5,874
Views
64
CrossRef citations to date
0
Altmetric
Articles

A critical review of bioleaching of rare earth elements: The mechanisms and effect of process parameters

, &
Pages 378-427 | Published online: 25 Feb 2020

References

  • Abhilash Sinha, S., Sinha, M. K., & Pandey, B. D. (2014). Extraction of lanthanum and cerium from Indian red mud. International Journal of Mineral Processing, 127, 70–73. doi:10.1016/j.minpro.2013.12.009
  • Akafia, M. M., Harrington, J. M., Bargar, J. R., & Duckworth, O. W. (2014). Metal oxyhydroxide dissolution as promoted by structurally diverse siderophores and oxalate. Geochimica et Cosmochimica Acta, 141, 258–269. doi:10.1016/j.gca.2014.06.024
  • Alemzadeh, I., Kahrizi, E., & Vossoughi, M. (2009). Bio-oxidation of ferrous ions by Acidithioobacillus ferrooxidans in a monolithic bioreactor. Journal of Chemical Technology & Biotechnology, 84(4), 504–510. doi:10.1002/jctb.2069
  • Amin, M. M., El-Aassy, I. E., El-Feky, M. G., Sallam, A. M., El-Sayed, E. M., Nada, A. A., & Harpy, N. M. (2014). Fungal leaching of rare earth elements from lower carboniferous shales, southwestern Sinai, Egypt. Romanian Journal of Biophysics, 24(1), 25–41.
  • Amiri, F., Yaghmaei, S., & Mousavi, S. M. (2011). Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum. Bioresource Technology, 102(2), 1567–1573. doi:10.1016/j.biortech.2010.08.087
  • Antonick, P. J., Hu, Z., Fujita, Y., Reed, D. W., Das, G., Wu, L., … Riman, R. E. (2019). Bio- and mineral acid leaching of rare earth elements from synthetic phosphogypsum. The Journal of Chemical Thermodynamics, 132, 491–496. doi:10.1016/j.jct.2018.12.034
  • Armstrong, C. R., & Wood, S. A. (2012). Effect of fulvic acid on neodymium uptake by goethite. Journal of Colloid and Interface Science, 387(1), 228–233. doi:10.1016/j.jcis.2012.07.060
  • Bandara, A. M. T. S., & Senanayake, G. (2019). Dissolution of calcium, phosphate, fluoride and rare earth elements (REEs) from a disc of natural fluorapatite mineral (FAP) in perchloric, hydrochloric, nitric, sulphuric and phosphoric acid solutions: A kinetic model and comparative batch leaching of ma. Hydrometallurgy, 184, 218–236. doi:10.1016/j.hydromet.2018.09.002
  • Barmettler, F., Castelberg, C., Fabbri, C., & Brandl, H. (2016). Microbial mobilization of rare earth elements (REE) from mineral solids—A mini review. AIMS Microbiology, 2(2), 190–204. doi:10.3934/microbiol.2016.2.190
  • Barnett, M., Palumbo-Roe, B., & Gregory, S. (2018). Comparison of heterotrophic bioleaching and ammonium sulfate ion exchange leaching of rare earth elements from a Madagascan ion-adsorption clay. Minerals, 8(6), 236. doi:10.3390/min8060236
  • Barteková, E., & Kemp, R. (2016). National strategies for securing a stable supply of rare earths in different world regions. Resources Policy, 49, 153–164. doi:10.1016/j.resourpol.2016.05.003
  • Barthen, R., Karimzadeh, L., Gründig, M., Grenzer, J., Lippold, H., Franke, K., & Lippmann-Pipke, J. (2018). Glutamic acid leaching of synthetic covellite – A model system combining experimental data and geochemical modeling. Chemosphere, 196, 368–376. doi:10.1016/j.chemosphere.2017.12.138
  • Bartlett, C. L., Hausrath, E. M., Adcock, C. T., Huang, S., Harrold, Z. R., & Udry, A. (2018). Effects of organic compounds on dissolution of the phosphate minerals chlorapatite, whitlockite, merrillite, and fluorapatite: Implications for interpreting past signatures of organic compounds in rocks, soils and sediments. Astrobiology, 18(12), 1543–1558. doi:10.1089/ast.2017.1739
  • Bas, A. D., Deveci, H., & Yazici, E. Y. (2013). Bioleaching of copper from low grade scrap TV circuit boards using mesophilic bacteria. Hydrometallurgy, 138, 65–70. doi:10.1016/j.hydromet.2013.06.015
  • Battino, R., & Clever, H. L. (1966). The solubility of gases in liquids. Chemical Reviews, 66(4), 395–463. doi:10.1021/cr60242a003
  • Battsengel, A., Batnasan, A., Narankhuu, A., Haga, K., Watanabe, Y., & Shibayama, A. (2018). Recovery of light and heavy rare earth elements from apatite ore using sulphuric acid leaching, solvent extraction and precipitation. Hydrometallurgy, 179, 100–109. doi:10.1016/j.hydromet.2018.05.024
  • Bau, M., Tepe, N., & Mohwinkel, D. (2013). Siderophore-promoted transfer of rare earth elements and iron from volcanic ash into glacial meltwater, river and ocean water. Earth and Planetary Science Letters, 364, 30–36. doi:10.1016/j.epsl.2013.01.002
  • Behera, S. S., & Parhi, P. K. (2016). Leaching kinetics study of neodymium from the scrap magnet using acetic acid. Separation and Purification Technology, 160, 59–66. doi:10.1016/j.seppur.2016.01.014
  • Bengtsson, Å., & Sjöberg, S. (2009). Surface complexation and proton-promoted dissolution in aqueous apatite systems. Pure and Applied Chemistry, 81(9), 1569–1584. doi:10.1351/PAC-CON-08-10-02
  • Beolchini, F., Fonti, V., Dell’Anno, A., Rocchetti, L., & Vegliò, F. (2012). Assessment of biotechnological strategies for the valorization of metal bearing wastes. Waste Management, 32(5), 949–956. doi:10.1016/j.wasman.2011.10.014
  • Bhardwaj, S., Shukla, A., Mukherjee, S., Sharma, S., Guptasarma, P., Chakraborti, A. K., & Chakrabarti, A. (2007). Putative structure and characteristics of a red water-soluble pigment secreted by Penicillium marneffei. Medical Mycology, 45(5), 419–427. doi:10.1080/13693780701261614
  • Binnemans, K., & Jones, P. T. (2014). Perspectives for the recovery of rare earths from end-of-life fluorescent lamps. Journal of Rare Earths, 32(3), 195–200. doi:10.1016/S1002-0721(14)60051-X
  • Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., & Pontikes, Y. (2015). Towards zero-waste valorisation of rare-earth-containing industrial process residues: A critical review. Journal of Cleaner Production, 99, 17–38. doi:10.1016/j.jclepro.2015.02.089
  • Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., & Buchert, M. (2013). Recycling of rare earths: A critical review. Journal of Cleaner Production, 51, 1–22. doi:10.1016/j.jclepro.2012.12.037
  • Bonificio, W. D., & Clarke, D. R. (2016). Rare-earth separation using bacteria. Environmental Science & Technology Letters, 3(4), 180–184. doi:10.1021/acs.estlett.6b00064
  • Borja, D., Nguyen, K., Silva, R., Park, J., Gupta, V., Han, Y., … Kim, H. (2016). Experiences and future challenges of bioleaching research in South Korea. Minerals, 6(4), 128. doi:10.3390/min6040128
  • Brandl, H., Bosshard, R., Wegmann, M., Bossh Ard, R., & Wegmann, M. (2001). Computer-munching microbes: Metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy, 59(2–3), 319–326. doi:10.1016/S1572-4409(99)80146-1
  • Bredol, M., Kynast, U., & Ronda, C. (1994). Phosphors for cathode-ray tubes. Chemie in Unserer Zeit, 28(1), 36–43. doi:10.1002/ciuz.19940280112
