in Natural Science, 19(10), 1215–1220. doi:10.1016/j.pnsc.2009.04.002
  • Nachiyar, V., Swetha, S., Prakash, P. & Bavanilatha, (2015). Biological synthesis of gold nanoparticles using endophytic fungi. Der Pharma Chemica, 7, 31–38.
  • Nada, A. A., Barakat, M. H., Hamed, H. A., Mohamed, N. R., & Veziroglu, T. N. (2005). Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts. International Journal of Hydrogen Energy, 30(7), 687–691. doi:10.1016/j.ijhydene.2004.06.007
  • Nagajyothi, P. C., Ju Cha, S., Yang, I. J., Sreekanth, T. V. M., Kim, K. J., & Shin, H. M. (2015). Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. Journal of Photochemistry and Photobiology B: Biology, 146, 10–17. doi:10.1016/j.jphotobiol.2015.02.008
  • Nagajyothi, P. C., Muthuraman, P., Sreekanth, T. V. M., Kim, D. H., & Shim, J. (2017). Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arabian Journal of Chemistry, 10(2), 215–225. doi:10.1016/j.arabjc.2016.01.011
  • Nagajyothi, P. C., Pandurangan, M., Kim, D. H., Sreekanth, T. V. M., & Shim, J. (2017). Green synthesis of iron oxide nanoparticles and their catalytic and in vitro anticancer activities. Journal of Cluster Science, 28(1), 245–257. doi:10.1007/s10876-016-1082-z
  • Nagajyothi, P. C., Pandurangan, M., Vattikuti, S. V. P., Tettey, C. O., Sreekanth, T. V. M., & Shim, J. (2017). Enhanced photocatalytic activity of Ag/g-C3N4 composite. Separation and Purification Technology, 188, 228–237.
  • Nagajyothi, P. C., Sreekanth, T. V. M., Tettey, C. O., Jun, Y. I., & Mook, S. H. (2014). Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorganic & Medicinal Chemistry Letters, 24(17), 4298–4303. doi:10.1016/j.bmcl.2014.07.023
  • Narayanan, R., & El-Sayed, M. A. (2005). Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. The Journal of Physical Chemistry B, 109(26), 12663–12676. doi:10.1021/jp051066p
  • Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156(1–2), 1–13. doi:10.1016/j.cis.2010.02.001
  • Nasikhudin, Diantoro, M., Kusumaatmaja, A., & Triyana, K. (2018). Study on photocatalytic properties of TiO2 nanoparticles in various pH condition. Journal of Physics: Conference Series, 1011, 012069. doi:10.1088/1742-6596/1011/1/012069
  • Nasreen, I. K., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes- a review. Colloids and Surfaces. B, Biointerfaces, 121, 474–483. doi:10.1016/j.colsurfb.2014.05.027
  • Nasrollahzadeh, M., Maham, M., & Sajadi, M. S. (2015). Green synthesis of CuO nanoparticles by aqueous extract of Gundelia tournefortii and evaluation of their catalytic activity for the synthesis of N-monosubstituted ureas and reduction of 4-nitrophenol. Journal of Colloid and Interface Science, 455, 245–253. doi:10.1016/j.jcis.2015.05.045
  • Nataly, S., Sara, R., Isaac, D., Andreina, G., & Natalia, H. (2019). Easy, quick, and reproducible sonochemical synthesis of CuO nanoparticles. Materials, 12, 804.
  • Natarajan, K., Selvaraj, S., & Ramachandra Murty, V. (2010). Microbial production of silver nanoparticles. Digest Journal of Nanomaterials and Biostructures, 5, 135–140.
  • Nethravathi, P. C., Shruthi, G. S., Suresh, D., Udayabhanu, Nagabhushana, H., & Sharma, S. C. (2015). Garcinia xanthochymus mediated green synthesis of ZnO nanoparticles: Photoluminescence, photocatalytic and antioxidant activity studies. Ceramics International, 41, 8680–8687. doi:10.1016/j.ceramint.2015.03.084
  • Nguyen, T. B., Binh Le, T. T., & Nguyen, N. L. (2010). The preparation of SnO2 and SnO2, Sb nanopowders by a hydrothermal method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 1, 025002. doi:10.1088/2043-6254/1/2/025002
  • Ni, M., Leung, M. K. H., Leung, D. Y. C., & Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 11(3), 401–425. doi:10.1016/j.rser.2005.01.009
  • Nikki, K., Sanchita, S., Taru, V., & Siva, U. (2018). Challenges in application of Raman spectroscopy to biology and materials. RSC Advances, 8, 25888–25908.
  • Nimkar, D. A., & Chavan, S. K. (2014). Removal of Congo red dye from aqueous solution by using sawdust as an adsorbent. Journal of Engineering Research and Applications, 4, 47–51.
  • Nowak, K. M., & Skowron, J. K. (2011). Ceramic membrane behaviour in anionic dye removal by ultrafiltration. Desalination Water Treatment, 34, 367–373.
  • Numan, S., Sami, S. H., Zishan, H. K., Adnan, M., Ameer, A., Esam, A., … Salim, A. H. (2011). High-energy ball milling technique for ZnO nanoparticles as antibacterial material. International Journal of Nanomedicine, 6, 863–869.
  • Oki, D., & Ali, K. (2018). Synthesis of colloidal platinum nanoparticles using pulse laser ablation method. AIP Conference Proceeedings, 2014, 020050.
  • Oladoja, N. A., & Akinlabi, A. K. (2009). Congo red biosorption on palm kernel seed coat. Industrial & Engineering Chemistry Research, 48(13), 6188–6196. doi:10.1021/ie801003v
  • Órdenes-Aenishanslins, N. A., Saona, L. A., Durán-Toro, V. M., Monrás, J. P., Bravo, D. M., & Pérez-Donoso, J. M. (2014). Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells. Microbial Cell Factor, 13, 90.
  • Ortega-Liebana, M. C., Chung, N. X., Limpens, R., Gomez, L., Hueso, J. L., Santamaria, J., & Gregorkiewicz, T. (2017). Uniform luminescent carbon nanodots prepared by rapid pyrolysis of organic precursors confined within nanoporous templating structures. Carbon, 117, 437–446. doi:10.1016/j.carbon.2017.03.017
  • Ozer, A., & Dursun, G. (2007). Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon. Journal of Hazardous Materials, 146(1-2), 262–269. doi:10.1016/j.jhazmat.2006.12.016
  • Padalia, H., Moteriya, P., & Chanda, S. (2015). Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arabian Journal of Chemistry, 8(5), 732–741. doi:10.1016/j.arabjc.2014.11.015
  • Padhi, D. K., Panigrahi, T. K., Parida, K., Singh, S. K., & Mishra, P. M. (2017). Green synthesis of Fe3O4/RGO nanocomposite with enhanced photocatalytic performance for Cr (VI) reduction, phenol degradation, and antibacterial activity. ACS Sustainable Chemistry & Engineering, 5(11), 10551–10562. doi:10.1021/acssuschemeng.7b02548
  • Pal, S., Mondal, S., Maity, J., & Mukherjee, R. (2018). Synthesis and characterization of ZnO nanoparticles using Moringa Oleifera leaf extract: Investigation of photocatalytic and antibacterial activity. International Journal of Nanoscience and Nanotechnology, 14, 111–119.
  • Pal, A., Shah, S., & Devi, S. (2009). Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Materials Chemistry and Physics, 114(2–3), 530–532. doi:10.1016/j.matchemphys.2008.11.056
  • Palaniselvam, K., Mashitah, M. Y., Gaanty, P. M., & Natanamurugaraj, G. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications-An updated report. Saudi Pharmaceutical Journal, 24, 473–484.
  • Pansare, A. V., Kulal, D. K., Shedge, A. A., & Patil, V. R. (2016). Green synthesis of anticancerous honeycomb PtNPs clusters: Their alteration effect on BSA and HsDNA using fluroscence probe. Journal of Photochemistry and Photobiology B: Biology, 162, 473–485. doi:10.1016/j.jphotobiol.2016.07.021
  • Paramaconi, R., Daniela, P., David, J. F., & Marc, T. M. K. (2014). New insights into the catalytic activity of gold nanoparticles for CO oxidation in electrochemical media. Journal of Catalysis, 311, 189–482.
