7,499
Views
45
CrossRef citations to date
0
Altmetric
Articles

Use of biochar as feed supplements for animal farming

, , , & ORCID Icon
Pages 187-217 | Published online: 06 Feb 2020

References

  • Abdel-Tawwab, M., Abdel-Rahman, A., & Ismael, N. (2008). Evaluation of commercial live baker’s yeast, Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia Oreochromis niloticus challenge in situ with Aeromonas hydrophila. Aquaculture, 280(1-4), 185–189. doi:10.1016/j.aquaculture.2008.03.055
  • Abechi, S. E., Gimba, C. E., Uzairu, A., & Dallatu, Y. A. (2013). Preparation and characterization of activated carbon from palm kernel shell by chemical activation. Research Journal of Chemical Sciences, 3, 54–61.
  • Adrados, A., Lopez-Urionabarrenechea, A., Acha, E., Solar, J., Caballero, B. M., & de Marco, I. (2017). Hydrogen rich reducing gases generation in the production of charcoal from woody biomass carbonization. Energy Conversion and Management, 148, 352–359. doi:10.1016/j.enconman.2017.06.010
  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., … Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33. doi:10.1016/j.chemosphere.2013.10.071
  • Amin, F. R., Khalid, H., Zhang, H., Rahman, S. U., Zhang, R., Liu, G., & Chen, C. (2017). Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express, 7(1), 72. doi:10.1186/s13568-017-0375-4
  • Aworn, A., Thiravetyan, P., & Nakbanpote, W. (2008). Preparation and characteristics of agricultural waste activated carbon by physical activation having micro-and mesopores. Journal of Analytical and Applied Pyrolysis, 82(2), 279–285. doi:10.1016/j.jaap.2008.04.007
  • Azargohar, R., Dalai, A. K. (2006). Biochar as a precursor of activated carbon. Applied Biochemistry and Biotechnology, 131 (1–3), 762–773.
  • Bartocci, P., Zampilli, M., Bidini, G., & Fantozzi, F. (2018). Hydrogen-rich gas production through steam gasification of charcoal pellet. Applied Thermal Engineering, 132, 817–823. doi:10.1016/j.applthermaleng.2018.01.016
  • Bath, D. L. (2018). Feed by-products and their utilization by ruminants. In J. Tal Huber (Ed.), Upgrading residues and by-products for animals (pp. 1–16). Boca Raton, FL: CRC Press.
  • Beck, D. A., Johnson, G. R., & Spolek, G. A. (2011). Amending greenroof soil with biochar to affect runoff water quantity and quality. Environmental Pollution, 159(8-9), 2111–2118. doi:10.1016/j.envpol.2011.01.022
  • Břendová, K., Tlustoš, P., Száková, J., & Habart, J. (2012). Biochar properties from different materials of plant origin. European Chemical Bulletin, 1, 535–539.
