2,304
Views
55
CrossRef citations to date
0
Altmetric
Articles

Environmental transformation and nano-toxicity of engineered nano-particles (ENPs) in aquatic and terrestrial organisms

, ORCID Icon, , , & ORCID Icon
Pages 2523-2581 | Published online: 03 Jan 2020

References

  • Liang, J., Xia, X., Zhang, W., Zaman, W. Q., Lin, K., Hu, S., & Lin, Z. (2017). The biochemical and toxicological responses of earthworm (Eisenia fetida) following exposure to nanoscale zerovalent iron in a soil system. Environmental Science and Pollution Research, 24(3), 2507–2514. doi:10.1007/s11356-016-8001-6
  • Abbas, Q., Liu, G., Yousaf, B., Ali, M. U., Ullah, H., & Ahmed, R. (2019). Effects of biochar on uptake, acquisition and translocation of silver nanoparticles in rice (Oryza sativa L.) in relation to growth, photosynthetic traits and nutrients displacement. Environmental Pollution, 250, 728–736. doi:10.1016/j.envpol.2019.04.083
  • Abbas, Q., Liu, G., Yousaf, B., Ali, M. U., Ullah, H., Mujtaba Munir, M. A., … Rehman, A. (2020). Biochar-assisted transformation of engineered-cerium oxide nanoparticles: Effect on wheat growth, photosynthetic traits and cerium accumulation. Ecotoxicology and Environmental Safety, 187, 109845. doi:10.1016/j.ecoenv.2019.109845
  • Abbas, Q., Liu, G., Yousaf, B., Ali, M. U., Ullah, H., Munir, M. A. M., & Liu, R. (2018). Contrasting effects of operating conditions and biomass particle size on bulk characteristics and surface chemistry of rice husk derived-biochars. Journal of Analytical and Applied Pyrolysis, 134, 281–292. doi:10.1016/j.jaap.2018.06.018
  • Abhilash, P. C., Powell, J. R., Singh, H. B., & Singh, B. K. (2012). Plant–microbe interactions: Novel applications for exploitation in multipurpose remediation technologies. Trends in Biotechnology, 30(8), 416–420. doi:10.1016/j.tibtech.2012.04.004
  • Adamcakova-Dodd, A., Monick, M. M., Powers, L. S., Gibson-Corley, K. N., & Thorne, P. S. (2015). Effects of prenatal inhalation exposure to copper nanoparticles on murine dams and offspring. Particle and Fibre Toxicology, 12, 30.doi:10.1186/s12989-015-0105-5
  • Adeleye, A. S., & Keller, A. A. (2016). Interactions between algal extracellular polymeric substances and commercial TiO2 nanoparticles in aqueous media. Environmental Science & Technology, 50(22), 12258–12265. doi:10.1021/acs.est.6b03684
  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., … Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–23. doi:10.1016/j.chemosphere.2013.10.071
  • Åkerlund, E., Cappellini, F., Di Bucchianico, S., Islam, S., Skoglund, S., Derr, R., … Karlsson, H. L. (2018). Genotoxic and mutagenic properties of Ni and NiO nanoparticles investigated by comet assay, γ-H2AX staining, Hprt mutation assay and ToxTracker reporter cell lines. Environmental and Molecular Mutagenesis, 59(3), 211–222. doi:10.1002/em.22163
  • Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4(10), 5731–5736. doi:10.1021/nn101390x
  • Ali, S. A., Rizk, M. Z., Hamed, M. A., Aboul-Ela, E. I., El-Rigal, N. S., Aly, H. F., & Abdel-Hamid, A. H. Z. (2019). Assessment of titanium dioxide nanoparticles toxicity via oral exposure in mice: Effect of dose and particle size. Biomarkers, 24(5), 492–498. doi:10.1080/1354750X.2019.1620336
  • Al-Kattan, A., Wichser, A., Zuin, S., Arroyo, Y., Golanski, L., Ulrich, A., & Nowack, B. (2014). Behavior of TiO2 released from nano-TiO2-containing paint and comparison to pristine nano-TiO2. Environmental Science & Technology, 48(12), 6710–6718. doi:10.1021/es5006219
  • Amde, M., Liu, J. F., Tan, Z. Q., & Bekana, D. (2017). Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. Environmental Pollution, 230, 250–267. doi:10.1016/j.envpol.2017.06.064
  • Antisari, L. V., Laudicina, V. A., Gatti, A., Carbone, S., Badalucco, L., & Vianello, G. (2015). Soil microbial biomass carbon and fatty acid composition of earthworm Lumbricus rubellus after exposure to engineered nanoparticles. Biology and Fertility of Soils, 51(2), 261–269. doi:10.1007/s00374-014-0972-1
  • Asadishad, B., Chahal, S., Cianciarelli, V., Zhou, K., & Tufenkji, N. (2017). Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: Role of nanoparticle size and surface coating. Environmental Science: Nano, 4(4), 907–918. doi:10.1039/C6EN00567E
  • Baalousha, M., Lead, J. R., & Ju-Nam, Y. (2011). 3.05 – Natural colloids and manufactured nanoparticles in aquatic and terrestrial systems. In P. Wilderer (Ed.), Treatise on water science (pp. 89–129). Berlin: Elsevier. doi:10.1016/B978-0-444-53199-5.00053-1
  • Bai, N., Wang, S., Abuduaini, R., Zhu, X., & Zhao, Y. (2016). Isolation and characterization of Sphingomonas sp. Y2 capable of high-efficiency degradation of nonylphenol polyethoxylates in wastewater. Environmental Science and Pollution Research, 23(12), 12019–12029. doi:10.1007/s11356-016-6413-y
  • Baker, T. J., Tyler, C. R., & Galloway, T. S. (2014). Impacts of metal and metal oxide nanoparticles on marine organisms. Environmental Pollution, 186, 257–271. doi:10.1016/j.envpol.2013.11.014
  • Bakiu, R. (2018). Nanowaste classification, management, and legislative framework. In C. M. Hussain (Ed.), Handbook of environmental materials management (pp. 1–30). Cham: Springer. doi:10.1007/978-3-319-58538-3_151-1
  • Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C. M., José-Yacamán, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2015). Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Science of the Total Environment, 515–516, 60–69. doi:10.1016/j.scitotenv.2015.02.014
  • Bar-Ilan, O., Chuang, C. C., Schwahn, D. J., Yang, S., Joshi, S., Pedersen, J. A., … Heideman, W. (2013). TiO2 nanoparticle exposure and illumination during zebrafish development: Mortality at parts per billion concentrations. Environmental Science & Technology, 47(9), 4726–4733. doi:10.1021/es304514r
  • Bayat, N., Rajapakse, K., Marinsek-Logar, R., Drobne, D., & Cristobal, S. (2014). The effects of engineered nanoparticles on the cellular structure and growth of Saccharomyces cerevisiae. Nanotoxicology, 8(4), 363–373. doi:10.3109/17435390.2013.788748
  • Berry, T. D., Filley, T. R., Clavijo, A. P., Bischoff Gray, M., & Turco, R. F. (2017). Degradation and microbial uptake of C60 fullerols in contrasting agricultural soils. Environmental Science & Technology, 51(3), 1387–1394. doi:10.1021/acs.est.6b04637
  • Bhatt, I., & Tripathi, B. N. (2011). Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere, 82(3), 308–317. doi:10.1016/j.chemosphere.2010.10.011
  • Bhuvaneshwari, M., Iswarya, V., Archanaa, S., Madhu, G. M., Kumar, G. K. S., Nagarajan, R., … Mukherjee, A. (2015). Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions. Aquatic Toxicology, 162, 29–38. doi:10.1016/j.aquatox.2015.03.004
  • Bradfield, S. J., Kumar, P., White, J. C., & Ebbs, S. D. (2017). Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: Yield effects and projected dietary intake from consumption. Plant Physiology and Biochemistry, 110, 128–137. doi:10.1016/j.plaphy.2016.04.008
  • Brunetti, G., Donner, E., Laera, G., Sekine, R., Scheckel, K. G., Khaksar, M., … Lombi, E. (2015). Fate of zinc and silver engineered nanoparticles in sewerage networks. Water Research, 77, 72–84. doi:10.1016/j.watres.2015.03.003
  • Buffet, P. E., Poirier, L., Zalouk-Vergnoux, A., Lopes, C., Amiard, J. C., Gaudin, P., … Mouneyrac, C. (2014). Biochemical and behavioural responses of the marine polychaete hediste diversicolor to cadmium sulfide quantum dots (CdS QDs): Waterborne and dietary exposure. Chemosphere, 100, 63–70. doi:10.1016/j.chemosphere.2013.12.069
  • Buffet, P.-E., Tankoua, O. F., Pan, J.-F., Berhanu, D., Herrenknecht, C., Poirier, L., … Mouneyrac, C. (2011). Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles. Chemosphere, 84(1), 166–174. doi:10.1016/j.chemosphere.2011.02.003
  • Bury, N. R., & Wood, C. M. (1999). Mechanism of branchial apical silver uptake by rainbow trout is via the proton-coupled Na channel. The American Journal of Physiology, 277(5), R1385–R1391.
