1,719
Views
105
CrossRef citations to date
0
Altmetric
Article

Non-stomatal limitation of photosynthesis by soil salinity

, , , , , , , & show all
Pages 791-825 | Published online: 11 Mar 2020

References

  • Adem, G. D., Roy, S. J., Zhou, M., Bowman, J. P., & Shabala, S. (2014). Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biology, 14(1), 113. doi:10.1186/1471-2229-14-113
  • Adolf, V. I., Jacobsen, S. E., & Shabala, S. (2013). Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany, 92, 43–54. doi:10.1016/j.envexpbot.2012.07.004
  • Aghaei, K., Ehsanpour, A., & Komatsu, S. (2008). Proteome analysis of potato under salt stress. Journal of Proteome Research, 7(11), 4858–4868. doi:10.1021/pr800460y
  • Allakhverdiev, S. I., & Murata, N. (2008). Salt stress inhibits photosystems II and I in cyanobacteria. Photosynthesis Research, 98(1-3), 529–539. doi:10.1007/s11120-008-9334-x
  • Allakhverdiev, S. I., & Murata, N. (2004). Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochimica et Biophysica Acta (Bba) - Bioenergetics, 1657(1), 23–32. doi:10.1016/j.bbabio.2004.03.003
  • Allakhverdiev, S. I., Kinoshita, M., Inaba, M., Suzuki, I., & Murata, N. (2001). Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiology, 125(4), 1842–1853. doi:10.1104/pp.125.4.1842
  • Allakhverdiev, S. I., Klimov, V. V., & Hagemann, M. (2005). Cellular energization protects the PM against salt-induced inactivation in Synechococcus. Biochimica et Biophysica Acta (Bba) - Bioenergetics, 1708(2), 201–208. doi:10.1016/j.bbabio.2005.01.002
  • Allakhverdiev, S. I., Nishiyama, Y., Miyairi, S., Yamamoto, H., Inagaki, N., Kanesaki, Y., & Murata, N. (2002). Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiology, 130(3), 1443–1453. doi:10.1104/pp.011114
  • Allakhverdiev, S. I., Nishiyama, Y., Suzuki, I., Tasaka, Y., & Murata, N. (1999). Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proceedings of the National Academy of Sciences of Sciences, 96(10), 5862–5867. doi:10.1073/pnas.96.10.5862
  • Allakhverdiev, S. I., Sakamoto, A., Nishiyama, Y., Inaba, M., & Murata, N. (2000a). Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology, 123(3), 1047–1056. doi:10.1104/pp.123.3.1047
  • Allakhverdiev, S. I., Sakamoto, A., Nishiyama, Y., Inaba, M., & Murata, N. (2000b). Inactivation of photosystems I and II in response to osmotic stress in Synechococcus: Contribution of water channels. Plant Physiology, 122(4), 1201–1208. doi:10.1104/pp.122.4.1201
  • Aranda-Sicilia, M. N., Aboukila, A., Armbruster, U., Cagnac, O., Schumann, T., Kunz, H.-H., … Venema, K. (2016). Envelope K+/H+ antiporters AtKEA1 and AtKEA2 function in plastid development. Plant Physiology, 172 (1), 441–449. doi:10.1104/pp.16.00995
  • Armbruster, U., Carrillo, L. R., Venema, K., Pavlovic, L., Schmidtmann, E., Kornfeld, A., … Jonikas, M. C. (2014). Ion antiport accelerates photosynthetic acclimation in fluctuating light environments. Nature Communications, 5(1), 5439. doi:10.1038/ncomms6439
  • Aro, E.-M., Virgin, I., & Andersson, B. (1993). Photoinhibition of photosystem II: Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (Bba) - Bioenergetics, 1143(2), 113–134. doi:10.1016/0005-2728(93)90134-2
  • Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141(2), 391–396. doi:10.1104/pp.106.082040
  • Athar, H-U-R., Zafar, Z. U., & Ashraf, M. (2015). Glycinebetaine improved photosynthesis in canola under salt stress: Evaluation of chlorophyll fluorescence parameters as potential indicators. Journal of Agronomy and Crop Science, 201(6), 428–442. doi:10.1111/jac.12120
  • Bahmani, K., Noori, S. A. S., Darbandi, A. I., & Akbari, A. (2015). Molecular mechanisms of plant salinity tolerance: A review. Australian Journal of Crop Science, 9(4), 321–336.
  • Bai, J. H., Qin, Y., Liu, J. H., Wang, Y. Q., Sa, R. L., Zhang, N., & Jia, R. Z. (2017). Proteomic response of oat leaves to long-term salinity stress. Environmental Science and Pollution Research, 24(4), 3387–3399. doi:10.1007/s11356-016-8092-0
  • Barhoumi, Z., Djebali, W., Smaoui, A., Chaibi, W., & Abdelly, C. (2007). Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. Journal of Plant Physiology, 164(7), 842–850. doi:10.1016/j.jplph.2006.05.008
  • Barrett-Lennard, E. G. (2002). Restoration of saline land through revegetation. Agricultural Water Management, 53(1-3), 213–226. doi:10.1016/S0378-3774(01)00166-4
  • Bazihizina, N., Barrett-Lennard, E. G., & Colmer, T. D. (2012). Plant responses to heterogeneous salinity: Growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone. Journal of Experimental Botany, 63(18), 6347–6358. doi:10.1093/jxb/ers302
  • Bazihizina, N., Colmer, T. D., & Barrett-Lennard, E. G. (2009). Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: Growth, photosynthesis, water relations and tissue ion concentrations. Annals of Botany, 104(4), 737–745. doi:10.1093/aob/mcp151
  • Bazihizina, N., Colmer, T. D., Cuin, T. A., Mancuso, S., & Shabala, S. (2019). Friend or foe? Chloride patterning in halophytes. Trends in Plant Science, 24(2), 142–151. doi:10.1016/j.tplants.2018.11.003
  • Blumwald, E. (2000). Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology, 12(4), 431–434. doi:10.1016/S0955-0674(00)00112-5
  • Boer, M., Anishkin, A., & Sukharev, S. (2011). Adaptive MscS gating in the osmotic permeability response in E. coli: The question of time. Biochemistry, 50(19), 4087–4096. doi:10.1021/bi1019435
