1,094
Views
33
CrossRef citations to date
0
Altmetric
Articles

Emerging role of organic acids in leaching of valuable metals from refinery-spent hydroprocessing catalysts, and potential techno-economic challenges: A review

, &
Pages 1-43 | Published online: 19 Jan 2020

References

  • Abdulqahar, S. N., Abdulwahab, M. I., & Hummadi, K. K. (2019). Reuse of spent hydrotreating catalyst of the middle petroleum fractions. Iraqi Journal of Chemical and Petroleum Engineering, 20(1), 15–22.
  • Acetic acid market: Massive vinegar demand & related health benefits to spur growth. (2018). Retrieved from https://www.zionmarketresearch.com/news/global-acetic-acid-market
  • Adsul, M. G., Singhvi, M. S., Gaikaiwari, S. A., & Gokhale, D. V. (2011). Development of biocatalyst for production of commodity chemicals from lignocellulosic biomass. Bioresource Technology, 102(6), 4304–4312. doi:10.1016/j.biortech.2011.01.002
  • Aggarwal, O. P. (2009). Reactions and reagents. New Delhi: Goel Publishing House.
  • Aguieiras, E. C. G., Cavalcanti-Oliveira, E. D., Cammaroata, M. C., & Freire, D. M. G. (2018). Solid-state fermentation for the production of lipases for environmental and biodiesel applications. In A. Pandey (Ed.), Current developments in biotechnology and bioengineering (pp. 123–168). Amsterdam: Elsevier.
  • Ahmed, H., & Menoufy, M. F. (2012). New trends in hydroprocessing spent catalysts utilization. In Vivek Patel (Ed.), Petrochemicals (pp. 249–258). Rijeka, Croatia: InTech.
  • Akcil, A., Vegliò, F., Ferella, F., Okudan, M. D., & Tuncuk, A. (2015). A review of metal recovery from spent petroleum catalysts and ash. Waste Management, 45, 420–433. doi:10.1016/j.wasman.2015.07.007
  • Al-Duaiji, A. (2017, September). Alternatives to the conventional management of spent catalyst. Paper presented at the 5th World Convention on Recycling and Waste Management, Singapore.
  • Al-Sheeha, H., Marafi, M., Raghavan, V., & Rana, M. S. (2013). Recycling and recovery routes for spent hydroprocessing catalyst waste. Industrial & Engineering Chemistry Research, 52, 12794–12801. doi:10.1021/ie4019148
  • Amiri, F., Mousavi, S. M., Yaghmaei, S., & Barati, M. (2012). Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions. Biochemical Engineering Journal, 67, 208–217. doi:10.1016/j.bej.2012.06.011
  • Anchyeta, G. (2016). Deactivation of heavy oil hydroprocessing catalysts. Hoboken, NJ: John Wiley & Sons.
  • Ancheyta, J., Rana, M. S., & Furimsky, E. (2005). Hydroprocessing of heavy petroleum feeds: Tutorial. Catalysis Today, 109(1-4), 3–15. doi:10.1016/j.cattod.2005.08.025
  • Arslanoglu, H., & Ali, Y. (2019). Recovery of precious metals from spent Mo–Co–Ni/Al2O3 catalyst in organic acid medium: Process optimization and kinetic studies. Petroleum Science and Technology, 37, 2081–2093.
  • Asghari, I., Mousavi, S. M., Amiri, F., & Tavassoli, S. (2013). Bioleaching of spent refinery catalysts: A review. Journal of Industrial and Engineering Chemistry, 19(4), 1069–1081. doi:10.1016/j.jiec.2012.12.005
  • Bang, J. S., & Park, K. H. (2018). Utilization of spent RHDM catalyst treated at various conditions as the de-nox SCR catalyst material. International Journal of Applied Engineering Research, 13(15), 12216–12222.
  • Barros, M. D., Freitas, S., Padilha, G. S., & Alegre, R. M. (2013). Biotechnological production of succinic acid by Actinobacillus succinogenes using different substrate. Chemical Engineering Transactions, 32, 985–990.