  • Bystrzejewska-Piotrowska, G., Golimowski, J., & Urban, P. L. (2009). Nanoparticles: Their potential toxicity, waste and environmental management. Waste Management, 29(9), 2587–2595. doi:10.1016/j.wasman.2009.04.001
  • Canesi, L., Ciacci, C., Vallotto, D., Gallo, G., Marcomini, A., & Pojana, G. (2010). In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquatic Toxicology, 96(2), 151–158. doi:10.1016/j.aquatox.2009.10.017
  • Cao, J., Feng, Y., Lin, X., Wang, J., & Xie, X. (2017). Iron oxide magnetic nanoparticles deteriorate the mutual interaction between arbuscular mycorrhizal fungi and plant. Journal of Soils and Sediments, 17(3), 841–851. doi:10.1007/s11368-016-1561-8
  • Cao, Z., Stowers, C., Rossi, L., Zhang, W., Lombardini, L., & Ma, X. (2017). Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of Soybean (Glycine max L.). Environmental Science: Nano, 4(5), 1086–1094. doi:10.1039/C7EN00015D
  • Cardillo, D., Tehei, M., Hossain, M. S., Islam, M. M., Bogusz, K., Shi, D., … Konstantinov, K. (2016). Synthesis-dependent surface defects and morphology of hematite nanoparticles and their effect on cytotoxicity in vitro. ACS Applied Materials & Interfaces, 8(9), 5867–5876. doi:10.1021/acsami.5b12065
  • Chai, H., Yao, J., Sun, J., Zhang, C., Liu, W., Zhu, M., & Ceccanti, B. (2015). The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bulletin of Environmental Contamination and Toxicology, 94(4), 490–495. doi:10.1007/s00128-015-1485-9
  • Chen, J., Dou, R., Yang, Z., Wang, X., Mao, C., Gao, X., & Wang, L. (2016). The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.). Nanotoxicology, 10(6), 818–828. doi:10.3109/17435390.2015.1133864
  • Collin, B., Oostveen, E., Tsyusko, O. V., & Unrine, J. M. (2014). Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environmental Science & Technology, 48(2), 1280–1289. doi:10.1021/es404503c
  • Connolly, M., Fernández, M., Conde, E., Torrent, F., Navas, J. M., & Fernández-Cruz, M. L. (2016). Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Science of the Total Environment, 551–552, 334–343. doi:10.1016/j.scitotenv.2016.01.186
  • Cornelis, G., Hund-Rinke, K., Kuhlbusch, T., van den Brink, N., & Nickel, C. (2014). Fate and bioavailability of engineered nanoparticles in soils: A review. Critical Reviews in Environmental Science and Technology, 44(24), 2720–2764. doi:10.1080/10643389.2013.829767
  • Cui, X., Shen, Y., Yang, Q., Kawi, S., He, Z., Yang, X., & Wang, C.-H. (2018). Simultaneous syngas and biochar production during heavy metal separation from Cd/Zn hyperaccumulator (Sedum alfredii) by gasification. Chemical Engineering Journal, 347, 543–551. doi:10.1016/j.cej.2018.04.133
  • Das, P., Barua, S., Sarkar, S., Chatterjee, S. K., Mukherjee, S., Goswami, L., … Bhattacharya, S. S. (2018). Mechanism of toxicity and transformation of silver nanoparticles: Inclusive assessment in earthworm-microbe-soil-plant system. Geoderma, 314, 73–84. doi:10.1016/j.geoderma.2017.11.008
  • Das, S., Wolfson, B. P., Tetard, L., Tharkur, J., Bazata, J., & Santra, S. (2015). Effect of N-acetyl cysteine coated CdS:Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): Imaging and spectroscopic studies. Environmental Science: Nano, 2(2), 203–212. doi:10.1039/C4EN00198B
  • Davidson, D. C., Derk, R., He, X., Stueckle, T. A., Cohen, J., Pirela, S. V., … Wang, L. (2015). Direct stimulation of human fibroblasts by nCeO2 in vitro is attenuated with an amorphous silica coating. Particle and Fibre Toxicology, 13, 23. doi:10.1186/s12989-016-0134-8
  • del Río, L. A. (2015). ROS and RNS in plant physiology: An overview. Journal of Experimental Botany, 66(10), 2827–2837. doi:10.1093/jxb/erv099
  • Deng, X.-Y., Cheng, J., Hu, X.-L., Wang, L., Li, D., & Gao, K. (2017). Biological effects of TiO2 and CeO2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum. Science of the Total Environment, 575, 87–96. doi:10.1016/j.scitotenv.2016.10.003
  • Deng, R., Lin, D., Zhu, L., Majumdar, S., White, J. C., Gardea-Torresdey, J. L., & Xing, B. (2017). Nanoparticle interactions with co-existing contaminants: Joint toxicity, bioaccumulation and risk. Nanotoxicology, 11(5), 591–612. doi:10.1080/17435390.2017.1343404
  • Dhiman, S. S., Zhao, X., Li, J., Kim, D., Kalia, V. C., Kim, I.-W., … Lee, J.-K. (2017). Metal accumulation by sunflower (Helianthus annuus L.) and the efficacy of its biomass in enzymatic saccharification. PLoS One, 12(4), e0175845. doi:10.1371/journal.pone.0175845
  • Dimkpa, C. O., Latta, D. E., McLean, J. E., Britt, D. W., Boyanov, M. I., & Anderson, A. J. (2013). Fate of CuO and ZnO nano- and microparticles in the plant environment. Environmental Science & Technology, 47(9), 4734–4742. doi:10.1021/es304736y
  • Dimkpa, C. O., McLean, J. E., Martineau, N., Britt, D. W., Haverkamp, R., & Anderson, A. J. (2013). Silver Nanoparticles Disrupt Wheat (Triticum aestivum L.) Growth in a Sand Matrix. Environmental Science & Technology, 47(2), 1082–1090. doi:10.1021/es302973y
  • Dinesh, R., Anandaraj, M., Srinivasan, V., & Hamza, S. (2012). Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma, 173–174, 19–27. doi:10.1016/j.geoderma.2011.12.018
  • Domingos, R. F., Rafiei, Z., Monteiro, C. E., Khan, M. A. K., & Wilkinson, K. J. (2013). Agglomeration and dissolution of zinc oxide nanoparticles: Role of pH, ionic strength and fulvic acid. Environmental Chemistry, 10(4), 306–312. doi:10.1071/EN12202
  • Dominguez, G. A., Lohse, S. E., Torelli, M. D., Murphy, C. J., Hamers, R. J., Orr, G., & Klaper, R. D. (2015). Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna. Aquatic Toxicology, 162, 1–9. doi:10.1016/j.aquatox.2015.02.015
  • Dong, S., Xia, T., Yang, Y., Lin, S., & Mao, L. (2018). Bioaccumulation of 14C-labeled graphene in an aquatic food chain through direct uptake or trophic transfer. Environmental Science & Technology, 52(2), 541–549. doi:10.1021/acs.est.7b04339
  • Doody, M. A., Wang, D., Bais, H. P., & Jin, Y. (2016). Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays. Journal of the Nanoparticle Research, 18, 1–19. doi:10.1007/s11051-016-3602-z
  • Doyle, J. J., Ward, J. E., & Mason, R. (2015). An examination of the ingestion, bioaccumulation, and depuration of titanium dioxide nanoparticles by the blue mussel (Mytilus edulis) and the eastern oyster (Crassostrea virginica). Marine Environmental Research, 110, 45–52. doi:10.1016/j.marenvres.2015.07.020
  • Du, W., Tan, W., Peralta-Videa, J. R., Gardea-Torresdey, J. L., Ji, R., Yin, Y., & Guo, H. (2017). Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects. Plant Physiology and Biochemistry, 110, 210–225. doi:10.1016/j.plaphy.2016.04.024
  • Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports, 15, 11–23. doi:10.1016/j.btre.2017.03.002
  • Fajardo, C., Saccà, M. L., Costa, G., Nande, M., & Martin, M. (2014). Impact of Ag and Al2O3 nanoparticles on soil organisms: In vitro and soil experiments. Science of the Total Environment, 473–474, 254–261. doi:10.1016/j.scitotenv.2013.12.043