  • Pare, B., Raghuvanshi, D., Dixit, R., & Swami, D. (2013). Decolorization and mineralization of hazardous Brilliant creysal blue dye utilizing visible light and TiO2 as photocatalyst. International Journal of Chemical Science, 11, 1876–1890.
  • Parthiban, C., & Sundaramurthy, N. (2015). Biosynthesis, characterization of ZnO nanoparticles by using Pyrus pyrifolia leaf extract and their photocatalytic activity. International Journal of Innovative Science Engineering and Technology, 4, 9710–9718.
  • Parvathya, S., & Venkatramanb, B. R. (2017). Invitro antibacterial and anticancer potential of CeO2 nanoparticles prepared by co-precipitation and green synthesis method. Journal of Nanosciences: Current Research, 2(2), 1000111. doi:10.4172/2572-0813.1000111
  • Patra, J. K., & Baek, K. H. (2014). Green nanobiotechnology: Factors affecting synthesis and characterization techniques. Journal of Nanomaterials, 2014, 1–12. doi:10.1155/2014/417305
  • Paul, B., Bhuyan, B., Purkayastha, D. D., & Dhar, S. S. (2015). Green synthesis of silver nanoparticles using dried biomass of Diplazium esculentum (retz.) sw. and studies of their photocatalytic and anticoagulative activities. Journal of Molecular Liquids, 212, 813–817. doi:10.1016/j.molliq.2015.10.032
  • Peche-Herrero, A., Maestre, D., Ramirez-Castellanos, J., Cremades, A., Piqueras, J., & González-Calbet, J. M. (2014). The controlled transition-metal doping of SnO2 nanoparticles with tunable luminescence. CrystEngComm, 16(14), 2969–2976. doi:10.1039/c3ce42188k
  • Peiris, M. M. K., Gunasekara, T., Jayaweera, P. M., & Fernando, S. S. N. (2018). TiO2 nanoparticles from Baker’s yeast: A potent antimicrobial. Journal of Microbiology and Biotechnology, 28(10), 1664–1670. doi:10.4014/jmb.1807.07005
  • Pereira, L., & Alves, M. (2012). Dyes-environmental impact and remediation. In Environmental protection strategies for sustainable development. Chapter 4 (pp. 111–162).
  • Pereira, L., Dias, N., Carvalho, J., Fernandes, S., Santos, C., & Lima, N. (2014). Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. Journal of Applied Microbiology, 117(6), 1601–1613. doi:10.1111/jam.12652
  • Peter, E., & Paul, W. (2010). Atomic force microscopy (1st ed.). Oxford, UK: Oxford University Press.
  • Phatak, R. S., & Hendre, A. S. (2015). Sunlight induced green synthesis of silver nanoparticles using sundried leaves extract of Kalanchoe pinnata and evaluation of its photocatalytic potential. Der Pharmacia Lettre, 7, 313–324.
  • Pichaimuthu, K., Keerthi, M., Chen, S. M., Chen, T. W., & Su, C. (2018). Silver nanoparticles decorated on graphene oxide sheets for electrochemical detection of ascorbic acid (AA) in human urine sample. International Journal of Electrochemical Science, 13, 7859–7869. doi:10.20964/2018.08.16
  • Pimprikar, P. S., Joshi, S. S., Kumar, A. R., Zinjarde, S. S., & Kulkarni, S. K. (2009). Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids and Surfaces B: Biointerfaces, 74(1), 309–316. doi:10.1016/j.colsurfb.2009.07.040
  • Poongothai, A., & Ragul, V. (2017). Synthesis and characterization of metal oxide nanoparticle from zebra fish (Danio rerio) extract. International Journal of Pharma and Bio Sciences, 8, 50–54.
  • Poulios, I., & Aetopoulou, I. (1999). Photocatalytic degradation of the textile dye reactive orange 16 in the presence of TiO2 suspensions. Environmental Technology, 20(5), 479–487. doi:10.1080/09593332008616843
  • Powell, S. W. (2002). Method for electrocoagulation of liquids. US Patent no US 8, 133, 382, B2 .
  • Prasad, C., Gangadhara, S., & Venkateswarlu, P. (2016). Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity. Applied Nanoscience, 6(6), 797–802. doi:10.1007/s13204-015-0485-8
  • Prasad, K., & Jha, A. K. (2009). ZnO nanoparticles, synthesis and adsorption study. Natural Science, 1, 129–135. doi:10.4236/ns.2009.12016
  • Priyaragini, S., Veena, S., Swetha, D., Karthik, L., Kumar, V., & Rao, K. V. B. (2014). Evaluating the effectiveness of marine actinobacterial extract and its mediated titanium dioxide nanoparticles in the degradation of azo dyes. Journal of Environmental Sciences, 26(4), 775–782. doi:10.1016/S1001-0742(13)60470-2
  • Pruna, A., & Pillini, D. (2016). Synthesis of ZnO-graphene hybrids for photocatalytic degradation of organic contaminants. In Advanced 2D Materials 237–286.
  • Purbia, R., & Paria, S. (2017). An Au/AgBr–Ag heterostructure plasmonic photocatalyst with enhanced catalytic activity under visible light. Dalton Transactions, 46(3), 890–898. doi:10.1039/C6DT03723B
  • Qi, Y., Liang, Q., Lv, R., Shen, W., Kang, F., & Huang, Z. H. (2018). Synthesis and photocatalytic activity of mesoporous g-C3N4/MoS2 hybrid catalyst. Royal Society Open Science, 5(5), 180187. doi:10.1098/rsos.180187
  • Qiang, H., Shung, S., Zhe, C., Baowei, H., Jianrong, C., & Xiangke, W. (2019). Biochar-based materials and their applications in removal of organic contaminants from wastewater: State-of- the-art review. Biochar, 1, 45–73. doi:10.1007/s42773-019-00006-5
  • Qureyshi, A., Niazi, K. U. K., & Usman, M. (2016). Silver nanoparticles mediated through green route using Pyrus seed extract. Journal of Basic and Applied Chemistry, 6, 1–7.
  • Rajesh Kumar, B., & Subba Rao, T. (2012). AFM studies surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Digest Journal of Nanomaterials and Biostructures, 7, 1881–1889.
  • Ramachandra Reddy, A., Mallika, A. N., Sowri Babu, K., & Venugopal Reddy, K. (2015). Hydrothermal synthesis and characterization of ZnO nanocrystals. International Journal of Mining, Metallurgy and Mechanical Engineering, 3, 52–54.
  • Ramesh Kumar, P., Vivekanandhan, S., Misra, M., Mohanty, A. K., & Satyanarayana, N. (2012). Soybean (Glycine max) leaf extract based green synthesis of palladium nanoparticles. Journal of Biomaterials and Nanobiotechnology, 3, 14–19. doi:10.4236/jbnb.2012.31003
  • Raheman, F., Deshmukh, S., Ingle, A., Gade, A., & Rai, M. (2011). Silver nanoparticles, Novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomedicine and Engineering, 3(3), 174–178. doi:10.5101/nbe.v3i3.p174-178
  • Rahman, I. Ab., & Padavettan, V. (2012). Synthesis of silica nanoparticles by sol-gel, size-dependent properties, surface modification, and applications in silica-polymer nanocomposites-A review. Journal of Nanomaterials, 2012, 1–15. doi:10.1155/2012/132424
  • Rahmani, Z., Kermani, M., Gholami, M., Jafari, A. J., & Mahmoodi, N. M. (2012). Effectiveness of photochemical and sonochemical processes in degradation of basic violet 16 (BV16) dye from aqueous solutions. Iranian Journal of Environmental Health Science & Engineering, 9(1), 14. doi:10.1186/1735-2746-9-14
  • Rai, M., Gade, A., & Yadav, A. (2011). Biogenic nanoparticles, An introduction to what they are, how they are synthesized and their applications. Metal Nanoparticles in Microbiology (pp. 1–14).