  • Brierley, C. L., & Brierley, J. A. (2013). Progress in bioleaching: Part B: Applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology, 97(17), 7543–7552. doi:10.1007/s00253-013-5095-3
  • Brisson, V. L., Zhuang, W.-Q., & Alvarez-Cohen, L. (2016). Bioleaching of rare earth elements from monazite sand. Biotechnology and Bioengineering, 113(2), 339–348. doi:10.1002/bit.25823
  • British Geological Survey, Bureau de Recherches Géologiques et Minières, Deloitte Sustainability, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs (European Commission), TNO. (2017). Retrieved from: https://op.europa.eu/en/publication-detail/-/publication/08fdab5f-9766-11e7-b92d-01aa75ed71a1
  • Bryan, C. G., Watkin, E. L., McCredden, T. J., Wong, Z. R., Harrison, S. T. L., & Kaksonen, A. H. (2015). The use of pyrite as a source of lixiviant in the bioleaching of electronic waste. Hydrometallurgy, 152, 33–43. doi:10.1016/j.hydromet.2014.12.004
  • Byrne, R. H., Lee, J. H., & Bingler, L. S. (1991). Rare earth element complexation by PO43− ions in aqueous solution. Geochimica et Cosmochimica Acta, 55(10), 2729–2735. doi:10.1016/0016-7037(91)90439-C
  • Cabbiness, D. K., & Margerum, D. W. (1969). Macrocyclic effect on the stability of copper(II) tetramine complexes. Journal of the American Chemical Society, 91(23), 6540–6541. doi:10.1021/ja01051a091
  • Carroll, J. J., Slupsky, J. D., & Mather, A. E. (1991). The solubility of carbon dioxide in water at low pressure. Journal of Physical and Chemical Reference Data, 20(6), 1201–1209. doi:10.1063/1.555900
  • Cervini-Silva, J., Fowle, D. A., & Banfield, J. (2005). Biogenic dissolution of a soil cerium-phosphate mineral. American Journal of Science, 305(6–8), 711–726. doi:10.2475/ajs.305.6-8.711
  • Cervini-Silva, J., Gilbert, B., Fakra, S., Friedlich, S., & Banfield, J. (2008). Coupled redox transformations of catechol and cerium at the surface of a cerium(III) phosphate mineral. Geochimica et Cosmochimica Acta, 72(10), 2454–2464. doi:10.1016/j.gca.2008.02.017
  • Cetiner, Z. S., Wood, S. A., & Gammons, C. H. (2005). The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150 °C. Chemical Geology, 217(1–2), 147–169. doi:10.1016/j.chemgeo.2005.01.001
  • Chi, R., & Xu, Z. (1999). A solution chemistry approach to the study of rare earth element precipitation by oxalic acid. Metallurgical and Materials Transactions B, 30(2), 189–195. doi:10.1007/s11663-999-0047-0
  • Christenson, E. A., & Schijf, J. (2011). Stability of YREE complexes with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength. Geochimica et Cosmochimica Acta, 75(22), 7047–7062. doi:10.1016/j.gca.2011.09.022
  • Chung, D. Y., Kim, E., Lee, E., & Yoo, E. (1998). Solubility of rare earth oxalate in oxalic and nitric acid media. Journal of Industrial and Engineering Chemistry, 4(4), 277–284.
  • Čížková, M., Mezricky, D., Rucki, M., Tóth, T. M., Náhlík, V., Lanta, V., … Vítová, M. (2019). Bio-mining of lanthanides from red mud by green microalgae. Molecules (Switzerland), 24(7), E1356. doi:10.3390/molecules24071356
  • Corbett, M. K., Eksteen, J. J., Niu, X.-Z. Z., Croue, J.-P. P., & Watkin, E. L. J. J. (2017). Interactions of phosphate solubilising microorganisms with natural rare-earth phosphate minerals: A study utilizing Western Australian monazite. Bioprocess and Biosystems Engineering, 40(6), 929–942. doi:10.1007/s00449-017-1757-3
  • Corbett, M. K., Eksteen, J. J., Niu, X. Z., & Watkin, E. L. J. (2018). Syntrophic effect of indigenous and inoculated microorganisms in the leaching of rare earth elements from Western Australian monazite. Research in Microbiology, 169(10), 558–568. doi:10.1016/j.resmic.2018.05.007
  • Cotton, S. (2006). Coordination chemistry of the lanthanides. In Lanthanide and actinide chemistry (pp. 35–60). Chichester, UK: John Wiley & Sons, Ltd. doi:10.1002/0470010088.ch4
  • d'Aquino, L., Morgana, M., Carboni, M. A., Staiano, M., Antisari, M. V., Re, M., … Woo, S. L. (2009). Effect of some rare earth elements on the growth and lanthanide accumulation in different Trichoderma strains. Soil Biology and Biochemistry, 41(12), 2406–2413. doi:10.1016/j.soilbio.2009.08.012
  • Das, G., Lencka, M. M., Eslamimanesh, A., Anderko, A., & Riman, R. E. (2017). Rare-earth elements in aqueous chloride systems: Thermodynamic modeling of binary and multicomponent systems in wide concentration ranges. Fluid Phase Equilibria, 452, 16–57. doi:10.1016/j.fluid.2017.08.014
  • Das, G., Lencka, M. M., Eslamimanesh, A., Wang, P., Anderko, A., Riman, R. E., & Navrotsky, A. (2019). Rare earth sulfates in aqueous systems: Thermodynamic modeling of binary and multicomponent systems over wide concentration and temperature ranges. The Journal of Chemical Thermodynamics, 131, 49–79. doi:10.1016/j.jct.2018.10.020
  • Davranche, M., Pourret, O., Gruau, G., Dia, A., Jin, D., & Gaertner, D. (2008). Competitive binding of REE to humic acid and manganese oxide: Impact of reaction kinetics on development of cerium anomaly and REE adsorption. Chemical Geology, 247(1–2), 154–170. doi:10.1016/j.chemgeo.2007.10.010
  • Deberdt, S., Castet, S., Dandurand, J.-L., Harrichoury, J.-C., & Louiset, I. (1998). Experimental study of La(OH)3 and Gd(OH)3 solubilities (25 to 150 °C), and La–acetate complexing (25 to 80 °C). Chemical Geology, 151(1–4), 349–372. doi:10.1016/S0009-2541(98)00089-8
  • Desouky, O. A., El-Mougith, A. A., Hassanien, W. A., Awadalla, G. S., & Hussien, S. S. (2016). Extraction of some strategic elements from thorium–uranium concentrate using bioproducts of Aspergillus ficuum and Pseudomonas aeruginosa. Arabian Journal of Chemistry, 9, S795–S805. doi:10.1016/j.arabjc.2011.08.010
  • Diakonov, I., Ragnarsdottir, K., & Tagirov, B. (1998). Standard thermodynamic properties and heat capacity equations of rare earth hydroxides: II. Ce(III)-, Pr-, Sm-, Eu(III)-, Gd-, Tb-, Dy-, Ho-, Er-, Tm-, Yb-, and Y-hydroxides. Comparison of thermochemical and solubility data. Chemical Geology, 151(1–4), 327–347.
  • Dopson, M., Baker-Austin, C., Koppineedi, P. R., & Bond, P. L. (2003). Growth in sulfidic mineral environments: Metal resistance mechanisms in acidophilic micro-organisms. Microbiology, 149(8), 1959–1970. doi:10.1099/mic.0.26296-0
  • Drever, J. I., & Stillings, L. L. (1997). The role of organic acids in mineral weathering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 120(1–3), 167–181. doi:10.1016/S0927-7757(96)03720-X
  • Duckworth, O. W., & Martin, S. T. (2001). Surface complexation and dissolution of hematite by C1-C6 dicarboxylic acids at pH = 5.0. Geochimica et Cosmochimica Acta, 65(23), 4289–4301. doi:10.1016/S0016-7037(01)00696-2
  • Dudeney, A. W. L., & Sbai, M. L. (1993). Bioleaching of rare-earth-bearing phosphogypsum. In A. E. Torma, J. E. Wey, & V. L. Lakshmanan (Eds.), Biohydrometallurgical Technologies (pp. 39–47). Jackson Hole, WY: The Minerals, Metals, & Materials Society.