  • Farkas, J., Bergum, S., Nilsen, E. W., Olsen, A. J., Salaberria, I., Ciesielski, T. M., … Jenssen, B. M. (2015). The impact of TiO2 nanoparticles on uptake and toxicity of benzo(a)pyrene in the blue mussel (Mytilus edulis). Science of the Total Environment, 511, 469–476. doi:10.1016/j.scitotenv.2014.12.084
  • Frazier, T. P., Burklew, C. E., & Zhang, B. (2014). Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Functional & Integrative Genomics, 14(1), 75–83. doi:10.1007/s10142-013-0341-4
  • Frenzilli, G., Bernardeschi, M., Guidi, P., Scarcelli, V., Lucchesi, P., Marsili, L., … Nigro, M. (2014). Effects of in vitro exposure to titanium dioxide on DNA integrity of bottlenose dolphin (Tursiops truncatus) fibroblasts and leukocytes. Marine Environmental Research, 100, 68–73. doi:10.1016/j.marenvres.2014.01.002
  • Gambardella, C., Costa, E., Piazza, V., Fabbrocini, A., Magi, E., Faimali, M., & Garaventa, F. (2015). Effect of silver nanoparticles on marine organisms belonging to different trophic levels. Marine Environmental Research, 111, 41–49. doi:10.1016/j.marenvres.2015.06.001
  • Garner, K. L., Suh, S., & Keller, A. A. (2017). Assessing the risk of engineered nanomaterials in the environment: Development and application of the nanofate model. Environmental Science & Technology, 51(10), 5541–5551. doi:10.1021/acs.est.6b05279
  • Ghafari, P., St-Denis, C. H., Power, M. E., Jin, X., Tsou, V., Mandal, H. S., … Tang, X. (2008). Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nature Nanotechnology, 3(6), 347–351. doi:10.1038/nnano.2008.109
  • Ghosh, M., Bhadra, S., Adegoke, A., Bandyopadhyay, M., & Mukherjee, A. (2015). MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 774, 49–58. doi:10.1016/j.mrfmmm.2015.03.004
  • Giese, B., Klaessig, F., Park, B., Kaegi, R., Steinfeldt, M., Wigger, H., … Gottschalk, F. (2018). Risks, release and concentrations of engineered nanomaterial in the environment. Scientific Reports, 8(1), 1565. doi:10.1038/s41598-018-19275-4
  • Gomes, M. A., da, C., Hauser-Davis, R. A., de Souza, A. N., & Vitória, A. P. (2016). Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicology and Environmental Safety, 134, 133–147. doi:10.1016/j.ecoenv.2016.08.024
  • Gonçalves, M. F. M., Gomes, S. I. L., Scott-Fordsmand, J. J., & Amorim, M. J. B. (2017). Shorter lifetime of a soil invertebrate species when exposed to copper oxide nanoparticles in a full lifespan exposure test. Scientific Reports, 7(1), 1355. doi:10.1038/s41598-017-01507-8
  • Gong, X., Huang, D., Liu, Y., Zeng, G., Wang, R., Wei, J., … Zhang, C. (2018). Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption. Bioresource Technology, 253, 64–71. doi:10.1016/j.biortech.2018.01.018
  • Goswami, L., Kim, K. H., Deep, A., Das, P., Bhattacharya, S. S., Kumar, S., & Adelodun, A. A. (2017). Engineered nano particles: Nature, behavior, and effect on the environment. Journal of Environmental Management, 196, 297–315. doi:10.1016/j.jenvman.2017.01.011
  • Gottschalk, F., Lassen, C., Kjoelholt, J., Christensen, F., Nowack, B., Gottschalk, F., … Nowack, B. (2015). Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. International Journal of Environmental Research and Public Health, 12(5), 5581–5602. doi:10.3390/ijerph120505581
  • Guo, B., Jiang, J., Serem, W., Sharma, V. K., & Ma, X. (2019). Attachment of cerium oxide nanoparticles of different surface charges to kaolinite: Molecular and atomic mechanisms. Environmental Research, 177, 108645. doi:10.1016/j.envres.2019.108645
  • Gupta, G. S., Dhawan, A., & Shanker, R. (2016). Montmorillonite clay alters toxicity of silver nanoparticles in zebrafish (Danio rerio) eleutheroembryo. Chemosphere, 163, 242–251. doi:10.1016/j.chemosphere.2016.08.032
  • Gupta, G. S., Senapati, V. A., Dhawan, A., & Shanker, R. (2017). Heteroagglomeration of zinc oxide nanoparticles with clay mineral modulates the bioavailability and toxicity of nanoparticle in Tetrahymena pyriformis. Journal of Colloid and Interface Science., 495, 9–18. doi:10.1016/j.jcis.2017.01.101
  • Han, Z., Guo, Z., Zhang, Y., Xiao, X., Xu, Z., & Sun, Y. (2018). Adsorption-pyrolysis technology for recovering heavy metals in solution using contaminated biomass phytoremediation. Resources, Conservation & Recycling, 129, 20–26. doi:10.1016/j.resconrec.2017.10.003
  • Han, X., Lai, L., Tian, F., Jiang, F.-L., Xiao, Q., Li, Y., … Liu, Y. (2012). Toxicity of CdTe quantum dots on yeast Saccharomyces cerevisiae. Small, 8(17), 2680–2689. doi:10.1002/smll.201200591
  • Han, J., Qiu, W., & Gao, W. (2010). Potential dissolution and photo-dissolution of ZnO thin films. Journal of Hazardous Materials, 178(1–3), 115–122. doi:10.1016/j.jhazmat.2010.01.050
  • Hao, Y., Ma, C., Zhang, Z., Song, Y., Cao, W., Guo, J., … Xing, B. (2018). Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environmental Pollution, 232, 123–136. doi:10.1016/j.envpol.2017.09.024
  • Harumain, Z. A. S., Parker, H. L., Muñoz García, A., Austin, M. J., McElroy, C. R., Hunt, A. J., … Rylott, E. L. (2017). Toward financially viable phytoextraction and production of plant-based palladium catalysts. Environmental Science & Technology, 51(5), 2992–3000. doi:10.1021/acs.est.6b04821
  • Hatami, M., Kariman, K., & Ghorbanpour, M. (2016). Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Science of the Total Environment, 571, 275–291. doi:10.1016/j.scitotenv.2016.07.184
  • Hernandez-Viezcas, J. A., Castillo-Michel, H., Andrews, J. C., Cotte, M., Rico, C. M., Peralta-Videa, J. R., … Gardea-Torresdey, J. L. (2013). In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano, 7(2), 1415–1423. doi:10.1021/nn305196q
  • Hernandez-Viezcas, J. A., Castillo-Michel, H., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2016). Interactions between CeO2 nanoparticles and the desert plant mesquite: A spectroscopy approach. ACS Sustainable Chemistry & Engineering, 4(3), 1187–1192. doi:10.1021/acssuschemeng.5b01251
  • Hiraku, Y., Guo, F., Ma, N., Yamada, T., Wang, S., Kawanishi, S., & Murata, M. (2015). Multi-walled carbon nanotube induces nitrative DNA damage in human lung epithelial cells via HMGB1-RAGE interaction and Toll-like receptor 9 activation. Particle and Fibre Toxicology, 13, 16. doi:10.1186/s12989-016-0127-7
  • Hoek, C. M. E. M. V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531–1551. doi:10.1007/s11051-010-9900-y
  • Holden, P. A., Klaessig, F., Turco, R. F., Priester, J. H., Rico, C. M., Avila-Arias, H., … Gardea-Torresdey, J. L. (2014). Manufactured nanomaterial environmental hazards: Are they relevant? Environmental Science & Technology, 48(18), 10541–10551. doi:10.1021/es502440s
  • HTF Market Report. (2018). Global nanotechnology market (by component and applications), funding & investment, patent analysis and 27 companies profile & recent developments – Forecast to 2024. Edison.