  • Raja Naika, H., Lingaraju, K., Manjunath, K., Danith, K., Nagaraju, G., Suresh, D., & Nagabhushana, H. (2015). Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. Journal of Taibah University for Science, 9(1), 7–12. doi:10.1016/j.jtusci.2014.04.006
  • Raja, A., Ashokkumar, S., Pavithra Marthandam, R., Jayachandiran, J., Chandra Prasad, K., Kaviyarasu, K., Ganapathi, R., & … Waminathan, M. (2018). Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. Journal of Photochemistry and Photobiology B: Biology, 181, 53–58. doi:10.1016/j.jphotobiol.2018.02.011
  • Rajakumar, G., Abdul Rahuman, A., Roopan, S. M., Gopiesh Khanna, V., Elango, G., Kamaraj, C., … Velayuthama, K. (2012). Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91, 23–29. doi:10.1016/j.saa.2012.01.011
  • Rajakumar, G., Rahuman, A. A., Priyamvada, B., Khanna, V. G., Kumar, D. K., & Sujin, P. J. (2012). Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Materials Letters, 68, 115–117. doi:10.1016/j.matlet.2011.10.038
  • Rajathi, F. A. A., & Nambaru, V. R. M. S. (2014). Phytofabrication of nano-crystalline platinum particles by leaves of Cerbera manghas and its antibacterial efficacy. International Journal of Pharma and Bio Sciences, 5, 619–628.
  • Rajendiran, R., Senthil Kumar, S., & Rengarajan, V. (2014). Efficient degradation of azo dyes using Ag and Au nanoparticles stabilized on graphene oxide functionalized with PAMAM dendrimers. New Journal of Chemistry, 38, 1551–1558. doi:10.1039/c3nj01050c
  • Rajesh, W. R., Haroon, A. S. M., Malghe, Y. S., Nikam, B. T., & Kashid, S. B. (2013). Rapid biosynthesis of platinum and palladium metal nanoparticles using root extract of Asparagus racemosus Linn. Advanced Materials Letters, 4, 650–654.
  • Rajeswari Kulkarni, M., Revanth, T., Acharya, A., & Bhat, P. (2017). Removal of Crystal violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study. Resource-Efficient Technologies, 3(1), 71–77. doi:10.1016/j.reffit.2017.01.009
  • Rajeswari, A., Sujatha, D., Balasaraswathi, K., Mani, U., Chellan, R., & Asit Baran, M. (2012). Photosynthesis of silver nanoparticles using Coccinia grandis leaf and its application in the photocatalytic degradation. Colloids and Surfaces B: Biointerfaces, 94, 226–230.
  • Rajkiran Reddy, B., Veera Babu, N., & Pratap Reddy, K. (2015). Green synthesis and characterization of Carcica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi Journal of Biological Sciences, 22, 637–644.
  • Rajkumar, J., Arka, D., Mrinmay, D., Joydeep, D., Pubali, D., & Partha, P. R. (2018). Improving performance of device made up of CuO nanoparticles synthesized by hydrothermal over the reflux method. Applied Surface Science, 452, 155–164.
  • Ramanathan, R., Bhargava, S. K., & Bansal, V. (2011). Biological synthesis of copper/copper oxide nanoparticles. Conference, Chemeca, Engineering a Better World, 2011, 1–8.
  • Ramesh, R., Pratim, B., & Tarafdar, J. C. (2015). TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnology Reports, 5, 22–26. doi:10.1016/j.btre.2014.10.009
  • Ran, M., Sai, Z., Tao, W., Pengcheng, G., Lei, L., Guixia, Z., … Xiangke, W. (2019). A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants. Catalysis Today, 335, 20–30. doi:10.1016/j.cattod.2018.11.016
  • Rana, N., Chand, S., & Gathania, A. K. (2016). Green synthesis of zinc oxide nano-sized spherical particles using Terminalia chebula fruits extract for their photocatalytic applications. International Nano Letters, 6(2), 91–98. doi:10.1007/s40089-015-0171-6
  • Rao, N. N., & Dube, S. (1996). Photoelectrochemical generation of hydrogen using organic pollutants in water as sacrificial electron donors. International Journal of Hydrogen Energy, 21(2), 95–98. doi:10.1016/0360-3199(95)00045-3
  • Rauwel, P., Küünal, S., Ferdov, S., & Rauwel, E. (2015). A Review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Advances in Materials Science and Engineering, 2015, 682749. doi:10.1155/2015/682749
  • Raval, N. P., Shah, P. U., & Shah, N. K. (2017). Malachite green ‘‘a cationic dye’’ and its removal from aqueous solution by adsorption. Applied Water Science, 7(7), 3407–3445. doi:10.1007/s13201-016-0512-2
  • Reddy Yadav, L. S., Lingaraju, K., Daruka Prasad, B., Kavitha, C., Bhanuprakash, G., & Nagaraju, G. (2017). Synthesis of CeO2 nanoparticles, Photocatalytic and antibacterial activities. European Physical Journal - Plus, 132, 239.
  • Renata, D. (2019). Biofabrication of platinum nanoparticles using Fumariae herba extract and their catalytic properties. Saudi Journal of Biological Sciences, 26, 31–37.
  • Reverberi, A. P., Salerno, M., Lauciello, S., & Fabiano, B. (2016). Synthesis of Copper Nanoparticles in Ethylene Glycol by chemical reduction with Vanadium (+2) Salts. Materials, 9(10), 809. doi:10.3390/ma9100809
  • Richardson, S. D., Willson, C. S., & Rusch, K. A. (2004). Use of Rhodamine water tracer in the marshland upwelling system. Ground Water, 42(5), 678–688. doi:10.1111/j.1745-6584.2004.tb02722.x
  • Rimal Isaac, R. S., Sakthivel, G., & Murthy, C. (2013). Green synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract. Journal of Nanotechnology, 2013, 906592. doi:10.1155/2013/906592
  • Rochat, J., Demenge, P., & Rerat, J. C. (1978). Toxicological study of a fluorescent tracer. Toxicological European Research. Recherche europeenne en toxicologie, 1(1), 23–26.
  • Rodríguez-Luis, O. E., Hernandez-Delgadillo, R., Sánchez-Nájera, R. I., Martínez-Castañón, G. A., Niño-Martínez, N., del Carmen Sánchez Navarro, M., … Cabral-Romero, C. (2016). Green synthesis of silver nanoparticles and their bactericidal and antimycotic activities against oral microbes. Journal of Nanomaterials, 2016, 1–10. doi:10.1155/2016/9204573
  • Roopan, S. M., Rohit, Madhumitha, G., Rahuman, A. A., Kamaraj, C., Bharathi, A., & Surendra, T. V. (2013). Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Industrial Crops and Products, 43, 631–635. doi:10.1016/j.indcrop.2012.08.013
  • Rosemal, H. M., Haris, M., & Sathasivam, K. (2009). The removal of methyl red from aqueous solutions using Banana pseudostem fibers. American Journal of Applied Sciences, 6, 1690–1700. doi:10.3844/ajassp.2009.1690.1700
  • Roy, K., Sarkar, C. K., & Ghosh, C. K. (2015). Single-step novel biosynthesis of silver nanoparticles using Cucumis sativus fruit extract and study its photocatalytic and antibacterial activity. Digest Journal of Nanomaterials and Biostructures, 10, 107–115.
  • Sabouri, Z., Akbari, A., Hosseini, H. A., & Darroudi, M. (2018). Facile green synthesis of NiO nanoparticles and investigation of dye degradation and cytotoxicity effects. Journal of Molecular Structure, 1173, 931–936. doi:10.1016/j.molstruc.2018.07.063
  • Sadeghi, B., Mohammadzadeh, M., & Babakhan, B. (2015). Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability. Journal of Photochemistry and Photobiology B: Biology, 148, 101–106. doi:10.1016/j.jphotobiol.2015.03.025
  • Safa, Y. (2014). Biosorption of Eriochrome Black T and Astrazon FGGL blue using almond and cotton seed oil cake biomass in a batch mode. Journal of the Chemical Society of Pakistan, 36, 614–623.