  • Bose, J., Munns, R., Shabala, S., Gilliham, M., Pogson, B., & Tyerman, S. D. (2017). Chloroplast function and ion regulation in plants growing on saline soils: Lessons from halophytes. Journal of Experimental Botany, 68(12), 3129–3143. doi:10.1093/jxb/erx142
  • Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2014). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65(5), 1241–1257. doi:10.1093/jxb/ert430
  • Britto, D. T., & Kronzucker, H. J. (2008). Cellular mechanisms of potassium transport in plants. Physiologia Plantarum, 133(4), 637–650. doi:10.1111/j.1399-3054.2008.01067.x
  • Caffarri, S., Tibiletti, T., Jennings, R. C., & Santabarbara, S. (2014). A comparison between plant Photosystem I and Photosystem II architecture and functioning. Current Protein & Peptide Science, 15, 296–331. doi:10.2174/1389203715666140327102218
  • Carraretto, L., Formentin, E., Teardo, E., Checchetto, V., Tomizioli, M., Morosinotto, T., … Szabó, I. (2013). A thylakoid-located two-pore K+ channel controls photosynthetic light utilization in plants. Science, 342(6154), 114–118. doi:10.1126/science.1242113
  • Caruso, G., Cavaliere, C., Guarino, C., Gubbiotti, R., Foglia, P., & Laganà, A. (2008). Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Analytical and Bioanalytical Chemistry, 391, 381. doi:10.1007/s00216-008-2008-x
  • Chao, D. Y., Dilkes, B., Luo, H., Douglas, A., Yakubova, E., Lahner, B., & Salt, D. E. (2013). Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science, 341(6146), 658–659. doi:10.1126/science.1240561
  • Chatterjee, J., Patra, B., Mukherjee, R., Basak, P., Mukherjee, S., Ray, S., …, Ghosh, S. (2013). Cloning, characterization and expression of a chloroplastic fructose-1,6-bisphosphatase from Porteresia coarctata conferring salt-tolerance in transgenic tobacco. Plant Cell, Tissue and Organ Culture (Pctoc), 114, 395–409. doi:10.1007/s11240-013-0334-y
  • Chaves, M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551–560. doi:10.1093/aob/mcn125
  • Chaves, M. M., Costa, J. M., & Saibo, N. J. M. (2011). Recent advances in photosynthesis under drought and salinity. Advances in Botanical Research, 57, 49–104.
  • Chen, J., Wang, P., Mi, H. L., Chen, G. Y., & Xu, D. Q. (2010). Reversible association of ribulose-1, 5-bisphosphate carboxylase/oxygenase activase with the thylakoid membrane depends upon the ATP level and pH in rice without heat stress. Journal of Experimental Botany, 61(11), 2939–2950. doi:10.1093/jxb/erq122
  • Chinnusamy, V., Jagendorf, A., & Zhu, J. K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45(2), 437–448. doi:10.2135/cropsci2005.0437
  • Cosentino, C., Fischer-Schliebs, E., Bertl, A., Thiel, G., & Homann, U. (2010). Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum. New Phytologist, 186(3), 669–680. doi:10.1111/j.1469-8137.2010.03208.x
  • Demetriou, G., Neonaki, C., Navakoudis, E., & Kotzabasis, K. (2007). Salt stress impact on the molecular structure and function of the photosynthetic apparatus-the protective role of polyamines. Biochimica et Biophysica Acta (Bba) - Bioenergetics, 1767(4), 272–280. doi:10.1016/j.bbabio.2007.02.020
  • Demidchik, V., Cuin, T. A., Svistunenko, D., Smith, S. J., Miller, A. J., Shabala, S., … Yurin, V. (2010). Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: Single-channel properties, genetic basis and involvement in stress-induced cell death. Journal of Cell Science, 123(9), 1468–1479. doi:10.1242/jcs.064352
  • Demidchik, V., Shabala, S. N., & Davies, J. M. (2007). Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. The Plant Journal, 49(3), 377–386. doi:10.1111/j.1365-313X.2006.02971.x
  • Duan, Z., Kong, F., Zhang, L., Li, W., Zhang, J., & Peng, L. (2016). A bestrophin-like protein modulates the proton motive force across the thylakoid membrane in Arabidopsis. Journal of Integrative Plant Biology, 58(10), 848–858. doi:10.1111/jipb.12475
  • Evans, M. J., Choi, W. G., Gilroy, S., & Morris, R. J. (2016). A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress. Plant Physiology, 171(3), 1771–1784. doi:10.1104/pp.16.00215
  • Fan, P., Feng, J., Jiang, P., Chen, X., Bao, H., Nie, L., … Li, Y. (2011). Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: Comparative proteomic analysis on chloroplast proteins. PROTEOMICS, 11(22), 4346–4367. doi:10.1002/pmic.201100054
  • Feng, L. L., Han, Y. J., Liu, G., An, B. G., Yang, J., Yang, G. H., … Zhu, Y. G. (2007). Overexpression of sedoheptulose-1,7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants. Functional Plant Biology, 34(9), 822–834. doi:10.1071/FP07074
  • Finazzi, G., Petroutsos, D., Tomizioli, M., Flori, S., Sautron, E., Villanova, V., … Seigneurin-Berny, D. (2015). Ions channels/transporters and chloroplast regulation. Cell Calcium, 58(1), 86–97. doi:10.1016/j.ceca.2014.10.002
  • Florke, M., Barlund, I., van Vliet, M. T. H., Bouwman, A. F., & Wada, Y. (2019). Analysing trade-offs between SDGs related to water quality using salinity as a marker. Current Opinion in Environmental Sustainability, 36, 96–104. doi:10.1016/j.cosust.2018.10.005
  • Flowers, T. J., & Colmer, T. D. (2015). Plant salt tolerance: Adaptations in halophytes. Annals of Botany, 115(3), 327–331. doi:10.1093/aob/mcu267
  • Flowers, T. J., & Hajibagheri, M. A. (2001). Salinity tolerance in Hordeum vulgare: Ion concentrations in root cells of cultivars differing in salt tolerance. Plant and Soil, 231(1), 1–9.
