1,004
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Vetiver grass-microbe interactions for soil remediation

ORCID Icon, , & ORCID Icon
Pages 897-938 | Published online: 14 Mar 2020

References

  • Abaga, N. O. Z., Dousset, S., Mbengue, S., & Munier-Lamy, C. (2014). Is vetiver grass of interest for the remediation of Cu and Cd to protect marketing gardens in Burkina Faso? Chemosphere, 113, 42–47. doi:10.1016/j.chemosphere.2014.04.010
  • Abaga, N. O. Z., Dousset, S., Munier-Lamy, C., & Billet, D. (2014). Effectiveness of vetiver grass (Vetiveria zizanioides L. Nash) for phytoremediation of endosulfan in two cotton soils from Burkina Faso. International Journal of Phytoremediation, 16(1), 95–108. doi:10.1080/15226514.2012.759531
  • Adams, R. P., Habte, M., Park, S., & Dafforn, M. R. (2004). Preliminary comparison of vetiver root essential oils from cleansed (bacteria- and fungus-free) versus non-cleansed (normal) vetiver plants. Biochemical Systematics and Ecology, 32(12), 1137–1144. doi:10.1016/j.bse.2004.03.013
  • Adams, R. P., Nguyen, S., Johnston, D. A., Park, S., Provin, T. L., & Habte, M. (2008). Comparison of vetiver root essential oils from cleansed (bacteria- and fungus-free) vs. non-cleansed (normal) vetiver plants. Biochemical Systematics and Ecology, 36(3), 177–182. doi:10.1016/j.bse.2007.10.004
  • Agnello, A. C., Huguenot, D., Hullebusch, E. D. V., & Esposito, G. (2014). Enhanced phytoremediation: A review of low molecular weight organic acids and surfactants used as amendments. Critical Reviews in Environmental Science and Technology, 44(22), 2531–2576. doi:10.1080/10643389.2013.829764
  • Ahmed, F. R. S., Killham, K., & Alexander, I. (2006). Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant and Soil, 283(1–2), 33–41. doi:10.1007/s11104-005-0415-8
  • Akhila, A., & Rani, M. (2002). Chemical constituents and essential oil biogenesis in Vetiveria zizanioides. In A. Maffei (Ed.), Vetiveria—The genus Vetiveria. London, UK: Taylor & Francis.
  • Alifano, P., Del Giudice, L., Talà, A., De Stefano, M., & Maffei, M. E. (2010). Microbes at work in perfumery: The microbial community of vetiver root and its involvement in essential oil biogenesis. Flavour and Fragrance Journal, 25(3), 121–122. doi:10.1002/ffj.1978
  • Antiochia, R., Campanella, L., Ghezzi, P., & Movassaghi, K. (2007). The use of vetiver for remediation of heavy metal soil contamination. Analytical and Bioanalytical Chemistry, 388(4), 947–956. doi:10.1007/s00216-007-1268-1
  • Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1), 3–42. doi:10.1007/s005720100097
  • Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84(4), 373–381. doi:10.4141/S04-002
  • Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, Cell & Environment, 32(6), 666–681. doi:10.1111/j.1365-3040.2009.01926.x
  • Bahraminia, M., Zarei, M., Ronaghi, A., & Ghasemi-Fasaei, R. (2016). Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead-contaminated soil by vetiver grass. International Journal of Phytoremediation, 18(7), 730–737. doi:10.1080/15226514.2015.1131242
  • Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57(1), 233–266. doi:10.1146/annurev.arplant.57.032905.105159
  • Bangash, W.-N., Saleem, N., Rashid, A. R., & Lorna, A. (2016). Effect of diesel contamination on the physico-chemical characteristics of soil and growth of vetiver grass. Soil and Environment, 35, 91–98.
