1,120
Views
19
CrossRef citations to date
0
Altmetric
Research Article

A review of extraction methods for the analysis of pharmaceuticals in environmental waters

ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 2271-2299 | Published online: 04 Jan 2020

References

  • Abdolmohammad-Zadeh, H., & Talleb, Z. (2015). Magnetic solid phase extraction of gemfibrozil from human serum and pharmaceutical wastewater samples utilizing a β-cyclodextrin grafted graphene oxide-magnetite nano-hybrid. Talanta, 134, 387–393. doi:10.1016/j.talanta.2014.11.054
  • Acta, A. C. (2013). Novel coatings for stir bar sorptive extraction to determine pharmaceuticals and personal care products in environmental waters by liquid chromatography and tandem mass spectrometry. Analytica Chimica Acta, 774, 51–60.
  • Acta, A. C., Sarafraz-Yazdi, A., Amiri, A., Rounaghi, G., & Eshtiagh-Hosseini, H. (2012). Determination of non-steroidal anti-inflammatory drugs in water samples by solid-phase microextraction based sol–gel technique using poly(ethylene glycol) grafted multi-walled carbon nanotubes coated fiber. Analytica Chimica Acta, 720, 134–141.
  • Aguilar-Arteaga, K., Rodriguez, J. A., Miranda, J. M., Medina, J., & Barrado, E. (2010). Determination of non-steroidal anti-inflammatory drugs in wastewaters by magnetic matrix solid phase dispersion-HPLC. Talanta, 80(3), 1152–1157. doi:10.1016/j.talanta.2009.08.042
  • Ahrer, W., Scherwenk, E., & Buchberger, W. (2001). Determination of drug residues in water by the combination of liquid chromatography or capillary electrophoresis with electrospray mass spectrometry. J. Chromatogr. A, 910(1), 69–78. doi:10.1016/S0021-9673(00)01187-0
  • Antoniou, C. V., Koukouraki, E. E., & Diamadopoulos, E. (2009). Analysis of selected pharmaceutical compounds and endocrine disruptors in municipal wastewater using solid-phase microextraction and gas chromatography. Water Environment Research, 81(7), 664–669. doi:10.2175/106143008X390834
  • Anumol, T., & Snyder, S. A. (2015). Rapid analysis of trace organic compounds in water by automated online solid-phase extraction coupled to liquid chromatography–tandem mass spectrometry. Talanta, 132, 77–86. doi:10.1016/j.talanta.2014.08.011
  • Anumol, T., Merel, S., Clarke, B. O., & Snyder, S. A. (2013). Ultra high performance liquid chromatography tandem mass spectrometry for rapid analysis of trace organic contaminants in water. Chemistry Central Journal, 7, 104. doi:10.1186/1752-153X-7-104
  • Anumol, T., Wu, S., Marques dos Santos, M., Daniels, K. D., & Snyder, S. A. (2015). Rapid direct injection LC-MS/MS method for analysis of prioritized indicator compounds in wastewater effluent. Environmental Science: Water Research & Technology, 1(5), 632–643. doi:10.1039/C5EW00080G
  • Araujo, L. (2008). Determination of anti-inflammatory drugs in water samples, by in situ derivatization, solid phase microextraction and gas chromatography–mass spectrometry. Talanta, 75(1), 111–115. doi:10.1016/j.talanta.2007.10.035
  • Batt, A. L., Kostich, M. S., & Lazorchak, J. M. (2008). Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid-phase extraction and UPLC-MS/MS. Analytical Chemistry, 80(13), 5021–5030. doi:10.1021/ac800066n
  • Boix, C., Ibáñez, M., Sancho, J. V., Rambla, J., Aranda, J. L., Ballester, S., & Hernández, F. (2015). Fast determination of 40 drugs in water using large volume direct injection liquid chromatography-tandem mass spectrometry. Talanta, 131, 719–727. doi:10.1016/j.talanta.2014.08.005
  • Bound, J. P., & Voulvoulis, N. (2005). Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. Environmental Health Perspectives, 113(12), 1705–1711. doi:10.1289/ehp.8315
  • Bratkowska, D., Fontanals, N., Cormack, P. A. G., Borrull, F., & Marcé, R. M. (2011). Preparation of a polar monolithic stir bar based on methacrylic acid and divinylbenzene for the sorptive extraction of polar pharmaceuticals from complex water samples. Journal of Chromatography A, 1225, 1-7. doi:10.1016/j.chroma.2011.12.064
  • Buchberger, W. W. (2007). Novel analytical procedures for screening of drug residues in water, waste water, sediment and sludge. Analytica Chimica Acta, 593(2), 129–139. doi:10.1016/j.aca.2007.05.006