  • Sahoo, P. K., Kalyan Kamal, S. S., Premkumar, M., Jagadeesh Kumar, T., Sreedhar, B., Singh, A. K., … Chandra Sekhar, K. (2009). Synthesis of tungsten nanoparticles by solvothermal decomposition of tungsten hexacarbonyl. International Journal of Refractory Metals and Hard Materials, 27(4), 784–791. doi:10.1016/j.ijrmhm.2009.01.005
  • Sai Priya, G., Kanneganti, A., Anil Kumar, K., Venkateswara Rao, K., & Satish, B. (2014). Biosynthesis of cerium oxide nanoparticles using Aloe barbadensis miller gel. International Journal of Scientific and Research Publications, 4, 1–4.
  • Sai Saraswathi, V., Tatsugi, J., Shin, P. K., & Santhakumar, K. (2017). Facile biosynthesis, characterization, and solar assisted photocatalytic effect of ZnO nanoparticles mediated by leaves of L. speciose. Journal of Photochemistry and Photobiology B: Biology, 167, 89–98. doi:10.1016/j.jphotobiol.2016.12.032
  • Saito, M., Yasukawa, K., Umeda, T., & Aoi, Y. (2008). Copper nanoparticles fabricated by laser ablation in polysiloxane. Optical Materials, 30(7), 1201–1204. doi:10.1016/j.optmat.2007.05.049
  • Saja, M. J. (2016). Synthesis of CuO nanostructure via sol-gel and precipitation chemical methods. Al-Khwarizmi Engineering Journal, 12, 126–131.
  • Salvadori, M. R., Ando, R. A., Nascimento, C. A. O., & Corrêa, B. (2015). Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLos One, 10(6), e0129799. doi:10.1371/journal.pone.0129799
  • Sang, H. L., & Bong, H. J. (2019). Silver nanoparticles, Synthesis and application for nanomedicine. International Journal of Molecular Sciences, 20, 865.
  • Sangeetha, G., Rajeshwari, S., & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin, 46(12), 2560–2566. doi:10.1016/j.materresbull.2011.07.046
  • Sankar, R., Manikandan, P., Malarvizhi, V., Fathima, T., Subramanian Shivashangari, K., & Ravikumar, V. (2014). Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121, 746–750. doi:10.1016/j.saa.2013.12.020
  • Sankar, R., Rizwana, K., Shivashangari, K. S., & Ravikumar, V. (2015). Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium oxide nanoparticles. Applied Nanoscience, 5(6), 731–736. doi:10.1007/s13204-014-0369-3
  • Sanket, J. S., Geetha, J., Saif, A. M., & Ahlam, A. A. (2018). Green Synthesis of Silver Nanoparticles Using Pomegranate peel extracts and its application in photocatalytic degradation of Methylene blue. Jundishapur Journal of Natural Pharmaceutical Products, 13, e67846.
  • Santhosh Kumar, A., Helen, P. K., & Suresh, R. (2016). Hydrothermal synthesis, characterization and antibacterial activity of NiO nanoparticles. Journal of Advanced Chemical Sciences, 2, 230–232.
  • Santhosh Kumar, T., Rahuman, A. A., Jayaseelan, C., Rajakumar, G., Marimuthu, S., Kirthi, A. V., … Kim, S. K. (2014). Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pacific Journal of Tropical Medicine, 7(12), 968–976. doi:10.1016/S1995-7645(14)60171-1
  • Santhosh Kumar, J., Venkata Kumar, S., & Rajesh Kumar, S. (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 3, 459–465. doi:10.1016/j.reffit.2017.05.001
  • Saranya, V. T. K., & Uma Gowrie, S. (2016). Photocatalytic reduction of Methylene blue dye using biogenic silver nanoparticles from the aqueous cladode extract of Casuarina equisetifolia. Indo American Journal of Pharmaceutical Research, 6, 4562–4568.
  • Saravanan, R., Francisco, G., & Stephen, A. (2017). Basic principles, mechanism, and challenges of photocatalysis. In M. Mansoob Khan, D. Pradhan, Y. Sohn (Eds.), Nanocomposites for Visible Light-Induced Photocatalysis Springer series on polymer and composite materials, 19-40.
  • Sarina, S., Waclawik, E. R., & Zhu, H. (2013). Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chemistry, 15(7), 1814–1833. doi:10.1039/c3gc40450a
  • Sarvanan, C., Rajendiran, R., Thanamegam, K., Krishnan, M., Digambar, K., & Prathapkumar, H. S. (2017). Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnology Reports, 15, 33–40.
  • Sathyavathi, S., Manjula, A., Rajendhran, J., & Gunasekaran, P. (2014). Extracellular synthesis and characterization of nickel oxide nanoparticles from microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent. Bioresource Technology, 165, 270–273. doi:10.1016/j.biortech.2014.03.031
  • Satishkumar, M., Sneha, K., Kwak, I. S., Mao, J., Tripathy, S. J., & Yun, Y. S. (2009). Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. Journal of Hazardous Materials, 171, 400–404.
  • Saxena, S., & Raja, A. S. M. (2014). Natural dyes, Sources, chemistry, application and sustainability issues. Roadmap to Sustainable Textiles and Clothing. 37–80.
  • Saxena, A., Tripathi, R. M., Zafar, F., & Singh, P. (2012). Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Materials Letters, 67(1), 91–94. doi:10.1016/j.matlet.2011.09.038
  • Schaffer, B., Hohenester, U., Trugler, A., & Hofer, F. (2009). High- resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy. Physical Review B, 79, 041401.
  • Schwaminger, S. P., Surya, R., Filser, S., Wimmer, A., Weigl, F., Fraga-García, P., & Berensmeier, S. (2017). Formation of iron oxide nanoparticles for the photooxidation of water: Alteration of finite size effects from ferrihydrite to hematite. Scientific Reports, 7(1), 12609. doi:10.1038/s41598-017-12791-9
  • Sebastiammal, Sr, S., Shally, V., Priyadharshini, M. & Gerardin Jayam, Sr. (2017). Structural and optical properties of cerium oxide nanoparticles. International Journal of Engineering Trends and Technology, 49, 69–73. doi:10.14445/22315381/IJETT-V49P211
  • Seey, T.L., & Kassim, M.J.N.M. (2012). Acidic and basic dyes removal by adsorption on chemically treated mangrove barks. International Journal of Applied Science and Technology, 2, 270–276.
  • Selvakumar, S., Manivasagan, R., & Chinnappan, K. (2013). Biodegradation and decolourization of textile dye wastewater using Ganoderma lucidum. 3 Biotech, 3(1), 71–79. doi:10.1007/s13205-012-0073-5
  • Senthilkumaar, S., Kalaamani, P., & Subburaam, C.V. (2006). Liquid phase adsorption of Crystal violet onto activated carbons derived from male flowers of coconut tree. Journal of Hazardous Materials, 136(3), 800–808. doi:10.1016/j.jhazmat.2006.01.045
  • Seo, Y.S., Ahn, E.Y., Park, J., Kim, T.Y., Hong, J.E., Kim, K., … Park, Y. (2017). Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid. Nanoscale Research Letters, 12(1), 7–11. doi:10.1186/s11671-016-1776-z
  • Seyed, J. D., Ramin, K., Vahabodin, G., & Farideh, P. (2015). Synthesis of copper (II) oxide (CuO) nanoparticles and its application as gas sensor. Journal of Applied Science and Technology, 2, 329–332.
  • Shah, M., Fawcett, D., Sharma, S., Tripathy, S., & Poinern, G. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11), 7278–7308. doi:10.3390/ma8115377
  • Shamima, B., & Ahmaruzzaman, M. (2018). Green synthesis of SnO2 quantum dots using Parkia speciosa Hassk pods extract for the evaluation of anti-oxidant and photocatalytic properties. Journal of Photochemistry and Photobiology B: Biology, 184, 44–53. doi:10.1016/j.jphotobiol.2018.04.041
  • Shankar, T., Karthiga, P., Swarnalatha, K., & Rajkumar, K. (2017). Green synthesis of silver nanoparticles using Capsicum frutescence and its intensified activity against E.coli. Resource-Efficient Technologies, 3(3), 303–308. doi:10.1016/j.reffit.2017.01.004
  • Sharma, P., & Nanoty, V. (2017). Synthesis of nano-ZnO by chemical reduction method and their micro biocide activity against bacterial skin pathogens. International Journal of Life Sciences, 5, 233–240.