  • Bruun, E. W., Ambus, P., Egsgaard, H., & Hauggaard-Nielsen, H. (2012). Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology and Biochemistry, 46, 73–79. doi:10.1016/j.soilbio.2011.11.019
  • Cao, X., Ma, L., Gao, B., & Harris, W. (2009). Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology, 43, 3285–3291. doi:10.1021/es803092k
  • Castillo-González, A. R., Burrola-Barraza, M. E., Domínguez-Viveros, J., & Chávez-Martínez, A. (2014). Rumen microorganisms and fermentation. Archivos de Medicina Veterinaria, 46(3), 349–361. doi:10.4067/S0301-732X2014000300003
  • Cha, J. S., Park, S. H., Jung, S. C., Ryu, C., Jeon, J. K., Shin, M. C., & Park, Y. K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1–5. doi:10.1016/j.jiec.2016.06.002
  • Chen, B., & Chen, Z. (2009). Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere, 76(1), 127–133. doi:10.1016/j.chemosphere.2009.02.004
  • Chen, E. Y., Wang, Y. C., Mintz, A., Richards, A., Chen, C. S., Lu, D., … Chin, W. C. (2012). Activated charcoal composite biomaterial promotes human embryonic stem cell differentiation toward neuronal lineage. Journal of Biomedical Materials Research Part A, 100, 2006–2017. doi:10.1002/jbm.a.34201
  • Chu, G. M., Jung, C. K., Kim, H. Y., Ha, J. H., Kim, J. H., Jung, M. S., … Cho, J. H. (2013). Effects of bamboo charcoal and bamboo vinegar as antibiotic alternatives on growth performance, immune responses and fecal microflora population in fattening pigs. Animal Science Journal, 84(2), 113–120. doi:10.1111/j.1740-0929.2012.01045.x
  • Chu, G. M., Kim, J. H., Kang, S. N., & Song, Y. M. (2013). Effects of dietary bamboo charcoal on the carcass characteristics and meat quality of fattening pigs. Korean Journal for Food Science of Animal Resources, 33(3), 348–355. doi:10.5851/kosfa.2013.33.3.348
  • Chu, G. M., Kim, J. H., Kim, H. Y., Ha, J. H., Jung, M. S., Song, Y., … Song, Y. M. (2013). Effects of bamboo charcoal on the growth performance, blood characteristics and noxious gas emission in fattening pigs. Journal of Applied Animal Research, 41(1), 48–55. doi:10.1080/09712119.2012.738219
  • Cooney, D. O. (2016). Activated charcoal: Antidote, remedy and health aid. Brushton, NY: TEACH Services, Inc.
  • Danielsson, R., Dicksved, J., Sun, L., Gonda, H., Müller, B., Schnürer, A., & Bertilsson, J. (2017). Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Frontiers in Microbiology, 8, 226. doi:10.3389/fmicb.2017.00226
  • Danish, M., & Ahmad, T. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews, 87, 1–21. doi:10.1016/j.rser.2018.02.003
  • Deusch, S., Camarinha-Silva, A., Conrad, J., Beifuss, U., Rodehutscord, M., & Seifert, J. (2017). A structural and functional elucidation of the rumen microbiome influenced by various diets and microenvironments. Frontiers in Microbiology, 8, 1605. doi:10.3389/fmicb.2017.01605
  • Dim, C. E., Akuru, E. A., Egom, M. A., Nnajiofor, N. W., Ossai, O. K., Ukaigwe, C. G., & Onyimonyi, A. E. (2018). Effect of dietary inclusion of biochar on growth performance, haematology and serum lipid profile of broiler birds. Agro-Science, 17(2), 9–17. doi:10.4314/as.v17i2.2
  • Edmunds, J. L., Worgan, H. J., Dougal, K., Girdwood, S. E., Douglas, J. L., & McEwan, N. R. (2016). In vitro analysis of the effect of supplementation with activated charcoal on the equine hindgut. Journal of Equine Science, 27(2), 49–55. doi:10.1294/jes.27.49
  • Eger, M., Graz, M., Riede, S., & Breves, G. (2018). Application of MootralTM reduces methane production by altering the archaea community in the rumen simulation technique. Frontiers in Microbiology, 9,2094. doi:10.3389/fmicb.2018.02094
  • Elghandour, M. M., Adegbeye, M. J., Barbabosa-Pilego, A., Perez, N. R., Hernández, S. R., Zaragoza-Bastida, A., & Salem, A. Z. (2018). Equine contribution in methane emission and its mitigation strategies. Journal of Equine Veterinary Science, 72, 56–63. doi:10.1016/j.jevs.2018.10.020
  • European Biochar Foundation (EBF). (2012). European Biochar Certificate—Guidelines for a sustainable production of biochar. European Biochar Foundation (EBF), Arbaz, Switzerland. Retrieved from http://www.europeanbiochar.org/en/download
  • European Commission (EC). (2019). Animal feed. Retrieved from https://ec.europa.eu/food/safety/animal-feed_en
  • Evans, A. M., Boney, J. W., & Moritz, J. S. (2017). The effect of poultry litter biochar on pellet quality, one to 21 d broiler performance, digesta viscosity, bone mineralization, and apparent ileal amino acid digestibility. Journal of Applied Poultry Research, 26(1), 89–98. doi:10.3382/japr/pfw049
  • FAO/WHO. (2010). Joint FAO/WHO Expert Committee on Food Additives (JECFA) Compendium of food additive specifications. 73rd Meeting 2010, Rome.
