2,844
Views
40
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in membrane aerated biofilm reactors

, , , &
Pages 649-703 | Published online: 09 Mar 2020

References

  • Ahimou, F., Semmens, M. J., Haugstad, G., & Novak, P. J. (2007). Effect of protein, polysaccharide, and oxygen concentration profiles on biofilm cohesiveness. Applied and Environmental Microbiology, 73(9), 2905–2910. doi:10.1128/AEM.02420-06
  • Ahmed, T., Semmens, M. J., & Voss, M. A. (2004). Oxygen transfer characteristics of hollow-fiber, composite membranes. Advances in Environmental Research, 8(3-4), 637–646. doi:10.1016/S1093-0191(03)00036-4
  • Aslam, M., Charfi, A., Lesage, G., Heran, M., & Kim, J. H. (2017). Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling. Chemical Engineering Journal, 307, 897–913. doi:10.1016/j.cej.2016.08.144
  • Atwater, J. E., & Akse, J. R. (2007). Oxygen permeation through functionalized hydrophobic tubular ceramic membranes. Journal of Membrane Science, 301(1-2), 76–84. doi:10.1016/j.memsci.2007.05.037
  • Aybar, M., Pizarro, G., Boltz, J., & Nerenberg, R. (2015). Energy efficient wastewater treatment via the membrane-aerated biofilm reactor (MABR): Effect of membrane fluxes on performance. Proceedings of the Water Environment Federation, 2015(13), 209–213. doi:10.2175/193864715819541116
  • Aybar, M., Perez-Calleja, P., Li, M., Pavissich, J., & Nerenberg, R. (2019). Predation creates unique void layer in membrane-aerated biofilms. Water Research, 149, 232–242. doi:10.1016/j.watres.2018.10.084
  • Bokova, I., Ryder, G., Uhlenbrook, S., & Connor, R. (2017). The United Nations World Water Development Report 2017, Wastewater: The untapped resource. Paris: UNESCO.
  • Bunce, J. T., Ndam, E., Ofiteru, I. D., Moore, A., & Graham, D. W. (2018). A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Frontiers in Environmental Science, 6, 8. doi:10.3389/fenvs.2018.00008
  • Cai, H., Fan, H., Zhao, L., Hong, H., Shen, L., He, Y., … Chen, J. (2016). Effects of surface charge on interfacial interactions related to membrane fouling in a submerged membrane bioreactor based on thermodynamic analysis. Journal of Colloid and Interface Science, 465, 33–41. doi:10.1016/j.jcis.2015.11.044
  • Cao, C., Zhao, L., Xu, D., & Geng, Q. (2009). Membrane‐aerated biofilm reactor behaviors for the treatment of high‐strength ammonium industrial wastewater. Chemical Engineering & Technology, 32(4), 613–621. doi:10.1002/ceat.200800450
  • Casey, E. (2007). Simulation studies of process scale membrane aerated biofilm reactor configurations. 4th International Water Association Membranes Conference, Harrogate, UK, January, 2007.
  • Chen, J. R., Lin, H. J., Shen, L. G., He, Y. M., Zhang, M. J., & Liao, B. Q. (2017). Realization of quantifying interfacial interactions between a randomly rough membrane surface and a foulant particle. Bioresource Technology, 226, 220–228. doi:10.1016/j.biortech.2016.12.025
  • Chen, R. D., Semmens, M. J., & LaPara, T. M. (2008). Biological treatment of a synthetic space mission wastewater using a membrane-aerated, membrane-coupled bioreactor (M2BR). Journal of Industrial Microbiology & Biotechnology, 35(6), 465–473. doi:10.1007/s10295-008-0302-4
  • Christenson, D., Sevanthi, R., Morse, A., & Jackson, A. (2018). Assessment of membrane-aerated biological reactors (MABRs) for integration into space-based water recycling system architectures. Gravitational and Space Research, 6(2), 12–27.
  • Côté, P., Peeters, J., Adams, N., Hong, Y., Long, Z., & Ireland, J. (2015). A new membrane-aerated biofilm reactor for low energy wastewater treatment: Pilot results. Proceedings of the Water Environment Federation, 2015(13), 4226–4239. doi:10.2175/193864715819540883
  • De Beer, D., & Stoodley, P. (2013). Microbial biofilms. The Prokaryotes: Applied Bacteriology and Biotechnology, 343–372. (Berlin: Springer).