  • Busetti, F., Backe, W. J., Bendixen, N., Maier, U., Place, B., Giger, W., & Field, J. A. (2012). Trace analysis of environmental matrices by large-volume injection and liquid chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 402(1), 175–186. doi:10.1007/s00216-011-5290-y
  • Cahill, J. D., Furlong, E. T., Burkhardt, M. R., Kolpin, D., & Anderson, L. G. (2004). Determination of pharmaceutical compounds in surface-and ground-water samples by solid-phase extraction and high-performance liquid chromatography–electrospray ionization mass spectrometry. Journal of Chromatography A, 1041(1-2), 171–180. doi:10.1016/j.chroma.2004.04.005
  • Caldas, S. S., Rombaldi, C., De Oliveira Arias, J. L., Marube, L. C., & Primel, E. G. (2016). Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry. Talanta, 146, 676–688. doi:10.1016/j.talanta.2015.06.047
  • Carpinteiro, I., Ramil, M., Rodríguez, I., & Nogueira, J. M. F. (2012). Combining stir-bar sorptive extraction and large volume injection-gas chromatography-mass spectrometry for the determination of benzotriazole UV stabilizers in wastewater matrices. Journal of Separation Science, 35(3), 459–467. doi:10.1002/jssc.201100448
  • Choi, K. J., Kim, S. G., Kim, C. W., & Kim, S. H. (2007). Determination of antibiotic compounds in water by on-line SPE-LC/MSD. Chemosphere, 66(6), 977–984. doi:10.1016/j.chemosphere.2006.07.037
  • Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environmental Health Perspectives, 107(suppl 6), 907–938. doi:10.2307/3434573
  • de Lima Gomes, P. C. F., Barletta, J. Y., Nazario, C. E. D., Santos-Neto, Á. J., Von Wolff, M. A., Coneglian, C. M. R., … Lancas, F. M. (2011). Optimization of in situ derivatization SPME by experimental design for GC-MS multi-residue analysis of pharmaceutical drugs in wastewater. Journal of Separation Science, 34(4), 436–445. doi:10.1002/jssc.201000708
  • Fan, W., Mao, X., He, M., Chen, B., & Hu, B. (2014). Development of novel sol–gel coatings by chemically bonded ionic liquids for stir bar sorptive extraction—application for the determination of NSAIDS in real samples. Analytical and Bioanalytical Chemistry, 406(28), 7261–7273. doi:10.1007/s00216-014-8141-9
  • Farré, M·L., Ferrer, I., Ginebreda, A., Figueras, M., Olivella, L., Tirapu, L., … Barceló, D. (2001). Determination of drugs in surface water and wastewater samples by liquid chromatography-mass spectrometry: Methods and preliminary results including toxicity studies with Vibrio fischeri. Journal of Chromatography A, 938(1-2), 187–197. doi:10.1016/S0021-9673(01)01154-2
  • Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76(2), 122–159. doi:10.1016/j.aquatox.2005.09.009
  • Fent, K., Weston, A. A., & Caminada, D. (2006). Erratum to “Ecotoxicology of human pharmaceuticals”. Aquatic Toxicology, 76, 122-159. doi:10.1016/j.aquatox.2005.09.009
  • Galera, M. M., Vázquez, P. P., Vázquez, M. D M. P., García, M. D. G., & Amate, C. F. (2011). Analysis of β-blockers in groundwater using large-volume injection coupled-column reversed-phase liquid chromatography with fluorescence detection and liquid chromatography time-of-flight mass spectrometry. Journal of Separation Science, 34(15), 1796–1804. doi:10.1002/jssc.201100117
  • García, M. D. G., Cañada, F. C., Culzoni, M. J., Vera-Candioti, L., Siano, G. G., Goicoechea, H. C., & Galera, M. M. (2009). Chemometric tools improving the determination of anti-inflammatory and antiepileptic drugs in river and wastewater by solid-phase microextraction and liquid chromatography diode array detection. Journal of Chromatography A, 1216(29), 5489–5496. doi:10.1016/j.chroma.2009.05.073
  • Garcia-Ac, A., Segura, P. A., Viglino, L., Fürtös, A., Gagnon, C., Prévost, M., & Sauvé, S. (2009). On-line solid-phase extraction of large-volume injections coupled to liquid chromatography-tandem mass spectrometry for the quantitation and confirmation of 14 selected trace organic contaminants in drinking and surface water. Journal of Chromatography A, 1216(48), 8518–8527. doi:10.1016/j.chroma.2009.10.015
  • Garrison, A. W., Pope, J. D., & Allen, F. R. (1976). GC/MS analysis of organic compounds in domestic wastewater. Identification and Analysis of Organic Pollutants in Water, 517–556.