  • Iannone, M. F., Groppa, M. D., de Sousa, M. E., Fernández van Raap, M. B., & Benavides, M. P. (2016). Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: Evaluation of oxidative damage. Environmental and Experimental Botany, 131, 77–88. doi:10.1016/j.envexpbot.2016.07.004
  • Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293. doi:10.1016/j.ajme.2017.09.001
  • Ismadji, S., Soetaredjo, F. E., & Ayucitra, A. (2015). Natural clay minerals as environmental cleaning agents. In A. Ayucitra, F. E. Soetaredjo, & S. Ismadji (Eds.), Clay materials for environmental remediation (pp. 5–37). Cham: Springer. doi:10.1007/978-3-319-16712-1_2
  • Jacob, D. L., Borchardt, J. D., Navaratnam, L., Otte, M. L., & Bezbaruah, A. N. (2013). Uptake and translocation of Ti from nanoparticles in crops and wetland plants. International Journal of Phytoremediation, 15(2), 142–153. doi:10.1080/15226514.2012.683209
  • Jagadissgupta, K., & Igamberdiev, A. U. (2015). Reactive oxygen and nitrogen species signaling and communication in plants. Signaling and communication in plants. Cham: Springer. doi:10.1007/978-3-319-10079-1
  • Jin, L., Son, Y., DeForest, J. L., Kang, Y. J., Kim, W., & Chung, H. (2014). Single-walled carbon nanotubes alter soil microbial community composition. Science of the Total Environment, 466–467, 533–538. doi:10.1016/j.scitotenv.2013.07.035
  • John, A. C., Küpper, M., Manders-Groot, A. M. M., Debray, B., Lacome, J. M., & Kuhlbusch, T. A. J. (2017). Emissions and possible environmental Implication of engineered nanomaterials (ENMs) in the atmosphere. Atmosphere (Basel), 8, 1–29. doi:10.3390/atmos8050084
  • Judy, J. D., Unrine, J. M., & Bertsch, P. M. (2011). Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environmental Science & Technology, 45(2), 776–781. doi:10.1021/es103031a
  • Juganson, K., Mortimer, M., Ivask, A., Pucciarelli, S., Miceli, C., Orupõld, K., & Kahru, A. (2017). Mechanisms of toxic action of silver nanoparticles in the protozoan Tetrahymena thermophila: From gene expression to phenotypic events. Environmental Pollution, 225, 481–489. doi:10.1016/j.envpol.2017.03.013
  • Juhel, G., Batisse, E., Hugues, Q., Daly, D., van Pelt, F. N. A. M., O’Halloran, J., & Jansen, M. A. K. (2011). Alumina nanoparticles enhance growth of Lemna minor. Aquatic Toxicology, 105(3–4), 328–336. doi:10.1016/j.aquatox.2011.06.019
  • Kansara, K., Kumar, A., & Karakoti, A. S. (2020). Combination of humic acid and clay reduce the ecotoxic effect of TiO2 NPs: A combined physico-chemical and genetic study using zebrafish embryo. Science of the Total Environment, 698, 134133. doi:10.1016/j.scitotenv.2019.134133
  • Kansara, K., Paruthi, A., Misra, S. K., Karakoti, A. S., & Kumar, A. (2019). Montmorillonite clay and humic acid modulate the behavior of copper oxide nanoparticles in aqueous environment and induces developmental defects in zebrafish embryo. Environmental Pollution, 255, 113313. doi:10.1016/j.envpol.2019.113313
  • Kaveh, R., Li, Y. S., Ranjbar, S., Tehrani, R., Brueck, C. L., & Van Aken, B. (2013). Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environmental Science & Technology, 47(18), 10637–10644. doi:10.1021/es402209w
  • Kaweeteerawat, C., Ivask, A., Liu, R., Zhang, H., Chang, C. H., Low-Kam, C., … Godwin, H. (2015). Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies. Environmental Science & Technology, 49(2), 1105–1112. doi:10.1021/es504259s
  • Keller, A. A., & Lazareva, A. (2014). Predicted releases of engineered nanomaterials: From global to regional to local. Environmental Science & Technology Letters, 1(1), 61–75. doi:10.1021/ez400106t
  • Keller, A. A., McFerran, S., Lazareva, A., & Suh, S. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15, 1692. doi:10.1007/s11051-013-1692-4
  • Keller, A. A., Vosti, W., Wang, H., & Lazareva, A. (2014). Release of engineered nanomaterials from personal care products throughout their life cycle. Journal of Nanoparticle Research, 16, 2489. doi:10.1007/s11051-014-2489-9
  • Khodakovskaya, M. V., Kim, B.-S., Kim, J. N., Alimohammadi, M., Dervishi, E., Mustafa, T., & Cernigla, C. E. (2013). Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small, 9(1), 115–123. doi:10.1002/smll.201201225
  • Kirschling, T. L., Golas, P. L., Unrine, J. M., Matyjaszewski, K., Gregory, K. B., Lowry, G. V., & Tilton, R. D. (2011). Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials. Environmental Science & Technology, 45(12), 5253–5259. doi:10.1021/es200770z
  • Labille, J., Harns, C., Bottero, J. Y., & Brant, J. (2015). Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids. Environmental Science & Technology, 49(11), 6608–6616. doi:10.1021/acs.est.5b00357
  • Lankadurai, B. P., Nagato, E. G., Simpson, A. J., & Simpson, M. J. (2015). Analysis of Eisenia fetida earthworm responses to sub-lethal C60 nanoparticle exposure using 1H-NMR based metabolomics. Ecotoxicology and Environmental Safety, 120, 48–58. doi:10.1016/j.ecoenv.2015.05.020
  • Laycock, A., Romero-Freire, A., Najorka, J., Svendsen, C., van Gestel, C. A. M., & Rehkämper, M. (2017). Novel multi-isotope tracer approach to test ZnO nanoparticle and soluble Zn bioavailability in joint soil exposures. Environmental Science & Technology, 51(21), 12756–12763. doi:10.1021/acs.est.7b02944
  • Lee, W.-M., & An, Y.-J. (2015). Evidence of three-level trophic transfer of quantum dots in an aquatic food chain by using bioimaging. Nanotoxicology, 9(4), 407–412. doi:10.3109/17435390.2014.948517
  • Lee, W. M., Yoon, S. J., Shin, Y. J., & An, Y. J. (2015). Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna. Environmental Pollution, 201, 10–16. doi:10.1016/j.envpol.2015.02.021
  • Lei, C., Zhang, L., Yang, K., Zhu, L., & Lin, D. (2016). Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging. Environmental Pollution, 218, 505–512. doi:10.1016/j.envpol.2016.07.030
  • Lin, D., Tian, X., Wu, F., & Xing, B. (2010). Fate and transport of engineered nanomaterials in the environment. Journal of Environment Quality, 39(6), 1896–1908. doi:10.2134/jeq2009.0423
  • Li, Y., Qin, T., Ingle, T., Yan, J., He, W., Yin, J. J., & Chen, T. (2017). Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Archives of Toxicology, 91(1), 509–519. doi:10.1007/s00204-016-1730-y
  • Liu, X., Li, J., Huang, Y., Wang, X., Zhang, X., & Wang, X. (2017). Adsorption, aggregation, and deposition behaviors of carbon dots on minerals. Environmental Science & Technology, 51(11), 6156–6164. doi:10.1021/acs.est.6b06558
  • Liu, R., Liu, G., Yousaf, B., & Abbas, Q. (2018). Operating conditions-induced changes in product yield and characteristics during thermal-conversion of peanut shell to biochar in relation to economic analysis. Journal of Cleaner Production, 193, 479–490. doi:10.1016/j.jclepro.2018.05.034
  • Li, W., Wang, M., Bian, X., Guo, J., & Cai, L. (2016). A high-level fungal diversity in the intertidal sediment of Chinese seas presents the spatial variation of community composition. Frontiers in Microbiology, 7, 1–12. doi:10.3389/fmicb.2016.02098
  • Li, X., Zhang, C., Bian, Q., Gao, N., Zhang, X., Meng, Q., … Chen, R. (2016). Integrative functional transcriptomic analyses implicate specific molecular pathways in pulmonary toxicity from exposure to aluminum oxide nanoparticles. Nanotoxicology, 10(7), 957–969. doi:10.3109/17435390.2016.1149632
  • Li, Y., Zhang, W., Niu, J., & Chen, Y. (2012). Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 6(6), 5164–5173. doi:10.1021/nn300934k