  • Beolchini, F., Fonti, V., Ferella, F., & Vegliò, F. (2010). Metal recovery from spent refinery catalysts by means of biotechnological strategies. Journal of Hazardous Materials, 178(1-3), 529–534. doi:10.1016/j.jhazmat.2010.01.114
  • Beuther, H., & Flin, R. (1963). Technique for removing metal contaminants from catalysts. Industrial & Engineering Chemistry Product Research and Development, 2(1), 53–57. doi:10.1021/i360005a013
  • Bharadwaj, A., & Ting, Y.-P. (2013). Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking. Bioresource Technology, 130, 673–680. doi:10.1016/j.biortech.2012.12.047
  • Burgstaller, W., & Schinner, F. (1993). Mini review: Leaching of metals with fungi. Journal of Biotechnology, 27(2), 91–116. doi:10.1016/0168-1656(93)90101-R
  • Chen, B., & Xu, M. (2018). Natural antioxidants in food. In P. Varelis, L. Melton, & F. Shaidi, (Eds.), Encyclopedia of food chemistry (pp. 180–188, Vol 1). Amsterdam: Elsevier.
  • Ciriminna, R., Meneguzzo, F., Delisi, R., & Pagliaro, M. (2017). Citric acid: Emerging applications of key biotechnology industrial product. Chemistry Central Journal, 11(1), 1–9. doi:10.1186/s13065-017-0251-y
  • Citric Acid Market worth 3.6 Billion USD by 2020. (2015). Retrieved from https://www.marketsandmarkets.com/PressReleases/citric-acid.asp
  • Climent, M. J., Corma, A., & Iborraa, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 3, 520–540. doi:10.1039/c0gc00639d
  • Concawe. (2017). 2013 survey of waste production and management at European refineries (pp. 1–77). Brussels: Concawe.
  • Drake, L. C., John, H., & Scafe, E. T. (1945). US Patent No. 2,380,731. Washington, DC: U.S. Patent Office.
  • Duarte, L., Garzon, L., & Baldovino-Medrano, V. G. (2019). An analysis of the physicochemical properties of spent catalysts from an industrial hydrotreating unit. Catalysis Today, 338, 100–107. doi:10.1016/j.cattod.2019.05.025
  • Dufresne, P. (2007). Hydroprocessing catalysts regeneration and recycling. Applied Catalysis A: General, 322, 67–75. doi:10.1016/j.apcata.2007.01.013
  • Eijsbouts, S., Battiston, A. A., & Leerdam, G. C. V. (2008). Life cycle of hydroprocessing catalysts and total catalyst management. Catalysis Today, 130(2-4), 361–373. doi:10.1016/j.cattod.2007.10.112
  • European Chemical Agency. (2019). Oxalic acid. Retrieved from https://echa.europa.eu/registration-dossier/-/registered-dossier/14786/5/3/2
  • European Union. (2004a). Edetic acid (EDTA) (Report no. EUR 21314 EN). Retrieved from European Chemical Agency website: https://echa.europa.eu/documents/10162/65615721-ab6d-4f28-b48f-73cf9d8cc529
  • European Union. (2004b). Tetrasodium ethylenediamine tetraacetate (Na4EDTA). Retrieved from https://echa.europa.eu/documents/10162/415c121b-12cd-40a2-bd56-812c57c303ce
  • Ferella, F., Ognyanova, A., Michelis, I. D., Taglieri, G., & Veglio, F. (2011). Extraction of metals from spent hydrotreating catalysts: Physico-mechanical pre-treatments and leaching stage. Journal of Hazardous Materials, 192(1), 176–185. doi:10.1016/j.jhazmat.2011.05.005
  • Flinn, R. A., & Stewart, M. M. (1962). US Patent No. 3,020,239. Washington, DC: U.S. Patent and Trademark Office.
  • Francis, A. J., Dodge, C. J., & Gillow, J. B. (1992). Biodegradation of metal citrate complexes and implications for toxic metal mobility. Nature, 356(6365), 140–142. doi:10.1038/356140a0
  • Fu, P.-B., Wang, H.-L., Li, J.-P., Huang, Y., Fang, Y.-L., Yuan, W., … Jiang, L. (2018). Cyclonic gas stripping deoiling and gas flow acceleration classification for the resource utilization of spent catalysts in residue hydrotreating process. Journal of Cleaner Production, 190, 689–702. doi:10.1016/j.jclepro.2018.04.203
  • Gadd, G. M. (1999). Fungal production of citric and oxalic acid: Importance in metal speciation, physiology and biogeochemical processes. Advance in Microbial Physiology, 41, 47–92.