  • Ge, D., & Lee, H. K. (2013). Ionic liquid based dispersive liquid–liquid microextraction coupled with micro-solid phase extraction of antidepressant drugs from environmental water samples. Journal of Chromatography A, 1317, 217–222. doi:10.1016/j.chroma.2013.04.014
  • Gros, M., Petrovi, M., & Barceló, D. (2006). Development of a multi-residue analytical methodology based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta, 70(4), 678–690. doi:10.1016/j.talanta.2006.05.024
  • Guan, J., Zhang, C., Wang, Y., Guo, Y., Huang, P., & Zhao, L. (2016). Simultaneous determination of 12 pharmaceuticals in water samples by ultrasound-assisted dispersive liquid–liquid microextraction coupled with ultra-high performance liquid chromatography with tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 408(28), 8099–8109. doi:10.1007/s00216-016-9913-1
  • Gusmaroli, L., Insa, S., & Petrovic, M. (2018). Development of an online SPE-UHPLC-MS/MS method for the multiresidue analysis of the 17 compounds from the EU “Watch list”. Analytical and Bioanalytical Chemistry, 410(17), 4165–4176. doi:10.1007/s00216-018-1069-8
  • Hao, C., Clement, R., & Yang, P. (2007). Liquid chromatography-tandem mass spectrometry of bioactive pharmaceutical compounds in the aquatic environment-a decade’s activities. Analytical and Bioanalytical Chemistry, 387(4), 1247–1257. doi:10.1007/s00216-006-0956-6
  • Hasheminasab, K. S., Fakhari, A. R., Shahsavani, A., & Ahmar, H. (2013). A new method for the enhancement of electromembrane extraction efficiency using carbon nanotube reinforced hollow fiber for the determination of acidic drugs in spiked plasma, urine, breast milk and wastewater samples. Journal of Chromatography A, 1285, 1–6. doi:10.1016/j.chroma.2013.01.115
  • Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicology Letters, 131(1-2), 5–17. doi:10.1016/S0378-4274(02)00041-3
  • Hernández, F., Sancho, J. V., Ibáñez, M., & Guerrero, C. (2007). Antibiotic residue determination in environmental waters by LC-MS. TrAC Trends in Analytical Chemistry, 26(6), 466–485. doi:10.1016/j.trac.2007.01.012
  • Hernando, M. D., Petrovic, M., Fernández-Alba, A. R., & Barceló, D. (2004). Analysis by liquid chromatography–electrospray ionization tandem mass spectrometry and acute toxicity evaluation for β-blockers and lipid-regulating agents in wastewater samples. Journal of Chromatography A, 1046, 133–140. doi:10.1016/j.chroma.2004.06.102
  • Higaite, C., & Azarnoff, D. L. (1977). Drugs and drug metabolites as environmental contaminants: Chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Life Sciences, 20, 337–342. doi:10.1016/0024-3205(77)90329-0
  • Huang, S., Zhu, F., Jiang, R., Zhou, S., Zhu, D., Liu, H., & Ouyang, G. (2015). Determination of eight pharmaceuticals in an aqueous sample using automated derivatization solid-phase microextraction combined with gas chromatography-mass spectrometry. Talanta, 136, 198–203. doi:10.1016/j.talanta.2014.11.071
  • Huschek, G., Hansen, P. D., Maurer, H. H., Krengel, D., & Kayser, A. (2004). Environmental risk assessment of medicinal products for human use according to European Commission recommendations. Environmental Toxicology, 19(3), 226–240. doi:10.1002/tox.20015