  • Bano, A., & Fatima, M. (2009). Salt tolerance in Zea mays (L). Following inoculation with Rhizobium and Pseudomonas. Biology and Fertility of Soils, 45(4), 405–413. doi:10.1007/s00374-008-0344-9
  • Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L., Colpaert, J. V. … (2004). Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nature Biotechnology, 22(5), 583–588. doi:10.1038/nbt960
  • Barka, E. A., Nowak, J., & Clément, C. (2006). Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Applied and Environmental Microbiology, 72(11), 7246–7252. doi:10.1128/AEM.01047-06
  • Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24(1), 23–58. doi:10.1080/07352680590910410
  • Belimov, A. A., Dodd, I. C., Hontzeas, N., Theobald, J. C., Safronova, V. I., & Davies, W. J. (2009). Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytologist, 181(2), 413–423. doi:10.1111/j.1469-8137.2008.02657.x
  • Belimov, A. A., Dodd, I. C., Safronova, V. I., Hontzeas, N., & Davies, W. J. (2007). Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. Journal of Experimental Botany, 58(6), 1485–1495. doi:10.1093/jxb/erm010
  • Bertin, C., Yang, X., & Weston, L. A. (2003). The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil, 256(1), 67–83. doi:10.1023/A:1026290508166
  • Bhromsiri, C., & Bhromsiri, A. (2010). The effects of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi on the growth, development and nutrient uptake of different vetiver ecotypes. Thai Journal of Agricultural Science, 43, 239–249.
  • Bonfante, P., & Anca, I.-A. (2009). Plants, mycorrhizal fungi, and bacteria: A network of interactions. Annual Review of Microbiology, 63(1), 363–383. doi:10.1146/annurev.micro.091208.073504
  • Bonfante, P., & Genre, A. (2010). Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nature Communications, 1(1), 48. doi:10.1038/ncomms1046
  • Bourceret, A., Cébron, A., Tisserant, E., Poupin, P., Bauda, P., Beguiristain, T., & Leyval, C. (2016). The bacterial and fungal diversity of an aged PAH- and heavy metal-contaminated soil is affected by plant cover and edaphic parameters. Microbial Ecology, 71(3), 711–724. doi:10.1007/s00248-015-0682-8
  • Brandt, R., Merkl, N., Schultze-Kraft, R., Infante, C., & Broll, G. (2006). Potential of vetiver (Vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela. International Journal of Phytoremediation, 8(4), 273–284. doi:10.1080/15226510600992808
  • Breidenbach, B., Pump, J., & Dumont, M. G. (2016). Microbial community structure in the rhizosphere of rice plants. Frontiers in Microbiology, 6, 1537. doi:10.3389/fmicb.2015.01537
  • Buckle, J. (2015). Chapter 3—Basic plant taxonomy, basic essential oil chemistry, extraction, biosynthesis, and analysis. In J. Buckle (Ed.), Clinical aromatherapy (3rd ed., pp. 37–72). London, UK: Churchill Livingstone. doi:10.1016/B978-0-7020-5440-2.00003-6
  • Burd, G. I., Dixon, D. G., & Glick, B. R. (2000). Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 46(3), 237–245. doi:10.1139/w99-143
  • Bwire, K. M., Njau, K. N., & Minja, R. J. A. (2011). Use of vetiver grass constructed wetland for treatment of leachate. Water Science and Technology, 63(5), 924–930. doi:10.2166/wst.2011.271925
  • Caporale, A. G., Sarkar, D., Datta, R., Punamiya, P., & Violante, A. (2014). Effect of arbuscular mycorrhizal fungi (Glomus spp.) on growth and arsenic uptake of vetiver grass (Chrysopogon zizanioides L.) from contaminated soil and water systems. Journal of Soil Science and Plant Nutrition, 14, 0972. doi:10.4067/S0718-95162014005000075
  • Chandra, R., Sharma, P., Yadav, S., & Tripathi, S. (2018). Biodegradation of endocrine-disrupting chemicals and residual organic pollutants of pulp and paper mill effluent by biostimulation. Frontiers in Microbiology, 9, 960. doi:10.3389/fmicb.2018.00960
  • Chen, K., Hu, G., Rao, H., Xu, L., & Hu, H. (1994). Ecological effects of planting vetiver grass in citrus groves in sloping red soil fields. Acta Ecologica Sinica, 14(3), 249–254.