  • Dutta, T., Kim, K.-H. H., Uchimiya, M., Kwon, E. E., Jeon, B.-H. H., Deep, A., & Yun, S.-T. T. (2016). Global demand for rare earth resources and strategies for green mining. Environmental Research, 150, 182–190. doi:10.1016/j.envres.2016.05.052
  • Dzombak, D. A., & Morel, F. (1990). Surface complexation modeling: Hydrous ferric oxide. Chichester, UK: Wiley.
  • Fathollahzadeh, H., Becker, T., Eksteen, J. J., Kaksonen, A. H., & Watkin, E. L. J. (2018). Microbial contact enhances bioleaching of rare earth elements. Bioresource Technology Reports, 3, 102–108. doi:10.1016/j.biteb.2018.07.004
  • Fathollahzadeh, H., Eksteen, J. J., Kaksonen, A. H., & Watkin, E. L. J. (2019). Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources. Applied Microbiology and Biotechnology, 103(3), 1043–1057. doi:10.1007/s00253-018-9526-z
  • Fathollahzadeh, H., Hackett, M. J., Khaleque, H. N., Eksteen, J. J., Kaksonen, A. H., & Watkin, E. L. (2018). Better together: Potential of co-culture microorganisms to enhance bioleaching of rare earth elements from monazite. Bioresource Technology Reports, 3, 109–118. doi:10.1016/j.biteb.2018.07.003
  • Firsching, F. H., & Brune, S. N. (2005). Solubility products of the trivalent rare-earth phosphates. Journal of Chemical & Engineering Data, 36(1), 93–95. doi:10.1021/je00001a028
  • Franzmann, P. D., Haddad, C. M., Hawkes, R. B., Robertson, W. J., & Plumb, J. J. (2005). Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea: Application of the Ratkowsky equation. Minerals Engineering, 18(13–14), 1304–1314. doi:10.1016/j.mineng.2005.04.006
  • Fujita, Y., Barnes, J., Eslamimanesh, A., Lencka, M. M., Anderko, A., Riman, R. E., & Navrotsky, A. (2015). Effects of simulated rare earth recycling wastewaters on biological nitrification. Environmental Science & Technology, 49(16), 9460–9468. doi:10.1021/acs.est.5b01753
  • Funari, V., Mäkinen, J., Salminen, J., Braga, R., Dinelli, E., & Revitzer, H. (2017). Metal removal from Municipal Solid Waste Incineration fly ash: A comparison between chemical leaching and bioleaching. Waste Management, 60, 397–406. doi:10.1016/j.wasman.2016.07.025
  • Furrer, G., & Stumm, W. (1986). The coordination chemistry of weathering: I. Dissolution kinetics of δ-Al2O3 and BeO. Geochimica et Cosmochimica Acta, 50(9), 1847–1860. doi:10.1016/0016-7037(86)90243-7
  • Gao, X., & Owens, W. T. (2012). Process for metal recovery from catalyst waste. US Patent No. US20120156116A1. doi:10.1037/t24245-000
  • Gelencsér, A., Kováts, N., Turóczi, B., Rostási, Á., Hoffer, A., Imre, K., … Pósfai, M. (2011). The red mud accident in Ajka (Hungary): Characterization and potential health effects of fugitive dust. Environmental Science and Technology, 45(4), 1616–1622. doi:10.1021/es200850y
  • Geneyton, A., Filippov, L. O., Renard, A., Mallet, M., & Menad, N.-E. (2019). Advances in carboxylate collectors adsorption on monazite surface: Part 1 – Assessment of the hydroxylation and carbonation of surface lanthanide ions. Applied Surface Science, 485, 283–292. doi:10.1016/j.apsusc.2019.04.017
  • Genilloud, O. (2015). Micromonospora. In W. B. Whitman (Supervising Editor), Bergey’s manual of systematics of archaea and bacteria (pp. 1–28). Chichester, UK: John Wiley & Sons, Ltd.
  • Gentina, J. C., & Acevedo, F. (2013). Application of bioleaching to copper mining in Chile. Electronic Journal of Biotechnology, 16(3), 12. doi:10.2225/vol16-issue3-fulltext-12
  • Ghorbani, Y., Franzidis, J. P., & Petersen, J. (2016). Heap leaching technology – Current state, innovations, and future directions: A review. Mineral Processing and Extractive Metallurgy Review, 37(2), 73–119. doi:10.1080/08827508.2015.1115990
  • Glombitza, F., Iske, U., & Bullmann, M. (1988). Bacterial leaching of zircon mineral for obtaining trace and rare earth elements (REE). In P. R Norris & D. P. Kelly (Eds.), Biohydrometallurgy. Proceedings of the International Symposium Warwick 1987. Science and Technology Letters, Kew Surrey, UK, pp. 407–418.
  • Glombitza, F., & Reichel, S. (2013). Metal-containing residues from industry and in the environment: Geobiotechnological urban mining. In: Schippers A., Glombitza F., & Sand W., (Eds)., Geobiotechnology I. Advances in Biochemical Engineering/Biotechnology, 141 (pp. 49–107). Berlin, Heidelberg: Springer.
  • Golev, A., Scott, M., Erskine, P. D., Ali, S. H., & Ballantyne, G. R. (2014). Rare earths supply chains: Current status, constraints and opportunities. Resources Policy, 41(1), 52–59. doi:10.1016/j.resourpol.2014.03.004
  • Goyne, K. W., Brantley, S. L., & Chorover, J. (2010). Rare earth element release from phosphate minerals in the presence of organic acids. Chemical Geology, 278(1–2), 1–14. doi:10.1016/j.chemgeo.2010.03.011
  • Gu, T., Rastegar, S. O., Mousavi, S. M., Li, M., & Zhou, M. (2018). Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresource Technology, 261, 428–440. doi:10.1016/j.biortech.2018.04.033
  • Guezennec, A.-G., Joulian, C., Jacob, J., Archane, A., Ibarra, D., de Buyer, R., … d’Hugues, P. (2017). Influence of dissolved oxygen on the bioleaching efficiency under oxygen enriched atmosphere. Minerals Engineering, 106, 64–70. doi:10.1016/j.mineng.2016.10.016
  • Gupta, C. K., & Krishnamurthy, N. (1992). Extractive metallurgy of rare earths. International Materials Reviews, 23(1), 197–248. doi:10.1179/imr.1992.37.1.197
  • Gutfleisch, O., Willard, M. A., Brück, E., Chen, C. H., Sankar, S. G., & Liu, J. P. (2011). Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Advanced Materials, 23(7), 821–842. doi:10.1002/adma.201002180
  • Hammes, W. P., & Hertel, C. (2015). Lactobacillus. In W. B. Whitman (Supervising Editor), Bergey’s manual of systematics of archaea and bacteria (pp. 1–76). Chichester, UK: John Wiley & Sons, Ltd. doi:10.1002/9781118960608.gbm00604
  • Han, K. N. (2019). Effect of anions on the solubility of rare earth element-bearing minerals in acids. Mining, Metallurgy & Exploration, 36(1), 215–225. doi:10.1007/s42461-018-0029-3
  • Haque, N., Hughes, A., Lim, S., & Vernon, C. (2014). Rare earth elements: Overview of mining, mineralogy, uses, sustainability and environmental impact. Resources, 3(4), 614–635. doi:10.3390/resources3040614
  • Haschke, M., Ahmadian, J., Zeidler, L., & Hubrig, T. (2016). In-situ recovery of critical technology elements. Procedia Engineering, 138, 248–257. doi:10.1016/j.proeng.2016.02.082
  • Hassanien, W. A. G., Desouky, O. A. N., & Hussien, S. S. E. (2014). Bioleaching of some rare earth elements from Egyptian Monazite using Aspergillus ficuum and Pseudomonas aeruginosa. Walailak Journal of Science and Technology, 11(9), 809–823. doi:10.2004/wjst.v11i6.481
  • Hekmat, D., Bauer, R., & Neff, V. (2007). Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Process Biochemistry, 42(1), 71–76. doi:10.1016/j.procbio.2006.07.026
  • Hewedy, M. A., Rushdy, A. A., & Kamal, N. M. (2013). Bioleaching of rare earth elements and uranium from sinai soil, Egypt using actinomycetes. The Egyptian Journal of Hospital Medicine, 53, 909–917. doi:10.12816/0001653
  • Hider, R. C., & Kong, X. (2010). Chemistry and biology of siderophores. Natural Product Reports, 27(5), 637. doi:10.1039/b906679a
  • Hinz, F. P., & Margerum, D. W. (1974). Effect of ligand solvation on the stability of metal complexes in solution. Explanation of the macrocyclic effect. Journal of the American Chemical Society, 96(15), 4993–4994. doi:10.1021/ja00822a050
  • Hogan, D. E., Curry, J. E., Pemberton, J. E., & Maier, R. M. (2017). Rhamnolipid biosurfactant complexation of rare earth elements. Journal of Hazardous Materials, 340, 171–178. doi:10.1016/j.jhazmat.2017.06.056
  • Holleman, A. F., Wiberg, E., & Wiberg, N. (2007). Die lanthanoide. In N. Wiberg (Ed.), Lehrbuch der anorganischen chemie. Berlin, New York: Walter de Gruyter.