  • Idder, S., Ley, L., Mazellier, P., & Budzinski, H. (2013). Quantitative on-line preconcentration-liquid chromatography coupled with tandem mass spectrometry method for the determination of pharmaceutical compounds in water. Analytica Chimica Acta, 805, 107–115. doi:10.1016/j.aca.2013.10.041
  • Ingrand, V., Herry, G., Beausse, J., & De Roubin, M. R. (2003). Analysis of steroid hormones in effluents of wastewater treatment plants by liquid chromatoraphy-tandem mass spectrometry. Journal of Chromatography A, 1020(1), 99–104. doi:10.1016/S0021-9673(03)00770-2
  • Jia, A., Wu, S., Daniels, K. D., & Snyder, S. A. (2016). Balancing the budget: Accounting for glucocorticoid bioactivity and fate during water treatment. Environmental Science & Technology, 50(6), 2870–2880. doi:10.1021/acs.est.5b04893
  • Jia, A., Xiao, Y., Hu, J., Asami, M., & Kunikane, S. (2009). Simultaneous determination of tetracyclines and their degradation products in environmental waters by liquid chromatography–electrospray tandem mass spectrometry. Journal of Chromatography A, 1216(22), 4655–4662. doi:10.1016/j.chroma.2009.03.073
  • Jones, O. A. H., Voulvoulis, N., & Lester, J. N. (2002). Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Research, 36(20), 5013–5022. doi:10.1016/S0043-1354(02)00227-0
  • Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2007). Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography–positive electrospray ionisation tandem mass spectrometry. Journal of Chromatography A, 1161(1-2), 132–145. doi:10.1016/j.chroma.2007.05.074
  • Khan, S. J., & Ongerth, J. E. (2004). Modelling of pharmaceutical residues in Australian sewage by quantities of use and fugacity calculations. Chemosphere, 54(3), 355–367. doi:10.1016/j.chemosphere.2003.07.001
  • Kloepfer, A., Quintana, J. B., & Reemtsma, T. (2005). Operational options to reduce matrix effects in liquid chromatography–electrospray ionization-mass spectrometry analysis of aqueous environmental samples. Journal of Chromatography A, 1067(1-2), 153–160. doi:10.1016/j.chroma.2004.11.101
  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Environmental Science & Technology, 36(6), 1202–1211. doi:10.1021/es011055j
  • Kot-Wasik, A., Dębska, J., Wasik, A., & Namieśnik, J. (2006). Determination of non-steroidal anti-inflammatory drugs in natural waters using off-line and on-line SPE followed by LC coupled with DAD-MS. Chromatographia, 64(1-2), 13–21. doi:10.1365/s10337-006-0797-7
  • Kowal, S., Balsaa, P., Werres, F., & Schmidt, T. C. (2012). Reduction of matrix effects and improvement of sensitivity during determination of two chloridazon degradation products in aqueous matrices by using UPLC-ESI-MS/MS. Analytical and Bioanalytical Chemistry, 403(6), 1707–1717. doi:10.1007/s00216-012-5986-7
  • Larsson, N., Petersson, E., Rylander, M., & Jönsson, J. A. (2009). Continuous flow hollow fiber liquid-phase microextraction and monitoring of NSAID pharmaceuticals in a sewage treatment plant effluent. Analytical Methods, 1(1), 59–67. doi:10.1039/b9ay00015a
  • Lekota, M. W., Dimpe, K. M., & Nomngongo, P. N. (2019). MgO-ZnO/carbon nanofiber nanocomposite as an adsorbent for ultrasound-assisted dispersive solid-phase microextraction of carbamazepine from wastewater prior to high-performance liquid chromatographic detection. J. Anal. Sci. Technol, 10,25.