  • Derlon, N., Peter-Varbanets, M., Scheidegger, A., Pronk, W., & Morgenroth, E. (2012). Predation influences the structure of biofilm developed on ultrafiltration membranes. Water Research, 46(10), 3323–3333. doi:10.1016/j.watres.2012.03.031
  • Dong, W. Y., Wang, H. J., Li, W. G., Ying, W. C., Gan, G. H., & Yang, Y. (2009). Effect of DO on simultaneous removal of carbon and nitrogen by a membrane aeration/filtration combined bioreactor. Journal of Membrane Science, 344(1-2), 219–224. doi:10.1016/j.memsci.2009.08.007
  • Downing, L. S., & Nerenberg, R. (2008a). Effect of bulk liquid BOD concentration on activity and microbial community structure of a nitrifying, membrane-aerated biofilm. Applied Microbiology and Biotechnology, 81(1), 153–162. doi:10.1007/s00253-008-1705-x
  • Downing, L. S., & Nerenberg, R. (2008b). Total nitrogen removal in a hybrid, membrane-aerated activated sludge process. Water Research, 42(14), 3697–3708. doi:10.1016/j.watres.2008.06.006
  • Duvall, C. (2017). Low-energy nitrification of wastewaters using membrane aerated biofilm reactors (Doctoral Dissertation). Retrieved from https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/1219/Craig_Duvall_201801_MASc.pdf?sequence=1&isAllowed=y
  • Feng, Y. J., Tseng, S. K., Hsia, T. H., Ho, C. M., & Chou, W. P. (2008). Aerated membrane‐attached biofilm reactor as an effective tool for partial nitrification in pretreatment of anaerobic ammonium oxidation (ANAMMOX) process. Journal of Chemical Technology & Biotechnology, 83(1), 6–11. doi:10.1002/jctb.1731
  • Gilmore, K. R., Little, J. C., Smets, B. F., & Love, N. G. (2009). Oxygen transfer model for a flow-through hollow-fiber membrane biofilm reactor. Journal of Environmental Engineering, 135(9), 806–814. doi:10.1061/(ASCE)EE.1943-7870.0000035
  • Gilmore, K. R., Terada, A., Smets, B. F., Love, N. G., & Garland, J. L. (2013). Autotrophic nitrogen removal in a membrane-aerated biofilm reactor under continuous aeration: A demonstration. Environmental Engineering Science, 30(1), 38–45. doi:10.1089/ees.2012.0222
  • Gong, Z., Liu, S., Yang, F., Bao, H., & Furukawa, K. (2008). Characterization of functional microbial community in a membrane-aerated biofilm reactor operated for completely autotrophic nitrogen removal. Bioresource Technology, 99(8), 2749–2756. doi:10.1016/j.biortech.2007.06.040
  • Gong, Z., Yang, F., Liu, S., Bao, H., Hu, S., & Furukawa, K. (2007). Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox. Chemosphere, 69(5), 776–784. doi:10.1016/j.chemosphere.2007.05.023
  • Grandclément, C., Tannières, M., Moréra, S., Dessaux, Y., & Faure, D. (2016). Quorum quenching: Role in nature and applied developments. FEMS Microbiology Reviews, 40(1), 86–116. doi:10.1093/femsre/fuv038
  • Halan, B., Letzel, T., Schmid, A., & Buehler, K. (2014). Solid support membrane‐aerated catalytic biofilm reactor for the continuous synthesis of (S)‐styrene oxide at gram scale. Biotechnology Journal, 9(10), 1339–1349. doi:10.1002/biot.201400341
  • Hwang, J. H., Cicek, N., & Oleszkiewicz, J. A. (2009). Inorganic precipitation during autotrophic denitrification under various operating conditions. Environmental Technology, 30(13), 1475–1485. doi:10.1080/09593330903241920
  • Hou, F., Li, B., Xing, M., Wang, Q., Hu, L., & Wang, S. (2013). Surface modification of PVDF hollow fiber membrane and its application in membrane aerated biofilm reactor (MABR). Bioresource Technology, 140, 1–9.