  • Sharma, N., Pinnaka, A. K., Raje, M., Ashish, F. N. U., Bhattacharyya, M. S., & Choudhury, A. R. (2012). Exploitation of marine bacteria for production of gold nanoparticles. Microbial Cell Factories, 11(1), 86–91. doi:10.1186/1475-2859-11-86
  • Sharma, J. K., Srivastava, P., Ameen, S., Akhtar, M. S., Sengupta, S.K., & Singh, G. (2017). Phytoconstituents assisted green synthesis of cerium oxide nanoparticles for thermal decomposition and dye remediation. Materials Research Bulletin, 91(2017), 98–107. doi:10.1016/j.materresbull.2017.03.034
  • Sharmila Devi, R., & Gayathri, R. (2014). Green Synthesis of zinc oxide nanoparticles by using Hibiscus rosa-sinensis. International Journal of Current Engineering and Technology, 4, 2444–2446.
  • Sheena, P. A., Priyanka, K. P., Aloysius Sabu, N., Ganesh, S., & Varghese, T. (2015). Effect of electron beam irradiation on the structure and optical properties of nickel oxide nanocubes. Bulletin of Materials Science, 38(4), 825–830. doi:10.1007/s12034-015-0953-5
  • Shenava, A. (2013). Synthesis of silver nanoparticles by chemical reduction method and their antifungal activity. International Research Journal of Pharmacy, 4(10), 111–113. doi:10.7897/2230-8407.041024
  • Shi, L. B., Tang, P. F., Zhang, W., Zhao, Y. P., Zhang, L. C., & Zhang, H. (2017). Green synthesis of CuO nanoparticles using Cassia auriculata leaf extract and in vitro evaluation of their biocompatibility with rheumatoid arthritis macrophages (RAW 264.7). Tropical Journal of Pharmaceutical Research, 16(1), 185–192. doi:10.4314/tjpr.v16i1.25
  • Shih, Z. Y., Periasamy, A. P., Hsu, P. C., & Chang, H. T. (2013). Synthesis and catalysis of copper sulfide/carbon nanodots for oxygen reduction in direct methanol fuel cells. Applied Catalysis B: Environmental, 132–133, 363–369. doi:10.1016/j.apcatb.2012.12.004
  • Shokuhfar, A., Hassanjani- Roshan, A., Vaezi, M.R., Kazemzadeh, S.M., Esmaielzadeh, K., & Nasiri-Tabrizi, B. (2010). Synthesis and characterization of TiO2 Nanoparticles via chemical bath deposition (CBD) method. Journal of Nano Research, 11, 35–38. doi:10.4028/www.scientific.net/JNanoR.11.35
  • Siddiqi, K.S., & Husen, A. (2016). Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Research Letters, 11(1), 482. doi:10.1186/s11671-016-1695-z
  • Siddiqui, M. H., Mohamed, A. W., & Firoz, M. (2015). Nanotechnology and plant sciences: Nanoparticles and their impact on plants. Cham: Springer. doi:10.1007/978-3-319-14502-0
  • Sindelar, F. W., Silva, L. F. O., Machado, V. R., dos Santos, L. C. M., & Stülp, S. (2015). Treatment of effluent from the agate dyeing industry using photodegradation and electrodialysis processes. Separation Science and Technology, 50(1), 142–147. doi:10.1080/01496395.2014.947519
  • Singh, P., & Buttry, D.A. (2012). Comparison of oxygen reduction reaction at silver nanoparticles and polycrystalline silver electrodes in alkaline solution. The Journal of Physical Chemistry C, 116(19), 10656–10663. doi:10.1021/jp301676n
  • Singh, K.P., Mohan, D., Sinha, S., Tondon, G.S., & Gosh, D. (2003). Color removal from wastewater using low-cost activated carbon derived from agricultural waste material. Industrial & Engineering Chemistry Research, 42(9), 1965–1976. doi:10.1021/ie020800d
  • Singh, A.V., Patil, R., Anand, A., Milani, P., & Gade, W.N. (2010). Biological synthesis of copper oxide nanoparticles using Escherichia coli. Current Nanoscience, 6, 365–369. doi:10.2174/157341310791659062
  • Singh, D., Rathod, V., Ninganagouda, S., Hiremath, J., Singh, A.K., & Mathew, J. (2014). Optimization and characterization of silver nanoparticle by endophytic Fungi Penicillium sp. isolated from Curcuma longa (Turmeric) and application studies against MDR E. coli and S. aureus. Bioinorganic Chemistry and Applications, 2014, 1–8. doi:10.1155/2014/408021
  • Singh, B.N., Rawat, A.K.S., Khan, W., Naqvi, A.H., & Singh, B.R. (2014). Biosynthesis of Stable Antioxidant ZnO Nanoparticles by Pseudomonas aeruginosa Rhamnolipids. Plos One, 9(9), e106937. doi:10.1371/journal.pone.0106937
  • Singh, S., Srivastava, V.C., & Mall, I.D. (2013). Electrochemical treatment of Malachite green dye solution using iron electrode. International Journal of ChemTech Research, 5, 592–596.
  • Sohrabi, M. R., Khavaran, A., Shariati, S., & Shariati, S. (2017). Removal of carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arabian Journal of Chemistry, 10, S3523–S3531. doi:10.1016/j.arabjc.2014.02.019
  • Song, G., Xiangyang, S., Kai, S., Changpeng, L., Ctirad, U., James, R.B., … Bradford, G.O. (2009). Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. The Journal of Physical Chemistry C, 113, 13593–13599.
  • Soonmin, H. (2017). Atomic force microscopy studies on sulfur-, selenium-and tellurium-based metal chalcogenide thin films: A review. African Journal of Pure and Applied Chemistry, 11, 42–49.
  • Sreekanth, T. V. M., Dillip, G. R., & Lee, Y. R. (2016). Picrasma quassioides mediated cerium oxide nanostructures and their post-annealing treatment on the microstructural, morphological and enhanced catalytic performance. Ceramics International, 42(6), 6610–6618.
  • Sreekanth, T. V. M., Min-Ji Jung, & In-Yong Eom. (2016). Green synthesis of silver nanoparticles, decorated on graphene oxide nanosheets and their catalytic activity. Applied Surface Science, 361(15), 102–106.
  • Sreekanth, T. V. M., Pandurangan, M., Jung, M. J., Lee, Y. R., & Eom, I. Y. (2016). Eco-friendly decoration of graphene oxide with green synthesized silver nanoparticles: Cytotoxic activity. Research on Chemical Intermediates, 42(6), 5665–5676. doi:10.1007/s11164-015-2394-6
  • Sreekanth, T. V. M., Shim, J. J., & Lee, Y. R. (2017). Degradation of organic pollutants by bio-inspired rectangular and hexagonal titanium dioxide nanostructures. Journal of Photochemistry and Photobiology B: Biology, 169, 90–95. doi:10.1016/j.jphotobiol.2017.03.006
  • Srivastava, N., & Mukhopadhyay, M. (2014). Biosynthesis of SnO2 nanoparticles using bacterium Erwinia herbicola and their photocatalytic activity for degradation of dyes. Industrial & Engineering Chemistry Research, 53(36), 13971–13979. doi:10.1021/ie5020052
  • Starowicz, M., Stypuła, B., & Banaś, J. (2006). Electrochemical synthesis of silver nanoparticles. Electrochemistry Communications, 8(2), 227–230. doi:10.1016/j.elecom.2005.11.018
  • Subhapriya, S., & Gomathipriya, P. (2018). Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microbial Pathogenesis, 116, 215–220. doi:10.1016/j.micpath.2018.01.027
  • Subramani, S., & Annamalai, R. (2017). Eco-friendly synthesis and characterization of nanostructure SnO2 thin films using Citrus aurantifolia peel extract by spin coating method. Journal of Nanomedicine Research, 6, 00164.