  • Fellet, G., Marchiol, L., Delle Vedove, G., & Peressotti, A. (2011). Application of biochar on mine tailings: Effects and perspectives for land reclamation. Chemosphere, 83(9), 1262–1267. doi:10.1016/j.chemosphere.2011.03.053
  • Feng, Y., Xu, Y., Yu, Y., Xie, Z., & Lin, X. (2012). Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biology and Biochemistry , 46, 80–88. doi:10.1016/j.soilbio.2011.11.016
  • Gerlach, A., & Schmidt, H. P. (2012a). The use of biochar in cattle farming. Ithaka Journal, 2012, 281–285.
  • Gerlach, H., & Schmidt, H. P. (2012b). Biochar in poultry farming. Ithaka Journal, 2012, 262–264.
  • Giffard, C. J., Collins, S. B., Stoodley, N. C., Butterwick, R. F., & Batt, R. M. (2001). Administration of charcoal, Yucca schidigera, and zinc acetate to reduce malodorous flatulence in dogs. Journal of the American Veterinary Medical Association, 218(6), 892–896. doi:10.2460/javma.2001.218.892
  • Hagemann, N., Spokas, K., Schmidt, H. P., Kägi, R., Böhler, M., & Bucheli, T. (2019). Activated carbon, biochar and charcoal: Linkages and synergies across pyrogenic carbon’s ABCs. Water, 10(2), 182. doi:10.3390/w10020182
  • Hansen, H. H., Storm, I. D., & Sell, A. M. (2012). Effect of biochar on in vitro rumen methane production. Acta Agriculturae Scandinavica, Section A - Animal Science, 62(4), 305–309. doi:10.1080/09064702.2013.789548
  • Hien, N. N., Dung, N. N. X., Manh, L. H., & Le Minh, B. T. (2018). Effects of biochar inclusion in feed and chicken litter on growth performance, plasma lipids and fecal bacteria count of Noi lai chicken. Livestock Research for Rural Development, 30, 131. http://www.lrrd.org/lrrd30/7/nnxdu30131.html
  • Hook, S. E., Wright, A. D. G., & McBride, B. W. (2010). Methanogens: Methane producers of the rumen and mitigation strategies. Archaea, 2010, 1–11. doi:10.1155/2010/945785
  • International Biochar Initiative (IBI). (2015). Biochar Certification Program manual-requirements and procedures for IBI Biochar Certification. Retrieve from https://www.biochar-international.org/wp-content/uploads/2018/05/IBI_Biochar_Certification_Program_Manual_V2.1_Final.pdf
  • Islam, M. M., Ahmed, S. T., Kim, Y. J., Mun, H. S., Kim, Y. J., & Yang, C. J. (2014). Effect of sea tangle (Laminaria japonica) and charcoal supplementation as alternatives to antibiotics on growth performance and meat quality of ducks. Asian-Australasian Journal of Animal Sciences, 27(2), 217–224. doi:10.5713/ajas.2013.13314
  • Jandosov, J., Mikhalovska, L., Howell, C., Chenchik, D., Kosher, B., Lyubchik, S., … Mikhalovsky, S. (2017). Synthesis, morphostructure, surface chemistry and preclinical studies of nanoporous rice husk-derived biochars for gastrointestinal detoxification. Eurasian Chemico-Technological Journal, 19(4), 303–313. doi:10.18321/ectj678
  • Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A., & Sonoki, T. (2014). Physical and chemical characterizations of biochars derived from different agricultural residues. Biogeosciences, 11(23), 6613–6621. doi:10.5194/bg-11-6613-2014
  • Joseph, S., Pow, D., Dawson, K., Mitchell, D. R. G., Rawal, A., Hook, J., … Solaiman, Z. M. (2015). Feeding biochar to cows: An innovative solution for improving soil fertility and farm productivity. Pedosphere, 25(5), 666–679. doi:10.1016/S1002-0160(15)30047-3