  • Hopfe, S., Flemming, K., Lehmann, F., Möckel, R., Kutschke, S., & Pollmann, K. (2017). Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha. Waste Management, 62(11), 211–221. doi:10.1016/j.wasman.2017.02.005
  • Hopfe, S., Konsulke, S., Barthen, R., Lehmann, F., Kutschke, S., & Pollmann, K. (2018). Screening and selection of technologically applicable microorganisms for recovery of rare earth elements from fluorescent powder. Waste Management, 79, 554–563. doi:10.1016/j.wasman.2018.08.030
  • Ibrahim, H., & El-Sheikh, E. (2011). Bioleaching treatment of abu zeneima uraniferous gibbsite ore material for recovering U, REEs, Al and Zn. Research Journal of Chemical Sciences, 1(4), 55–66.
  • Ijaz, K., Wattoo, J. I., Zeshan, B., Majeed, T., Riaz, T., & Khalid, S. (2017). Potential impact of microbial consortia in biomining and bioleaching of commercial metals. Advancements in Life Sciences, 5(1), 13–18.
  • Ilyas, S., Kim, M.-S., Lee, J.-C., Jabeen, A., & Bhatti, H. (2017). Bio-reclamation of strategic and energy critical metals from secondary resources. Metals, 7(6), 207. doi:10.3390/met7060207
  • Ilyas, S., & Lee, J. (2014). Biometallurgical recovery of metals from waste electrical and electronic equipment: A review. ChemBioEng Reviews, 1(4), 148–169. doi:10.1002/cben.201400001
  • Innocenzi, V., Ippolito, N. M., De Michelis, I., Medici, F., & Vegliò, F. (2016). A hydrometallurgical process for the recovery of terbium from fluorescent lamps: Experimental design, optimization of acid leaching process and process analysis. Journal of Environmental Management, 184, 552–559. doi:10.1016/j.jenvman.2016.10.026
  • Innocenzi, V., Ippolito, N. M., De Michelis, I., Prisciandaro, M., Medici, F., & Vegliò, F. (2017). A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries. Journal of Power Sources, 362, 202–218. doi:10.1016/j.jpowsour.2017.07.034
  • Innocenzi, V., & Vegliò, F. (2012). Recovery of rare earths and base metals from spent nickel-metal hydride batteries by sequential sulphuric acid leaching and selective precipitations. Journal of Power Sources, 211, 184–191. doi:10.1016/j.jpowsour.2012.03.064
  • Işıldar, A., van Hullebusch, E. D., Lenz, M., Du Laing, G., Marra, A., Cesaro, A., … Kuchta, K. (2019). Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – A review. Journal of Hazardous Materials, 362, 467–481. doi:10.1016/j.jhazmat.2018.08.050
  • Jain, N., & Sharma, D. K. (2004). Biohydrometallurgy for nonsulfidic minerals—A review. Geomicrobiology Journal, 21(3), 135–144. doi:10.1080/01490450490275271
  • Jain, R., Fan, S., Kaden, P., Tsushima, S., Foerstendorf, H., Barthen, R., … Pollmann, K. (2019). Recovery of gallium from wafer fabrication industry wastewaters by Desferrioxamine B and E using reversed-phase chromatography approach. Water Research, 158, 203–212. doi:10.1016/j.watres.2019.04.005
  • Janiak, C., Meyer, H.-J., Gudat, D., Alsfasser, R., & Meyer, H.-J. (2012). Moderne anorganische chemie, E. Riedel (Ed.) (3rd ed.). Berlin, Germany: Walter de Gruyter.
  • Johannesson, K. H., & Lyons, W. B. (1995). Rare-earth element geochemistry of Colour Lake, an acidic freshwater lake on Axel Heiberg Island, Northwest Territories, Canada. Chemical Geology, 119(1–4), 209–223. doi:10.1016/0009-2541(94)00099-T
  • Johannesson, K. H., Lyons, W. B., Yelken, M. A., Gaudette, H. E., & Stetzenbach, K. J. (1996). Geochemistry of the rare-earth elements in hypersaline and dilute acidic natural terrestrial waters: Complexation behavior and middle rare-earth element enrichments. Chemical Geology, 133(1–4), 125–144. doi:10.1016/S0009-2541(96)00072-1
  • Johannesson, K. H., & Xiaoping, Z. (1997). Geochemistry of the rare earth elements in natural terrestrial waters: A review of what is currently known. Chinese Journal of Geochemistry, 16(1), 20–42. doi:10.1007/BF02843369
  • Johansson, N., Krook, J., Eklund, M., & Berglund, B. (2013). An integrated review of concepts and initiatives for mining the technosphere: Towards a new taxonomy. Journal of Cleaner Production, 55, 35–44. doi:10.1016/j.jclepro.2012.04.007
  • Johnson, D. B. (2001). Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy, 59(2–3), 147–157. doi:10.1016/S0304-386X(00)00183-3
  • Jordens, A., Cheng, Y. P., & Waters, K. E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114. doi:10.1016/j.mineng.2012.10.017
  • Kaksonen, A. H., Boxall, N. J., Gumulya, Y., Khaleque, H. N., Morris, C., Bohu, T., … Lakaniemi, A.-M. (2018). Recent progress in biohydrometallurgy and microbial characterisation. Hydrometallurgy, 180, 7–25. doi:10.1016/j.hydromet.2018.06.018
  • Kanazawa, Y., & Kamitani, M. (2006). Rare earth minerals and resources in the world. Journal of Alloys and Compounds, 408–412, 1339–1343. doi:10.1016/j.jallcom.2005.04.033
  • Karimzadeh, L., Lippmann-Pipke, J., Franke, K., & Lippold, H. (2017). Mobility and transport of copper(II) influenced by the microbial siderophore DFOB: Column experiment and modelling. Chemosphere, 173, 326–329. doi:10.1016/j.chemosphere.2017.01.058
  • Karimzadeh, L., Nair, S., & Merkel, B. J. (2013). Effect of Microbial Siderophore DFOB on Pb, Zn, and Cd Sorption Onto Zeolite. Aquatic Geochemistry, 19(1), 25–37. doi:10.1007/s10498-012-9176-1
  • Karthikeyan, O. P., Rajasekar, A., & Balasubramanian, R. (2015). Bio-oxidation and biocyanidation of refractory mineral ores for gold extraction: A review. Critical Reviews in Environmental Science and Technology, 45(15), 1611–1643. doi:10.1080/10643389.2014.966423
  • Keekan, K. K., Jalondhara, J. C. & Abhilash, (2017). Extraction of Ce and Th from Monazite Using REE Tolerant Aspergillus niger. Mineral Processing and Extractive Metallurgy Review, 38(5), 312–320. doi:10.1080/08827508.2017.1350956
  • Kelly, D. P., & Wood, A. P. (2015). Acidithiobacillus. In Bergey’s manual of systematics of archaea and bacteria (pp. 1–5). Chichester, UK: John Wiley & Sons, Ltd. doi:10.1002/9781118960608.gbm01079
  • Kim, C.-J., Yoon, H.-S., Chung, K. W., Lee, J.-Y., Kim, S.-D., Shin, S. M., … Kim, S.-H. (2014). Leaching kinetics of lanthanum in sulfuric acid from rare earth element (REE) slag. Hydrometallurgy, 146, 133–137. doi:10.1016/j.hydromet.2014.04.003