  • Flowers, T. J., Munns, R., & Colmer, T. D. (2015). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany, 115(3), 419–431. doi:10.1093/aob/mcu217
  • Fricke, W., Akhiyarova, G., Veselov, D., & Kudoyarova, G. (2004). Rapid and tissue-specific changes in ABA and in growth rate response to salinity in barley leaves. Journal of Experimental Botany, 55(399), 1115–1123. doi:10.1093/jxb/erh117
  • Furumoto, T., Yamaguchi, T., Ohshima-Ichie, Y., Nakamura, M., Tsuchida-Iwata, Y., Shimamura, M., … Izui, K. (2011). A plastidial sodium-dependent pyruvate transporter. Nature, 476(7361), 472–475. doi:10.1038/nature10250
  • Galamba, N. (2012). Mapping structural perturbations of water in ionic solutions. The Journal of Physical Chemistry B, 116(17), 5242–5250. doi:10.1021/jp3014578
  • Gao, L., Yan, X., Li, X., Guo, G., Hu, Y., Ma, W., & Yan, Y. (2011). Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE). Phytochemistry, 72(10), 1180–1191. doi:10.1016/j.phytochem.2010.12.008
  • Geilfus, C. M. (2018). Review on the significance of chlorine for crop yield and quality. Plant Science, 270, 114–122. doi:10.1016/j.plantsci.2018.02.014
  • Ghosh, S., Bagchi, S., & Majumder, A. L. (2001). Chloroplast fructose-1, 6-bisphosphatase from Oryza differs in salt tolerance property from the Porteresia enzyme and is protected by osmolytes. Plant Science, 160(6), 1171–1181. doi:10.1016/S0168-9452(01)00361-2
  • Gilroy, S., Suzuki, N., Miller, G., Choi, W. G., Toyota, M., Devireddy, A. R., & Mittler, R. (2014). A tidal wave of signals: Calcium and ROS at the forefront of rapid systemic signaling. Trends in Plant Science, 19(10), 623–630. doi:10.1016/j.tplants.2014.06.013
  • Gong, D. H., Wang, G. Z., Si, W. T., Zhou, Y., Liu, Z., & Jia, J. (2018). Effects of salt stress on photosynthetic pigments and activity of ribulose-1,5-bisphosphate carboxylase/oxygenase in Kalidium foliatum. Russian Journal of Plant Physiology, 65(1), 98–103. doi:10.1134/S1021443718010144
  • Gorham, J. (2010). Betaines in higher plants - Biosynthesis and role in stress metabolism. In R. M. Wallsgrove (Ed.), Amino acids and their derivatives in higher plants, (pp. 173–204). Cambridge: Cambridge University Press.
  • Greenway, H., & Osmond, C. (1972). Salt responses of enzymes from species differing in salt tolerance. Plant Physiology, 49(2), 256–259. doi:10.1104/pp.49.2.256
  • Grof, C. P., Johnston, M., & Brownell, P. F. (1989). Effect of sodium nutrition on the ultrastructure of chloroplasts of C4 plants. Plant Physiology, 89(2), 539–543. doi:10.1104/pp.89.2.539
  • Guo, B., Irigoyen, S., Fowler, T. B., & Versaw, W. K. (2008). Differential expression and phylogenetic analysis suggest specialization of plastid-localized members of the PHT4 phosphate transporter family for photosynthetic and heterotrophic tissues. Plant Signaling & Behavior, 3, 784–790. doi:10.4161/psb.3.10.6666
  • Guo, B., Jin, Y., Wussler, C., Blancaflor, E. B., Motes, C. M., & Versaw, W. K. (2008). Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytologist, 177(4), 889–898. doi:10.1111/j.1469-8137.2007.02331.x
  • Guo, S. M., Tan, Y., Chu, H. J., Sun, M. X., & Xing, J. C. (2019). Transcriptome sequencing revealed molecular mechanisms underlying tolerance of Suaeda salsa to saline stress. PLoS One, 14(7), e0219979. doi:10.1371/journal.pone.0219979
  • Gururani, M. A., Upadhyaya, C. P., Strasser, R. J., Yu, J. W., & Park, S. W. (2013). Evaluation of abiotic stress tolerance in transgenic potato plants with reduced expression of PSII manganese stabilizing protein. Plant Science, 198, 7–16. doi:10.1016/j.plantsci.2012.09.014
  • Hafsi, C., Romero-Puertas, M. C., Río, L. A., Sandalio, L. M., & Abdelly, C. (2010). Differential antioxidative response in barley leaves subjected to the interactive effects of salinity and potassium deprivation. Plant and Soil, 334(1-2), 449–460. doi:10.1007/s11104-010-0395-1
  • Hagemann, M. (2011). Molecular biology of cyanobacterial salt acclimation. FEMS Microbiology Reviews, 35(1), 87–123. doi:10.1111/j.1574-6976.2010.00234.x
  • Hamam, A. M., Coskun, D., Britto, D. T., Plett, D., & Kronzucker, H. J. (2019). Plasma-membrane electrical responses to salt and osmotic gradients contradict radiotracer kinetics and reveal Na+-transport dynamics in rice (Oryza sativa L.). Planta, 249(4), 1037–1051. doi:10.1007/s00425-018-3059-7
  • Han, G. L., Yuan, F., Guo, J. R., Zhang, Y., Sui, N., & Wang, B. S. (2019). AtSIZ1 improves salt tolerance by maintaining ionic homeostasis and osmotic balance in Arabidopsis. Plant Science, 285, 55–67. doi:10.1016/j.plantsci.2019.05.002
  • Haswell, E. S., & Meyerowitz, E. M. (2006). MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Current Biology, 16(1), 1–11. doi:10.1016/j.cub.2005.11.044
  • He, Y., Yu, C., Zhou, L., Chen, Y., Liu, A., Jin, J., … Jiang, D. (2014). Rubisco decrease is involved in chloroplast protrusion and Rubisco-containing body formation in soybean (Glycine max.) under salt stress. Plant Physiology and Biochemistry, 74, 118–124. doi:10.1016/j.plaphy.2013.11.008
  • Henderson, S. W., Baumann, U., Blackmore, D. H., Walker, A. R., Walker, R. R., & Gilliham, M. (2014). Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biology, 14, 273. doi:10.1186/s12870-014-0273-8
  • Herdean, A., Nziengui, H., Zsiros, O., Solymosi, K., Garab, G., Lundin, B., & Spetea, C. (2016). The Arabidopsis thylakoid chloride channel AtCLCe functions in chloride homeostasis and regulation of photosynthetic electron transport. Frontiers in Plant Science, 7, 115. doi:10.3389/fpls.2016.00115
  • Herdean, A., Teardo, E., Nilsson, A. K., Pfeil, B. E., Johansson, O. N., Ünnep, R., … Lundin, B. (2016). A voltage-dependent chloride channel fine-tunes photosynthesis in plants. Nature Communications, 7(1), 11654. doi:10.1038/ncomms11654
  • Höhner, R., Galvis, V. C., Strand, D. D., Völkner, C., Krämer, M., Messer, M., … Kunz, H.-H. (2019). Photosynthesis in Arabidopsis is unaffected by the function of the vacuolar K+ Channel TPK3. Plant Physiology, 180(3), 1322–1335. doi:10.1104/pp.19.00255
  • Ifuku, K., & Noguchi, T. (2016). Structural coupling of extrinsic proteins with the oxygen-evolving center in photosystem II. Frontiers in Plant Science, 7, 84. doi:10.3389/fpls.2016.00084
  • Jajoo, A. (2014). Changes in photosystem II heterogeneity in response to high salt stress. In S. I. Allakhverdiev, A. B. Rubin, and V. A. Shuvalov (Eds.), Contemporary problems of photosynthesis (vol. 2, pp 397–413). Izhevsk-Moscow: Institute of Computer Science.