  • Li, W., Zheng, Y., Zhang, H., Liu, Z., Su, W., Chen, S., … Lei, B. (2016). Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants. ACS Applied Materials & Interfaces, 8(31), 19939–19945. doi:10.1021/acsami.6b07268
  • Lopez-Serrano, A., Olivas, R. M. M., Landaluze, J. S., Camara, C., López-Serrano, A., & Cámara, C. (2014). Nanoparticles: A global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Analytical Methods, 6, 38–56. doi:10.1039/C3AY40517F
  • Lowry, G. V., Espinasse, B. P., Badireddy, A. R., Richardson, C. J., Reinsch, B. C., Bryant, L. D., … Wiesner, M. R. (2012). Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environmental Science & Technology, 46(13), 7027–7036. doi:10.1021/es204608d
  • Lowry, G. V., Gregory, K. B., Apte, S. C., & Lead, J. R. (2012). Transformations of nanomaterials in the environment. Environmental Science & Technology, 46(13), 6893–6899. doi:10.1021/es300839e
  • Luo, X., Xu, S., Yang, Y., Li, L., Chen, S., Xu, A., & Wu, L. (2016). Insights into the ecotoxicity of silver nanoparticles transferred from Escherichia coli to Caenorhabditis elegans. Scientific Reports, 6, 36465.doi:10.1038/srep36465
  • Lv, J., Zhang, S., Luo, L., Zhang, J., Yang, K., & Christie, P. (2015). Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environmental Science: Nano, 2(1), 68–77. doi:10.1039/C4EN00064A
  • Mahawar, H., & Prasanna, R. (2018). Prospecting the interactions of nanoparticles with beneficial microorganisms for developing green technologies for agriculture. Environmental Nanotechnology, Monitoring and Management, 10, 477–485. doi:10.1016/j.enmm.2018.09.004
  • Ma, Y., He, X., Zhang, P., Zhang, Z., Ding, Y., Zhang, J., … Yang, K. (2017). Xylem and phloem based transport of CeO2 nanoparticles in hydroponic cucumber plants. Environmental Science & Technology, 51(9), 5215–5221. doi:10.1021/acs.est.6b05998
  • Malev, O., Trebše, P., Piecha, M., Novak, S., Budič, B., Dramićanin, M. D., & Drobne, D. (2017). Effects of CeO2 nanoparticles on terrestrial isopod Porcellio scaber: Comparison of CeO2 biological potential with other nanoparticles. Archives of Environmental Contamination and Toxicology, 72(2), 303–311. doi:10.1007/s00244-017-0363-3
  • Ma, C., Liu, H., Guo, H., Musante, C., Coskun, S. H., Nelson, B. C., … Dhankher, O. P. (2016). Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environmental Science: Nano, 3(6), 1369–1379. doi:10.1039/C6EN00189K
  • Marmiroli, M., Pagano, L., Pasquali, F., Zappettini, A., Tosato, V., Bruschi, C. V., & Marmiroli, N. (2016). A genome-wide nanotoxicology screen of Saccharomyces cerevisiae mutants reveals the basis for cadmium sulphide quantum dot tolerance and sensitivity. Nanotoxicology, 10, 84–93. doi:10.3109/17435390.2015.1019586
  • Ma, C., White, J. C., Dhankher, O. P., & Xing, B. (2015). Metal-based nanotoxicity and detoxification pathways in higher plants. Environmental Science & Technology, 49(12), 7109–7122. doi:10.1021/acs.est.5b00685
  • Ma, Y., Zhang, P., Zhang, Z., He, X., Li, Y., Zhang, J., … Chai, Z. (2015). Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology, 9(2), 262–270. doi:10.3109/17435390.2014.921344
  • Ma, Y., Zhang, P., Zhang, Z., He, X., Zhang, J., Ding, Y., … Zhao, Y. (2015). Where does the transformation of precipitated ceria nanoparticles in hydroponic plants take place? Environmental Science & Technology, 49(17), 10667–10674. doi:10.1021/acs.est.5b02761
  • McShane, H., Sarrazin, M., Whalen, J. K., Hendershot, W. H., & Sunahara, G. I. (2012). Reproductive and behavioral responses of earthworms exposed to nano-sized titanium dioxide in soil. Environmental Toxicology and Chemistry, 31(1), 184–193. doi:10.1002/etc.714
  • Ming, Z., Feng, S., Yilihamu, A., Ma, Q., & Yang, S. (2018). Toxicity of pristine and chemically functionalized fullerenes to white rot fungus Phanerochaete chrysosporium. Nanomaterials, 8(2), E120. doi:10.3390/nano8020120
  • Miralles, P., Church, T. L., & Harris, A. T. (2012). Toxicity, uptake, and translocation of engineered nanomaterial in vascular plants. Environmental Science & Technology, 46(17), 9224–9239. doi:10.1021/es202995d
  • Mitrano, D. M., Limpiteeprakan, P., Babel, S., & Nowack, B. (2016). Durability of nano-enhanced textiles through the life cycle: Releases from landfilling after washing. Environmental Science: Nano, 3(2), 375–387. doi:10.1039/C6EN00023A
  • Mitrano, D. M., Mehrabi, K., Dasilva, Y. A. R., & Nowack, B. (2017). Mobility of metallic (nano)particles in leachates from landfills containing waste incineration residues. Environmental Science: Nano, 4(2), 480–492. doi:10.1039/C6EN00565A
  • Mortimer, M., Kasemets, K., Vodovnik, MA., MarinšEk-Logar, ROMANA., & Kahru, ANNE. (2011). Exposure to CuO nanoparticles changes the fatty acid composition of protozoa Tetrahymena thermophila. Environmental Science & Technology, 45(15), 6617–6624. doi:10.1021/es201524q
  • Mukherjee, S. P., Gliga, A. R., Lazzaretto, B., Brandner, B., Fielden, M., Vogt, C., … Fadeel, B. (2018). Graphene oxide is degraded by neutrophils and the degradation products are non-genotoxic. Nanoscale, 10(3), 1180–1188. doi:10.1039/C7NR03552G
  • Mukherjee, A., Peralta-Videa, J. R., Bandyopadhyay, S., Rico, C. M., Zhao, L., & Gardea-Torresdey, J. L. (2014). Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics, 6(1), 132–138. doi:10.1039/C3MT00064H
  • Mustafa, G., & Komatsu, S. (2016). Insights into the response of soybean mitochondrial proteins to various sizes of aluminum oxide nanoparticles under flooding stress. Journal of Proteome Research, 15(12), 4464–4475. doi:10.1021/acs.jproteome.6b00572
  • Nair, P. M. G., & Chung, I. M. (2014a). Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere, 112, 105–113. doi:10.1016/j.chemosphere.2014.03.056
  • Nair, P. M. G., & Chung, I. M. (2014b). Assessment of silver nanoparticle-induced physiological and molecular changes in Arabidopsis thaliana. Environmental Science and Pollution Research, 21(14), 8858–8869. doi:10.1007/s11356-014-2822-y
  • Nemmar, A., Beegam, S., Yuvaraju, P., Yasin, J., Tariq, S., Attoub, S., & Ali, B. H. (2015). Ultrasmall superparamagnetic iron oxide nanoparticles acutely promote thrombosis and cardiac oxidative stress and DNA damage in mice. Particle and Fibre Toxicology, 13, 22. doi:10.1186/s12989-016-0132-x
  • Novak, S., Romih, T., Drašler, B., Birarda, G., Vaccari, L., Ferraris, P., … Drobne, D. (2019). The: In vivo effects of silver nanoparticles on terrestrial isopods, Porcellio scaber, depend on a dynamic interplay between shape, size and nanoparticle dissolution properties. The Analyst, 144(2), 488–497. doi:10.1039/C8AN01387J
  • Nowack, B., Ranville, J. F., Diamond, S., Gallego-Urrea, J. A., Metcalfe, C., Rose, J., … Klaine, S. J. (2012). Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environmental Toxicology and Chemistry, 31(1), 50–59. doi:10.1002/etc.726
  • Nunes, S. M., Josende, M. E., Ruas, C. P., Gelesky, M. A., Júnior, FMR da S., Fattorini, D., … Ventura-Lima, J. (2017). Biochemical responses induced by co-exposition to arsenic and titanium dioxide nanoparticles in the estuarine polychaete Laeonereis acuta. Toxicology, 376, 51–58. doi:10.1016/j.tox.2016.05.013
  • Nyoka, N. W.-K., Kanyile, S. N., Bredenhand, E., Prinsloo, G. J., & Voua Otomo, P. (2018). Biochar alleviates the toxicity of imidacloprid and silver nanoparticles (AgNPs) to Enchytraeus albidus (Oligochaeta). Environmental Science and Pollution Research, 25(11), 10937–10945. doi:10.1007/s11356-018-1383-x