  • Kim, E., & Osseo-Asare, K. (2012). Aqueous stability of thorium and rare earth metals in monazite hydrometallurgy: Eh-pH diagrams for the systems Th-, Ce-, La-, Nd- (PO4)-(SO4)-H2O at 25 °c. Hydrometallurgy, 113–114, 67–78. doi:10.1016/j.hydromet.2011.12.007
  • Kim, P., Anderko, A., Navrotsky, A., & Riman, R. (2018). Trends in structure and thermodynamic properties of normal rare earth carbonates and rare earth hydroxycarbonates. Minerals, 8(3), 106. doi:10.3390/min8030106
  • Klaus, B., & Bosecker, K. (1997). Bioleaching: Metal solubilization by microorganisms. FEMS Microbiology Reviews, 20(1–2), 591–604. doi:10.1111/j.1574-6976.1997.tb00340.x
  • Kraemer, D., Kopf, S., & Bau, M. (2015). Oxidative mobilization of cerium and uranium and enhanced release of “immobile” high field strength elements from igneous rocks in the presence of the biogenic siderophore desferrioxamine B. Geochimica et Cosmochimica Acta, 165, 263–279. doi:10.1016/j.gca.2015.05.046
  • Kraemer, D., Tepe, N., Pourret, O., & Bau, M. (2017). Negative cerium anomalies in manganese (hydr)oxide precipitates due to cerium oxidation in the presence of dissolved siderophores. Geochimica et Cosmochimica Acta, 196, 197–208. doi:10.1016/j.gca.2016.09.018
  • Kronholm, B. E. N., Anderson, C. G., & Taylor, P. R. (2013). A primer on hydrometallurgical rare earth separations. Jom Journal Jom, 65(10), 1321–1326. doi:10.1007/s11837-013-0718-9
  • Kück, U., Nowrousian, M., Hoff, B., & Engh, I. (2009). Schimmelpilze. Lebensweise, Nutzen, Schaden, Bekämpfung (3rd ed.). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-88717-1
  • Kuever, J., Rainey, F. A. & Widdel, F. (2015). Desulfovibrio. In W. B. Whitman (Supervising Editor), Bergey’s manual of systematics of archaea and bacteria (pp. 1–17). Chichester, UK: Wiley. doi:10.1002/9781118960608.gbm01035
  • Kumari, A., Panda, R., Jha, M. K., Kumar, J. R., & Lee, J. Y. (2015). Process development to recover rare earth metals from monazite mineral: A review. Minerals Engineering, 79, 102–115. doi:10.1016/j.mineng.2015.05.003
  • LaBauve, A. E., & Wargo, M. J. (2012). Growth and laboratory maintenance of Pseudomonas aeruginosa. In Current protocols in microbiology. Hoboken, NJ: John Wiley & Sons, Inc. doi:10.1002/9780471729259.mc06e01s25
  • Lazo, D. E., Dyer, L. G., Alorro, R. D., & Browner, R. (2017). Treatment of monazite by organic acids I: Solution conversion of rare earths. Hydrometallurgy, 174, 202–209. doi:10.1016/j.hydromet.2017.10.003
  • Lazo, D. E., Dyer, L. G., Alorro, R. D., & Browner, R. (2018). Treatment of monazite by organic acids II: Rare earth dissolution and recovery. Hydrometallurgy, 179, 94–99. doi:10.1016/j.hydromet.2018.05.022
  • Lee, H. B., Bogart, J. A., Carroll, P. J., & Schelter, E. J. (2014). Structural and electrochemical characterization of a cerium(IV) hydroxamate complex: Implications for the beneficiation of light rare earth ores. Chemical Communications, 50(40), 5361–5363. doi:10.1039/C3CC46486E
  • Liu, X., & Byrne, R. H. (1997). Rare earth and yttrium phosphate solubilities in aqueous solution. Geochimica et Cosmochimica Acta, 61(8), 1625–1633. doi:10.1016/S0016-7037(97)00037-9
  • Lokshin, E. P., Tareeva, O. A., Ivlev, K. G., & Kashulina, T. G. (2005). Solubility of Double Alkali Metal (Na, K) REE (La,Ce) sulfates in sulfuric-phosphoric acid solutions at 20 C. Russian Journal of Applied Chemistry, 78(7), 1058–1063. doi:10.1007/s11167-005-0449-y
  • Lokshin, E. P., Tareeva, O. A., & Kashulina, T. G. (2008). Effect of sulfuric acid and sodium cations on the solubility of lanthanides in phosphoric acid. Russian Journal of Applied Chemistry, 81(1), 1–7. doi:10.1134/S1070427208010011
  • Ludwig, C., Casey, W. H., & Rock, P. A. (1995). Prediction of ligand-promoted dissolution rates from the reactivities of aqueous complexes. Nature, 375(6526), 44–47. doi:10.1038/375044a0
  • Marra, A., Cesaro, A., Rene, E. R., Belgiorno, V., & Lens, P. N. L. (2018). Bioleaching of metals from WEEE shredding dust. Journal of Environmental Management, 210, 180–190. doi:10.1016/j.jenvman.2017.12.066
  • Marshall, W. L., & Jones, E. V. (1966). Second dissociation constant of sulfuric acid from 25 to 350 °C evaluated from solubilities of calcium sulfate in sulfuric acid solutions. The Journal of Physical Chemistry, 70(12), 4028–4040. doi:10.1021/j100884a045
  • Martell, A. E., & Smith, R. M. (1977). Critical stabilty constants - Vol. 3. Other organic ligands. Boston, MA: Springer. doi:10.1007/978-1-4757-1568-2
  • Massari, S., & Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38(1), 36–43. doi:10.1016/j.resourpol.2012.07.001
  • Meshram, P., Pandey, B. D., & Mankhand, T. R. (2016). Process optimization and kinetics for leaching of rare earth metals from the spent Ni–metal hydride batteries. Waste Management, 51, 196–203. doi:10.1016/j.wasman.2015.12.018
  • Migdisov, A. A., Williams-Jones, A. E., & Wagner, T. (2009). An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 °C. Geochimica et Cosmochimica Acta, 73(23), 7087–7109. doi:10.1016/j.gca.2009.08.023
  • Mihajlovic, J., Giani, L., Stark, H. J., & Rinklebe, J. (2014). Concentrations and geochemical fractions of rare earth elements in two marsh soil profiles at the North Sea, Germany. Journal of Soils and Sediments, 14, 1417–1433. doi:10.1007/s11368-014-0895-3
  • Mihajlovic, J., & Rinklebe, J. (2018). Rare earth elements in German soils – A review. Chemosphere, 205, 514–523. doi:10.1016/j.chemosphere.2018.04.059
  • Mioduski, T., Gumiński, C., & Zeng, D. (2008). IUPAC-NIST solubility data series. 87. Rare earth metal chlorides in water and aqueous systems. Part 1. Scandium group (Sc, Y, La). Journal of Physical and Chemical Reference Data, 37(4), 1765–1853. doi:10.1063/1.2956740
  • Mioduski, T., Gumiński, C., & Zeng, D. (2009a). IUPAC-NIST solubility data series. 87. Rare earth metal chlorides in water and aqueous systems. Part 2. Light lanthanides (Ce–Eu). Journal of Physical and Chemical Reference Data, 38(2), 441–562. doi:10.1063/1.3112775
  • Mioduski, T., Gumiński, C., & Zeng, D. (2009b). IUPAC-NIST solubility data series. 87. Rare earth metal chlorides in water and aqueous systems. Part 3. Heavy lanthanides (Gd–Lu). Journal of Physical and Chemical Reference Data, 38(4), 925–1011. doi:10.1063/1.3212962