  • Gholami, R. M., Borghei, S. M., & Mousavi, S. M. (2011). Fungal leaching of hazardous heavy metals from a spent hydrotreating catalyst. World Academy of Science Engineering and Technology, 5(4), 362–367.
  • Global Info Research (GIR). (2018). Global malonic acid market by manufacturers, regions, type and application, forecast to 2023. Hong Kong: Global Info Research.
  • Global lactic acid market is projected to reach USD 4,129.19 million by 2022. (2016). Credence research. Retrieved from https://www.credenceresearch.com/press/global-lactic-acid-market
  • Global lactic acid market will reach USD 10.06 billion by 2025: Zion market research. (2019). Retrieved from https://www.globenewswire.com/news-release/2019/02/04/1709550/0/en/Global-Lactic-Acid-Market-Will-Reach-USD-10-06-Billion-by-2025-Zion-Market-Research.html
  • Global oxalic acid market projected to grow at a cagr of 4% during 2018-2025. (2018). Retrieved from https://www.reuters.com/brandfeatures/venture-capital/article?id=39503
  • Global succinic acid market forecast to 2023: Increased use in industrial and coating & food & beverage industries driving demand. (2019). Retrieved from https://www.prnewswire.com/news-releases/global-succinic-acid-market-forecast-to-2023-increased-use-in-industrial-and-coating–food–beverage-industries-driving-demand-300772445.html
  • Golmohammadzadeh, R., Faraji, F., & Rashchi, F. (2018). Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review. Resources, Conservation, and Recycling, 136, 418–435. doi:10.1016/j.resconrec.2018.04.024
  • Gousetis, C., & Opgenorth, H. J. (2011). Nitrilotriacetic acid. In Ullmann’s encyclopedia of industrial chemistry (pp. 267–271). Weinheim, Germany: Wiley‐VCH Verlag GmbH & Co.
  • Habib, A. M., Menoufy, M. F., & Ahemd, H. S. (2004, December). Reuse of hydrotretaing catalyst. Paper presented at the TESCE 2004: 7 International Conference of Chemical Engineering, Egyptian Society of Engineers, Cairo, Egypt (pp. 1393–1406).
  • Harris, D. C. (2007). Quantitative chemical analysis (7th ed.). New York, NY: W.H. Freeman Company.
  • Hietala, J., Vuori, A., Johnsson, P., Pollari, I., Reutemann, W., & Kieczka, H. (2016). Formic acid. In Ullmann’s encyclopedia of industrial chemistry (pp. 1–22). Weinheim, Germany: Wiley-VCH.
  • Ilhan, S. (2017). Leaching of spent Ni–Mo hydrodesulphurization (HDS) catalyst in oxalic acid solutions. In M. A. Meyers, H. A. C Benavides, S. P. Bruhl, H. A. Colorado, E. Dalgaard, C. N. Elias, … W. Yang (Eds.). Proceedings of the 3rd Pan American materials congress (pp. 557–564), San Diego, CA. Cham: Springer.
  • International Agency for Research on Cancer (IARC). (2012). Mist from strong inorganic acids. In Chemical agents and related occupations, IARC monograph (pp. 487–495). 100F, Lyon, France.
  • Islam, M. M. (2008). Bioleaching of refinery hydroprocessing Ni-Mo catalyst by heterotrophic fungi (Doctoral Dissertation). Retrieved from https://scholarbank.nus.edu.sg/handle/10635/28187
  • Jadhav, U. U., & Hocheng, H. (2012). A review of recovery of metals from industrial waste. Journal of Achievements in Materials and Manufacturing Engineering, 54, 159–167.
  • Janssens, J. P. (1996). Characterization, testing and deactivation of sulfide catalysts in the hydrodemetallization of vanadyl-tetraphenylporphrin (Doctoral Dissertation). Retrieved from https://repository.tudelft.nl/islandora/object/uuid:9c82bcac-f82f-4f11-b608-f4b4fa6b6423?collection=research
  • Kim, H. M., Park, J. H., Choi, I. S., Wi, S. G., Ha, S., Chun, H. H., …, Park, H. W. (2018). Effective approach to organic acid production from agricultural kimchi cabbage waste and its potential application. PLoS One, 13(11), 1–14. doi:10.1371/journal.pone.0207801
  • Kohli, K., Prajapati, R., Maity, S. K., Sau, M., & Garg, M. O. (2016). Deactivation of hydrotreating catalyst by metals in resin and asphaltene parts of heavy oil and residues. Fuel, 175, 264–273. doi:10.1016/j.fuel.2016.02.036
  • Kumar, A., Shukla, R., & Venkatachalam, A. (2013). Studies of corrosion and electrochemical behavior of some metals and brass alloy under different media. Rasayan Journal of Chemistry, 6(1), 12–14.