  • Houweling, D., Peeters, J., Cote, P., Long, Z., & Adams, N. (2017). Proving membrane aerated biofilm reactor (MABR) performance and reliability: Results from four pilots and a full-scale plant. Proceedings of the Water Environment Federation, 2017(16), 272–284. doi:10.2175/193864717822155786
  • Hu, S. W., Yang, F. L., Liu, S. T., & Yu, L. Q. (2009). The development of a novel hybrid aerating membrane-anaerobic baffled reactor for the simultaneous nitrogen and organic carbon removal from wastewater. Water Research, 43(2), 381–388. doi:10.1016/j.watres.2008.10.041
  • Hu, S. W., Yang, F. L., Sun, C., Zhang, J. Y., & Wang, T. H. (2008). Simultaneous removal of COD and nitrogen using a novel carbon-membrane aerated biofilm reactor. Journal of Environmental Sciences, 20(2), 142–148. doi:10.1016/S1001-0742(08)60022-4
  • Iorhemen, O. T., Hamza, R. A., & Tay, J. H. (2017). Membrane fouling control in membrane bioreactors (MBRs) using granular materials. Bioresource Technology, 240, 9–24. doi:10.1016/j.biortech.2017.03.005
  • Ivanovic, I., & Leiknes, T. O. (2012). The biofilm membrane bioreactor (BF-MBR)—a review. Desalination and Water Treatment, 37(1-3), 288–295. doi:10.1080/19443994.2012.661283
  • Janknecht, P., & Melo, L. F. (2003). Online biofilm monitoring. Reviews in Environmental Science and Bio/Technology, 2(2-4), 269–283. doi:10.1023/B:RESB.0000040461.69339.04
  • Kinh, C. T., Suenaga, T., Hori, T., Riya, S., Hosomi, M., Smets, B. F., & Terada, A. (2017). Counter-diffusion biofilms have lower N2O emissions than co-diffusion biofilms during simultaneous nitrification and denitrification: Insights from depth-profile analysis. Water Research, 124, 363–371. doi:10.1016/j.watres.2017.07.058
  • Klein, T., Zihlmann, D., Derlon, N., Isaacson, C., Szivak, I., Weissbrodt, D. G., & Pronk, W. (2016). Biological control of biofilms on membranes by metazoans. Water Research, 88, 20–29. doi:10.1016/j.watres.2015.09.050
  • Kochkodan, V., & Hilal, N. (2015). A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination, 356, 187–207. doi:10.1016/j.desal.2014.09.015
  • Krivorot, M., Kushmaro, A., Oren, Y., & Gilron, J. (2011). Factors affecting biofilm formation and biofouling in membrane distillation of seawater. Journal of Membrane Science, 376(1-2), 15–24. doi:10.1016/j.memsci.2011.01.061
  • Kunetz, T. E., Oskouie, A., Poonsapaya, A., Peeters, J., Adams, N., Long, Z., & Côté, P. (2016). Innovative membrane-aerated biofilm reactor pilot test to achieve low-energy nutrient removal at the Chicago MWRD. Proceedings of the Water Environment Federation, 2016(14), 2973–2987. doi:10.2175/193864716819713006
  • Lackner, S., Holmberg, M., Terada, A., Kingshott, P., & Smets, B. F. (2009). Enhancing the formation and shear resistance of nitrifying biofilms on membranes by surface modification. Water Research, 43(14), 3469–3478. doi:10.1016/j.watres.2009.05.011
  • Lackner, S., Terada, A., & Smets, B. F. (2008). Heterotrophic activity compromises autotrophic nitrogen removal in membrane-aerated biofilms: Results of a modeling study. Water Research, 42(4-5), 1102–1112. doi:10.1016/j.watres.2007.08.025
  • Lackner, S., Terada, A., Horn, H., Henze, M., & Smets, B. F. (2010). Nitrification performance in membrane-aerated biofilm reactors differs from conventional biofilm systems. Water Research, 44(20), 6073–6084. doi:10.1016/j.watres.2010.07.074
  • Lan, M., Li, M., Liu, J., Quan, X., Li, Y., & Li, B. (2018). Coal chemical reverse osmosis concentrate treatment by membrane-aerated biofilm reactor system. Bioresource Technology, 270, 120–128.
  • Landes, N., Morse, A., & Jackson, W. A. (2013). Including nitrite as an intermediate in simultaneous nitrification/denitrification membrane-aerated biofilm reactor models. Environmental Engineering Science, 30(10), 606–616. doi:10.1089/ees.2012.0477
  • Lebrero, R., Volckaert, D., Pérez, R., Muñoz, R., & Van Langenhove, H. (2013). A membrane bioreactor for the simultaneous treatment of acetone, toluene, limonene and hexane at trace level concentrations. Water Research, 47(7), 2199–2212. doi:10.1016/j.watres.2013.01.041.
  • Li, M., Li, P., Du, C., Sun, L., & Li, B. (2016). Pilot-scale study of an integrated membrane-aerated biofilm reactor system on urban river remediation. Industrial & Engineering Chemistry Research, 55(30), 8373–8382. doi:10.1021/acs.iecr.6b00143
  • Li, P., Li, M., Zhang, Y., Zhang, H., Sun, L., & Li, B. (2016). The treatment of surface water with enhanced membrane-aerated biofilm reactor (MABR). Chemical Engineering Science, 144, 267–274. doi:10.1016/j.ces.2016.01.030
  • Li, P., Zhao, D., Zhang, Y., Sun, L., Zhang, H., Lian, M., & Li, B. (2015). Oil-field wastewater treatment by hybrid membrane-aerated biofilm reactor (MABR) system. Chemical Engineering Journal, 264, 595–602.
  • Li, Q. (2018). Pilot-scale plant application of membrane aerated biofilm reactor (MABR) technology in wastewater treatment (Master’s Thesis), School of Architecture and Built Environment, Sweden.