  • Mioduski, T., Gumiński, C., & Zeng, D. (2014a). IUPAC-NIST solubility data series. 100. Rare earth metal fluorides in water and aqueous systems. Part 1. Scandium group (Sc, Y, La). Journal of Physical and Chemical Reference Data, 37(4), 1765–1853. doi:10.1063/1.2956740
  • Mioduski, T., Gumiński, C., & Zeng, D. (2014b). IUPAC-NIST solubility data series. 100. Rare earth metal fluorides in water and aqueous systems. Part 2. Light lanthanides (Ce-Eu). Journal of Physical and Chemical Reference Data, 44(1), 013102. doi:10.1063/1.4903362
  • Mioduski, T., Gumiński, C., & Zeng, D. (2015). IUPAC-NIST solubility data series. 100. Rare Earth metal fluorides in water and aqueous systems. Part 3. Heavy lanthanides (Gd–Lu). Journal of Physical and Chemical Reference Data, 44(2), 023102. doi:10.1063/1.4918371
  • Möller, P., & Bau, M. (1993). Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. Earth and Planetary Science Letters, 117(3–4), 671–676. doi:10.1016/0012-821X(93)90110-U
  • Müller, T., & Friedrich, B. (2006). Development of a recycling process for nickel-metal hydride batteries. Journal of Power Sources, 158(2), 1498–1509. doi:10.1016/j.jpowsour.2005.10.046
  • Muravyov, M. I., Bulaev, A. G., Melamud, V. S., & Kondrat’eva, T. F. (2015). Leaching of rare earth elements from coal ashes using acidophilic chemolithotrophic microbial communities. Microbiology, 84(2), 194–224. doi:10.1134/S0026261715010087
  • Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265–270. doi:10.1111/j.1574-6968.1999.tb13383.x
  • Oelkers, E. H., & Poitrasson, F. (2002). An experimental study of the dissolution stoichiometry and rates of a natural monazite as a function of temperature from 50 to 230 °C and pH from 1.5 to 10. Chemical Geology, 191(1–3), 73–87. doi:10.1016/S0009-2541(02)00149-3
  • Ogata, T., Narita, H., Tanaka, M., Hoshino, M., Kon, Y., & Watanabe, Y. (2016). Selective recovery of heavy rare earth elements from apatite with an adsorbent bearing immobilized tridentate amido ligands. Separation and Purification Technology, 159, 157–160. doi:10.1016/j.seppur.2016.01.008
  • Olson, G. J., Brierley, J. A., & Brierley, C. L. (2003). Bioleaching review part B: Progress in bioleaching: Applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology, 63(3), 249–257. doi:10.1007/s00253-003-1404-6
  • Omodara, L., Pitkaaho, S., Turpeinen, E. M., Saavalainen, P., Oravisjarvi, K., & Keiski, R. L. (2019). Recycling and substitution of light rare earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications – A review. Journal of Cleaner Production, 236, 117573. doi:10.1016/j.jclepro.2019.07.048
  • Osman, Y., Gebreil, A., Mowafy, A. M., Anan, T. I., & Hamed, S. M. (2019). Characterization of Aspergillus niger siderophore that mediates bioleaching of rare earth elements from phosphorites. World Journal of Microbiology and Biotechnology, 35(6), 93. doi:10.1007/s11274-019-2666-1
  • Pakostova, E., Grail, B. M., & Johnson, D. B. (2017). Indirect oxidative bioleaching of a polymetallic black schist sulfide ore. Minerals Engineering, 106, 102–107. doi:10.1016/j.mineng.2016.08.028
  • Palleroni, N. J. (2015). Pseudomonas. In W. B. Whitman (Supervising Editor), Bergey’s manual of systematics of archaea and bacteria (pp. 1–1). Chichester, UK: John Wiley & Sons, Ltd. doi:10.1002/9781118960608.gbm01210
  • Pant, D., Joshi, D., Upreti, M. K., & Kotnala, R. K. (2012). Chemical and biological extraction of metals present in E waste: A hybrid technology. Waste Management, 32(5), 979–990. doi:10.1016/j.wasman.2011.12.002
  • Park, S., & Liang, Y. (2019). Bioleaching of trace elements and rare earth elements from coal fly ash. International Journal of Coal Science & Technology, 6(1), 74–83. doi:10.1007/s40789-019-0238-5
  • Pathak, A., Morrison, L., & Gerard, M. (2017). Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: A critical review. Bioresource Technology, 229, 211–221. doi:10.1016/j.biortech.2017.01.001
  • Peelman, S., Sun, Z. H. I., Sietsma, J., & Yang, Y. (2015). Leaching of rare earth elements: Review of past and present technologies. In Rare earths industry. New York, NY: Elsevier. doi:10.1016/B978-0-12-802328-0.00021-8
  • Perämäki, S. (2014). Method development for determination and recovery of rare earth elements from industrial fly ash. Department of Chemistry, University of Jyväskylä.
  • Pollmann, K., Kutschke, S., Matys, S., Raff, J., Hlawacek, G., & Lederer, F. L. (2018). Bio-recycling of metals: Recycling of technical products using biological applications. Biotechnology Advances, 36(4), 1048–1062. doi:10.1016/j.biotechadv.2018.03.006
  • Porvali, A., Wilson, B. P., & Lundström, M. (2018). Lanthanide-alkali double sulfate precipitation from strong sulfuric acid NiMH battery waste leachate. Waste Management, 71, 381–389. doi:10.1016/j.wasman.2017.10.031
  • Potysz, A., van Hullebusch, E. D., Kierczak, J., Grybos, M., Lens, P. N. L., & Guibaud, G. (2015). Copper metallurgical slags – Current knowledge and fate: A review. Critical Reviews in Environmental Science and Technology, 45(22), 2424–2488. doi:10.1080/10643389.2015.1046769
  • Pradhan, N., Nathsarma, K. C., Srinivasa Rao, K., Sukla, L. B., & Mishra, B. K. (2008). Heap bioleaching of chalcopyrite: A review. Minerals Engineering, 21(5), 355–365. doi:10.1016/j.mineng.2007.10.018
  • Prust, C., Hoffmeister, M., Liesegang, H., Wiezer, A., Fricke, W. F., Ehrenreich, A., … Deppenmeier, U. (2005). Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nature Biotechnology, 23(2), 195–200. doi:10.1038/nbt1062
  • Qu, Y., Li, H., Tian, W., Wang, X., Wang, X., Jia, X., … Tang, Y. (2015). Leaching of valuable metals from red mud via batch and continuous processes by using fungi. Minerals Engineering, 81, 1–4. doi:10.1016/j.mineng.2015.07.022
  • Qu, Y., & Lian, B. (2013). Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresource Technology, 136, 16–23. doi:10.1016/j.biortech.2013.03.070
  • Quatrini, R., & Johnson, D. B. (2018). Microbiomes in extremely acidic environments: Functionalities and interactions that allow survival and growth of prokaryotes at low pH. Current Opinion in Microbiology, 43, 139–147. doi:10.1016/j.mib.2018.01.011
  • Ramachandran, S., Pierre, F., Pandey, A., & Larroche, C. (2006). Gluconic acid: Properties, applications and microbial production. Food Technology and Biotechnology, 44(2), 185–195.