  • Juurlink, D. N. (2016). Activated charcoal for acute overdose: A reappraisal. British Journal of Clinical Pharmacology, 81(3), 482–487. doi:10.1111/bcp.12793
  • Kammann, C., Ippolito, J., Hagemann, N., Borchard, N., Cayuela, M. L., Estavillo, J. M., … Wrage-Mönnig, N. (2017). Biochar as a tool to reduce the agricultural greenhouse-gas burden–knowns, unknowns and future research needs. Journal of Environmental Engineering and Landscape Management, 25(2), 114–139. doi:10.3846/16486897.2017.1319375
  • Kaye, B. M., Elliott, C. R. B., & Jalim, S. L. (2012). Methiocarb poisoning of a horse in Australia. Australian Veterinary Journal, 90(6), 221–224. doi:10.1111/j.1751-0813.2012.00910.x
  • Khaki, N. D., Malcevschi, A., Voccia, A., & Marzano, F. (2017). Interaction of Dietary biochar (black carbon) on the growth performance and survival rate of early stage larvae of brown trout (Salmo trutta). Aquaculture Europe 2017 Dubrovnik, Croatia.
  • Khoa, M. A., Quang, N. H., Thang, T. V., Phung, T. V., & Kien, T. T. (2018). Effect of tannin in green tea by-product in combination with bio-char supplemented into basal beef cattle diet on nutrient digestibility, methane production and animal performance. Open Journal of Animal Sciences, 08(03), 206–214. doi:10.4236/ojas.2018.83015
  • Kim, K. H., Kim, J. Y., Cho, T. S., & Choi, J. W. (2012). Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technology, 118, 158–162. doi:10.1016/j.biortech.2012.04.094
  • Koltowski, M., Charmas, B., Skubiszewska-Zięba, J., & Oleszczuk, P. (2017). Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity. Ecotoxicology and Environmental Safety, 136, 119–125. doi:10.1016/j.ecoenv.2016.10.033
  • Kook, K., & Kim, K. H. (2003). The effects of supplemental levels of bamboo vinegar on growth performance, serum profile and meat quality in fattening Hanwoo cow. Journal of Animal Science and Technology, 45, 57–68.
  • Kupper, T., Fischlin Häni, C., & Spring, P. (2015). TC-P_09 Use of a feed additive based on biochar for mitigation of ammonia emissions from weaned piglets and broilers. In: RAMIRAN, 2015–16th International Conference Rural-Urban Symbiosis. Hamburg: Advances in Emission Prevention. 424–427.
  • Kutlu, H. R., Ünsal, I., & Görgülü, M. (2001). Effects of providing dietary wood (oak) charcoal to broiler chicks and laying hens. Animal Feed Science and Technology, 90(3-4), 213–226. doi:10.1016/S0377-8401(01)00205-X
  • Kwapinski, W., Byrne, C. M. P., Kryachko, E., Wolfram, P., Adley, C., Leahy, J. J., … Hayes, M. H. B. (2010). Biochar from biomass and waste. Waste and Biomass Valorization, 1(2), 177–189. doi:10.1007/s12649-010-9024-8
  • Lan, T. T., Preston, T. R., & Leng, R. A. (2016). Feeding biochar or charcoal increased the growth rate of striped catfish (Pangasius hypophthalmus) and improved water quality. Livestock Research for Rural Development, 28, 84.
  • Lehmann, J., & Joseph, S. (Eds.) (2015). Biochar for environmental management: Science, technology and implementation. London: Routledge.
  • Leng, R. A. (2018). Unravelling methanogenesis in ruminants, horses and kangaroos: The links between gut anatomy, microbial biofilms and host immunity. Animal Production Science, 58(7), 1175–1191. doi:10.1071/AN15710
  • Leng, R. A., Inthapanya, S., & Preston, T. R. (2012a). Biochar lowers net methane production from rumen fluid in vitro. Livestock Research for Rural Development, 24(6), 103.