  • Li, T., Bai, R., & Liu, J. (2008). Distribution and composition of extracellular polymeric substances in membrane-aerated biofilm. Journal of Biotechnology, 135(1), 52–57. doi:10.1016/j.jbiotec.2008.02.011
  • Li, T., & Liu, J. X. (2019). Factors affecting performance and functional stratification of membrane-aerated biofilms with a counter-diffusion configuration. RSC Advances, 9(50), 29337–29346. doi:10.1039/C9RA03128F
  • Li, T., Liu, J., & Bai, R. (2008). Membrane aerated biofilm reactor: A brief current review. Recent Patents on Biotechnology, 2(2), 88–93. doi:10.2174/187220808784619739
  • Li, T., Liu, J., Bai, R., & Wong, F. (2008). Membrane-aerated biofilm reactor for the treatment of acetonitrile wastewater. Environmental Science & Technology, 42(6), 2099–2104. doi:10.1021/es702150f
  • Li, Y., & Zhang, K. (2018). Pilot-scale treatment of polluted surface waters using membrane-aerated biofilm reactor (MABR). Biotechnology & Biotechnological Equipment, 32(2), 376–386.
  • Liao, B. Q., & Liss, S. N. (2007). A comparative study between thermophilic and mesophilic membrane aerated biofilm reactors. Journal of Environmental Engineering and Science, 6(2), 247–252. doi:10.1139/s06-053
  • Liao, B. Q., Zheng, M. R., & Ratana-Rueangsri, L. (2010). Treatment of synthetic kraft evaporator condensate using thermophilic and mesophilic membrane aerated biofilm reactors. Water Science and Technology, 61(7), 1749–1756. doi:10.2166/wst.2010.114
  • Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B.-Q., Hong, H., … Gao, W. (2014). A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies. Journal of Membrane Science, 460, 110–125.
  • Lin, J., Zhang, P., Li, G., Yin, J., Li, J., & Zhao, X. (2016). Effect of COD/N ratio on nitrogen removal in a membrane-aerated biofilm reactor. International Biodeterioration & Biodegradation, 113, 74–79. doi:10.1016/j.ibiod.2016.01.009
  • Lin, J., Zhang, P., Yin, J., Zhao, X., & Li, J. (2015). Nitrogen removal performances of a polyvinylidene fluoride membrane-aerated biofilm reactor. International Biodeterioration & Biodegradation, 102, 49–55. doi:10.1016/j.ibiod.2015.01.013
  • Lin, T., Lu, Z., & Chen, W. (2014). Interaction mechanisms and predictions on membrane fouling in an ultrafiltration system, using the XDLVO approach. Journal of Membrane Science, 461, 49–58.
  • Liu, C., Gong, P., Xiao, T., Zhang, M., Nian, Y., Yang, J., & Zhang, J. (2014). Atrazine wastewater treatment in a SPG membrane-aerated genetically engineered microorganism biofilm reactor. Huanjing kexue, 35(8), 3018–3023.
  • Liu, H., Tan, S., Sheng, Z., Liu, Y., & Yu, T. (2014). Bacterial community structure and activity of sulfate reducing bacteria in a membrane aerated biofilm analyzed by microsensor and molecular techniques. Biotechnology and Bioengineering, 111(11), 2155–2162. doi:10.1002/bit.25277
  • Liu, H., Yang, F., Shi, S., & Liu, X. (2010). Effect of substrate COD/N ratio on performance and microbial community structure of a membrane aerated biofilm reactor. Journal of Environmental Sciences, 22(4), 540–546. doi:10.1016/S1001-0742(09)60143-1
  • Liu, H., Yang, F., Wang, T., Liu, Q., & Hu, S. (2007). Carbon membrane-aerated biofilm reactor for synthetic wastewater treatment. Bioprocess and Biosystems Engineering, 30(4), 217–224. doi:10.1007/s00449-007-0116-1
  • Liu, Y., Ngo, H. H., Guo, W., Peng, L., Pan, Y., Guo, J., … Ni, B.-J. (2016). Autotrophic nitrogen removal in membrane-aerated biofilms: Archaeal ammonia oxidation versus bacterial ammonia oxidation. Chemical Engineering Journal, 302, 535–544. doi:10.1016/j.cej.2016.05.078
  • Lu, D. (2018). Comparison between thermophilic and mesophilic membrane-aerated biofilm reactors-a modeling study (Master’s Thesis). Lakehead University, Canada.
  • Ma, Y., Domingo-Félez, C., Plósz, B. G., &., & Smets, B. F., (2017). Intermittent aeration suppresses nitrite-oxidizing bacteria in membrane-aerated biofilms: A model-based explanation. Environmental Science & Technology, 51(11), 6146–6155. doi:10.1021/acs.est.7b00463
  • Ma, Y., Piscedda, A., & Smets, B. F. (2017). Membrane-aerated nitrifying biofilms: Continuous versus intermittent aeration. In 10th International Conference on Biofilm Reactors. University College Dublin, Ireland.
  • Martin, K. J. (2013). Effect of counter-diffusion, fluid dynamics, and biofilm morphology on membrane-suppported biofilms (Unpublished Doctoral Dissertation). University of Notre Dame, Indiana.