  • Jin, S. H., Huang, J. Q., Li, X. Q., Zheng, B. S., Wu, J. S., Wang, Z. J., … Chen, M. (2011). Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Carya cathayensis. Tree Physiology, 31(10), 1142–1151. doi:10.1093/treephys/tpr095
  • Jin, X. Q., Liu, T., Xu, J. J., Gao, Z. X., & Hu, X. H. (2019). Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis. BMC Plant Biology, 19, 48. doi:10.1186/s12870-019-1660-y
  • Johnston, M., Grof, C., & Brownell, P. (1989). Chlorophyll a/b ratios and photosystem activity of mesophyll and bundle sheath fractions from sodium-deficient C4 plants. Functional Plant Biology, 16(6), 449–457. doi:10.1071/PP9890449
  • Kan, X., Ren, J., Chen, T., Cui, M., Li, C., Zhou, R., … Yin, Z. (2017). Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. Environmental and Experimental Botany, 140, 56–64. doi:10.1016/j.envexpbot.2017.05.019
  • Kang, G., Li, G., Zheng, B., Han, Q., Wang, C., Zhu, Y., & Guo, T. (2012). Proteomic analysis on salicylic acid-induced salt tolerance in common wheat seedlings (Triticum aestivum L.). Biochimica et Biophysica Acta (Bba) - Proteins and Proteomics, 1824(12), 1324–1333. doi:10.1016/j.bbapap.2012.07.012
  • Karlsson, P. M., Herdean, A., Adolfsson, L., Beebo, A., Nziengui, H., Irigoyen, S., … Spetea, C. (2015). The Arabidopsis thylakoid transporter PHT4;1 influences phosphate availability for ATP synthesis and plant growth. The Plant Journal, 84(1), 99–110. doi:10.1111/tpj.12962
  • Kawakami, K., Umena, Y., Kamiya, N., & Shen, J. R. (2009). Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography. Proceedings of the National Academy of Sciences, 106(21), 8567–8572. doi:10.1073/pnas.0812797106
  • Kirchhoff, H. (2014). Structural changes of the thylakoid membrane network induced by high light stress in plant chloroplasts. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1640), 20130225. doi:10.1098/rstb.2013.0225
  • Kojima, K., Oshita, M., Nanjo, Y., Kasai, K., Tozawa, Y., Hayashi, H., & Nishiyama, Y. (2007). Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II. Molecular Microbiology, 65(4), 936–947. doi:10.1111/j.1365-2958.2007.05836.x
  • Kreslavski, V. D., Carpentier, R., Klimov, V. V., Murata, N., & Allakhverdiev, S. I. (2007). Molecular mechanisms of stress resistance of the photosynthetic apparatus. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 1(3), 185–205. doi:10.1134/S1990747807030014
  • Kreslavski, V. D., Los, D. A., Allakhverdiev, S. I., & Kuznetsov, V. V. (2012). Signaling role of reactive oxygen species in plants under stress. Russian Journal of Plant Physiology, 59 (2), 141–178. doi:10.1134/S1021443712020057
  • Kronzucker, H. J., Coskun, D., Schulze, L. M., Wong, J. R., & Britto, D. T. (2013). Sodium as nutrient and toxicant. Plant and Soil, 369(1-2), 1–23. doi:10.1007/s11104-013-1801-2
  • Ksas, B., Legeret, B., Ferretti, U., Chevalier, A., Pospíšil, P., Alric, J., & Havaux, M. (2018). The plastoquinone pool outside the thylakoid membrane serves in plant photoprotection as a reservoir of singlet oxygen scavengers. Plant, Cell & Environment, 41 (10), 2277–2287. doi:10.1111/pce.13202
  • Kunz, H. H., Gierth, M., Herdean, A., Satoh-Cruz, M., Kramer, D. M., Spetea, C., & Schroeder, J. I. (2014). Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proceedings of the National Academy of Sciences of Sciences, 111(20), 7480–7485. doi:10.1073/pnas.1323899111
  • Laohavisit, A., Shang, Z., Rubio, L., Cuin, T. A., Véry, A.-A., Wang, A., … Davies, J. M. (2012). Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca2+-and K+-permeable conductance in root cells. The Plant Cell, 24(4), 1522–1533. doi:10.1105/tpc.112.097881
  • Levina, N., Tötemeyer, S., Stokes, N. R., Louis, P., Jones, M. A., & Booth, I. R. (1999). Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: Identification of genes required for MscS activity. The EMBO Journal, 18(7), 1730–1737. doi:10.1093/emboj/18.7.1730
  • Li, B., Tester, M., & Gilliham, M. (2017). Chloride on the move. Trends in Plant Science, 22(3), 236–248. doi:10.1016/j.tplants.2016.12.004
  • Li, W., Zhang, C., Lu, Q., Wen, X., & Lu, C. (2011). The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. Journal of Plant Physiology, 168(15), 1743–1752. doi:10.1016/j.jplph.2011.03.018
  • Liu, C., Chang, T., Hsu, Y., Wang, A. Z., Yen, H., Wu, Y., … Lai, C. (2014a). Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Proteomics, 14(15), 1759–1775. doi:10.1002/pmic.201300276
  • Liu, D., Wang, L., Zhai, H., Song, X., He, S., & Liu, Q. (2014b). A novel α/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato. PLoS One., 9(12), e115128. doi:10.1371/journal.pone.0115128
  • Lu, C. M., Qiu, N. M., Lu, Q. T., Wang, B. S., & Kuang, T. Y. (2002). Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? Plant Science, 163(5), 1063–1068. doi:10.1016/S0168-9452(02)00281-9
  • Meng, F., Luo, Q., Wang, Q., Zhang, X., Qi, Z., Xu, F., … Sun, G. (2016). Physiological and proteomic responses to salt stress in chloroplasts of diploid and tetraploid black locust (Robinia pseudoacacia L.). Scientific Reports, 6(1), 23098. doi:10.1038/srep23098
  • Miller, C. (1993). Potassium selectivity in proteins: Oxygen cage or pi in the face?. Science (New York, N.Y.), 261(5129), 1692–1693. doi:10.1126/science.8397443