  • Kumar, S. (2015). Tartaric acid market analysis by application (food & beverages, wine, pharmaceuticals, antacids) and segment forecasts to 2020 (pp. 1–90). San Francisco, CA, Grand View Research, Inc.
  • Lee, F. M., Knudsen, R. D., & Kidd, D. R. (1992). Reforming catalyst made from the metals recovered from spent atmospheric resid desulfurization catalyst. Industrial & Engineering Chemistry Research, 31, 487–490. doi:10.1021/ie00002a006
  • Li, H., Wu, W., Bao, J., & Wang, C. (2019). Chinese Patent No. CN105986123A. Beijing, China, Chinese Patent Office.
  • Liu, Q., Wang, W. Q., Yang, Y., Liu, X. G., & Xu, X. M. (2019). Recovery and regeneration of Al2O3 with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al2O3. Rare Metals, 38(1), 1–13. doi:10.1007/s12598-018-1164-1
  • Llanos, Z. R., & Deering, W. G. (2000). Evolution of GCMC’s spent catalyst operations. In Proceedings of the TMS fall extraction and processing conference (pp. 759–771).
  • Macias, M. J., & Ancheyta, J. (2004). Simulation of an isothermal hydrodesulfurization small reactor with different catalyst particle shapes. Catalysis Today, 98(1-2), 243–252. doi:10.1016/j.cattod.2004.07.038
  • Marafi, M., & Stanislaus, A. (1989). Regeneration of spent hydroprocessing catalysts: Metals removal. Applied Catalysis, 47(1), 85–96. doi:10.1016/S0166-9834(00)83265-0
  • Marafi, A. (2012). US Patent No. 8,287,618. Washington, DC: U.S. Patent and Trademark Office.
  • Marafi, A., Albazzaz, H., & Rana, M. S. (2019). Hydroprocessing of heavy residual oil: Opportunities and challenges. Catalysis Today, 329, 125–134. doi:10.1016/j.cattod.2018.10.067
  • Marafi, M., & Furimsky, E. (2005). Selection of organic agents for reclamation of metals from spent hydroprocessing catalysts. Erdoel Erdgas Kohle, 121(2), 93–96.
  • Marafi, M., & Rana, M. S. (2016). Refinery waste: The spent hydroprocessing catalyst and its recycling options. WIT Transaction of Ecology and Environment, 202, 219–230. doi:10.2495/WM160201
  • Marafi, M., & Rana, M. S. (2019). Role of EDTA on metal removal from refinery waste catalysts. WIT Transactions of Ecology and Environment, 231, 137–147.
  • Marafi, M., & Stanislaus, A. (2002, September). Spent catalyst handling and utilization. Paper presented at the WPC 2002, Proceedings of the 17th world petroleum congress, Rio de Janerio, Brazil (pp. 463–470).
  • Marafi, M., & Stanislaus, A. (2011). Alumina from reprocessing of spent hydroprocessing catalyst. Catalysis Today, 178(1), 117–123. doi:10.1016/j.cattod.2011.07.001
  • Marafi, M., Stainslaus, A., & Furimsky, E. (2017). Handbook of spent hydroprocessing catalysts (2nd ed.). Amsterdam: Elsevier.
  • Marafi, M., Stanislaus, A., & Mumford, C. J. (1993). Studies on rejuvenation of spent residue hydroprocessing catalysts by leaching of foulant metals: Influence of inorganic salt additives on the leaching efficiency of organic acids. Catalysis Letters, 18(1-2), 141–151. doi:10.1007/BF00769507
  • Marafi, M., & Stanislaus, S. (2008). Spent hydroprocessing catalyst management: A review Part II. Advances in metal recovery and safe disposal methods. Resources, Conservation and Recycling, 53(1-2), 1–26. doi:10.1016/j.resconrec.2008.08.005
  • Markets and Markets. (2014). Formic acid market by types (grades of 85%, 94%, 99%, and others) by application (agriculture, leather & textile, rubber, chemical & pharmaceuticals, & others) & by geography – global trends, forecasts to 2019. Pune: Markets and Markets Research Private Limited.