  • Martin, K. J., Picioreanu, C., & Nerenberg, R. (2013). Multidimensional modeling of biofilm development and fluid dynamics in a hydrogen-based, membrane biofilm reactor (MBfR). Water Research, 47(13), 4739–4751. doi:10.1016/j.watres.2013.04.031
  • Matar, G., Gonzalez-Gil, G., Maab, H., Nunes, S., Le-Clech, P., Vrouwenvelder, J., & Saikaly, P. E. (2016). Temporal changes in extracellular polymeric substances on hydrophobic and hydrophilic membrane surfaces in a submerged membrane bioreactor. Water Research, 95, 27–38. doi:10.1016/j.watres.2016.02.064
  • Mateo-Sagasta, J., Raschid-Sally, L., & Thebo, A. (2015). Global wastewater and sludge production, treatment and use. In Wastewater (pp. 15–38). Dordrecht: Springer.
  • Matsumoto, S., Terada, A., & Tsuneda, S. (2007). Modeling of membrane-aerated biofilm: Effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification. Biochemical Engineering Journal, 37(1), 98–107. doi:10.1016/j.bej.2007.03.013
  • Mclamore, E. S., Zhang, W., Porterfield, D. M., & Banks, M. K. (2010). Membrane-aerated biofilm proton and oxygen flux during chemical toxin exposure. Environmental Science & Technology, 44(18), 7050–7057. doi:10.1021/es1012356
  • McLamore, E., Jackson, W. A., & Morse, A. (2007). Abiotic transport in a membrane aerated bioreactor. Journal of Membrane Science, 298(1-2), 110–116. doi:10.1016/j.memsci.2007.04.005
  • Mei, R., Li, R., Lin, H., Shen, Z., Zhang, M., Chen, J., & He, Y. J. B. (2016). A new approach to construct three-dimensional surface morphology of sludge flocs in a membrane bioreactor. Bioresource Technology, 219, 521–526. doi:10.1016/j.biortech.2016.08.005
  • Mei, X., Guo, Z., Liu, J., Bi, S., Li, P., Wang, Y., … Hu, S. (2019). Treatment of formaldehyde wastewater by a membrane-aerated biofilm reactor (MABR): The degradation of formaldehyde in the presence of the cosubstrate methanol. Chemical Engineering Journal , 372, 673–683. doi:10.1016/j.cej.2019.04.184
  • Milledge, J. J., Thompson, E. P., Sauvêtre, A., Schroeder, P., & Harvey, P. J. (2019). Novel developments in biological technologies for wastewater processing. In Sustainable Water and Wastewater Processing, (pp. 239–278). Elsevier.
  • Motlagh, A. R. A., LaPara, T. M., & Semmens, M. J. (2008). Ammonium removal in advective-flow membrane-aerated biofilm reactors (AF-MABRs). Journal of Membrane Science, 319(1), 76–81. doi:10.1016/j.memsci.2008.03.020
  • Mulder, J. (2012). Basic principles of membrane technology. The Netherlands: Kluwer Academic Publishers.
  • Ngo, H. H., & Guo, W. (2009). Membrane fouling control and enhanced phosphorus removal in an aerated submerged membrane bioreactor using modified green bioflocculant. Bioresource Technology, 100(18), 4289–4291. doi:10.1016/j.biortech.2009.03.057
  • Nguyen, T., Roddick, F., & Fan, L. (2012). Biofouling of water treatment membranes: A review of the underlying causes, monitoring techniques and control measures. Membranes, 2(4), 804–840. doi:10.3390/membranes2040804
  • Nguyen, N. P., Warnow, T., Pop, M., & White, B. (2016). A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity. NPJ Biofilms and Microbiomes, 2(1), 1–8. doi:10.1038/npjbiofilms.2016.4
  • Ni, B. J., & Yuan, Z. (2013). A model-based assessment of nitric oxide and nitrous oxide production in membrane-aerated autotrophic nitrogen removal biofilm systems. Journal of Membrane Science, 428, 163–171. doi:10.1016/j.memsci.2012.10.049
  • Nisola, G. M., Orata-Flor, J., Oh, S., Yoo, N., & Chung, W. J. (2013). Partial nitrification in a membrane-aerated biofilm reactor with composite PEBA/PVDF hollow fibers. Desalination and Water Treatment, 51(25-27), 5275–5282.
  • Ohandja, D. G., & Stuckey, D. C. (2007). Biodegradation of PCE in a hybrid membrane aerated biofilm reactor. Journal of Environmental Engineering, 133(1), 20–27. doi:10.1061/(ASCE)0733-9372(2007)133:1(20)
  • Ohandja, D. G., & Stuckey, D. C. (2010). Effect of perchloroethylene (PCE) and hydraulic shock loads on a membrane‐aerated biofilm reactor (MABR) biodegrading PCE. Journal of Chemical Technology and Biotechnology, 85(2), 294–301.