  • Loos, R., Gawlik, B. M., Locoro, G., Rimaviciute, E., Contini, S., & Bidoglio, G. (2009). EU-wide survey of polar organic persistent pollutants in European river waters. Environmental Pollution, 157(2), 561–568. doi:10.1016/j.envpol.2008.09.020
  • López-Serna, R., Pérez, S., Ginebreda, A., Petroví, M., & Barceló, D. (2010). Fully automated determination of 74 pharmaceuticals in environmental and waste waters by online solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry. Talanta, 83(2), 410–424. doi:10.1016/j.talanta.2010.09.046
  • Manso, J., Larsson, E., & Jönsson, J. Å. (2014). Determination of 4 0 -isobutylacetophenone and other transformation products of anti-inflammatory drugs in water and sludge from five wastewater treatment plants in Sweden by hollow fiber liquid phase microextraction and gas chromatography–mass spectrometry. Talanta, 125, 87–93. doi:10.1016/j.talanta.2014.02.056
  • Marchese, S., Gentili, A., Perret, D., Ascenzo, G. D., & Pastori, F. (2003). Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of non-steroidal antiinflammatory drugs in surface water by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 17(9), 879–886. doi:10.1002/rcm.998
  • Matamoros, V., Jover, E., & Bayona, J. M. (2010). Part-per-Trillion determination of pharmaceuticals, pesticides, and related organic contaminants in river water by solid-phase extraction followed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Analytical Chemistry, 82(2), 699–706. doi:10.1021/ac902340e
  • Medvedovici, A., Udrescu, S., Albu, F., Tache, F., & David, V. (2011). Large-volume injection of sample diluents not miscible with the mobile phase as an alternative approach in sample preparation for bioanalysis: An application for fenspiride bioequivalence. Bioanalysis, 3(17), 1935–1947. doi:10.4155/bio.11.148
  • Montesdeoca-Esponda, S., Mahugo-Santana, C., Sosa-Ferrera, Z., & Santana-Rodríguez, J. J. (2015). A dispersive liquid-liquid micellar microextraction for the determination of pharmaceutical compounds in wastewaters using ultra-high-performace liquid chromatography with DAD detection. Biomedical Chromatography, 29(3), 353–356. doi:10.1002/bmc.3282
  • Nojavan, S., Gorji, T., Davarani, S. S. H., & Morteza-Najarian, A. (2014). Solvent selection in ultrasonic-assisted emulsification microextraction: Comparison between high- and low-density solvents by means of novel type of extraction vessel. Analytica Chimica Acta, 838, 51–57. doi:10.1016/j.aca.2014.06.004
  • Pascoe, R., Foley, J. P., & Gusev, A. I. (2001). Reduction in matrix-related signal suppression effects in electrospray ionization mass spectrometry using on-line two-dimensional liquid chromatography. Analytical Chemistry, 73(24), 6014–6023. doi:10.1021/ac0106694
  • Patrolecco, L., Ademollo, N., Grenni, P., Tolomei, A., Barra Caracciolo, A., & Capri, S. (2013). Simultaneous determination of human pharmaceuticals in water samples by solid phase extraction and HPLC with UV-fluorescence detection. Microchemical Journal, 107, 165–171. doi:10.1016/j.microc.2012.05.035
  • Peng, J. (2014). Molecularly imprinted polymers based stir bar sorptive extraction for determination of cefaclor and cefalexin in environmental water. Analytical and Bioanalytical Chemistry, 406, 7261–7273.