  • Mitchell, D. S., Rafel, S, Bridge, A. G., Cerrito, E., & Jaffe, J. (1974). US Patent No. 3,791,989. Washington, DC: U.S. Patent and Trademark Office.
  • MOXBA-Metrex. (2007). Spent catalyst recycling process and flow. Retrieved from https://moxba.com/wp-content/uploads/2019/05/Moxba_Process_Flow_Brochure.pdf.
  • Mohammadi, Z., Shalavi, S., & Jafarzadeh, H. (2013). Ethylenediaminetetraacetic acid in endodontics. European Journal of Dentistry, 7(Suppl 1), S135–S142. doi:10.4103/1305-7456.119091
  • Mozzi, F., & Graciela, M. V. (Eds.). (2010). Biotechnology of lactic acid bacteria: Novel applications. West Sussex: John Wiley & Sons.
  • Mulak, W., Szymczycha, A., Lesniewicz, A., & Zyrnicki, W. (2006). Preliminary results of metals leaching from a spent hydrodesulphurization (HDS) catalyst. Physicochemical Problems of Mineral Processing, 40, 69–76.
  • Nagib, S., & Hameed, R. S. A. (2017). Recovery of vanadium from hydrodesulfurization waste catalyst using calix[4]resorcinarenes. Green Chemistry Letters and Reviews, 10(4), 210–215. doi:10.1080/17518253.2017.1348543
  • National Toxicology Program. (2016). Report on carcinogens (14th ed.). Research Triangle Park, NC: US Department of Health and Human Services.
  • Neto, I. F. F., Pinto, I. S. S., Barros, M. T., Maycock, C. D., & Soares, H. M. V. M. (2014). Study of the performance of nitrilotriacetic acid and ethylenediiminopropanedioic acid as alternative biodegradable chelating agents for pulp bleaching. International Journal of Environmental Research, 8(3), 613–620.
  • Nevitt, T. D. (1987). U.S. Pat. No. 4,677,085. Washington, DC: U.S. Patent Office
  • Nortemann, B. (2005). Biodegradation of chelating Agents: EDTA, DTPA, PDTA, NTA, and EDDS. In B. Nowack, & J. M. VanBriesen (Eds.). Biogeochemistry of chelating agents (Vol. 910, pp. 150–170). Washington, DC, American Chemical Society.
  • Organisation for Economic Co-operation and Development. (2001). SIDS initial assessment profile (pp. 1–2), Citric acid, SIAM 11, 23-26 January. Paris: UNEP Publications.
  • Padh, B., Rout, P. C., Mishra, G. K., Suresh, K. R., & Reddy, B. R. (2019). Recovery of nickel and molybdate from ammoniacal leach liquors of spent HDS catalysts using chelating ion exchange resin. Hydrometallurgy, 184, 88–94. doi:10.1016/j.hydromet.2019.01.001
  • Pardue, H. L. (2018). Chemical equilibria: Exact equations and spreadsheet programs to solve them. Boca Raton, FL: CRC Press.
  • Pathak, A., Healy, M. G., & Morrison, L. (2018). Changes in the fractionation profile of Al, Ni, and Mo during bioleaching of spent hydroprocessing catalysts with Acidithiobacillus ferrooxidans. Journal of Environmental Science and Health, Part A, 53(11), 1006–1014. doi:10.1080/10934529.2018.1471033
  • Pathak, A., Srichandan, H., & Kim, D. J. (2015). Feasibility of bioleaching in removing metals (Al, Ni, V and Mo) from as received raw petroleum spent refinery catalyst: A comparative study on leaching yields, risk assessment code and reduced partition index. Materials Transactions, 56(8), 1278–1286. doi:10.2320/matertrans.M2015104
  • Pathak, A., Srichandan, H., & Kim, D. J. (2019). Column bioleaching of metals from refinery spent catalyst by Acidithiobacillus thiooxidans: Effect of operational modifications on metal extraction, metal precipitation, and bacterial attachment. Journal of Environmental Management, 242, 372–383. doi:10.1016/j.jenvman.2019.04.081
  • Penniston, K. L., Nakada, S. Y., Holmes, R. P., & Assimos, D. G. (2008). Quantitative assessment of citric acid in lemon juice, lime juice, and commercially-available fruit juice products. Journal of Endourology, 22(3), 567–570. doi:10.1089/end.2007.0304
  • Pernet, J. C. (1991). Oxalic acid. In R. E. Kirk & D. F. Othmer (Eds.), Encyclopedia of chemical technology (Vol. 9, pp. 661–674). New York, NY: Interscience Publishers Inc.