  • Ong, K. J., Felix, L. C., Boyle, D., Ede, J. D., Ma, G., Veinot, J. G. C., & Goss, G. G. (2017). Humic acid ameliorates nanoparticle-induced developmental toxicity in zebrafish. Environmental Science: Nano, 4(1), 127–137. doi:10.1039/C6EN00408C
  • Onoda, A., Takeda, K., & Umezawa, M. (2017). Dose-dependent induction of astrocyte activation and reactive astrogliosis in mouse brain following maternal exposure to carbon black nanoparticle. Particle and Fibre Toxicology, 14(1), 4doi:10.1186/s12989-017-0184-6
  • Pakrashi, S., Dalai, S., Chandrasekaran, N., & Mukherjee, A. (2014). Trophic transfer potential of aluminium oxide nanoparticles using representative primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia). Aquatic Toxicology, 152, 74–81. doi:10.1016/j.aquatox.2014.03.024
  • Pakrashi, S., Jain, N., Dalai, S., Jayakumar, J., Chandrasekaran, P. T., Raichur, A. M., … Mukherjee, A. (2014). In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS One, 9(2), e87789. doi:10.1371/journal.pone.0087789
  • Pati, R., Das, I., Mehta, R. K., Sahu, R., & Sonawane, A. (2016). Zinc-oxide nanoparticles exhibit genotoxic, clastogenic, cytotoxic and actin depolymerization effects by inducing oxidative stress responses in macrophages and adult mice. Toxicological Sciences, 150(2), 454–472. doi:10.1093/toxsci/kfw010
  • Patil, S. S., Shedbalkar, U. U., Truskewycz, A., Chopade, B. A., & Ball, A. S. (2016). Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions. Environmental Technology & Innovation, 5, 10–21. doi:10.1016/j.eti.2015.11.001
  • Peixoto, J., Silva, L. P., & Krüger, R. H. (2017). Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. Journal of Hazardous Materials, 324, 634–644. doi:10.1016/j.jhazmat.2016.11.037
  • Peng, C., Xu, C., Liu, Q., Sun, L., Luo, Y., & Shi, J. (2017). Fate and transformation of CuO nanoparticles in the soil–rice system during the life cycle of rice plants. Environmental Science & Technology, 51(9), 4907–4917. doi:10.1021/acs.est.6b05882
  • Peng, C., Zhang, W., Gao, H., Li, Y., Tong, X., Li, K., … Reif, J. A. (2017). nanomaterials behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments Shenzhen public platform for screening and application of marine microbial resources. Nanomaterials, 7(1), 21. doi:10.3390/nano7010021
  • Pérez-de-Luque, A. (2017). Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Frontiers in Environmental Science, 5, 12. doi:10.3389/fenvs.2017.00012
  • Petersen, E. J., Zhang, L., Mattison, N. T., O’Carroll, D. M., Whelton, A. J., Uddin, N., … Chen, K. L. (2011). Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environmental Science & Technology, 45(23), 9837–9856. doi:10.1021/es201579y
  • Pradas del Real, A. E., Castillo-Michel, H., Kaegi, R., Sinnet, B., Magnin, V., Findling, N., … Sarret, G. (2016). Fate of Ag-NPs in sewage sludge after application on agricultural soils. Environmental Science & Technology, 50(4), 1759–1768. doi:10.1021/acs.est.5b04550
  • Pradas del Real, A. E., Vidal, V., Carriere, M., Castillo-Michel, H. A., Levard, C., Chaurand, P., & Sarret, G. (2017). Ag nanoparticles and wheat roots: A complex interplay. Environmental Science & Technology, 51(10), 5774–5782. doi:10.1021/acs.est.7b00422
  • Qu, Z. G., He, X. C., Lin, M., Sha, B. Y., Shi, X. H., Lu, T. J., & Xu, F. (2013). Advances in the understanding of nanomaterial–biomembrane interactions and their mathematical and numerical modeling. Nanomedicine, 8(6), 995–1011. doi:10.2217/nnm.13.81
  • Rai, P. K., Kumar, V., Lee, S., Raza, N., Kim, K.-H., Ok, Y. S., & Tsang, D. C. W. (2018). Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environment International, 119, 1–19. doi:10.1016/j.envint.2018.06.012
  • Relier, C., Dubreuil, M., Lozano Garcia, O., Cordelli, E., Mejia, J., Eleuteri, P., … Trouiller, B. (2017). Study of TiO2 P25 nanoparticles genotoxicity on lung, blood and liver cells in lung overload and non-overload conditions after repeated respiratory exposure in rats. Toxicological Sciences, 156, kfx006. doi:10.1093/toxsci/kfx006
  • Ren, X., Zeng, G., Tang, L., Wang, J., Wan, J., Liu, Y., … Deng, R. (2018). Sorption, transport and biodegradation – An insight into bioavailability of persistent organic pollutants in soil. Science of the Total Environment, 610–611, 1154–1163. doi:10.1016/j.scitotenv.2017.08.089
  • Rhiem, S., Barthel, A.-K., Meyer-Plath, A., Hennig, M. P., Wachtendorf, V., Sturm, H., … Maes, H. M. (2016). Release of 14 C-labelled carbon nanotubes from polycarbonate composites. Environmental Pollution, 215, 356–365. doi:10.1016/j.envpol.2016.04.098
  • Rico, C. M., Morales, M. I., Barrios, A. C., McCreary, R., Hong, J., Lee, W.-Y., … Gardea-Torresdey, J. L. (2013). Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. Journal of Agricultural and Food Chemistry, 61(47), 11278–11285. doi:10.1021/jf404046v
  • Rizwan, M., Ali, S., Qayyum, M. F., Ok, Y. S., Adrees, M., Ibrahim, M., … Abbas, F. (2017). Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. Journal of Hazardous Materials, 322, 2–16. doi:10.1016/j.jhazmat.2016.05.061
  • Roy Choudhury, S., Ordaz, J., Lo, C.-L., Damayanti, N. P., Zhou, F., & Irudayaraj, J. (2017). ZnO nanoparticles induced reactive oxygen species promotes multimodal cyto- and epigenetic toxicity. Toxicological Sciences, 156, kfw252. doi:10.1093/toxsci/kfw252
  • Rueda-Romero, C., Hernández-Pérez, G., Ramos-Godínez, P., Vázquez-López, I., Quintana-Belmares, R. O., Huerta-García, E., … Alfaro-Moreno, E. (2015). Titanium dioxide nanoparticles induce the expression of early and late receptors for adhesion molecules on monocytes. Particle and Fibre Toxicology, 13, 36. doi:10.1186/s12989-016-0147-3
  • Salunkhe, R. R., Kaneti, Y. V., & Yamauchi, Y. (2017). Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: Progress and prospects. ACS Nano, 11(6), 5293–5308. doi:10.1021/acsnano.7b02796
  • Santos, A. R., Miguel, A. S., Tomaz, L., Malhó, R., Maycock, C., Vaz Patto, M. C., … Oliva, A. (2010). The impact of CdSe/ZnS quantum dots in cells of Medicago sativa in suspension culture. Journal of Nanobiotechnology, 8(1), 24. doi:10.1186/1477-3155-8-24
  • Saratale, R. G., Karuppusamy, I., Saratale, G. D., Pugazhendhi, A., Kumar, G., Park, Y., … Shin, H. S. (2018). A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids and Surfaces B: Biointerfaces, 170, 20–35. doi:10.1016/j.colsurfb.2018.05.045
  • Schiavo, S., Oliviero, M., Miglietta, M., Rametta, G., & Manzo, S. (2016). Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels. Science of the Total Environment, 550, 619–627. doi:10.1016/j.scitotenv.2016.01.135
  • Schreiner, K. M., Filley, T. R., Blanchette, R. A., Bowen, B. B., Bolskar, R. D., Hockaday, W. C., … Raebiger, J. W. (2009). White-rot basidiomycete-mediated decomposition of C 60 fullerol. Environmental Science & Technology, 43(9), 3162–3168. doi:10.1021/es801873q
  • Servin, A. D., Castillo-Michel, H., Hernandez-Viezcas, J. A., De Nolf, W., De La Torre-Roche, R., Pagano, L., … White, J. C. (2018). Bioaccumulation of CeO2 nanoparticles by earthworms in biochar-amended soil: A synchrotron microspectroscopy study. Journal of Agricultural and Food Chemistry, 66(26), 6609–6618. doi:10.1021/acs.jafc.7b04612
  • Shah, V., Dobiášová, P., Baldrian, P., Nerud, F., Kumar, A., & Seal, S. (2010). Influence of iron and copper nanoparticle powder on the production of lignocellulose degrading enzymes in the fungus Trametes versicolor. Journal of Hazardous Materials, 178(1–3), 1141–1145. doi:10.1016/j.jhazmat.2010.01.141