  • Leng, R. A., Inthapanya, S., & Preston, T. R. (2012b). Methane production is reduced in an in vitro incubation when the rumen fluid is taken from cattle that previously received biochar in their diet. Gas, 1050(1488), 1367.
  • Leng, R. A., Inthapanya, S., & Preston, T. R. (2013). All biochars are not equal in lowering methane production in in vitro rumen incubations. Livestock Research for Rural Development, 25,106. Retrieved from http://www.lrrd.org/lrrd25/6/leng25106.htm
  • Leng, R. A., Preston, T. R., & Inthapanya, S. (2012). Biochar reduces enteric methane and improves growth and feed conversion in local “Yellow” cattle fed cassava root chips and fresh cassava foliage. Livestock Research for Rural Development, 24: Article#199.
  • Li, J., Cao, L., Yuan, Y., Wang, R., Wen, Y., & Man, J. (2018). Comparative study for microcystin-LR sorption onto biochars produced from various plant-and animal-wastes at different pyrolysis temperatures: Influencing mechanisms of biochar properties. Bioresource Technology, 247, 794–803. doi:10.1016/j.biortech.2017.09.120
  • Liu, P., Liu, W. J., Jiang, H., Chen, J. J., Li, W. W., & Yu, H. Q. (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 121, 235–240. doi:10.1016/j.biortech.2012.06.085
  • Mabe, L. T., Su, S., Tang, D., Zhu, W., Wang, S., & Dong, Z. (2018). The effect of dietary bamboo charcoal supplementation on growth and serum biochemical parameters of juvenile common carp (Cyprinus carpio L.). Aquaculture Research, 49(3), 1142–1152. doi:10.1111/are.13564
  • Martin, C., Morgavi, D. P., & Doreau, M. (2010). Methane mitigation in ruminants: From microbe to the farm scale. Animal, 4(03), 351–365. doi:10.1017/S1751731109990620
  • Maurer, D., Koziel, J., Kalus, K., Andersen, D., & Opalinski, S. (2017). Pilot-scale testing of non-activated biochar for swine manure treatment and mitigation of ammonia, hydrogen sulfide, odorous volatile organic compounds (VOCs), and greenhouse gas emissions. Sustainability, 9(6), 929–946. doi:10.3390/su9060929
  • McFarlane, Z., Myer, P., Cope, E., Evans, N., Carson Bone, T., Biss, B., & Mulliniks, J. (2017). Effect of biochar type and size on in vitro rumen fermentation of Orchard Grass Hay. Agricultural Sciences, 08(04), 316–325. doi:10.4236/as.2017.84023
  • Mo, W. Y., Man, Y. B., & Wong, M. H. (2018). Use of food waste, fish waste and food processing waste for China's aquaculture industry: Needs and challenge. Science of the Total Environment, 613, 635–643.
  • Moe, T., Ishikawa, M., Koshio, S., & Yokoyama, S. (2009). Effects of dietary bamboo charcoal on growth parameters and nutrient utilization of tiger puffer fish, Takifugu rubripes. Aquaculture Science, 57, 53–60.
  • Mohan, D., Pittman, C. U., Jr., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 20, 848–889. doi:10.1021/ef0502397
  • Mohan, D., Rajput, S., Singh, V. K., Steele, P. H., & Pittman, C. U. (2011). Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. Journal of Hazardous Materials, 188(1-3), 319–333. doi:10.1016/j.jhazmat.2011.01.127
  • Moss, A. R., Jouany, J. P., & Newbold, J. (2000). Methane production by ruminants: Its contribution to global warming. Annales de Zootechnie, 49(3), 231–253. doi:10.1051/animres:2000119
  • Mukherjee, A., & Zimmerman, A. R. (2013). Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma, 193, 122–130. doi:10.1016/j.geoderma.2012.10.002
  • Mullen, C. A., Boateng, A. A., Goldberg, N. M., Lima, I. M., Laird, D. A., & Hicks, K. B. (2010). Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass and Bioenergy, 34(1), 67–74. doi:10.1016/j.biombioe.2009.09.012
  • Naeem, M. A., Khalid, M., Arshad, M., & Ahmad, R. (2014). Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures. Pakistan Journal of Agricultural Sciences, 51, 1.