  • Pérez, R. A., Albero, B., Férriz, M., & Tadeo, J. L. (2017). Analysis of macrolide antibiotics in water by magnetic solid-phase extraction and liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 146, 79–85. doi:10.1016/j.jpba.2017.08.013
  • Petrovi, M., Hernando, M. D., Silvia Díaz-Cruz, M., & Barceló, D. A. (2005). Liquid chromatography–tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: A review. Journal of Chromatography A, 1067, 1–14. doi:10.1016/j.chroma.2004.10.110
  • Petrovic, M., Gros, M., & Barcelo, D. (2006). Multi-residue analysis of pharmaceuticals in wastewater by ultra-performance liquid chromatography–quadrupole–time-of-flight mass spectrometry. Journal of Chromatography A, 1124(1-2), 68–81. doi:10.1016/j.chroma.2006.05.024
  • Pozo, O. J., Guerrero, C., Sancho, J. V., Ibáñez, M., Pitarch, E., Hogendoorn, E., & Hernández, F. (2006). Efficient approach for the reliable quantification and confirmation of antibiotics in water using on-line solid-phase extraction liquid chromatography/tandem mass spectrometry. Journal of Chromatography A, 1103(1), 83–93. doi:10.1016/j.chroma.2005.10.073
  • Qin, S., Su, L., Wang, P., & Gao, Y. (2015). Rapid and selective extraction of multiple sulfonamides from aqueous samples based on Fe3O4 –chitosan molecularly imprinted polymers. Analytical Methods, 7(20), 8704–8713. 10.1039/C5AY01499A
  • Quintana, J. B., Miro, M., Estela, J. M., & Cerdà, V. (2006). Automated on-line renewable solid-phase extraction-liquid chromatography exploiting multisyringe flow injection-bead injection lab-on-valve analysis. Analytical Chemistry, 78(8), 2832–2840. doi:10.1021/ac052256z
  • Quintana, J. B., Rodil, R., & Reemtsma, T. (2004). Suitability of hollow fibre liquid-phase microextraction for the determination of acidic pharmaceuticals in wastewater by liquid chromatography–electrospray tandem mass spectrometry without matrix effects. Journal of Chromatography A, 1061(1), 19–26. doi:10.1016/j.chroma.2004.10.090
  • Ramos Payán, M., Bello López, M. Á., Fernández-Torres, R., Callejón Mochón, M., & Gómez Ariza, J. L. (2010). Application of hollow fiber-based liquid-phase microextraction (HF-LPME) for the determination of acidic pharmaceuticals in wastewaters. Talanta, 82(2), 854–858. doi:10.1016/j.talanta.2010.05.022
  • Ramos Payán, M., Bello López, M. Á., Fernández-Torres, R., González, J. A. O., & Callejón Mochón, M. (2011). Hollow fiber-based liquid phase microextraction (HF-LPME) as a new approach for the HPLC determination of fluoroquinolones in biological and environmental matrices. Journal of Pharmaceutical and Biomedical Analysis, 55(2), 332–341. doi:10.1016/j.jpba.2011.01.037
  • Reemtsma, T. (2003). Liquid chromatography–mass spectrometry and strategies for trace-level analysis of polar organic pollutants. Journal of Chromatography A, 1000(1-2), 477–501. doi:10.1016/S0021-9673(03)00507-7
  • Regueiro, J., Martín-Morales, E., Álvarez, G., & Blanco, J. (2011). Sensitive determination of domoic acid in shellfish by on-line coupling of weak anion exchange solid-phase extraction and liquid chromatography-diode array detection-tandem mass spectrometry. Food Chemistry, 129(2), 672–678. doi:10.1016/j.foodchem.2011.05.004
  • Renew, J. E., & Huang, C.-H. (2004). Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography–electrospray mass spectrometry. Journal of Chromatography A, 1042(1-2), 113–121. doi:10.1016/j.chroma.2004.05.056
  • Rodriguez-Mozaz, S., Lopez De Alda, M. J., & Barceló, D. A. (2007). Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography–mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. Journal of Chromatography A, 1152(1-2), 97–115. doi:10.1016/j.chroma.2007.01.046
  • Sacher, F., Raue, B., & Brauch, H.-J. (2005). Analysis of iodinated X-ray contrast agents in water samples by ion chromatography and inductively-coupled plasma mass spectrometry. Journal of Chromatography A, 1085(1), 117–123. doi:10.1016/j.chroma.2005.01.031