  • Chen, X. W., Kang, Y., So, P. S., Ng, C. W. W., & Wong, M. H. (2018). Arbuscular mycorrhizal fungi increase the proportion of cellulose and hemicellulose in the root stele of vetiver grass. Plant and Soil, 425(1–2), 309–319. doi:10.1007/s11104-018-3583-z
  • Chen, Y., Shen, Z., & Li, X. (2004). The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochemistry, 19(10), 1553–1565. doi:10.1016/j.apgeochem.2004.02.003
  • Chen, S., Waghmode, T. R., Sun, R., Kuramae, E. E., Hu, C., & Liu, B. (2019). Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome, 7(1), 136. doi:10.1186/s40168-019-0750-2
  • Chen, Y.-T., Wang, Y., & Yeh, K.-C. (2017). Role of root exudates in metal acquisition and tolerance. Current Opinion in Plant Biology, 39, 66–72. doi:10.1016/j.pbi.2017.06.004
  • Chen, X. W., Wong, J. T. F., Leung, A. O. W., Ng, C. W. W., & Wong, M. H. (2017). Comparison of plant and bacterial communities between a subtropical landfill topsoil 15 years after restoration and a natural area. Waste Management, 63, 49–57. doi:10.1016/j.wasman.2016.08.015
  • Chen, X. W., Wu, F. Y., Li, H., Chan, W. F., Wu, C., Wu, S. C., & Wong, M. H. (2013). Phosphate transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenate stress. Environmental and Experimental Botany, 87, 92–99. doi:10.1016/j.envexpbot.2012.08.002
  • Chen, X. W., Wu, L., Luo, N., Mo, C. H., Wong, M. H., & Li, H. (2019). Arbuscular mycorrhizal fungi and the associated bacterial community influence the uptake of cadmium in rice. Geoderma, 337, 749–757. doi:10.1016/j.geoderma.2018.10.029
  • Chen, B. D., Xiao, X. Y., Zhu, Y. G., Smith, F. A., Xie, Z. M., & Smith, S. E. (2007). The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment, 379(2–3), 226–234. doi:10.1016/j.scitotenv.2006.07.038
  • Chen, K. F., Yeh, T. Y., & Lin, C. F. (2012). Phytoextraction of Cu, Zn, and Pb enhanced by chelators with vetiver (Vetiveria zizanioides): Hydroponic and pot experiments. ISRN Ecology, 2012(729693), 1–12. doi:10.5402/2012/729693
  • Chinnusamy, V., Jagendorf, A., & Zhu, J.-K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45(2), 437–448. doi:10.2135/cropsci2005.0437
  • Chiu, K. K., Ye, Z. H., & Wong, M. H. (2005). Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere, 60(10), 1365–1375. doi:10.1016/j.chemosphere.2005.02.035
  • Chiu, K. K., Ye, Z. H., & Wong, M. H. (2006). Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: A greenhouse study. Bioresource Technology, 97(1), 158–170. doi:10.1016/j.biortech.2005.01.038
  • Chizzola, R. (2013). Regular monoterpenes and sesquiterpenes (essential oils). In K. G. Ramawat & J. M. Mérillon (Eds.), Natural products: Phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes (pp. 2973–3008). Berlin: Springer. doi:10.1007/978-3-642-22144-6_130
  • Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53(1), 159–182. doi:10.1146/annurev.arplant.53.100301.135154
  • Cockerell, T. D. A. (1926). Ecotypes of plants. Nature, 117(2947), 588–588. doi:10.1038/117588a0
  • Coombs, J. M., & Barkay, T. (2005). New findings on evolution of metal homeostasis genes: Evidence from comparative genome analysis of bacteria and archaea. Applied and Environmental Microbiology, 71(11), 7083–7091. doi:10.1128/AEM.71.11.7083-7091.2005
  • Dalton, P. A., Smith, R. J., & Truong, P. (1996). Vetiver grass hedges for erosion control on a cropped flood plain: Hedge hydraulics. Agricultural Water Management, 31(1–2), 91–104. doi:10.1016/0378-3774(95)01230-3
  • Danh, L. T., Truong, P., Mammucari, R., & Foster, N. (2010). Economic incentive for applying vetiver grass to remediate lead, copper and zinc contaminated soils. International Journal of Phytoremediation, 13(1), 47–60. doi:10.1080/15226511003671338
  • Danh, L. T., Truong, P., Mammucari, R., Tran, T., & Foster, N. (2009). Vetiver grass, Vetiveria zizanioides: A choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11(8), 664–691. doi:10.1080/15226510902787302
  • Das, P., Datta, R., Makris, K. C., & Sarkar, D. (2010). Vetiver grass is capable of removing TNT from soil in the presence of urea. Environmental Pollution, 158(5), 1980–1983. doi:10.1016/j.envpol.2009.12.011