  • Naka, K., Watarai, S., Inoue, K., Kodama, Y., Oguma, K., Yasuda, T., & Kidama, H. (2001). Adsorption effect of activated charcoal on enterohemorrhagic Escherichia coli. Journal of Veterinary Medical Science, 63, 281–285. doi:10.1292/jvms.63.281
  • Oh, S. Y., & Seo, Y. D. (2016). Sorption of halogenated phenols and pharmaceuticals to biochar: Affecting factors and mechanisms. Environmental Science and Pollution Research, 23(2), 951–961. doi:10.1007/s11356-015-4201-8
  • Ok, Y. S., Chang, S. X., Gao, B., & Chung, H. J. (2015). SMART biochar technology—A shifting paradigm towards advanced materials and healthcare research. Environmental Technology & Innovation, 4, 206–209. doi:10.1016/j.eti.2015.08.003
  • Oliveira, F. R., Patel, A. K., Jaisi, D. P., Adhikari, S., Lu, H., & Khanal, S. K. (2017). Environmental application of biochar: Current status and perspectives. Bioresource Technology, 246, 110–122. doi:10.1016/j.biortech.2017.08.122
  • O’Toole, A., Andersson, D., Gerlach, A., Glaser, B., Kammann, C., Kern, J., … Srocke, F. (2016). Current and future applications for biochar. In: S. Shackley, G. Ruysschaert, K. Zwart, B. Glaser (Eds.), Biochar in European soils and agriculture. Science and practice (pp. 253–280). Abington: Taylor & Francis Group.
  • Pereira, R. C., Muetzel, S., Arbestain, M. C., Bishop, P., Hina, K., & Hedley, M. (2014). Assessment of the influence of biochar on rumen and silage fermentation: A laboratory-scale experiment. Animal Feed Science and Technology, 196, 22–31. doi:10.1016/j.anifeedsci.2014.06.019
  • Phanthavong, V., Viengsakoun, N., Sangkhom, I., & Preston, T. R. (2015). Effect of biochar and leaves from sweet or bitter cassava on gas and methane production in an in vitro rumen incubation using cassava root pulp as source of energy. Livestock Research for Rural Development, 27, 72. Retrieved from http://www.lrrd.org/lrrd27/4/phan27072.html
  • Phongpanith, S., Inthapanya, S., & Preston, T. R. (2013). Effect on feed intake, digestibility and N balance in goats of supplementing a basal diet of Muntingia foliage with biochar and water spinach (Ipomoea aquatica). Livestock Research for Rural Development, 25, 35.
  • Phongphanith, S., & Preston, T. R. (2016). Effect of rice-wine distillers’ byproduct and biochar on growth performance and methane emissions in local “Yellow” cattle fed ensiled cassava root, urea, cassava foliage and rice straw. Livestock Research for Rural Development, 28, 178. Retrieved from http://www.lrrd.org/lrrd28/10/seng28178.html
  • Prasai, T. P., Walsh, K. B., Bhattarai, S. P., Midmore, D. J., Van, T. T., Moore, R. J., & Stanley, D. (2016). Biochar, bentonite and zeolite supplemented feeding of layer chickens alters intestinal microbiota and reduces Campylobacter load. PLoS One, 11(4), e0154061. doi:10.1371/journal.pone.0154061
  • Prasai, T. P., Walsh, K. B., Midmore, D. J., & Bhattarai, S. P. (2018). Effect of biochar, zeolite and bentonite feed supplements on egg yield and excreta attributes. Animal Production Science, 58(9), 1632–1641. doi:10.1071/AN16290
  • Prasai, T. P., Walsh, K. B., Midmore, D. J., Jones, B. E., & Bhattarai, S. P. (2018). Manure from biochar, bentonite and zeolite feed supplemented poultry: Moisture retention and granulation properties. Journal of Environmental Management, 216, 82–88. doi:10.1016/j.jenvman.2017.08.040
  • Preston, T. R. (2014). Role of biochar in farming systems producing food and energy from biomass. In: T. J. Goreau, R. W. Larson, J. Campe (Eds.), Geotherapy: Innovative methods of soil fertility restoration, carbon sequestration, and reversing CO2 increase (Vol. 283), (pp. 284–298), Boca Roton: CRC Press, Taylor & Francis Group.