  • Subramaniam, M. N., Goh, P. S., Lau, W. J., Cheer Ng, B., & Ismail, A. F. (2019). Development of nanomaterial-based photocatalytic membrane for organic pollutants removal. In Advanced Nanomaterials and Their Applications 45–67.
  • Subramanian, V., Wolf, E. E., & Kamat, P.V. (2004). Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. Journal of the American Chemical Society, 126(15), 4943–4950. doi:10.1021/ja0315199
  • Sudha, A., Jeyakanthan, J., & Srinivasan, P. (2017). Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Resource-Efficient Technologies, 3(4), 506–515. doi:10.1016/j.reffit.2017.07.002
  • Sundaram, P. A., Augustine, R., & Kannan, M. (2012). Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnology and Bioprocess Engineering, 17(4), 835–840. doi:10.1007/s12257-011-0582-9
  • Sundaramurthy, N., & Parthiban, C. (2015). Biosynthesis of copper oxide nanoparticles using Pyrus pyrifolia leaf extract and evolve the catalytic activity. International Research Journal of Engineering and Technology, 2, 332–338.
  • Sundrarajan, M., & Gowri, S. (2011). Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristis leaves extract. Chalcogenide Letters, 8, 447–451.
  • Supraja, N., Prasad, T. N. V. K. V., Gandhi, A. D., Anbumani, D., Kavitha, P., & Babujanarthanam, R. (2018). Synthesis, characterization and evaluation of antimicrobial efficacy and brine shrimp lethality assay of Alstonia scholarisstem bark extract mediated ZnO NPs. Biochemistry and Biophysics Reports, 14, 69–77. doi:10.1016/j.bbrep.2018.04.004
  • Surendra, T. V., & Selvaraj, M. R. (2016). Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringa oleifera peel extract. Journal of Photochemistry and Photobiology B: Biology, 161, 122–128. doi:10.1016/j.jphotobiol.2016.05.019
  • Suresh, D., Nethravathi, P.C., Udayabhanu, Rajanaika, H., Nagabhushana, H., & Sharma, S.C. (2015). Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Materials Science in Semiconductor Processing, 31, 446–454. doi:10.1016/j.mssp.2014.12.023
  • Suresh, D., Shobharani, R. M., Nethravathi, P. C., Pavan Kumar, M. A., Nagabhushana, H., & Sharma, S. C. (2015). Artocarpus gomezianus aided green synthesis of ZnO nanoparticles, Luminescence, photocatalytic and antioxidant properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 141, 128–134. doi:10.1016/j.saa.2015.01.048
  • Sutradhar, P., & Saha, M. (2016). Green synthesis of zinc oxide nanoparticles using tomato (Lycopersicon esculentum) extract and its photovoltaic application. Journal of Experimental Nanoscience, 11(5), 314–327. doi:10.1080/17458080.2015.1059504
  • Suzuki, K., Tanaka, N., Ando, A., & Takagi, H. (2011). Optical properties and fabrication of cuprous oxide nanoparticles by microemulsion method. Journal of the American Ceramic Society, 94(8), 2379–2385. doi:10.1111/j.1551-2916.2011.04413.x
  • Tahir, K., Nazir, S., Li, B., Ahmad, A., Nasir, T., Khan, A. U., … Hameed, M. U. (2016). Sapium sebiferum leaf extract mediated synthesis of palladium nanoparticles and in vitro investigation of their bacterial and photocatalytic activities. Journal of Photochemistry and Photobiology B: Biology, 164, 164–173.
  • Tahir, K., Nazir, S., Li, B., Khan, A. U., Khan, Z. U. H., Ahmad, A., & Khan, F. U. (2015). An efficient catalytic activity of green synthesized silver nanoparticles using Salvadora persica stem extract. Separation and Purification Technology, 150, 316–324. doi:10.1016/j.seppur.2015.07.012
  • Takashi, H., Katsutoshi, K., & Masakuni, O. (2017). Size effect of Raman scattering on CeO2 nanocrystal by hydrothermal method. Japanese Journal of Applied Physics, 56, 01AE06.
  • Taman, R., Ossman, M. E., Mansour, M. S., & Farag, H. A. (2015). Metal oxide nano-particles as an adsorbent for removal of heavy metals. Journal of Advanced Chemical Engineering, 5, 1000125. doi:10.4172/2090-4568.1000125
  • Tanna, J. A., Chaudhary, R. G., Gandhare, N. V., Rai, A. R., & Juneja, H. D. (2015). Nickel oxide nanoparticles, synthesis, characterization and recyclable catalyst. International Journal of Scientific Engineering and Research, 6, 93–99.
  • Tariq, K., Foad, B., & Kamal, G. (2019). Photosynthesis and enhanced photocatalytic activity of zinc oxide nanoparticles toward organosulfur pollutants. Scientific Reports, 9, 6866.
  • Taufik, A., Shabrany, H., & Saleh, R. (2017). Different heat treatment of CeO2 nanoparticle composited with ZnO to enhance photocatalytic performance. IOP Conference Series: Materials Science and Engineering, 188, 012038. doi:10.1088/1757-899X/188/1/012038
  • Tayade, U. S., Borse, A. U., & Meshram, J. S. (2018). First report on Butea monosperma flower extract based nickel nanoparticles green synthesis and characterization. National Conference on New Horizons in Material Science IJSRSET, 4, 43–49.
  • Terzopoulu, Z., Kyzas, G. Z., & Bikiaris, D. N. (2015). Recent advances in nanocomposite materials of graphene derivatives with polysaccharides. Materials, 8, 652–683. doi:10.3390/ma8020652
  • Thakur, S., & Chauhan, M. S. (2016). Removal of Malachite green dye from aqueous solution by electrocoagulation with stainless steel electrodes. International Journal of Engineering, Science and Technology, 5, 515–521.
  • Thakur, S., Sharma, N., Varkia, A., & Kumar, J. (2014). Structural and optical properties of copper doped ZnO nanoparticles and thin films. Advances in Applied Science Research, 5, 18–24.
  • Thandapani, K., Kathiravan, M., Namasivayam, E., Padiksan, I. A., Natesan, G., Tiwari, M., … Perumal, V. (2018). Enhanced larvicidal, antibacterial, and photocatalytic efficacy of TiO2 nanohybrids green synthesized using the aqueous leaf extract of Parthenium hysterophorus. Environmental Science and Pollution Research, 25(11), 10328–10339. doi:10.1007/s11356-017-9177-0
  • Thi Kim, L. N., Ngoc Duy, N., Van Phu, D., Dinh, T. P., Thai, H. T., & Quoc, H. N. (2019). Synthesis of platinum nanoparticles by Gamma Co-60 ray irradiation method using chitosan as stabilizer. Advances in Materials Science and Engineering, 2019, 9624374.
  • Thirumurugan, A., Aswitha, P., Kiruthika, C., Nagarajan, S., & Nancy Christy, A. (2016). Green synthesis of platinum nanoparticles using Azadirachta indica – An eco-friendly approach. Materials Letters, 170, 175–178.
  • Thomas, B., Vithiya, B. S. M., Prasad, T. A. A., Mohamed, S. B., Magdalane, C. M., Kaviyarasu, K., & Maaza, M. (2019). Antioxidant and photocatalytic activity of aqueous leaf extract mediated green synthesis of silver nanoparticles using Passiflora edulis f. flavicarpa. Journal of Nanoscience and Nanotechnology, 19(5), 2640–2648. doi:10.1166/jnn.2019.16025
  • Thu, T. N. T., Thi, N. N., Quang, V. T., Hong, K. N., Minch, T. N., & Hoai, N. L. T. (2016). Synthesis, characterization, and effect of pH on degradation of dyes of copper-doped TiO2. Journal of Experimental Nanoscience, 11, 226–238.