  • Salvatierra-Stamp, V., Muñiz-Valencia, R., Jurado, J. M., & Ceballos-Magaña, S. G. (2018). Hollow fiber liquid phase microextraction combined with liquid chromatography-tandem mass spectrometry for the analysis of emerging contaminants in water samples. Microchemical Journal, 140, 87–95. doi:10.1016/j.microc.2018.04.012
  • Sarafraz-Yazdi, A., Assadi, H., Es'haghi, Z., & Danesh, N. M. (2012). Pre-concentration of non-steroidal anti-inflammatory drugs in water using dispersive liquid-liquid and single-drop microextraction with high-performance liquid chromatography. Journal of Separation Science, 35(18), 2476–2483. doi:10.1002/jssc.201101099
  • Schmarr, H.-G., Koschinski, S., Sang, W., & Slabizki, P. (2012). Trace level analysis of corky off-flavor compounds: Development of a new analytical method based on solid phase extraction and analysis by multidimensional gas chromatography with mass spectrometric detection. Journal of Chromatography A, 1226, 96–102. doi:10.1016/j.chroma.2011.10.033
  • Seitz, W., Weber, W. H., Jiang, J.-Q., Lloyd, B. J., Maier, M., Maier, D., & Schulz, W. (2006). Monitoring of iodinated X-ray contrast media in surface water. Chemosphere, 64(8), 1318–1324. doi:10.1016/j.chemosphere.2005.12.030
  • Siddiqui, M. R., AlOthman, Z. A., & Rahman, N. (2017). Analytical techniques in pharmaceutical analysis: A review. Arabian Journal of Chemistry, 10, S1409–S1421. doi:10.1016/j.arabjc.2013.04.016
  • Silvia, M., & Damià Barceló, D.-C. (2006). Determination of antimicrobial residues and metabolites in the aquatic environment by liquid chromatography tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 386, 973–985. doi:10.1007/s00216-006-0444-z
  • Stolker, A. A. M., Niesing, W., Hogendoorn, E. A., Versteegh, J. F. M., Fuchs, R., & Brinkman, U. A. T. (2004). Liquid chromatography with triple-quadrupole or quadrupole-time of flight mass spectrometry for screening and confirmation of residues of pharmaceuticals in water. Analytical and Bioanalytical Chemistry, 378(4), 955–963. doi:10.1007/s00216-003-2253-y
  • Stoob, K., Singer, H. P., Goetz, C. W., Ruff, M., & Mueller, S. R. (2005). Fully automated online solid phase extraction coupled directly to liquid chromatography–tandem mass spectrometry: Quantification of sulfonamide antibiotics, neutral and acidic pesticides at low concentrations in surface waters. Journal of Chromatography A, 1097(1-2), 138–147. doi:10.1016/j.chroma.2005.08.030
  • Stülten, D., Zühlke, S., Lamshöft, M., & Spiteller, M. (2008). Occurrence of diclofenac and selected metabolites in sewage effluents. Science of the Total Environment, 405(1-3), 310–316. doi:10.1016/j.scitotenv.2008.05.036
  • Tahmasebi, Z., Saeed, S., Davarani, H., & Asgharinezhad, A. A. (2016). An efficient approach to selective electromembrane extraction of naproxen by means of molecularly imprinted polymer-coated multi-walled carbon nanotubes-reinforced hollow fibers. Journal of Chromatography A, 1470, 19–26. doi:10.1016/j.chroma.2016.09.067
  • Tang, S., Chia, G. H., Chang, Y., & Lee, H. K. (2014). Automated dispersive solid-phase extraction using dissolvable Fe3O4-layered double hydroxide core-shell microspheres as sorbent. Analytical Chemistry, 86(22), 11070–11076. doi:10.1021/ac503323e
  • Teo, H. L., Wong, L., Liu, Q., Teo, T. L., Lee, T. K., & Lee, H. K. (2016). Simple and accurate measurement of carbamazepine in surface water by use of porous membrane-protected micro-solid-phase extraction coupled with isotope dilution mass spectrometry. Analytica Chimica Acta, 912, 49–57. doi:10.1016/j.aca.2016.01.028
  • Vanderford, B. J., Pearson, R. A., Rexing, D. J., & Snyder, S. A. (2003). Analysis of endocrine disruptors, pharmaceuticals, and personal care products in water using liquid chromatography/tandem mass spectrometry. Analytical Chemistry, 75(22), 6265–6274. doi:10.1021/ac034210g