  • Petrus, H. T. B. M., Wijayaa, A., Iskandarb, Y., Bratakusumab, D., Setiawana, H., Wiratnia, W., & Astuti, W. (2018). Lanthanum and nickel recovery from spent catalyst using citric acid: Quantitative performance assessment using response surface method. Metalurgi, 2, 91–100. doi:10.14203/metalurgi.v33i2.437
  • Pinto, I. S. S., & Soares, H. M. V. M. (2013a). Microwave-assisted selective leaching of nickel from spent hydrodesulphurization catalyst: A comparative study between sulphuric and organic acids. Hydrometallurgy, 140, 20–27. doi:10.1016/j.hydromet.2013.08.009
  • Pinto, I. S. S., & Soares, H. M. V. M. (2013b). Recovery of molybdates from an alkaline leachate of spent desulphurization catalyst – Proposal of a nearly-closed process. Journal of Cleaner Production, 52, 481–487. doi:10.1016/j.jclepro.2013.03.021
  • Rana, M. S., Ancheyta, J., Sahoob, S. K., & Rayoa, P. (2014). Carbon and metal deposition during the hydroprocessing of Maya crude oil. Catalysis Today, 220–222, 97–105. doi:10.1016/j.cattod.2013.09.030
  • Reda, M. R. (1991). Regeneration of spent hydroprocessing catalysts. 1. Effect of the iron(II)/iron(III) redox couple on the selectivity of the removal of metals. Industrial & Engineering Chemistry Research, 30, 2148–2151. doi:10.1021/ie00057a014
  • Ren, J. (2010). Lactic acid. In J. Ren (Ed.), Biodegradable poly (lactic acid): Synthesis, modification, processing (pp. 4–14). Beijing: Springer.
  • Resende, J. E., Gonçalves, M. A., Oliveira, L. C. A., da Cunha, E. F. F., & Ramalho, T. C. (2014). Use of Ethylenediaminetetraacetic acid as a scavenger for chromium from “wet blue” leather waste: Thermodynamic and kinetics parameters. Journal of Chemistry, 2014, 1–8. doi:10.1155/2014/754526
  • Robinson, P. R., & Dolbear, G. E. (2017). Hydrocracking. In C. S. Hsu & P. R. Robinson (Eds.), Handbook of petroleum technology (pp. 713–776). Cham: Springer International Publishing.
  • Rocchetti, L., Fonti, V., Veglio, F., & Beolchini, F. (2013). An environmentally friendly process for the recovery of valuable metals from spent refinery catalysts. Waste Management & Research, 31(6), 568–576. doi:10.1177/0734242X13476364
  • Rodríguez, E., Felix, G., Ancheyta, J., & Trejo, F. (2018). Modeling of hydrotreating catalyst deactivation for heavy oil hydrocarbons. Fuel, 225, 118–133. doi:10.1016/j.fuel.2018.02.085
  • Sadeek, S. A., Ahmed, H. S., ElShamy, E. A., El Sayed, H. A., & Abd El Rahman, A. A. (2014). Hydrotreating of waste lube oil by rejuvenated spent hydrotreating catalyst. Egyptian Journal of Petroleum, 23(1), 53–60. doi:10.1016/j.ejpe.2014.02.008
  • Sahu, Y. (2017). Organic acids market by type (acetic acid, citric acid, formic acid, lactic acid, itaconic acid, succinic acid, gluconic acid, ascorbic acid, fumaric acid, and propionic acid), source (biomass, molasses, starch, chemical synthesis, agro-industrial residue), end-user (food & beverage, animal feed, chemicals & industrial, pharmaceuticals, personal care, agriculture) – Global opportunity analysis and industry forecast, 2017-2023 (pp. 1–260). India: Allied Market Research.
  • Shah, A. (2014, October). Acetic acid: Overview and market outlook. Paper presented at the Indian Petrochem Conference 2014, Mumbai, India.
  • Shen, W., Li, T., & Chen, J. (2012). Recovery of hazardous metals from spent refinery processing solid catalyst. Procedia Environmental Sciences, 16, 253–256. doi:10.1016/j.proenv.2012.10.035
  • Sillanpaa, M. (1997). Environmental Fate of EDTA and DTPA. Reviews of Environmental Contamination and Toxicology, 132, 85–111.