  • Dassen, S., Cortois, R., Martens, H., de Hollander, M., Kowalchuk, G. A., van der Putten, W. H., & De Deyn, G. B. (2017). Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Molecular Ecology, 26(15), 4085–4098. doi:10.1111/mec.14175
  • Datta, R., Quispe, M. A., & Sarkar, D. (2011). Greenhouse study on the phytoremediation potential of vetiver grass, Chrysopogon zizanioides L., in arsenic-contaminated soils. Bulletin of Environmental Contamination and Toxicology, 86(1), 124–128. doi:10.1007/s00128-010-0185-8
  • de la Rosa, G., Parsons, J. G., Martinez-Martinez, A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2006). Spectroscopic study of the impact of arsenic speciation on arsenic/phosphorus uptake and plant growth in tumbleweed (Salsola kali. Environmental Science & Technology, 40(6), 1991–1996. ). doi:10.1021/es051526s
  • Del Giudice, L., Massardo, D. R., Pontieri, P., Bertea, C. M., Mombello, D., Carata, E., … Alifano, P. (2008a). The microbial community of Vetiver root and its involvement into essential oil biogenesis. Environmental Microbiology, 10(10), 2824–2841. doi:10.1111/j.1462-2920.2008.01703.x
  • Del Giudice, L., Massardo, D. R., Pontieri, P., Bertea, C. M., Mombello, D., Carata, E., … Alifano, P. (2008b). The microbial community of vetiver root is necessary for essential oil biosynthesis. Proceedings of the 52nd Italian Society of Agricultural Genetics Annual Congress, Padova, Italy, pp. 978–988.
  • Dhote, M., Kumar, A., Jajoo, A., & Juwarkar, A. (2018). Study of microbial diversity in plant–microbe interaction system with oil sludge contamination. International Journal of Phytoremediation, 20(8), 789–795. doi:10.1080/15226514.2018.1425668
  • Dimkpa, C., Weinand, T., & Asch, F. (2009). Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell & Environment, 32(12), 1682–1694. doi:10.1111/j.1365-3040.2009.02028.x
  • Dodd, J. C., Williams, S., & Jeffries, P. (1991). Mycorrhiza and Vetiver-Rehabilitating Degraded Lands. Newsletter of Vetiver. Information Network, World Bank, 7, 3–4.
  • Donjadee, S., Clemente, R. S., Tingsanchali, T., & Chinnarasri, C. (2010). Effects of vertical hedge interval of vetiver grass on erosion on steep agricultural lands. Land Degradation & Development, 21(3), 219–227. doi:10.1002/ldr.900
  • Dupuy, L. X., Fourcaud, T., Lac, P., & Stokes, A. (2007). A generic 3D finite element model of tree anchorage integrating soil mechanics and real root system architecture. American Journal of Botany, 94(9), 1506–1514. doi:10.3732/ajb.94.9.1506
  • Durán, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., & Hacquard, S. (2018). Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell, 175(4), 973–983.e14. doi:10.1016/j.cell.2018.10.020
  • Dushenkov, V., Kumar, P. B. A. N., Motto, H., & Raskin, I. (1995). Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environmental Science & Technology, 29(5), 1239–1245. doi:10.1021/es00005a015
  • Fell, R., & Fry, J. J. (Eds.). (2007). Internal erosion of dams and their foundations. London; New York: CRC Press.
  • Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103(3), 626–631. doi:10.1073/pnas.0507535103
  • Filippi, J.-J., Belhassen, E., Baldovini, N., Brevard, H., & Meierhenrich, U. J. (2013). Qualitative and quantitative analysis of vetiver essential oils by comprehensive two-dimensional gas chromatography and comprehensive two-dimensional gas chromatography/mass spectrometry. Journal of Chromatography A, 1288, 127–148. doi:10.1016/j.chroma.2013.03.002
  • Fisher, M. J., Rao, I. M., Ayarza, M. A., Lascano, C. E., Sanz, J. I., Thomas, R. J., & Vera, R. R. (1994). Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature, 371(6494), 236–238. doi:10.1038/371236a0
  • Fitriani, A., Aryani, A., Yusuf, H., & Permatasari, Y. (2012). The exploration of ketosynthase gene on endophytic bacterial root of Vetiveria zizanioides L. International Journal of Basic & Applied Sciences, 13(4), 112–119.
  • Fredlund, D. G., & Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils (1st ed.). New York: Wiley-Interscience.