  • Quaiyum, M. A., Jahan, R., Jahan, N., Akhter, T., & Sadiqul, I. M. (2014). Effects of bamboo charcoal added feed on reduction of ammonia and growth of Pangasius hypophthalmus. Journal of Aquaculture Research & Development, 5, 269–273. doi:10.4172/2155-9546.1000269
  • Saleem, A. M., Ribeiro, G. O., Jr., Yang, W. Z., Ran, T., Beauchemin, K. A., McGeough, E. J., … McAllister, T. A. (2018). Effect of engineered biocarbon on rumen fermentation, microbial protein synthesis, and methane production in an artificial rumen (RUSITEC) fed a high forage diet. Journal of Animal Science, 96, 3121–3130. doi:10.1093/jas/sky204
  • Sanchez-Monedero, M. A., Cayuela, M. L., Roig, A., Jindo, K., Mondini, C., & Bolan, N. (2018). Role of biochar as an additive in organic waste composting. Bioresource Technology, 247, 1155–1164. doi:10.1016/j.biortech.2017.09.193
  • Saroeun, K., Preston, T. R., & Leng, R. A. (2018). Rice distillers’ byproduct and molasses-urea blocks containing biochar improved the growth performance of local Yellow cattle fed ensiled cassava roots, cassava foliage and rice straw. Livestock Research for Rural Development, 30, 162. Retrieved from http://www.lrrd.org/lrrd30/9/saroe30162.html
  • Schmidt, H. P., Wilson, K., & Kammann, C. (2017). Using biochar in animal farming to recycle nutrients and reduce greenhouse gas emissions. EGU General Assembly Conference Abstracts, Vienna, Austria (Vol. 19, p. 5719).
  • Shan, D., Deng, S., Zhao, T., Wang, B., Wang, Y., Huang, J., … Wiesner, M. R. (2016). Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. Journal of Hazardous Materials, 305, 156–163. doi:10.1016/j.jhazmat.2015.11.047
  • Silivong, P., & Preston, T. R. (2015). Growth performance of goats was improved when a basal diet of foliage of Bauhinia acuminata was supplemented with water spinach and biochar. Livestock Research for Rural Development, 27, 58. Retrieved from http://www.lrrd.org/lrrd27/3/sili27058.html
  • Sivilai, B., Preston, T. R., Leng, R. A., Hang, D. T., & Linh, N. Q. (2018). Rice distillers’ byproduct and biochar as additives to a forage-based diet for growing Moo Lath pigs; effects on growth and feed conversion. Livestock Research for Rural Development, 30, 111.
  • Suliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A. M., Dallmeyer, I., & Garcia-Perez, M. (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy, 84, 37–48. doi:10.1016/j.biombioe.2015.11.010
  • Tan, X. F., Liu, Y. G., Gu, Y. L., Xu, Y., Zeng, G. M., Hu, X. J., … Li, J. (2016). Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresource Technology, 212, 318–333. doi:10.1016/j.biortech.2016.04.093
  • Teleb, H. M., Hegazy, A. A., & Hussein, Y. A. (2004). Efficiency of kaolin and activated charcoal to reduce the toxicity of low level of aflatoxin in broilers. Scientific Journal of King Faisal University, 5, 1425.
  • Thu, M., Koshio, S., Ishikawa, M., & Yokoyama, S. (2009). Effects of dietary bamboo charcoal on growth parameters, apparent digestibility and ammonia nitrogen excretion of tiger puffer fish, Takifugu rubripes. Aquaculture Science, 57(1), 53–60.