  • Smith, M. B. (2011). Organic chemistry: An acid—base approach. Boca Raton, FL: Taylor & Francis.
  • Srichandan, H., Pathak, A., Singh, S., Blight, K., Kim, D. J., & Lee, S. W. (2014). Sequential leaching of metals from spent refinery catalyst in bioleaching-bioleaching and bioleaching-chemical leaching reactor: Comparative study. Hydrometallurgy, 150, 130–143. doi:10.1016/j.hydromet.2014.09.019
  • Stanga, M. (2010). Sanitation - Cleaning and disinfection in the food industry. Weinhim: Wiley-VCH.
  • Stanislaus, A., Marafi, M., & Absi-Halabi, M. (1993). Studies on the rejuvenation of spent catalysts: Effectiveness and selectivity in the removal of foulant metals from spent hydroprocessing catalysts in coked and decoked forms. Applied Catalysis A: General, 105(2), 195–203. doi:10.1016/0926-860X(93)80248-O
  • Tartaric Acid Market worth 285.6 Million USD by 2022. (2018). Retrieved from https://www.marketsandmarkets.com/PressReleases/tartaric-acid.asp
  • The investing. (2019). Aluminum futures historical data. Retrieved from https://www.investing.com/commodities/aluminum-historical-data.
  • The trading economics. (2019). Nickel. Retrieved from https://tradingeconomics.com/commodity/nickel
  • The vanadium price. (2019). V2O5 vanadium pentoxide flake 98%. Retrieved from www.vanadiumprice.com
  • Theron, M. M., & Lues, J. F. R. (2011). Organic acids and food preservation. Boca Raton, FL: CRC Press.
  • Torres-Mancera, P., Ancheyta, J., & Martinez, J. (2018). Deactivation of a hydrotreating catalyst in a bench-scale continuous stirred tank reactor at different operating conditions. Fuel, 234, 326–334. doi:10.1016/j.fuel.2018.06.122
  • Transparency Market Research. (2013). Glycolic Acid Market for personal care, household cleaning, industrial and other applications – Global industry analysis, size, share, growth, trends and forecast, 2012–2018 (pp. 1–71). Pune: Transparency Market Research.
  • United State Environmental Protection Agency (USEPA). (2003). Hazardous waste management system. Federal Register, 68(202), 59935–59940.
  • US Food and Drug administration. (2019). Substances generally recognized as safe. Title 21, Chapter I, part 582, subpart B, General Purpose Food Additives (pp. 1–12). Maryland, USA.
  • Vyas, S., & Ting, Y. P. (2019). Effect of ultrasound on bioleaching of hydrodesulphurization spent catalyst. Environmental Technology Innovation, 14, 1–14. doi:10.1016/j.eti.2019.01.004
  • Wang, J., Kan, B., Jian, X., Wu, X., Yu, G., & Sun, J. (2016). Esophageal mucosa exfoliation induced by oxalic acid poisoning: A case report. Experimental and Therapeutic Medicine, 11(1), 208–212. doi:10.3892/etm.2015.2874
  • Wu, T. Y., Guo, N., Teh, C. Y., & Hay, J. X. W. (2013). Applications of ultrasound technology in environmental remediation. In T. Y. Wu., N. Guo., C. Y. The., & J. X. W. Hay (Eds.), Advances in ultrasound technology for environmental remediation (pp. 13–93). Dordrecht: Springer.
  • Yang, Y., Xu, S., Li, Z., Wang, J., Zhao, Z., & Xu, Z. (2016). Oil removal of spent hydrotreating catalyst CoMo/Al2O3 via a facile method with enhanced metal recovery. Journal of Hazardous Materials, 318, 723–731. doi:10.1016/j.jhazmat.2016.07.064
  • Ye, X., Guo, S., Qu, W., Xu, S., Zhang, L., Liu, B., … Wang, C. (2019). Microwave sodium roasting (MWSR) spent HDS catalysts for recovery Mo and in situ sulfur fixation. Journal of the Taiwan Institute of Chemical Engineers, 97, 146–157. doi:10.1016/j.jtice.2019.01.009
  • Zhai, J., & Bakker, E. (2016). Complexometric titrations: New reagents and concepts to overcome old limitations. The Analyst, 141(14), 4252–4261. doi:10.1039/C6AN00538A

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.