  • Park, J. J., Cawley, N. X., & Loh, Y. P. (2008). Carboxypeptidase E cytoplasmic tail-driven vesicle transport is key for activity-dependent secretion of peptide hormones. Molecular Endocrinology, 22(4), 989–1005. doi:10.1210/me.2007-0473
  • Peeters, J., Adams, N., Long, Z., Côté, P., & Kunetz, T. (2017). Demonstration of innovative MABR low-energy nutrient removal technology at Chicago MWRD. Water Practice and Technology, 12 (4), 927–936. doi:10.2166/wpt.2017.096
  • Peeters, J., Long, Z., Houweling, D., Côté, P., Daigger, G. T., & Snowling, S. (2017). Nutrient removal intensification with MABR–Developing a process model supported by piloting. Proceedings of the Water Environment Federation, 2017(3), 657–669. doi:10.2175/193864717821494204
  • Pellicer-Nàcher, C., Domingo-Félez, C., Lackner, S., & Smets, B. F. (2013). Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors. Journal of Membrane Science, 446, 465–471. doi:10.1016/j.memsci.2013.06.063
  • Pellicer‐Nàcher, C., Franck, S., Gülay, A., Ruscalleda, M., Terada, A., Al‐Soud, W. A., & Smets, B. F. (2014). Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: Microbial community composition and dynamics. Microbial Biotechnology, 7(1), 32–43. doi:10.1111/1751-7915.12079
  • Pellicer-Nàcher, C., Sun, S., Lackner, S., Terada, A., Schreiber, F., Zhou, Q., &., & Smets, B. F. (2010). Sequential aeration of membrane-aerated biofilm reactors for high-rate autotrophic nitrogen removal: experimental demonstration. Environmental Science & Technology, 44(19), 7628–7634. doi:10.1021/es1013467
  • Peng, L., Chen, X., Xu, Y., Liu, Y., Gao, S. H., & Ni, B. J. (2015). Biodegradation of pharmaceuticals in membrane aerated biofilm reactor for autotrophic nitrogen removal: A model-based evaluation. Journal of Membrane Science, 494, 39–47. doi:10.1016/j.memsci.2015.07.043
  • Perez-Calleja, P., Aybar, M., Picioreanu, C., Esteban-Garcia, A. L., Martin, K. J., & Nerenberg, R. (2017). Periodic venting of MABR lumen allows high removal rates and high gas-transfer efficiencies. Water Research, 121, 349–360. doi:10.1016/j.watres.2017.05.042
  • Phattaranawik, J., & Leiknes, T. (2009). Double‐deck aerated biofilm membrane bioreactor with sludge control for municipal wastewater treatment. AIChE Journal, 55(5), 1291–1297. doi:10.1002/aic.11736
  • Picard, C., Logette, S., Schrotter, J. C., Aimar, P., & Remigy, J. C. (2012). Mass transfer in a membrane aerated biofilm. Water Research, 46(15), 4761–4769. doi:10.1016/j.watres.2012.05.056
  • Plascencia-Jatomea, R., Almazán-Ruiz, F. J., Gómez, J., Rivero, E. P., Monroy, O., & González, I. (2015). Hydrodynamic study of a novel membrane aerated biofilm reactor (MABR): Tracer experiments and CFD simulation. Chemical Engineering Science, 138, 324–332.
  • Potvin, C. M., Long, Z., & Zhou, H. (2012). Removal of tetrabromobisphenol A by conventional activated sludge, submerged membrane and membrane aerated biofilm reactors. Chemosphere, 89(10), 1183–1188. doi:10.1016/j.chemosphere.2012.07.011
  • Saeki, D., Nagashima, Y., Sawada, I., & Matsuyama, H. (2016). Effect of hydrophobicity of polymer materials used for water purification membranes on biofilm formation dynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506, 622–628. doi:10.1016/j.colsurfa.2016.07.036
  • Sevanthi, R., Christenson, D., Cummings, E., Nguyen, K., Morse, A., & Jackson, W. A. (2014, July). Performance of a full scale MABR (CoMANDR 2.0) for pre-treatment of a habitation waste Stream prior to desalination. 44th International Conference on Environmental Systems. Tucson, Arizona
  • Shanahan, J. W., & Semmens, M. J. (2015). Alkalinity and pH effects on nitrification in a membrane aerated bioreactor: An experimental and model analysis. Water Research , 74, 10–22. doi:10.1016/j.watres.2014.12.055
  • Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marinas, B. J., & Mayes, A. M. (2010). Science and technology for water purification in the coming decades. Nature, 452, 301–310.