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410. doi:10.1016/S1360-1385(02)02312-9
  • Miyaji, T., Kuromori, T., Takeuchi, Y., Yamaji, N., Yokosho, K., Shimazawa, A., … Moriyama, Y. (2015). AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis. Nature Communications, 6(1), 5928. doi:10.1038/ncomms6928
  • Młodzińska, E., & Zboińska, M. (2016). Phosphate uptake and allocation - A closer look at Arabidopsis thaliana L. and Oryza sativa L. Frontiers in Plant Science, 7, 1198. doi:10.3389/fpls.2016.01198
  • Müller, M., Kunz, H. H., Schroeder, J. I., Kemp, G., Young, H. S., & Neuhaus, H. E. (2014). Decreased capacity for sodium export out of Arabidopsis chloroplasts impairs salt tolerance, photosynthesis and plant performance. The Plant Journal, 78(4), 646–658. doi:10.1111/tpj.12501
  • Mullineaux, P. M., Exposito-Rodriguez, M., Laissue, P. P., & Smirnoff, N. (2018). ROS-dependent signalling pathways in plants and algae exposed to high light: Comparisons with other eukaryotes. Free Radical Biology and Medicine, 122, 52–64. doi:10.1016/j.freeradbiomed.2018.01.033
  • Munns, R., James, R. A., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), 1025–1043. doi:10.1093/jxb/erj100
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651–681. doi:10.1146/annurev.arplant.59.032607.092911
  • Murata, N., Allakhverdiev, S. I., & Nishiyama, Y. (2012). The mechanism of photoinhibition in vivo: Re-evaluation of the roles of catalase, alpha-tocopherol, non-photochemical quenching and electron transport. Biochimica et Biophysica Acta (Bba) - Bioenergetics, 1817(8), 1127–1133. doi:10.1016/j.bbabio.2012.02.020
  • Murata, N., Takahashi, S., Nishiyama, Y., & Allakhverdiev, S. I. (2007). Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta (Bba) - Bioenergetics, 1767(6), 414–421. doi:10.1016/j.bbabio.2006.11.019
  • Najar, R., Aydi, S., Sassi-Aydi, S., Zarai, A., & Abdelly, C. (2019). Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 153(1), 88–97. doi:10.1080/11263504.2018.1461701
  • Nakayama, Y., Fujiu, K., Sokabe, M., & Yoshimura, K. (2007). Molecular and electrophysiological characterization of a mechanosensitive channel expressed in the chloroplasts of Chlamydomonas. Proceedings of the National Academy of Sciences of Sciences, 104(14), 5883–5888. doi:10.1073/pnas.0609996104
  • Nishimura, T., Uno, C., Ido, K., Nagao, R., Noguchi, T., Sato, F., & Ifuku, K. (2014). Identification of the basic amino acid residues on the PsbP protein involved in the electrostatic interaction with photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1837(9), 1447–1453. doi:10.1016/j.bbabio.2013.12.012
  • Nishiyama, Y., Allakhverdiev, S. I., & Murata, N. (2006). A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica et Biophysica Acta (Bba) - Bioenergetics, 1757(7), 742–749. doi:10.1016/j.bbabio.2006.05.013
  • Nishiyama, Y., Los, D. A., & Murata, N. (1999). PsbU, a protein associated with photosystem II, is required for the acquisition of cellular thermotolerance in Synechococcus sp. PCC 7002. Plant Physiology, 120(1), 301–308. doi:10.1104/pp.120.1.301
  • Nishiyama, Y., Yamamoto, H., Allakhverdiev, S. I., Inaba, M., Yokota, A., & Murata, N. (2001). Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. The EMBO Journal, 20(20), 5587–5594. doi:10.1093/emboj/20.20.5587
  • Nitsos, R. E., & Evans, H. J. (1969). Effects of univalent cations on the activity of particulate starch synthetase. Plant Physiology, 44(9), 1260–1266. doi:10.1104/pp.44.9.1260
  • Niu, M. L., Huang, Y., Sun, S. T., Sun, J. Y., Cao, H. S., Shabala, S., & Bie, Z. L. (2018). Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure. Journal of Experimental Botany, 69(14), 3465–3476. doi:10.1093/jxb/erx386
  • Noctor, G., Mhamdi, A., & Foyer, C. H. (2016). Oxidative stress and antioxidative systems: Recipes for successful data collection and interpretation. Plant Cell and Environment, 39(5), 1140–1160. doi:10.1111/pce.12726
  • Ohnishi, N., & Murata, N. (2006). Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp. PCC 7942. Plant Physiology, 141(2), 758–765. doi:10.1104/pp.106.076976
  • Omoto, E., Nagao, H., Taniguchi, M., & Miyake, H. (2013). Localization of reactive oxygen species and change of antioxidant capacities in mesophyll and bundle sheath chloroplasts of maize under salinity. Physiologia Plantarum, 149(1), 1–12. doi:10.1111/ppl.12017
  • Omoto, E., Taniguchi, M., & Miyake, H. (2010). Effects of salinity stress on the structure of bundle sheath and mesophyll chloroplasts in NAD-malic enzyme and PCK type C4 plants. Plant Production Science, 13(2), 169–176. doi:10.1626/pps.13.169
  • Osmond, C. B., & Greenway, H. (1972). Salt responses of carboxylation enzymes from species differing in salt tolerance. Plant Physiology, 49(2), 260–263. ?? doi:10.1104/pp.49.2.260
  • Panta, S., Flowers, T., Lane, P., Doyle, R., Haros, G., & Shabala, S. (2014). Halophyte agriculture: Success stories. Environmental and Experimental Botany, 107, 71–83. doi:10.1016/j.envexpbot.2014.05.006
  • Parida, A. K., Das, A. B., & Mittra, B. (2003). Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica, 41(2), 191–200. doi:10.1023/B:PHOT.0000011951.37231.69