  • Tojo, C., de Dios, M., & Barroso, F. (2010). Surfactant effects on micro emulsion-based nanoparticle synthesis. Materials, 4(1), 55–72. doi:10.3390/ma4010055
  • Udayabhanu, Netravathi, P. C., Pavan Kumar, M. A., Suresh, D., Lingaraju, K., Rajanaika, H., … Sharma, S. C. (2015). Tinospora cordifolia mediated facile green synthesis of cupric oxide nanoparticles and their photocatalytic, antioxidant and antibacterial properties. Materials Science in Semiconductor Processing, 33, 81–88. doi:10.1016/j.mssp.2015.01.034
  • Ullah, M., Naz, A., Mahmood, T., Siddiq, M., & Bano, A. (2014). Biochemical synthesis of nickel & cobalt oxide nano-particles by using biomass waste. International Journal of Latest Research in Science and Technology, 3, 415–422.
  • Ullah, H., Ullah, Z., Fazal, A., & Irfan, M. (2017). Use of vegetable waste extracts for controlling microstructure of CuO nanoparticles: Green synthesis, characterization, and photocatalytic applications. Journal of Chemistry, 2017, 1–5. doi:10.1155/2017/2721798
  • Umar, A., Akhtar, M. S., Dar, G. N., & Baskoutas, S. (2013). Low-temperature synthesis of α-Fe2O3 hexagonal nanoparticles for environmental remediation and smart sensor application. Talanta, 116, 1060–1066. doi:10.1016/j.talanta.2013.08.026
  • Ur Rahaman, S. S., Qureshi, M. T., Sultana, K., Rehman, W., Khan, M. Y., Asif, M. H., … Sultana, N. (2017). Single step growth of iron oxide nanoparticles and their use as glucose biosensor. Results in Physics, 7, 4451–4456. doi:10.1016/j.rinp.2017.11.001
  • Vadivelan, V., & Kumar, K. V. (2005). Equilibrium kinetics mechanism and process design for the sorption of methylene blue on rice husk. Journal of Colloid and Interface Science, 286(1), 90–100. doi:10.1016/j.jcis.2005.01.007
  • Vahabi, K., Mansoori, G. A., & Karimi, S. (2011). Biosynthesis of silver nanoparticles by fungus Trichoderma Reesei (A route for large-scale production of Ag NPs). Insciences Journal, 1, 65–79. doi:10.5640/insc.010165
  • Vaidehi, D., Bhuvaneshwari, V., Devaraj, B., & Sheetal, P. (2018). Antibacterial and photocatalytic activity of copper oxide nanoparticles synthesized using Solanum lycopersicum. Materials Research Express, 5(8), 085403. doi:10.1088/2053-1591/aad426
  • Valentinus, P., Ardiansyah, T., Lusitra, M., & Rosari, S. (2017). Sono- and photocatalytic activities of SnO2 nanoparticles for degradation of cationic and anionic dyes. AIP Conference Proceedings, 1788, 030125.
  • Valli, G., & Geetha, S. (2015). A green method for the synthesis of titanium dioxide nanoparticles using Cassia auriculata leaves extract. European Journal of Biomedical and Pharmaceutical Sciences, 2, 490–497.
  • Valli, J. S., & Vaseeharan, B. (2012). Biosynthesis of silver nanoparticles by Cissus quadrangularis extracts. Materials Letters, 82, 171–173. doi:10.1016/j.matlet.2012.05.040
  • Vanaja, M., Paulkumar, K., Baburaja, M., Rajeshkumar, S., Gnanajobitha, G., Malarkodi, C., … Annadurai, G. (2014). Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorganic Chemistry and Applications, 2014, 742346. doi:10.1155/2014/742346
  • Vattikuti, S. V. P., & Byon, C. (2017). Hydrothermally synthesized ternary heterostructured MoS2/Al2O3/g- C3N4 photocatalyst. Materials Research Bulletin, 96, 233–245.
  • Veena, S., Devasena, T., Ansel, V. L., Sathak, S. S. M., & Arokiyaraj, S. (2019). In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract. Saudi Journal of Biological Sciences, 26, 455–459.
  • Velusamy, P., Pitchaimuthu, S., Rajalakshmi, S., & Kannan, N. (2014). Modification of the photocatalytic activity of TiO2 by β-Cyclodextrin in decoloration of ethyl violet dye. Journal of Advanced Research, 5(1), 19–25. doi:10.1016/j.jare.2012.10.001
  • Venkatanarashimha Rao, C., Bhakal, K., & Golder, A. K. (2014). Biomediated synthesis of zinc nanoparticles (ZnO NPs) for photocatalytic application. International Journal of Current Engineering And Scientific Research, 1, 26–30.
  • Venkatesh, S., Venkatesh, K., & Rahman Quaff, A. (2017). Dye decomposition by combined ozonation and anaerobic treatment: Cost effective technology. Journal of Applied Research and Technology, 15(4), 340–345. doi:10.1016/j.jart.2017.02.006
  • Verma, P., & Madamwar, D. (2003). Decolorization of synthetic dyes by a newly isolated strain of Serratia marcescens. World Journal of Microbiology and Biotechnology, 19(6), 615–618. doi:10.1007/s11274-004-2047-1
  • Vidhyadharan, B., Archana, P. S., Ismail, J., Yusoff, M. M., & Jose, R. (2015). Improved super capacitive charge storage in electrospun niobium doped titania nanowires. RSC Advances, 5, 50087–50097. doi:10.1039/C5RA07633A
  • Viet Long, N., Duc Chien, N., Hirohito, H., Michitaka, O., Tomokatsu, H., & Masayuki, N. (2010). Chemical synthesis and characterization of palladium nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 1, 035012.
  • Vijay, D. M., Anu, Y., & Supriya, K. (2016). Photochemical decolorization of Methyl violet dye using Azadirachta indica (Neem) mediated synthesized silver nanoparticles. Der Pharmacia Lettre, 8, 119–128.
  • Vijay Kumar, P. P. N., Pammi, S. V. N., & Shameem, U. (2018). A green approach for the synthesis of iron oxide nanoparticles by using roots of A. racemosus and its degradation of dye methyl orange. International Journal of Pharmaceutical Chemistry and Analysis, 6, 22–28.
  • Vijay Kumar, P. P. N., Shameem, U., Pratap, K., Kalyani, R. L., & Pammi, S. V. N. (2015). Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against Fish bacterial pathogens. BioNanoScience, 3, 135–139. doi:10.1007/s12668-015-0171-z
  • Vinothkannan, M., Karthikeyan, C., Gnana Kumar, G., Kim, A. R., & Yoo, D. J. (2015). One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 256–264. doi:10.1016/j.saa.2014.09.031
  • Vo Ke, T. N., Hoang, P. U. N., Trong, P. H., Nguyen, N. P. T., Quang, V. L., & Thanh, D. H. (2015). Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. coli O157:H7. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6, 035015.
  • Wadley, H. N. G., Zhou, X., Johnson, R. A., & Neurock, M. (2001). Mechanisms, models and methods of vapor deposition. Progress in Materials Science, 46(3–4), 329–377.
  • Wahab, R., Khan, F., Kaushik, N. K., Musarrat, J., & Al-Khedhairy, A. A. (2017). Photocatalytic TMO-NMS adsorbent, Temperature-time dependent safranine degradation, sorption study validated under optimized effective equilibrium models parameter with standardized statistical analysis. Scientific Reports, 7(1), 42509. doi:10.1038/srep42509
  • Waleed, M., Shawafi, A., Numan, S., Ahmed, A., Youssri, M.H., Said, S.M., … Adnan, M. (2017). Size controlled ultrafine CeO2 nanoparticles produced by the microwave assisted route and their antimicrobial activity. Journal of Materials Science: Materials in Medicine, 28, 177. doi:10.1007/s10856-017-5990-8
  • Wang, N., Chan, N. Y., To, C. H., Tan, F., & Zhang, X. (2013). Photocatalytic microreactors for water purification, Selective control of oxidation pathways. NEMS2013, Suzhou, China, April 7–10.