  • Solley, D., Hu, S., Hertle, C., Batstone, D., Karastergiou-Hogan, T., Rider, Q., & Keller, J. (2015). Identifying novel wastewater treatment options through optimal technology integration. Water Practice and Technology, 10(3), 496–504. doi:10.2166/wpt.2015.057
  • Song, F., Koo, H., & Ren, D. (2015). Effects of material properties on bacterial adhesion and biofilm formation. Journal of Dental Research, 94(8), 1027–1034. doi:10.1177/0022034515587690
  • Stricker, A. E., Lossing, H., Gibson, J. H., Hong, Y., & Urbanic, J. C. (2009). Progress toward the full scale application of the membrane-aerated biofilm reactor (MABR). Proceedings of the Water Environment Federation, 2009(15), 2328–2348. doi:10.2175/193864709802770108
  • Stricker, A. E., Lossing, H., Gibson, J. H., Hong, Y., & Urbanic, J. C. (2011). Pilot scale testing of a new configuration of the membrane aerated biofilm reactor (MABR) to treat high-strength industrial sewage. Water Environment Research, 83(1), 3–14. doi:10.2175/106143009X12487095236991
  • Sun, J., Dai, X., Liu, Y., Peng, L., & Ni, B. J. (2017). Sulfide removal and sulfur production in a membrane aerated biofilm reactor: Model evaluation. Chemical Engineering Journal, 309, 454–462. doi:10.1016/j.cej.2016.09.146
  • Sun, L., Wang, Z., Wei, X., Li, P., Zhang, H., Li, M., … Wang, S. (2015). Enhanced biological nitrogen and phosphorus removal using sequencing batch membrane-aerated biofilm reactor. Chemical Engineering Science, 135, 559–565.
  • Sunner, N., Long, Z., Houweling, D., Monti, A., & Peeters, J. (2018). MABR as a low-energy compact solution for nutrient removal upgrades—results from a demonstration in the UK. Proceedings of the Water Environment Federation, 2018(16), 1264–1281. doi:10.2175/193864718825137908
  • Syron, E., & Casey, E. (2008a). Membrane-aerated biofilms for high rate biotreatment: Performance appraisal, engineering principles, scale-up, and development requirements. Environmental Science & Technology, 42(6), 1833–1844. doi:10.1021/es0719428
  • Syron, E., & Casey, E. (2008b). Model‐based comparative performance analysis of membrane aerated biofilm reactor configurations. Biotechnology and Bioengineering, 99(6), 1361–1373. doi:10.1002/bit.21700
  • Syron, E., Kelly, H., & Casey, E. (2009). Studies on the effect of concentration of a self-inhibitory substrate on biofilm reaction rate under co-diffusion and counter-diffusion configurations. Journal of Membrane Science, 335(1-2), 76–82. doi:10.1016/j.memsci.2009.02.038
  • Syron, E., Semmens, M. J., & Casey, E. (2015). Performance analysis of a pilot-scale membrane aerated biofilm reactor for the treatment of landfill leachate. Chemical Engineering Journal, 273, 120–129. doi:10.1016/j.cej.2015.03.043
  • Terada, A., Lackner, S., Kristensen, K., & Smets, B. F. (2010). Inoculum effects on community composition and nitritation performance of autotrophic nitrifying biofilm reactors with counter-diffusion geometry. Environmental Microbiology, 12(10), 2858–2872. doi:10.1111/j.1462-2920.2010.02267.x.
  • Tian, H. L., Hu, Y. Z., Xu, X. J., Hui, M., Hu, Y. S., Qi, W. X., … Li, B. A. (2019). Enhanced wastewater treatment with high o-aminophenol concentration by two-stage MABR and its biodegradation mechanism. Bioresource Technology, 289, 121649.
  • Tian, H. L., Hui, M., Pan, P. P., Huang, J. H., Chen, L., & Zhao, J. Y. (2019). Performance and microbial ecology of biofilms adhering on aerated membrane with distinctive conditions for the treatment of domestic sewage. Environmental Technology (accepted), 1–9.