  • Pavón, L. R., Lundh, F., Lundin, B., Mishra, A., Persson, B. L., & Spetea, C. (2008). Arabidopsis ANTR1 is a thylakoid Na+-dependent phosphate transporter: Functional characterization in Escherichia coli. Journal of Biological Chemistry, 283(20), 13520–13527. doi:10.1074/jbc.M709371200
  • Percey, W. J., McMinn, A., Bose, J., Breadmore, M. C., Guijt, R. M., & Shabala, S. (2016). Salinity effects on chloroplast PSII performance in glycophytes and halophytes1. Functional Plant Biology, 43(11), 1003–1015. doi:10.1071/FP16135
  • Percey, W. J., Shabala, L., Breadmore, M. C., Guijt, R. M., Bose, J., & Shabala, S. (2014). Ion transport in broad bean leaf mesophyll under saline conditions. Planta, 240(4), 729–743. doi:10.1007/s00425-014-2117-z
  • Percey, W. J., Shabala, L., Wu, Q., Su, N., Breadmore, M. C., Guijt, R. M., … Shabala, S. (2016). Potassium retention in leaf mesophyll as an element of salinity tissue tolerance in halophytes. Plant Physiology and Biochemistry, 109, 346–354. doi:10.1016/j.plaphy.2016.10.011
  • Popelková, H., & Yocum, C. F. (2007). Current status of the role of Cl- ion in the oxygen-evolving complex. Photosynthesis Research, 93(1-3), 111–121. doi:10.1007/s11120-006-9121-5
  • Pospíšil, P. (2009). Production of reactive oxygen species by photosystem II. Biochimica et Biophysica Acta (Bba) - Bioenergetics, 1787(10), 1151–1160. doi:10.1016/j.bbabio.2009.05.005
  • Pottosin, I., & Shabala, S. (2016). Transport across chloroplast membranes: Optimizing photosynthesis for adverse environmental conditions. Molecular Plant, 9(3), 356–370. doi:10.1016/j.molp.2015.10.006
  • Pottosin, I., & Dobrovinskaya, O. (2015). Ion channels in native chloroplast membranes: Challenges and potential for direct patch-clamp studies. Frontiers in Physiology, 6, 396. doi:10.3389/fphys.2015.00396
  • Pralon, T., Shanmugabalaji, V., Longoni, P., Glauser, G., Ksas, B., Collombat, J., … Kessler, F. (2019). Plastoquinone homoeostasis by Arabidopsis proton gradient regulation 6 is essential for photosynthetic efficiency. Communications Biology, 2(1), 220. doi:10.1038/s42003-019-0477-4
  • Preston, C., & Critchley, C. (1986). Differential effects of K+ and Na+ on oxygen evolution activity of photosynthetic membranes from two halophytes and spinach. Functional Plant Biology, 13(4), 491–498. doi:10.1071/PP9860491
  • Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., … Noble, A. D. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38(4), 282–295. doi:10.1111/1477-8947.12054
  • Rahman, S., Matsumuro, T., Miyake, H., & Takeoka, Y. (2000). Salinity-induced ultrastructural alterations in leaf cells of rice (Oryza sativa L.). Plant Production Science, 3(4), 422–429. doi:10.1626/pps.3.422
  • Rajendran, K., Tester, M., & Roy, S. J. (2009). Quantifying the three main components of salinity tolerance in cereals. Plant, Cell & Environment, 32(3), 237–249. doi:10.1111/j.1365-3040.2008.01916.x
  • Ranjit, S. L., Manish, P., & Penna, S. (2016). Early osmotic, antioxidant, ionic, and redox responses to salinity in leaves and roots of Indian mustard (Brassica juncea L.). Protoplasma, 253(1), 101–110. doi:10.1007/s00709-015-0792-7
  • Redondo-Gómez, S., Andrades-Moreno, L., Mateos-Naranjo, E., Parra, R., Valera-Burgos, J., & Aroca, R. (2011). Synergic effect of salinity and zinc stress on growth and photosynthetic responses of the cordgrass, Spartina densiflora. Journal of Experimental Botany, 62(15), 5521–5530. doi:10.1093/jxb/err234
  • Robinson, S. P., & Downton, W. J. S. (1984). Potassium, sodium, and chloride content of isolated intact chloroplasts in relation to ionic compartmentation in leaves. Archives of Biochemistry and Biophysics, 228(1), 197–206. doi:10.1016/0003-9861(84)90061-4
  • Ruiz-Lau, N., Sáez, Ï. N., Lanza, M. N., & Benito, B. A. (2017). Genomic and transcriptomic compilation of chloroplast ionic transporters of Physcomitrella patens. Study of NHAD transporters in Na+ and K+ homeostasis. Plant and Cell Physiology, 58(12), 2166–2178. doi:10.1093/pcp/pcx150
  • Sasi, S., Venkatesh, J., Daneshi, R. F., & Gururani, M. A. (2018). Photosystem II extrinsic proteins and their putative role in abiotic stress tolerance in higher plants. Plants (Basel), 7 (4), 100. doi:10.3390/plants7040100
  • Seidler, A. (1996). The extrinsic polypeptides of Photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1277(1-2), 35–60. doi:10.1016/S0005-2728(96)00102-8
  • Sengupta, S., & Majumder, A. L. (2009). Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: A physiological and proteomic approach. Planta, 229(4), 911–929. doi:10.1007/s00425-008-0878-y
  • Shabala, S. (2000). Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant, Cell & Environment, 23, 825–837. doi:10.1046/j.1365-3040.2000.00606.x
  • Shabala, S. (2009). Salinity and programmed cell death: Unravelling mechanisms for ion specific signalling. Journal of Experimental Botany, 60(3), 709–711. doi:10.1093/jxb/erp013
  • Shabala, S. (2019). Linking ploidy level with salinity tolerance: NADPH-dependent ‘ROS-Ca2+ hub’ in the spotlight. Journal of Experimental Botany, 70(4), 1063–1067. doi:10.1093/jxb/erz042
  • Shabala, S., & Munns, R. (2017). Salinity stress: Physiological constraints and adaptive mechanisms. In S. Shabala (Ed.), Plant stress physiology (pp. 24–63). Wallingford, UK: CABI.