  • Gadd, G. M. (1992). Metals and microorganisms: A problem of definition. FEMS Microbiology Letters, 100(1–3), 197–203. doi:10.1016/0378-1097(92)90209-7
  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77(3), 229–236. doi:10.1016/S0960-8524(00)00108-5
  • Ghestem, M., Veylon, G., Bernard, A., Vanel, Q., & Stokes, A. (2014). Influence of plant root system morphology and architectural traits on soil shear resistance. Plant and Soil, 377(1–2), 43–61. doi:10.1007/s11104-012-1572-1
  • Ghosh, C., & Bhattacharya, S. (2018). Landslides and erosion control measures by Vetiver system. In I. Pal & R. Shaw (Eds.), Disaster risk governance in India and cross cutting issues (pp. 387–413). Singapore: Springer. doi:10.1007/978-981-10-3310-0_19
  • Ghosh, M., Paul, J., Jana, A., De, A., & Mukherjee, A. (2015). Use of the grass, Vetiveria zizanioides (L.) Nash for detoxification and phytoremediation of soils contaminated with fly ash from thermal power plants. Ecological Engineering, 74, 258–265. doi:10.1016/j.ecoleng.2014.10.011
  • Glick, B. R. (2005). Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters, 251(1), 1–7. doi:10.1016/j.femsle.2005.07.030
  • Göhre, V., & Paszkowski, U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223(6), 1115–1122. doi:10.1007/s00425-006-0225-0
  • González-Chávez, M., del, C. A., Ortega-Larrocea, M., del, P., Carrillo-González, R., López-Meyer, M., Xoconostle-Cázares, B., Gomez, S. K., … … Aldonado-Mendoza, I. E. (2011). Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza. Fungal Biology, 115(12), 1197–1209. doi:10.1016/j.funbio.2011.08.005
  • Goreau, T. J., Larson, R. W., & Campe, J. (Eds.). (2014). Geotherapy: Innovative methods of soil fertility restoration. In Carbon sequestration, and reversing CO2 increase (1st ed.). Boca Raton, FL London New York: CRC Press.
  • Greenfield, J. C. (1988). Vetiver grass (Vetiveria spp.), the ideal plant for vegetative soil and moisture conservation. Washington DC: The World Bank.
  • Haichar, F. Z., Marol, C., Berge, O., Rangel-Castro, J. I., Prosser, J. I., Balesdent, J., … Chouak, W. (2008). Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2(12), 1221–1230. doi:10.1038/ismej.2008.80
  • Hammer, K. A., Carson, C. F., & Riley, T. V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86(6), 985–990. doi:10.1046/j.1365-2672.1999.00780.x
  • Hare, P. D., & Cress, W. A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21(2), 79–102. doi:10.1023/A:1005703923347
  • Hill, R. D., & Peart, M. R. (1998). Vetiver grass for erosion control, Hong Kong and Guizhou, China. In M. H. Wong (Ed.), Remediation and management of degraded lands. London, UK: Lewis Pub.
  • Hinchee, R. E. (1998). Bioremediation and Phytoremediation: Chlorinated and Recalcitrant Compounds (G. B. Wickramanayake, Ed.). Columbus: Battelle Pr.
  • Ho, Y. N., Hsieh, J. L., & Huang, C. C. (2013). Construction of a plant–microbe phytoremediation system: Combination of vetiver grass with a functional endophytic bacterium, Achromobacter xylosoxidans F3B, for aromatic pollutants removal. Bioresource Technology, 145, 43–47. doi:10.1016/j.biortech.2013.02.051
  • Ho, Y. N., Shih, C. H., Hsiao, S. C., & Huang, C. C. (2009). A novel endophytic bacterium, Achromobacter xylosoxidans, helps plants against pollutant stress and improves phytoremediation. Journal of Bioscience and Bioengineering, 108, S94–S99. doi:10.1016/j.jbiosc.2009.08.276
  • Hossain, M. A., Burritt, D. J., & Fujita, M. (2016). Cross-stress tolerance in plants: Molecular mechanisms and possible involvement of reactive oxygen species and methylglyoxal detoxification systems. In Abiotic stress response in plants (1st ed., pp. 327–380). New York: Springer. doi:10.1002/9783527694570.ch16
  • Hou, Y., Cheng, K., Li, Z., Ma, X., Wei, Y., Zhang, L., & Wang, Y. (2015). Biosorption of cadmium and manganese using free cells of Klebsiella sp. Isolated from waste water. PLoS One, 10(10), e0140962. doi:10.1371/journal.pone.0140962
  • Hu, L., Robert, C. A. M., Cadot, S., Zhang, X., Ye, M., Li, B., … Erb, M. (2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 9(1), 2738. doi:10.1038/s41467-018-05122-7
  • Huckle, J. W., Morby, A. P., Turner, J. S., & Robinson, N. J. (1993). Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Molecular Microbiology, 7(2), 177–187. doi:10.1111/j.1365-2958.1993.tb01109.x
  • Ibezute, A. C., Tawari-Fufeyin, P., & Oghama, O. E. (2014). Analysis of pollution removal from compost leachate by vetiver grass (L.) Nash plant (Vetiveria zizanioides). Resources and Environment, 4(6), 268–273.