  • Vera-Candioti, L., García, G., Martínez Galera, M., & Goicoechea, H. (2008). Chemometric assisted solid-phase microextraction for the determination of anti-inflammatory and antiepileptic drugs in river water by liquid chromatography–diode array detection. Journal of Chromatography A, 1211(1-2), 22–32. doi:10.1016/j.chroma.2008.09.093
  • Viglino, L., Aboulfadl, K., Mahvelat, A. D., Prévost, M., & Sauvé, S. (2008). On-line solid phase extraction and liquid chromatography/tandem mass spectrometry to quantify pharmaceuticals, pesticides and some metabolites in wastewaters, drinking, and surface waters. Journal of Environmental Monitoring, 10(4), 482–489. doi:10.1039/b800861b
  • Walorczyk, S. (2012). Gas chromatographic–tandem mass spectrometric analysis of pesticides residues in produce using concurrent solvent recondensation-large volume injection. Journal of Chromatography A, 1222, 98–108. doi:10.1016/j.chroma.2011.12.012
  • Wang, T., Liu, S., Gao, G., Zhao, P., Lu, N., Lun, X., & Hou, X. (2017). Magnetic solid phase extraction of non-steroidal anti-inflammatory drugs from water samples using a metal organic framework of type Fe3O4/MIL-101(Cr), and their quantitation by UPLC-MS/MS. Microchimica Acta, 184(8), 2981–2990. doi:10.1007/s00604-017-2319-8
  • Weigel, S., Kallenborn, R., & Hühnerfuss, H. (2004). Simultaneous solid-phase extraction of acidic, neutral and basic pharmaceuticals from aqueous samples at ambient (neutral) pH and their determination by gas chromatography-mass spectrometry. Journal of Chromatography A, 1023(2), 183–195. doi:10.1016/j.chroma.2003.10.036
  • Williams, R. T., & Cook, J. C. (2007). Exposure to pharmaceuticals present in the environment. Drug Information Journal, 41(2), 133–141. doi:10.1177/009286150704100202
  • Wong, C. S., & MacLeod, S. L. (2009). JEM spotlight: Recent advances in analysis of pharmaceuticals in the aquatic environment. Journal of Environmental Monitoring, 11(5), 923. doi:10.1039/b819464e
  • Yan, H., Wang, H., Qin, X., Liu, B., & Du, J. (2011). Ultrasound-assisted dispersive liquid–liquid microextraction for determination of fluoroquinolones in pharmaceutical wastewater. Journal of Pharmaceutical and Biomedical Analysis, 54(1), 53–57. doi:10.1016/j.jpba.2010.08.007
  • Yang, S., Cha, J., & Carlson, K. (2004). Quantitative determination of trace concentrations of tetracycline and sulfonamide antibiotics in surface water using solid-phase extraction and liquid chromatography/ion trap tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 18(18), 2131–2145. doi:10.1002/rcm.1598
  • Yao, C., Li, T., Twu, P., Pitner, W. R., & Anderson, J. L. (2011). Selective extraction of emerging contaminants from water samples by dispersive liquid–liquid microextraction using functionalized ionic liquids. Journal of Chromatography A, 1218(12), 1556–1566. doi:10.1016/j.chroma.2011.01.035
  • Ye, L., Wang, Q., Xu, J., Shi, Z.-G., & Xu, L. (2012). Restricted-access nanoparticles for magnetic solid-phase extraction of steroid hormones from environmental and biological samples. Journal of Chromatography A, 1244, 46–54. doi:10.1016/j.chroma.2012.04.075
  • Ye, Z., Weinberg, H. S., & Meyer, M. T. (2007). Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry. Analytical Chemistry, 79(3), 1135–1144. doi:10.1021/ac060972a
  • Zgoła-Grześkowiak, A. (2010). Application of DLLME to isolation and concentration of non-steroidal anti-inflammatory drugs in environmental water samples. Chromatographia, 72(7-8), 671–678. doi:10.1365/s10337-010-1702-y
  • Zorita, S., Boyd, B., Jönsson, S., Yilmaz, E., Svensson, C., Mathiasson, L., & Bergström, S. (2008). Selective determination of acidic pharmaceuticals in wastewater using molecularly imprinted solid-phase extraction. Analytica Chimica Acta, 626(2), 147–154. doi:10.1016/j.aca.2008.07.051
  • Zuehlke, S., Duennbier, U., & Heberer, T. (2004). Determination of polar drug residues in sewage and surface water applying liquid chromatography-tandem mass spectrometry. Analytical Chemistry, 76(22), 6548–6554. doi:10.1021/ac049324m

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.