  • Shabala, S., Cuin, T. A., Prismall, L., & Nemchinov, L. G. (2007). Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta, 227(1), 189–197. doi:10.1007/s00425-007-0606-z
  • Shabala, S., White, R. G., Djordjevic, M. A., Ruan, Y. L., & Mathesius, U. (2016). Root-to-shoot signalling: Integration of diverse molecules, pathways and functions. Functional Plant Biology, 43(2), 87–104. doi:10.1071/FP15252
  • Shen, J. R. (2015). The Structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annual Review of Plant Biology, 66(1), 23–48. doi:10.1146/annurev-arplant-050312-120129
  • Sheng, P., Tan, J., Jin, M., Wu, F., Zhou, K., Ma, W., … Wan, J. (2014). Albino midrib 1, encoding a putative potassium efflux antiporter, affects chloroplast development and drought tolerance in rice. Plant Cell Reports, 33(9), 1581–1594. doi:10.1007/s00299-014-1639-y
  • Shi, H., Ishitani, M., Kim, C., & Zhu, J. K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative NaR/HR antiporter. Proceedings of the National Academy of Sciences (Sciences), 97(12), 6896–6901. doi:10.1073/pnas.120170197
  • Shu, S., Chen, L. F., Lu, W., Sun, J., Guo, S. R., Yuan, Y. H., & Li, J. (2014). Effects of exogenous spermidine on photosynthetic capacity and expression of Calvin cycle genes in salt-stressed cucumber seedlings. Journal of Plant Research, 127(6), 763–773. doi:10.1007/s10265-014-0653-z
  • Sinetova, M. A., Mironov, K. S., Mustardy, L., Shapiguzov, A., Bachin, D., Allakhverdiev, S. I., & Los, D. A. (2015). Aquaporin-deficient mutant of synechocystis is sensitive to salt and high-light stress. Journal of Photochemistry and Photobiology B: Biology, 152, 377–382. doi:10.1016/j.jphotobiol.2015.07.012
  • Singh, J., Singh, V., & Sharma, P. C. (2018). Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea (Cicer arietinum L.) genotypes. Physiology and Molecular Biology of Plants, 24(3), 441–453. doi:10.1007/s12298-018-0517-4
  • Sirault, X. R. R., James, R. A., & Furbank, R. T. (2009). A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Functional Plant Biology, 36(11), 970–977. doi:10.1071/FP09182
  • Soussi, M., Ocana, A., & Lluch, C. (1998). Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). Journal of Experimental Botany, 49(325), 1329–1337. doi:10.1093/jxb/49.325.1329
  • Štefanić, P. P., Koffler, T., Adler, G., & Bar-Zvi, D. (2013). Chloroplasts of salt-grown Arabidopsis seedlings are impaired in structure, genome copy number and transcript levels. PLOS One., 8, e82548. doi:10.1371/journal.pone.0082548
  • Stefanov, M., Yotsova, E., Markovska, Y., & Apostolova, E. L. (2018). Effect of high light intensity on the photosynthetic apparatus of two hybrid lines of Paulownia grown on soils with different salinity. Photosynthetica, 56(3), 832–840. doi:10.1007/s11099-017-0735-y
  • Su, Y., Luo, W., Lin, W., Ma, L., & Kabir, M. H. (2015). Model of cation transportation mediated by high-affinity potassium transporters (HKTs) in higher plants. Biological Procedures Online, 17, 1. doi:10.1186/s12575-014-0013-3
  • Subbarao, G. V., Ito, O., Berry, W. L., & Wheeler, R. M. (2003). Sodium-a functional plant nutrient. Critical Reviews in Plant Sciences, 22, 5. doi:10.1080/07352680390243495
  • Sudhir, P., & Murthy, S. D. S. (2004). Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 42(4), 481–486. doi:10.1007/S11099-005-0001-6
  • Sudhir, P. R., Pogoryelov, D., Kovacs, L., Garab, G., & Murthy, S. D. (2005). The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. Bmb Reports, 38(4), 481–485. doi:10.5483/BMBRep.2005.38.4.481
  • Sui, N., Tian, S., Wang, W., Wang, M., & Fan, H. (2017). Overexpression of glycerol-3-phosphate acyltransferase from suaeda salsa improves salt tolerance in Arabidopsis. Frontiers in Plant Science, 8, 1337. doi:10.3389/fpls.2017.01337
  • Sun, Y. L., Li, F., Su, N., Sun, X. L., Zhao, S. J., & Meng, Q. W. (2010). The increase in unsaturation of fatty acids of phosphatidylglycerol in thylakoid membrane enhanced salt tolerance in tomato. Photosynthetica, 48(3), 400–408. doi:10.1007/s11099-010-0052-1
  • Suzuki, N., Koussevitzky, S., Mittler, R., & Miller, G. (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment, 35(2), 259–270. doi:10.1111/j.1365-3040.2011.02336.x
  • Takahashi, S., & Murata, N. (2005). Interruption of the Calvin cycle inhibits the repair of photosystem II from photodamage. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1708(3), 352–361. doi:10.1016/j.bbabio.2005.04.003
  • Tavallali, V., Rahemi, M., Maftoun, M., Panahi, B., Karimi, S., Ramezanian, A., & Vaezpour, M. (2009). Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia Horticulturae, 123(2), 272–279. doi:10.1016/j.scienta.2009.09.006
  • Teakle, N. L., & Tyerman, S. D. (2010). Mechanisms of Cl- transport contributing to salt tolerance. Plant, Cell & Environment, 33(4), 566–589. doi:10.1111/j.1365-3040.2009.02060.x
  • Trotta, A., Redondo-Gómez, S., Pagliano, C., Clemente, M. E. F., Rascio, N., La Rocca, N., … Barbato, R. (2012). Chloroplast ultrastructure and thylakoid polypeptide composition are affected by different salt concentrations in the halophytic plant Arthrocnemum macrostachyum. Journal of Plant Physiology, 169(2), 111–116. doi:10.1016/j.jplph.2011.11.001
  • Tsujii, M., Kera, K., Hamamoto, S., Kuromori, T., Shikanai, T., & Uozumi, N. (2019). Evidence for potassium transport activity of Arabidopsis KEA1-KEA6. Scientific Reports, 9(1), 10040. doi:10.1038/s41598-019-46463-7
  • Tu, W., Li, Y., Zhang, Y., Zhang, L., Liu, H., Liu, C., & Yang, C. (2012). Diminished photoinhibition is involved in high photosynthetic capacities in spring ephemeral Berteroa incana under strong light conditions. Journal of Plant Physiology, 169(15), 1463–1470. doi:10.1016/j.jplph.2012.05.027
  • Tyerman, S. D., Munns, R., Fricke, W., Arsova, B., Barkla, B. J., Bose, J., … Wen, Z. (2019). Energy costs of salinity tolerance in crop plants. New Phytologist, 221(1), 25–29. doi:10.1111/nph.15555
  • Umena, Y., Kawakami, K., Shen, J.-R., & Kamiya, N. (2011). Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature, 473(7345), 55–60. doi:10.1038/nature09913
  • Vander Meulen, K. A., Hobson, A., & Yocum, C. F. (2002). Calcium depletion modifies the structure of the photosystem II O2-evolving complex. Biochemistry, 41(3), 958–966. doi:10.1021/bi0109414
  • Veley, K. M., Marshburn, S., Clure, C. E., & Haswell, E. S. (2012). Mechanosensitive channels protect plastids from hypoosmotic stress during normal plant growth. Current Biology, 22(5), 408–413. doi:10.1016/j.cub.2012.01.027
  • Wada, H., & Murata, N. (1998). Membrane lipids in cyanobacteria. In S. Paul-André & M. Norio (Eds.), Lipids in photosynthesis: Structure, function and genetics. Advances in photosynthesis and respiration (Vol. 6). Dordrecht: Springer.