  • Wang, X., Feng, S., Zhao, W., Zhao, D., & Chen, S. (2017). Ag/polyaniline heterostructured nanosheets loaded with g-C3N4 nanoparticles for highly efficient photocatalytic hydrogen generation under visible light. New Journal of Chemistry, 41(17), 9354–9360. doi:10.1039/C7NJ01903C
  • Wanjun, W., Guiying, L., Dehua, X., Taicheng, A., Huijun, Z., & Po Keung, W. (2017). Photocatalytic nanomaterials for solar-driven bacterial inactivation: Recent progress and challenges. Environmental Science: Nano, 4, 782–799.
  • Wanjun, W., Guiying, L., Taicheng, A., Donald, K. L. C., Jimmy, C. Y., & Po Keung, W. (2018). Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C3N4/red phosphorus hybrid nanosheets as a wide-spectral-responsive photocatalyst: The role of type I band alignment. Applied Catalysis B: Environmental, 238, 126–135. doi:10.1016/j.apcatb.2018.07.004
  • Wanjun, W., Taicheng, A., Cuiying, L., Dehua, X., Huijun, Z., Jimmy, C.Y., & Po Keung, W. (2017). Earth-abundant Ni2P/g-C3N4 lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation. Applied Catalysis B: Environmental, 217, 570–580. doi:10.1016/j.apcatb.2017.06.027
  • Wanninayake, A. P., Gunashekar, S., Li, S., Church, B. C., & Abu-Zahra, N. (2015). Cuo Nanoparticles based bulk heterojunction solar cells: Investigations on morphology and performance. Journal of Solar Energy Engineering, 137, 031016.
  • Warren, S. C., & Thimsen, E. (2012). Plasmonic solar water splitting. Energy & Environmental Science, 5(1), 5133–5146. doi:10.1039/C1EE02875H
  • Wassilkowska, A., Kotas, A. C., Zielina, M., & Bielski, A. (2014). An analysis of the elemental composition of micro-samples using EDS technique. Tech Trans Chem, 1-Ch, 133–148.
  • Weeraman, B., Vichuda, L., Porntip, S., & Paveena, L. (2018). Synthesis of TiO2 nanoparticles via a simple precipitation method and photocatalytic performance. Materials Research Express, 5, 115003.
  • Włodarczyk, E., & Zarzycki, P. K. (2017). Chromatographic behavior of selected dyes on silica and cellulose micro-TLC plates: Potential application as target substances for extraction, chromatographic, and/or microfluidic systems. Journal of Liquid Chromatography & Related Technologies, 40(5–6), 259–281. doi:10.1080/10826076.2017.1298028
  • Wu, N. L., & Lee, M. S. (2004). Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy, 29(15), 1601–1605. doi:10.1016/j.ijhydene.2004.02.013
  • Xie, Y. (2013). The nanobiotechnology handbook (1st ed.). New York, NY: CRC Press.
  • Yadav, L. S. R., Manjunath, K., Archana, B., Madhu, C., Raja Naika, H., Nagabhushana, H., … Nagaraju, G. (2016). Fruit juice extract mediated synthesis of CeO2 nanoparticles for antibacterial and photocatalytic activities. European Physical Journal - Plus, 131, 154–163.
  • Yadav, T. P., Yadav, R. M., & Singh, D. P. (2012). Mechanical milling, a Top down approach for the synthesis of nanomaterials and nanocomposites. Nanoscience and Nanotechnology, 2, 22–48.
  • Yageshni, G., Tamsyn, R., Mariekie, G., & Chris, G. W. (2009). Bioreduction of platinum salts into nanoparticles: A mechanistic perspective. Biotechnology Letters, 31, 95–100.
  • Yates, M. D., Cusick, R. D., & Logan, B. E. (2013). Extracellular palladium nanoparticle production using Geobacter Sulfurreducens. ACS Sustainable Chemistry & Engineering, 1(9), 1165–1171. doi:10.1021/sc4000785
  • Yavuz, Y., Savaş Koparal, A., & Öğütveren, Ü. B. (2011). Electrochemical oxidation of Basic Blue 3 dye using a diamond anode, evaluation of colour, COD and toxicity removal. Journal of Chemical Technology & Biotechnology, 86(2), 261–265. doi:10.1002/jctb.2512
  • Yee, F. Y., Periasamy, V., & Malek, S. N. A. (2015). Green Synthesis of gold nanoparticles using aqueous ethanol extract of Curcuma mangga rhizomes as reducing agent. American Institute of Physics Conference Proceedings, 1657, 060008.
  • Yockell-Lelievre, H., Lussier, F., & Masson, J. F. (2015). Influence of the particle shape and density of self-assembled gold nanoparticle sensors on LSPR and SERS. The Journal of Physical Chemistry C, 119, 28577–28585. doi:10.1021/acs.jpcc.5b09570
  • Yong, J., Pingjun, W., Donghong, Y., Jianfu, L., Liangsheng, Q., Ningya, Y., … Biaomo, L. (2007). Gold nanoparticles prepared by sonochemical method in thiol-functionalized ionic liquid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302, 366–370. doi:10.1016/j.colsurfa.2007.02.060
  • Yuhong, Z., Li, F., Fuigui, H., Aiwu, W., Cai, W., Jinping, Y., Jun, Y., & Peng, F. (2015). Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity. Green Chemistry Letters and Reviews, 8, 59–63. doi:10.1080/17518253.2015.1075069
  • Yunfeng, S., Lixin, L., Fengyue, Z., Mengyuan, N., Yanzhu, Z., Yifan, F., … Junjie, W. (2017). Catalyst System for hydrogenation catalysis based on multiarm hyperbranched polymer templated metal (Au, Pt, Pd, Cu) nanoparticles. Polymers, 9, 459. doi:10.3390/polym9090459
  • Zahra, V., Ali, N., & Omid, T. (2017). Green methods for the synthesis of metal nanoparticles using biogenic reducing agent: A review. Reviews in Chemical Engineering, 34, 529–559.
  • Zali, N. M., Mahmood, C. S., Mohamad, S. M., Foo, C. T., & Murshidi, J. A. (2014). X-ray diffraction study of crystalline barium titanate ceramics. AIP Conference Proceedings, 1584, 160–163.
  • Zamratul, M. I. M., Thomas, M., & Choong, S. Y. (2013). Kinetic and thermodynamic studies of methyl orange adsorption onto mesoporous carbon coated monolith (synthesized by surfactant). Malaysian Journal of Science, 32(1), 43–52. doi:10.22452/mjs.vol32no1.8
  • Zhang, Q., Bao, N., Wang, X., Hu, X., Miao, X., Chaker, M., & Ma, D. (2016). Advanced fabrication of chemically bonded graphene/TiO2 continuous fibers with enhanced broadband photocatalytic properties and involved mechanisms exploration. Scientific Reports, 6(1), 38066. doi:10.1038/srep38066
  • Zhao, B., Kang Ke, X., Hua Bao, J., Ling Wang, C., Dong, L., Wen Chen, Y., & Chen, H. L. (2009). Synthesis of flower like NiO and effects of morphology on its catalytic properties. The Journal of Physical Chemistry C, 113(32), 14440–14447. doi:10.1021/jp904186k
  • Zhao, D., Wang, J., Zhang, Z., & Zhang, J. (2009). Photocatalytic degradation of omethoate using NaY zeolite-supported TiO2. Frontiers of Chemical Engineering in China, 3(2), 206–210. doi:10.1007/s11705-009-0053-4
  • Zhu, H., Chen, X., Zheng, Z., Ke, X., Jaatinen, E., Zhao, J., … Wang, D. (2009). Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Chemical Communications, (48), 7524–7526. doi:10.1039/b917052a
  • Zia, U. H. K., Hafiz, M. S., Noor, S. S., Arif, U. K., Nawshad, M., Sadaf, U. L., … Ali, Z. (2019). Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications. Journal of Photochemistry and Photobiology B: Biology, 192(2019), 147–157. doi:10.1016/j.jphotobiol.2019.01.013
  • Zirak, R. G., Lotfi, A., & Moghadam, M. S. (2016). The effects interaction between nanoanatase TiO2 and bleomycin sulfateon the lactate dehydrogenase activity in vivo. International Journal of Advance Bio-Technology and Research, 7, 1109–1118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.