  • Rao, C., Mermans, J., Blanpain, B., Pontikes, Y., Binnemans, K., Gerven, T. & Van, (2016). Selective recovery of rare earths from bauxite residue by combination of sulfation, roasting and leaching. Minerals Engineering, 92, 151–159. doi:10.1016/j.mineng.2016.03.002
  • Rard, J. A., & Spedding, F. H. (1975). Electrical conductances of some aqueous rare earth electrolyte solutions at 25.deg. III. Rare earth nitrates. The Journal of Physical Chemistry, 79(3), 257–262. doi:10.1021/j100570a012
  • Rasoulnia, P., & Mousavi, S. M. (2016a). V and Ni recovery from a vanadium-rich power plant residual ash using acid producing fungi: Aspergillus niger and Penicillium simplicissimum. RSC Advances, 6(11), 9139–9151. doi:10.1039/C5RA24870A
  • Rasoulnia, P., & Mousavi, S. M. (2016b). Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments. Bioresource Technology, 216, 729–736. doi:10.1016/j.biortech.2016.05.114
  • Rasoulnia, P., Mousavi, S. M. M., Rastegar, S. O. O., & Azargoshasb, H. (2016). Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods. Waste Management, 52, 309–317. doi:10.1016/j.wasman.2016.04.004
  • Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., & Chandler, R. E. (1983). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of Bacteriology, 154(3), 1222–1226. doi:10.1128/JB.154.3.1222-1226.1983
  • Ratkowsky, D. A., Olley, J., McMeekin, T. A., & Ball, A. (1982). Relationship between temperature and growth rate of bacterial cultures. Journal of Bacteriology, 149(1), 1–5. doi:10.1128/JB.149.1.1-5.1982
  • Rawlings, D. E. (2002). Heavy metal mining using microbes. Annual Review of Microbiology, 56(1), 65–91. doi:10.1146/annurev.micro.56.012302.161052
  • Rawlings, D. E., Dew, D., & Plessis, C. (2003). Biomineralization of metal-containing ores and concentrates. TRENDS in Biotechnology, 21(1), 38–35. doi:10.1016/S0167-7799(02)00004-5
  • Reed, D. W., Fujita, Y., Daubaras, D. L., Bruhn, D. F., Reiss, J. H., Thompson, V. S., & Jiao, Y. (2016). Microbially mediated leaching of rare earth elements from recyclable materials. In XXVIII International Mineral Processing Congress, IMPC 2016.
  • Reed, D. W., Fujita, Y., Daubaras, D. L., Jiao, Y., & Thompson, V. S. (2016). Bioleaching of rare earth elements from waste phosphors and cracking catalysts. Hydrometallurgy, 166, 34–40. doi:10.1016/j.hydromet.2016.08.006
  • Rohwerder, T., Gehrke, T., Kinzler, K., & Sand, W. (2003). Bioleaching review part A: Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiology and Biotechnology, 63(3), 239–248. doi:10.1007/s00253-003-1448-7
  • Royen, H., & Fortkamp, U. (2016). Rare earth elements – Purification, separation and recycling. Stockholm: IVL Swedish Environmental Research Institute Ltd.
  • Sanematsu, K., & Watanabe, Y. (2016). Characteristics and genesis of ion adsorption-type rare earth element deposits. Reviews in Economic Geology, 18, 55–79.
  • Sapsford, D. J., Bowell, R. J., Geroni, J. N., Penman, K. M., & Dey, M. (2012). Factors influencing the release rate of uranium, thorium, yttrium and rare earth elements from a low grade ore. Minerals Engineering, 39, 165–172. doi:10.1016/j.mineng.2012.08.002
  • Serrano, M., Sanz, L., & Nordstrom, D. (2000). REE speciation in low-temperature acidic waters and the competitive effects of aluminum. Chemical Geology, 165(3–4), 167–180. doi:10.1016/S0009-2541(99)00166-7
  • Sethurajan, M., van Hullebusch, E. D., Fontana, D., Akcil, A., Deveci, H., Batinic, B., … Chmielarz, A. (2019). Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes – A review. Critical Reviews in Environmental Science and Technology, 49(3), 212–275. doi:10.1080/10643389.2018.1540760
  • Shin, D., Kim, J., Kim, B., Jeong, J., & Lee, J. (2015). Use of phosphate solubilizing bacteria to leach rare earth elements from monazite-bearing ore. Minerals, 5(2), 189–202. doi:10.3390/min5020189
  • Siekierski, S., Mioduski, T., & Salomon, M. (Eds.). (1983). Solubility data series, international union of pure and applied chemistry Vol. 13 - Scandium, yttrium, lanthanum and lanthanide nitrates (1st ed.). Oxford, UK: Pergamon Press.
  • Sievers, M., & Swings, J. (2015a). Acetobacter. In Bergey’s manual of systematics of archaea and bacteria (pp. 1–7). Chichester, UK: John Wiley & Sons, Ltd. doi:10.1002/9781118960608.gbm00876
  • Sievers, M., & Swings, J. (2015b). Gluconobacter. In Bergey’s manual of systematics of archaea and bacteria (pp. 1–9). Chichester, UK: John Wiley & Sons, Ltd. doi:10.1002/9781118960608.gbm00884
  • Singh, R., Mittal, A., Kumar, M., & Mehta, P. K. (2017). Organic acids: An overview on microbial production. International Journal of Advanced Biotechnology and Research, 8(1), 104–111.
  • Sinha, S., Abhilash Meshram, P., & Pandey, B. D. (2016). Metallurgical processes for the recovery and recycling of lanthanum from various resources—A review. Hydrometallurgy, 160, 47–59. doi:10.1016/j.hydromet.2015.12.004
  • Smith, R. M., & Martell, A. E. (1976). Critical stability constants - Vol. 4. Inorganic ligands. Boston, MA: Springer. doi:10.1007/978-1-4757-5506-0
  • Smith, R. M., & Martell, A. E. (1989). Critical stability constants - Vol. 6. Second supplement. Boston, MA: Springer. doi:10.1007/978-1-4615-6764-6
  • Spahiu, K., & Bruno, J. (1995). A selected thermodynamic database for REE to be used in HLNW performance assessment exercises (SKB-TR--95-35). Sweden.
  • Spedding, F. H., & Jaffe, S. (1954). Conductances, solubilities and ionization constants of some rare earth sulfates in aqueous solutions at 25 °C. Journal of the American Chemical Society, 76(3), 882–884. doi:10.1021/ja01632a073
  • Stone, K., Bandara, A. M. T. S., Senanayake, G., & Jayasekera, S. (2016). Processing of rare earth phosphate concentrates: A comparative study of pre-leaching with perchloric, hydrochloric, nitric and phosphoric acids and deportment of minor/major elements. Hydrometallurgy, 163, 137–147. doi:10.1016/j.hydromet.2016.03.014
  • Sugio, T., Domatsu, C., Tano, T., & Imai, K. (1984). Role of ferrous ions in synthetic cobaltous sulfide leaching of Thiobacillus ferrooxidans. Applied and Environmental Microbiology, 48(3), 461–467. doi:10.1128/AEM.48.3.461-467.1984
  • Tan, Q., Deng, C., & Li, J. (2016). Innovative application of mechanical activation for rare earth elements recovering: Process optimization and mechanism exploration. Scientific Reports, 6, 1–10. doi:10.1038/srep19961
  • Tan, Q., Deng, C., & Li, J. (2017). Enhanced recovery of rare earth elements from waste phosphors by mechanical activation. Journal of Cleaner Production, 142, 2187–2191. doi:10.1016/j.jclepro.2016.11.062
  • Thompson, V. S., Gupta, M., Jin, H., Vahidi, E., Yim, M., Jindra, M. A., … Reed, D. W. (2018). Techno-economic and life cycle analysis for bioleaching rare-earth elements from waste materials. ACS Sustainable Chemistry & Engineering, 6(2), 1602–1609. doi:10.1021/acssuschemeng.7b02771
  • Todorovsky, D. S., Milanova, M. M., Minkova, N. L., & Balarev, C. (1993). Solubility of some lanthanide sulfates in polycomponent systems containing H2SO4. Monatshefte fur Chemie Chemical Monthly, 124(6–7), 673–679. doi:10.1007/BF00817302
  • Toribio, J., Escalante, A. E., & Soberón-Chávez, G. (2010). Rhamnolipids: Production in bacteria other than Pseudomonas aeruginosa. European Journal of Lipid Science and Technology, 112(10), 1082–1087. doi:10.1002/ejlt.200900256
  • Tsaplina, I. A., Panyushkina, A. E., Grigor’eva, N. V., Bulaev, A. G., & Kondrat’eva, T. F. (2015). Growth of acidophilic chemolithotrophic microbial communities and sulfur oxidation in the presence of coal ashes. Microbiology, 84(2), 177–189. doi:10.1134/S0026261715020174
  • Tsuruta, T. (2007). Accumulation of rare earth elements in various microorganisms. Journal of Rare Earths, 25(5), 526–532. doi:10.1016/S1002-0721(07)60556-0
  • Uhlig, H., Karbaum, K., & Steudel, A. (1986). Acetobacter methanolicus sp. nov., an Acidophilic Facultatively Methylotrophic Bacterium. International Journal of Systematic Bacteriology, 36(2), 317–322. doi:10.1099/00207713-36-2-317
  • Um, N., & Hirato, T. (2016). A hydrometallurgical method of energy saving type for separation of rare earth elements from rare earth polishing powder wastes with middle fraction of ceria. Journal of Rare Earths, 34(5), 536–542. doi:10.1016/S1002-0721(16)60059-5
  • US Geological Survey. (2018). Mineral commodity summaries. Reston, VA: USGS.