  • Wang, R., Chen, S., Deng, L., Fritz, E., Hüttermann, A., & Polle, A. (2007). Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees, 21(5), 581–591. doi:10.1007/s00468-007-0154-y
  • Wiciarz, M., Gubernator, B., Kruk, J., & Niewiadomska, E. (2015). Enhanced chloroplastic generation of H2O2 in stress-resistant Thellungiella salsuginea in comparison to Arabidopsis thaliana. Physiologia Plantarum, 153(3), 467–476. doi:10.1111/ppl.12248
  • Wilson, M. E., Jensen, G. S., & Haswell, E. S. (2011). Two mechanosensitive channel homologs influence division ring placement in Arabidopsis chloroplasts. The Plant Cell, 23(8), 2939–2949. doi:10.1105/tpc.111.088112
  • Wobbe, L., Bassi, R., & Kruse, O. (2016). Multi-level light capture control in plants and green algae. Trends in Plant Science, 21(1), 55–68. doi:10.1016/j.tplants.2015.10.004
  • Wrzaczek, M., Brosche, M., & Kangasjarvi, J. (2013). ROS signaling loops-production, perception, regulation. Current Opinion in Plant Biology, 16(5), 575–582. doi:10.1016/j.pbi.2013.07.002
  • Wu, H., Zhu, M., Shabala, L., Zhou, M., & Shabala, S. (2015). K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: A case study for barley. Journal of Integrative Plant Biology, 57(2), 171–185. doi:10.1111/jipb.12238
  • Wu, H. H., Zhang, X. C., Giraldo, J. P., & Shabala, S. (2018). It is not all about sodium: Revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant and Soil, 431(1-2), 1–17. doi:10.1007/s11104-018-3770-y
  • Yamamoto, Y. (2016). Quality control of photosystem II: The mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids. Frontiers in Plant Science, 7, 1136. doi:10.3389/fpls.2016.01136
  • Yamane, K., Taniguchi, M., & Miyake, H. (2012). Salinity-induced subcellular accumulation of H2O2 in leaves of rice. Protoplasma, 249(2), 301–308. doi:10.1007/s00709-011-0280-7
  • Yamori, W., & Shikanai, T. (2016). Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annual Review of Plant Biology, 67(1), 81–25.26. doi:10.1146/annurev-arplant-043015-112002
  • Yan, K., Wu, C., Zhang, L., & Chen, X. (2015). Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. ss in Plant Science, 6, 227.
  • Yang, L., Jin, Y., Huang, W., Sun, Q., Liu, F., & Huang, X. (2018). Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress. BMC Genomics., 19(1), 717. doi:10.1186/s12864-018-5106-y
  • Yang, L., Ma, C., Wang, L., Chen, S., & Li, H. (2012). Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition Line M14. Journal of Plant Physiology, 169(9), 839–850. doi:10.1016/j.jplph.2012.01.023
  • Yang, X., Liang, Z., Wen, X., & Lu, C. (2008). Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Molecular Biology, 66(1-2), 73–86. doi:10.1007/s11103-007-9253-9
  • Zepeda-Jazo, I., Velarde-Buendía, A. M., Enríquez-Figueroa, R., Bose, J., Shabala, S., Muñiz-Murguía, J., & Pottosin, I. I. (2011). Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiology, 157(4), 2167–2180. doi:10.1104/pp.111.179671
  • Zhang, H. H., Xu, N., Wu, X., Wang, J. F., Ma, S., Li, X., & Sun, G. (2018). Effects of four types of sodium salt stress on plant growth and photosynthetic apparatus in sorghum leaves. Journal of Plant Interactions, 13(1), 506–513. doi:10.1080/17429145.2018.1526978
  • Zhang, J. T., Zhu, J. Q., Zhu, Q., Liu, H., Gao, X. S., & Zhang, H. X. (2009). Fatty acid desaturase-6 (Fad6) is required for salt tolerance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 390(3), 469–474. doi:10.1016/j.bbrc.2009.09.095
  • Zhang, L., & Xing, D. (2008). Rapid determination of the damage to photosynthesis caused by salt and osmotic stresses using delayed fluorescence of chloroplasts. Photochemical & Photobiological Sciences, 7(3), 352–360. doi:10.1039/b714209a
  • Zhao, Y., Ai, X., Wang, M., Xiao, L., & Xia, G. (2016). A putative pyruvate transporter TaBASS2 positively regulates salinity tolerance in wheat via modulation of ABI4 expression. BMC Plant Biology, 16(1), 109. doi:10.1186/s12870-016-0795-3
  • Zheng, S., Pan, T., Fan, L., & Qiu, Q. S. (2013). A novel AtKEA gene family, homolog of bacterial K+/H+ antiporters, plays potential roles in K+ homeostasis and osmotic adjustment in Arabidopsis. PLoS One., 8 (11), e81463. doi:10.1371/journal.pone.0081463
  • Zhou, S., Sauvé, R. J., Liu, Z., Reddy, S., Bhatti, S., Hucko, S. D., … Thannhauser, T. W. (2011). Identification of salt-induced changes in leaf and root proteomes of the wild tomato, Solanum chilense. Journal of the American Society for Horticultural Science, 136(4), 288–302. doi:10.21273/JASHS.136.4.288

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.