  • Thu, M., Koshio, S., Ishikawa, M., & Yokoyama, S. (2010). Effects of supplementation of dietary bamboo charcoal on growth performance and body composition of juvenile Japanese flounder, Paralichthys olivaceus. Journal of the World Aquaculture Society, 41, 255–262. doi:10.1111/j.1749-7345.2010.00365.x
  • Tong, X. J., Li, J. Y., Yuan, J. H., & Xu, R. K. (2011). Adsorption of Cu (II) by biochars generated from three crop straws. Chemical Engineering Journal, 172(2-3), 828–834. doi:10.1016/j.cej.2011.06.069
  • Toth, J. D., & Dou, Z. (2016). Use and impact of biochar and charcoal in animal production systems. In M. Guo, Z. He, & M. Uchimiya (Eds.), Agricultural and environmental applications of biochar: Advances and barriers (pp. 199–224). Madison, WI: Soil Science Society of America, Inc.
  • Uchimiya, M., Lima, I. M., Klasson, K. T., & Wartelle, L. H. (2010). Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere, 80(8), 935–940. doi:10.1016/j.chemosphere.2010.05.020
  • Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., & Lima, I. M. (2011). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59(6), 2501–2510. doi:10.1021/jf104206c
  • United States Department of Agriculture (USDA). (2018). Meat – Production and value 2017 summary, National Agricultural Statistics Service, April 2018.
  • US Environmental Protection Agency (USEPA). (2016). Global greenhouse gas emissions data. Retrieved from https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
  • Van Zwieten, L., Singh, B., Joseph, S., Kimber, S., Cowie, A., & Chan, K. Y. (2009). Biochar and emissions of non-CO2 greenhouse gases from soil. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: Science, technology and implementation (pp. 227–250). London: Routledge.
  • Waheed, Q., Nahil, M., & Williams, P. (2013). Pyrolysis of waste biomass: Investigation of fast pyrolysis and slow pyrolysis process conditions on product yield and gas composition. Journal of the Energy Institute, 86(4), 233–241. doi:10.1179/1743967113Z.00000000067
  • Wang, L., Skreiberg, Ø., Van Wesenbeeck, S., Grønli, M., & Antal, M. J. Jr. (2016). Experimental study on charcoal production from woody biomass. Energy & Fuels, 30, 7994–8008. doi:10.1021/acs.energyfuels.6b01039
  • Watarai, S. & Tana . (2005). Eliminating the carriage of Salmonella enterica serovar enteritidis in domestic fowls by feeding activated charcoal from bark containing wood vinegar liquid (Nekka-Rich). Poultry Science, 84, 515–521. doi:10.1093/ps/84.4.515
  • Willson, N. L., Van, T. T., Bhattarai, S. P., Courtice, J. M., McIntyre, J. R., Prasai, T. P., … Stanley, D. (2019). Feed supplementation with biochar may reduce poultry pathogens, including Campylobacter hepaticus, the causative agent of spotty liver disease. PLoS One, 14(4), e0214471. doi:10.1371/journal.pone.0214471
  • Winders, T. M., Jolly-Breithaupt, M. L., Freeman, C. B., Mark, B. M., Erickson, G. E., & Watson, A. K. (2018). Evaluating the Effect of Feeding Biochar to Cattle on Methane Production and Diet Digestibility. In 10th International Livestock Environment Symposium (ILES X) (p. 1). American Society of Agricultural and Biological Engineers, Omaha, Nebraska. doi:10.13031/iles.18-148
  • Yahya, M. A., Al-Qodah, Z., & Ngah, C. Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46, 218–235. doi:10.1016/j.rser.2015.02.051
  • Yu, T., Abudukeranmu, A., Anniwaer, A., Situmorang, Y. A., Yoshida, A., Hao, X., … Guan, G. (2019). Steam gasification of biochars derived from pruned apple branch with various pyrolysis temperatures. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2019.02.226
  • Zervas, G., & Tsiplakou, E. (2011). The effect of feeding systems on the characteristics of products from small ruminants. Small Ruminant Research, 101(1-3), 140–149. doi:10.1016/j.smallrumres.2011.09.034

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.