  • Shaw, A. K., & Hossain, Z. (2013). Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere, 93(6), 906–915. doi:10.1016/j.chemosphere.2013.05.044
  • Sima, X.-F., Shen, X.-C., Fang, T., Yu, H.-Q., & Jiang, H. (2017). Efficiently reducing the plant growth inhibition of CuO NPs using rice husk-derived biochar: Experimental demonstration and mechanism investigation. Environmental Science: Nano, 4(8), 1722–1732. doi:10.1039/C7EN00211D
  • Singh, J., Dutta, T., Kim, K.-H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology, 16(1), 84.doi:10.1186/s12951-018-0408-4
  • Skjolding, L. M., Ašmonaitė, G., Jølck, R. I., Andresen, T. L., Selck, H., Baun, A., & Sturve, J. (2017). An assessment of the importance of exposure routes to the uptake and internal localisation of fluorescent nanoparticles in zebrafish (Danio rerio), using light sheet microscopy. Nanotoxicology, 11(3), 351–359. doi:10.1080/17435390.2017.1306128
  • Skjolding, L. M., Winther-Nielsen, M., & Baun, A. (2014). Trophic transfer of differently functionalized zinc oxide nanoparticles from crustaceans (Daphnia magna) to zebrafish (Danio rerio). Aquatic Toxicology, 157, 101–108. doi:10.1016/j.aquatox.2014.10.005
  • Soliveres, S., Van Der Plas, F., Manning, P., Prati, D., Gossner, M. M., Renner, S. C., … Allan, E. (2016). Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 536(7617), 456–459. doi:10.1038/nature19092
  • Sonane, M., Moin, N., & Satish, A. (2017). The role of antioxidants in attenuation of Caenorhabditis elegans lethality on exposure to TiO2 and ZnO nanoparticles. Chemosphere, 187, 240–247. doi:10.1016/j.chemosphere.2017.08.080
  • Song, U., Jun, H., Waldman, B., Roh, J., Kim, Y., Yi, J., & Lee, E. J. (2013). Functional analyses of nanoparticle toxicity: A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and Environmental Safety, 93, 60–67. doi:10.1016/j.ecoenv.2013.03.033
  • Sørensen, S. N., Engelbrekt, C., Lützhøft, H. C. H., Jiménez-Lamana, J., Noori, J. S., Alatraktchi, F. A., … Baun, A. (2016). A multimethod approach for investigating algal toxicity of platinum nanoparticles. Environmental Science & Technology, 50, 10635–10643. doi:10.1021/acs.est.6b01072
  • Stamou, I., & Antizar-Ladislao, B. (2016). A life cycle assessment of the use of compost from contaminated biodegradable municipal solid waste with silver and titanium dioxide nanoparticles. Journal of Cleaner Production, 135, 884–891. doi:10.1016/j.jclepro.2016.06.150
  • Stegemeier, J. P., Colman, B. P., Schwab, F., Wiesner, M. R., & Lowry, G. V. (2017). Uptake and distribution of silver in the aquatic plant Landoltia punctata (Duckweed) exposed to silver and silver sulfide nanoparticles. Environmental Science & Technology, 51(9), 4936–4943. doi:10.1021/acs.est.6b06491
  • Su, Y., Zheng, X., Chen, Y., Li, M., & Liu, K. (2015). Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Scientific Reports, 5, 15824.doi:10.1038/srep15824
  • Sukhanova, A., Bozrova, S., Sokolov, P., Berestovoy, M., Karaulov, A., & Nabiev, I. (2018). Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Research Letters, 13(1), 44.doi:10.1186/s11671-018-2457-x
  • Sun, D., Hussain, H. I., Yi, Z., Siegele, R., Cresswell, T., Kong, L., & Cahill, D. M. (2014). Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Reports, 33(8), 1389–1402. doi:10.1007/s00299-014-1624-5
  • Sundarraj, K., Manickam, V., Raghunath, A., Periyasamy, M., Viswanathan, M. P., & Perumal, E. (2017). Repeated exposure to iron oxide nanoparticles causes testicular toxicity in mice. Environmental Toxicology, 32(2), 594–608. doi:10.1002/tox.22262
  • Suresh, A. K., Pelletier, D. A., & Doktycz, M. J. (2013). Relating nanomaterial properties and microbial toxicity. Nanoscale, 5(2), 463–474. doi:10.1039/C2NR32447D
  • Tan, C., & Wang, W.-X. (2014). Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles. Environmental Pollution, 186, 36–42. doi:10.1016/j.envpol.2013.11.015
  • Tangaa, S. R., Selck, H., Winther-Nielsen, M., & Khan, F. R. (2016). Trophic transfer of metal-based nanoparticles in aquatic environments: A review and recommendations for future research focus. Environmental Science: Nano, 3(5), 966–981. doi:10.1039/C5EN00280J
  • Topuz, E., & van Gestel, C. A. M. (2017). The effect of soil properties on the toxicity and bioaccumulation of Ag nanoparticles and Ag ions in Enchytraeus crypticus. Ecotoxicology and Environmental Safety, 144, 330–337. doi:10.1016/j.ecoenv.2017.06.037
  • Torres-Duarte, C., Adeleye, A. S., Pokhrel, S., Mädler, L., Keller, A. A., & Cherr, G. N. (2016). Developmental effects of two different copper oxide nanomaterials in sea urchin (Lytechinus pictus) embryos. Nanotoxicology, 10(6), 671–679. doi:10.3109/17435390.2015.1107145
  • Triantaphylidès, C., & Havaux, M. (2009). Singlet oxygen in plants: Production, detoxification and signaling. Trends in Plant Science, 14(4), 219–228. doi:10.1016/j.tplants.2009.01.008
  • Tsugita, M., Morimoto, N., & Nakayama, M. (2017). SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses. Particle and Fibre Toxicology, 14(1), 11doi:10.1186/s12989-017-0192-6
  • Uchimiya, M., Pignatello, J. J., White, J. C., Hu, S.-L., & Ferreira, P. J. (2017). Surface interactions between gold nanoparticles and biochar. Scientific Reports, 7(1), 5027doi:10.1038/s41598-017-03916-1
  • Ud-Daula, A., Pfister, G., & Schramm, K. W. (2013). Method for toxicity test of titanium dioxide nanoparticles in ciliate protozoan Tetrahymena. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 48(11), 1343–1348. doi:10.1080/10934529.2013.781878
  • US-EPA. 2000E:\Vijay\2019\Dec\23-12-19\TF-BEST190106\204. Introduction to phytoremediation. U.S. Environmental Protection Agency. EPA/600/R-99/107
  • Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F., Rejeski, D., & Hull, M. S. (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6, 1769–1780. doi:10.3762/bjnano.6.181
  • Von Moos, N., Bowen, P., & Slaveykova, V. I. (2014). Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater. Environmental Science: Nano, 1(3), 214–232. doi:10.1039/c3en00054k
  • Vorbau, M., Hillemann, L., & Stintz, M. (2009). Method for the characterization of the abrasion induced nanoparticle release into air from surface coatings. Journal of Aerosol Science, 40(3), 209–217. doi:10.1016/j.jaerosci.2008.10.006
  • Wang, H., Dong, Y. NAN., Zhu, M., Li, X., Keller, A. A., Wang, T., & Li, F. (2015). Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments. Water Research, 80, 130–138. doi:10.1016/j.watres.2015.05.023
  • Wang, H., Kou, X., Pei, Z., Xiao, J. Q., Shan, X., & Xing, B. (2011). Physiological effects of magnetite (Fe3 O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology, 5(1), 30–42. doi:10.3109/17435390.2010.489206
  • Wang, P., Lombi, E., Sun, S., Scheckel, K. G., Malysheva, A., McKenna, B. A., … Kopittke, P. M. (2017). Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. Environmental Science: Nano, 4(2), 448–460. doi:10.1039/C6EN00489J
  • Wang, P., Lombi, E., Zhao, F.-J., & Kopittke, P. M. (2016). Nanotechnology: A new opportunity in plant sciences. Trends in Plant Science, 21(8), 699–712. doi:10.1016/j.tplants.2016.04.005
  • Wang, P., Menzies, N. W., Lombi, E., McKenna, B. A., Johannessen, B., Glover, C. J., … Kopittke, P. M. (2013). Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environmental Science & Technology, 47(23), 13822–13830. doi:10.1021/es403466p
  • Werlin, R., Priester, J. H., Mielke, R. E., Krämer, S., Jackson, S., Stoimenov, P. K., … Holden, P. A. (2011). Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nature Nanotechnology, 6(1), 65–71. doi:10.1038/nnano.2010.251