  • Van Loy, S., Binnemans, K., & Van Gerven, T. (2018). Mechanochemical-assisted leaching of lamp phosphors: A green engineering approach for rare-earth recovery. Engineering, 4(3), 398–405. doi:10.1016/j.eng.2018.05.015
  • Vera, M., Schippers, A., & Sand, W. (2013). Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation – Part A. Applied Microbiology and Biotechnology, 97(17), 7529–7541. doi:10.1007/s00253-013-4954-2
  • Verplanck, P. L., Nordstrom, D. K., Taylor, H. E., & Kimball, B. A. (2004). Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation. Applied Geochemistry, 19(8), 1339–1354. doi:10.1016/j.apgeochem.2004.01.016
  • Walawalkar, M., Nichol, C. K., & Azimi, G. (2016a). An innovative process for the recovery of consumed acid in rare-earth elements leaching from phosphogypsum. Industrial & Engineering Chemistry Research, 55(48), 12309–12316. doi:10.1021/acs.iecr.6b03357
  • Walawalkar, M., Nichol, C. K., & Azimi, G. (2016b). Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4. Hydrometallurgy, 166, 195–204. doi:10.1016/j.hydromet.2016.06.008
  • Wang, L., Huang, X., Yu, Y., Zhao, L., Wang, C., Feng, Z., … Long, Z. (2017). Towards cleaner production of rare earth elements from bastnaesite in China. Journal of Cleaner Production, 165(2), 231–242. doi:10.1016/j.jclepro.2017.07.107
  • Wang, Q., Deng, J., Liu, X., Zhang, Q., Sun, S., Jiang, C., & Zhou, F. (2010). Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China. Journal of Asian Earth Sciences, 39(6), 701–712. doi:10.1016/j.jseaes.2010.05.005
  • Wang, W., Qiu, Z., Tan, H., & Cao, L. (2014). Siderophore production by actinobacteria. BioMetals, 27(4), 623–631. doi:10.1007/s10534-014-9739-2
  • Wei, W., Zhang, X., Cui, J., & Wei, Z. (2011). Interaction between low molecular weight organic acids and hydroxyapatite with different degrees of crystallinity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 392(1), 67–75. doi:10.1016/j.colsurfa.2011.09.034
  • Whitty-Léveillé, L., Reynier, N., & Larivière, D. (2018). Rapid and selective leaching of actinides and rare earth elements from rare earth-bearing minerals and ores. Hydrometallurgy, 177, 187–196. doi:10.1016/j.hydromet.2018.03.015
  • Williamson, A. L. (2014). An investigation into bioleaching of uranium and rare earth elements from quartz-pebble conglomerate ores from Elliot Lake, Ontario. Laurentian University.
  • Willner, J., Kadukova, J., Fornalczyk, A., & Saternus, M. (2015). Biohydrometallurgical methods for metals recovery from waste materials. Metalurgija, 54(1), 255–258.
  • Wu, H. Y., & Ting, Y. P. (2006). Metal extraction from municipal solid waste (MSW) incinerator fly ash – Chemical leaching and fungal bioleaching. Enzyme and Microbial Technology, 38(6), 839–847. doi:10.1016/j.enzmictec.2005.08.012
  • Wu, X., Wang, X., & Lu, W. (2014). Genome-scale reconstruction of a metabolic network for Gluconobacter oxydans 621H. Biosystems, 117, 10–14. doi:10.1016/j.biosystems.2014.01.001
  • Wu, Y., Yin, X., Zhang, Q., Wang, W., & Mu, X. (2014). The recycling of rare earths from waste tricolor phosphors in fluorescent lamps: A review of processes and technologies. Resources, Conservation & Recycling, 88(100), 21–31. doi:10.1016/j.resconrec.2014.04.007
  • Xiao, Y. F., Feng, Z. Y., Hu, G. H., Huang, L., Huang, X. W., Chen, Y. Y., & Li, M. L. (2015). Leaching and mass transfer characteristics of elements from ion-adsorption type rare earth ore. Rare Metals, 34(5), 357–365. doi:10.1007/s12598-015-0481-x
  • Yang, F., Kubota, F., Baba, Y., Kamiya, N., & Goto, M. (2013). Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. Journal of Hazardous Materials, 254–255(1), 79–88. doi:10.1016/j.jhazmat.2013.03.026
  • Yang, X., Zhang, J., & Fang, X. (2014). Rare earth element recycling from waste nickel-metal hydride batteries. Journal of Hazardous Materials, 279, 384–388. doi:10.1016/j.jhazmat.2014.07.027
  • Yoon, H.-S., Kim, C.-J., Chung, K. W., Lee, J.-Y., Shin, S. M., Lee, S.-J., … Yoo, S.-J. (2014). Leaching kinetics of neodymium in sulfuric acid of rare earth elements (REE) slag concentrated by pyrometallurgy from magnetite ore. Korean Journal of Chemical Engineering, 31(10), 1766–1772. doi:10.1007/s11814-014-0078-3
  • Yoshida, T., Ozaki, T., Ohnuki, T., & Francis, A. J. (2004). Adsorption of rare earth elements by γ-Al2O3 and Pseudomonas fluorescens cells in the presence of desferrioxamine B: Implication of siderophores for the Ce anomaly. Chemical Geology, 212(3–4), 239–246. doi:10.1016/j.chemgeo.2004.08.046
  • Yu, Q., Ohnuki, T., Tanaka, K., Kozai, N., Yamasaki, S., Sakamoto, F., & Tani, Y. (2016). Fungus-promoted transformation of lanthanides during the biooxidation of divalent manganese. Geochimica et Cosmochimica Acta, 174, 1–12. doi:10.1016/j.gca.2015.11.004
  • Yu, Z. S., & Chen, M. B. (1995). Rare earth elements and their applications. Beijing, China: Metallurgical Industry Press.
  • Zhang, L., Dong, H., Liu, Y., Bian, L., Wang, X., Zhou, Z., & Huang, Y. (2018). Bioleaching of rare earth elements from bastnaesite-bearing rock by actinobacteria. Chemical Geology, 483, 544–557. doi:10.1016/j.chemgeo.2018.03.023
  • Zhou, D., Li, Z., Luo, X., & Su, J. (2017). Leaching of rare earth elements from contaminated soils using saponin and rhamnolipid bio-surfactant. Journal of Rare Earths, 35(9), 911–919. doi:10.1016/S1002-0721(17)60994-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.