  • Tian, H. L., Zhao, J. Y., Zhang, H. Y., Chi, C. Q., Li, B. A., & Wu, X. L. (2015). Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor. Applied Microbiology and Biotechnology, 99(7), 3279–3290. doi:10.1007/s00253-014-6204-7
  • Tian, H., Liu, J., Feng, T., Li, H., Wu, X., & Li, B. (2017). Assessing the performance and microbial structure of biofilms adhering on aerated membranes for domestic saline sewage treatment. Rsc Advances, 7(44), 27198–27205. doi:10.1039/C7RA03755D
  • Tian, H., Yan, Y., Chen, Y., Wu, X., & Li, B. (2016). Process performance and bacterial community structure under increasing influent disturbances in a membrane-aerated biofilm reactor. Journal of Microbiology and Biotechnology, 26(2), 373–384. doi:10.4014/jmb.1506.06072
  • Tian, H., Zhang, H., Li, P., Sun, L., Hou, F., & Li, B. (2015). Treatment of pharmaceutical wastewater for reuse by coupled membrane-aerated biofilm reactor (MABR) system. RSC Advances, 5(85), 69829–69838. doi:10.1039/C5RA10091G
  • Tian, J. Y., Liang, H., Yang, Y. L., Tian, S., & Li, G. B. (2008). Membrane adsorption bioreactor (MABR) for treating slightly polluted surface water supplies: As compared to membrane bioreactor (MBR). Journal of Membrane Science, 325(1), 262–270. doi:10.1016/j.memsci.2008.07.047
  • Vafajoo, L., & Pazoki, M. (2013). Model-based evaluations of operating parameters on CANON process in a membrane-aerated biofilm reactor. Desalination and Water Treatment, 51(19-21), 4228–4234. doi:10.1080/19443994.2013.768050
  • Veys, P., Vandeweyer, H., Audenaert, W., Monballiu, A., Dejans, P., Jooken, E., … Van Hulle, S. W. H. (2010). Performance analysis and optimization of autotrophic nitrogen removal in different reactor configurations: A modelling study. Environmental Technology, 31(12), 1311–1324. doi:10.1080/09593331003713685
  • Villain, L., Meyer, L., Kroll, S., Beutel, S., & Scheper, T. (2008). Development of a novel membrane aerated hollow‐fiber microbioreactor. Biotechnology Progress, 24(2), 367–371. doi:10.1021/bp070248t
  • Wang, J., Liu, G. F., Lu, H., Jin, R. F., Zhou, J. T., & Lei, T. M. (2012). Biodegradation of acid orange 7 and its auto-oxidative decolorization product in membrane-aerated biofilm reactor. International Biodeterioration & Biodegradation, 67, 73–77. doi:10.1016/j.ibiod.2011.12.003
  • Wang, R., Xiao, F., Wang, Y., & Lewandowski, Z. (2016). Determining the optimal transmembrane gas pressure for nitrification in membrane-aerated biofilm reactors based on oxygen profile analysis. Applied Microbiology and Biotechnology, 100(17), 7699–7711. doi:10.1007/s00253-016-7553-1
  • Wei, X., Li, B., Zhao, S., Qiang, C., Zhang, H., & Wang, S. (2012). COD and nitrogen removal in facilitated transfer membrane-aerated biofilm reactor (FT-MABR). Journal of Membrane Science, 389, 257–264. doi:10.1016/j.memsci.2011.10.038
  • Wei, X., Li, B., Zhao, S., Wang, L., Zhang, H., Li, C., & Wang, S. (2012). Mixed pharmaceutical wastewater treatment by integrated membrane-aerated biofilm reactor (MABR) system–a pilot-scale study. Bioresource Technology, 122, 189–195. doi:10.1016/j.biortech.2012.06.041
  • Wu, J., & Zhang, Y. (2017). Evaluation of the impact of organic material on the anaerobic methane and ammonium removal in a membrane aerated biofilm reactor (MABR) based on the multispecies biofilm modeling. Environmental Science and Pollution Research, 24(2), 1677–1685. doi:10.1007/s11356-016-7938-9
  • Yeo, B. J., Goh, S., Livingston, A. G., & Fane, A. G. J. S. S. (2017). Controlling biofilm development in the extractive membrane bioreactor. Separation Science and Technology, 52(1), 113–121. doi:10.1080/01496395.2016.1246569
  • Yu, C. P., Liang, Z., Das, A., & Hu, Z. (2011). Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques. Water Research, 45(3), 1157–1164. doi:10.1016/j.watres.2010.11.002
  • Yu, K., & Zhang, T. (2012). Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One., 7(5), e38183. doi:10.1371/journal.pone.0038183
  • Zhang, M. J., Liao, B. Q., Zhou, X. L., He, Y. M., Hong, H. C., Lin, H. J., & Chen, J. R. (2015). Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor. Bioresource Technology, 175, 59–67. doi:10.1016/j.biortech.2014.10.058
  • Zhao, L., Zhang, M., He, Y., Chen, J., Hong, H., Liao, B.-Q., & Lin, H. (2016). A new method for modeling rough membrane surface and calculation of interfacial interactions. Bioresource Technology, 200, 451–457. doi:10.1016/j.biortech.2015.10.055
  • Zhao, X., Zhao, Z., Jia, W., Dai, J., & Jiang, J. (2010, June). Mathematical simulations of nitrogen removal via a partial nitrification-anaerobic ammonium oxidation in a membrane-aerated biofilm reactor. 2010 International Conference on Mechanic Automation and Control Engineering (pp. 2018–2025). Wuhan: IEEE.
  • Zheng, M. R., & Liao, B. Q. (2016). Membrane aerated biofilm reactors for thermomechanical pulping pressate treatment. International Journal of Chemical Reactor Engineering, 14(5), 1017–1024. doi:10.1515/ijcre-2015-0183
  • Zhong, H. Y., Wang, H., Tian, Y., Liu, X., Yang, Y., Zhu, L., … Liu, G. Y. (2019). Treatment of polluted surface water with nylon silk carrier-aerated biofilm reactor (CABR). Bioresource Technology, 289, 121617 (in press). doi:10.1016/j.biortech.2019.121617

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.