  • Wu, Q., Huang, K., Sun, H., Ren, H., Zhang, X. XIANG., & Ye, L. (2018). Comparison of the impacts of zinc ions and zinc nanoparticles on nitrifying microbial community. Journal of Hazardous Materials, 343, 166–175. doi:10.1016/j.jhazmat.2017.09.022
  • Wu, Q., Nouara, A., Li, Y., Zhang, M., Wang, W., Tang, M., … Wang, D. (2013). Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere, 90(3), 1123–1131. doi:10.1016/j.chemosphere.2012.09.019
  • Xiong, T., Dumat, C., Dappe, V., Vezin, H., Schreck, E., Shahid, M., … Sobanska, S. (2017). Copper Oxide Nanoparticle Foliar Uptake, Phytotoxicity, and Consequences for Sustainable Urban Agriculture. Environmental Science & Technology, 51(9), 5242–5251. doi:10.1021/acs.est.6b05546
  • Xu, G., Lin, G., Lin, S., Wu, N., Deng, Y., Feng, G., … Wang, X. (2016). The Reproductive Toxicity of CdSe/ZnS Quantum Dots on the in vivo Ovarian Function and in vitro Fertilization. Scientific Reports, 6, 37677. doi:10.1038/srep37677
  • Xu, C., Peng, C., Sun, L., Zhang, S., Huang, H., Chen, Y., & Shi, J. (2015). Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biology and Biochemistry, 86, 24–33. doi:10.1016/j.soilbio.2015.03.011
  • Yang, L., Kuang, H., Zhang, W., Aguilar, Z. P., Wei, H., & Xu, H. (2017). Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Scientific Reports, 7(1), 3303. doi:10.1038/s41598-017-03015-1
  • Yanik, F., & Vardar, F. (2018). Mechanism and interaction of nanoparticle-induced programmed cell death in plants. In M. Faisal, Q. Saquib, A. A. Alatar, & A. A. Al-Khedhairy (Eds.), Phytotoxicity of nanoparticles (pp. 175–196). Cham: Springer. doi:10.1007/978-3-319-76708-6_7
  • Younis, S. A., El-Fawal, E. M., & Serp, P. (2018). Nano-wastes and the environment: Potential challenges and opportunities of nano-waste management paradigm for greener nanotechnologies. In C. M. Hussain (Ed.), Handbook of environmental materials management (pp. 1–72). Cham: Springer. doi:10.1007/978-3-319-58538-3_53-1
  • Yousaf, B., Liu, G., Abbas, Q., Ali, M. U., Wang, R., Ahmed, R., … Usman, A. R. A. (2018). Operational control on environmental safety of potentially toxic elements during thermal conversion of metal-accumulator invasive ragweed to biochar. Journal of Cleaner Production, 195, 458–469. doi:10.1016/j.jclepro.2018.05.246
  • Yousaf, B., Liu, G., Abbas, Q., Ullah, H., Wang, R., Zia-Ur-Rehman, M., … Niu, Z. (2018). Comparative effects of biochar-nanosheets and conventional organic-amendments on health risks abatement of potentially toxic elements via consumption of wheat grown on industrially contaminated-soil. Chemosphere, 192, 161–170. doi:10.1016/j.chemosphere.2017.10.137
  • Yu, J. G., Yu, L. Y., Yang, H., Liu, Q., Chen, X. H., Jiang, X. Y., … Jiao, F. P. (2015). Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions. Science of the Total Environment, 502, 70–79. doi:10.1016/j.scitotenv.2014.08.077
  • Yuan, J., He, A., Huang, S., Hua, J., & Sheng, G. D. (2016). Internalization and phytotoxic effects of CuO nanoparticles in Arabidopsis thaliana as revealed by fatty acid profiles. Environmental Science & Technology, 50(19), 10437–10447. doi:10.1021/acs.est.6b02613
  • Yue, Y., Li, X., Sigg, L., Suter, M. J.-F., Pillai, S., Behra, R., & Schirmer, K. (2017). Interaction of silver nanoparticles with algae and fish cells: A side by side comparison. Journal of Nanobiotechnology, 15(1), 16. doi:10.1186/s12951-017-0254-9
  • Yue, L., Zhao, J., Yu, X., Lv, K., Wang, Z., & Xing, B. (2018). Interaction of CuO nanoparticles with duckweed (Lemna minor. L): Uptake, distribution and ROS production sites. Environmental Pollution, 243, 543–552. doi:10.1016/j.envpol.2018.09.013
  • Zhang, C., Chen, W., & Alvarez, P. J. J. (2014). Manganese peroxidase degrades pristine but not surface-oxidized (carboxylated) single-walled carbon nanotubes. Environmental Science & Technology, 48(14), 7918–7923. doi:10.1021/es5011175
  • Zhang, P., Ma, Y., Zhang, Z., He, X., Guo, Z., Tai, R., … Chai, Z. (2012). Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environmental Science & Technology, 46(3), 1834–1841. doi:10.1021/es2027295
  • Zhang, P., Ma, Y., Zhang, Z., He, X., Zhang, J., Guo, Z., … Chai, Z. (2012). Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano, 6(11), 9943–9950. doi:10.1021/nn303543n
  • Zhang, L., Petersen, E. J., Zhang, W., Chen, Y., Cabrera, M., & Huang, Q. (2012). Interactions of 14 C-labeled multi-walled carbon nanotubes with soil minerals in water. Environmental Pollution, 166, 75–81. doi:10.1016/j.envpol.2012.03.008
  • Zhang, M., Yang, J., Cai, Z., Feng, Y., Wang, Y., Zhang, D., & Pan, X. (2019). Detection of engineered nanoparticles in aquatic environments: Current status and challenges in enrichment, separation, and analysis. Environmental Science: Nano, 6(3), 709–735. doi:10.1039/C8EN01086B
  • Zhang, L., Zhou, L., Li, Q. X., Liang, H., Qin, H., Masutani, S., & Yoza, B. (2018). Toxicity of lanthanum oxide nanoparticles to the fungus Moniliella wahieum Y12T isolated from biodiesel. Chemosphere, 199, 495–501. doi:10.1016/j.chemosphere.2018.02.032
  • Zhao, Y., Allen, B. L., & Star, A. (2011). Enzymatic degradation of multiwalled carbon nanotubes. The Journal of Physical Chemistry A, 115(34), 9536–9544. doi:10.1021/jp112324d
  • Zhao, J., Cao, X., Liu, X., Wang, Z., Zhang, C., White, J. C., & Xing, B. (2016). Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: Adhesion, uptake, and toxicity. Nanotoxicology, 10(9), 1297–1305. doi:10.1080/17435390.2016.1206149
  • Zhao, S., He, L., Lu, Y., & Duo, L. (2017). The impact of modified nano-carbon black on the earthworm Eisenia fetida under turfgrass growing conditions: Assessment of survival, biomass, and antioxidant enzymatic activities. Journal of Hazardous Materials, 338, 218–223. doi:10.1016/j.jhazmat.2017.05.035
  • Zhao, L., Hu, Q., Huang, Y., & Keller, A. A. (2017). Response at genetic, metabolic, and physiological levels of maize (Zea mays) exposed to a Cu(OH)2 nanopesticide. ACS Sustainable Chemistry & Engineering, 5(9), 8294–8301. doi:10.1021/acssuschemeng.7b01968
  • Zhao, L., Peralta-Videa, J. R., Varela-Ramirez, A., Castillo-Michel, H., Li, C., Zhang, J., … Gardea-Torresdey, J. L. (2012). Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism. Journal of Hazardous Materials, 225–226, 131–138. doi:10.1016/j.jhazmat.2012.05.008
  • Zhao, J., Ren, W., Dai, Y., Liu, L., Wang, Z., Yu, X., … Xing, B. (2017). Uptake, distribution, and transformation of CuO NPs in a floating plant Eichhornia crassipes and related stomatal responses. Environmental Science & Technology, 51(13), 7686–7695. doi:10.1021/acs.est.7b01602
  • Zhao, J., Suárez, G., Tran, N., Puntes, V., & Riediker, M. (2019). Coating aerosolized nanoparticles with low-volatile organic compound (LVOC) vapors modifies surface functionality and oxidative reactivity. NanoImpact, 14, 100150. doi:10.1016/j.impact.2019.100150
  • Zhao, L., Sun, Y., Hernandez-Viezcas, J. A., Hong, J., Majumdar, S., Niu, G., … Gardea-Torresdey, J. L. (2015). Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels. Environmental Science & Technology, 49(5), 2921–2928. doi:10.1021/es5060226
  • Zuverza-Mena, N., Medina-Velo, I. A., Barrios, A. C., Tan, W., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2015). Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environmental Science: Processes & Impacts, 17(10), 1783–1793. doi:10.1039/C5EM00329F

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.