  • Janngam, J., Anurakpongsatorn, P., Satapanajaru, T., & Techapinyawat, S. (2010). Phytoremediation: Vetiver grass in remediation of soil contaminated with trichloroethylene. Science Journal Ubon Ratchathani University, 1(2), 6.
  • Janoušková, M., & Vosátka, M. (2005). Response to cadmium of Daucus carota hairy roots dual cultures with Glomus intraradices or Gigaspora margarita. Mycorrhiza, 15(3), 217–224. doi:10.1007/s00572-004-0325-2
  • Kahlon, R. S. (2016). Biodegradation and bioremediation of organic chemical pollutants by Pseudomonas. In R. S. Kahlon (Ed.), Pseudomonas: Molecular and applied biology (pp. 343–417). Berlin: Springer. doi:10.1007/978-3-319-31198-2_9
  • Kantawanichkul, S., Pilaila, S., Tanapiyawanich, W., Tikampornpittaya, W., & Kamkrua, S. (1999). Wastewater treatment by tropical plants in vertical-flow constructed wetlands. Water Science and Technology, 40(3), 173–178. doi:10.2166/wst.1999.0159
  • Khonsue, N., Kittisuwan, K., Kumsopa, A., Tawinteung, N., & Prapagdee, B. (2013). Inoculation of soil with cadmium-resistant bacteria enhances cadmium phytoextraction by Vetiveria nemoralis and Ocimum gratissimum. Water, Air, & Soil Pollution, 224(10), 1696. doi:10.1007/s11270-013-1696-9
  • Kozdrój, J., & van Elsas, J. D. (2000). Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biology and Biochemistry, 32(10), 1405–1417. doi:10.1016/S0038-0717(00)00058-4
  • Kuske, C. R., Ticknor, L. O., Miller, M. E., Dunbar, J. M., Davis, J. A., Barns, S. M., & Belnap, J. (2002). Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Applied and Environmental Microbiology, 68(4), 1854–1863. doi:10.1128/AEM.68.4.1854-1863.2002
  • Lauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 40(9), 2407–2415. doi:10.1016/j.soilbio.2008.05.021
  • Leaungvutiviroj, C., Piriyaprin, S., Limtong, P., & Sasaki, K. (2010). Relationships between soil microorganisms and nutrient contents of Vetiveria zizanioides (L.) Nash and Vetiveria nemoralis (A.) Camus in some problem soils from Thailand. Applied Soil Ecology, 46, 1, 95–102. doi:10.1016/j.apsoil.2010.06.007
  • Leung, A. K., & Ng, C. W. W. (2013). Analyses of groundwater flow and plant evapotranspiration in a vegetated soil slope. Canadian Geotechnical Journal, 50(12), 1204–1218. doi:10.1139/cgj-2013-0148
  • Leung, H. M., Wu, F. Y., Cheung, K. C., Ye, Z. H., & Wong, M. H. (2010). Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator. Journal of Hazardous Materials, 181(1–3), 497–507. doi:10.1016/j.jhazmat.2010.05.042
  • Leung, H. M., Ye, Z. H., & Wong, M. H. (2006). Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environmental Pollution, 139(1), 1–8. doi:10.1016/j.envpol.2005.05.009
  • Li, T., Di, Z., Yang, X., & Sparks, D. L. (2011). Effects of dissolved organic matter from the rhizosphere of the hyperaccumulator Sedum alfredii on sorption of zinc and cadmium by different soils. Journal of Hazardous Materials, 192(3), 1616–1622. doi:10.1016/j.jhazmat.2011.06.086
  • Li, H., Luo, Y. M., Song, J., Wu, L. H., & Christie, P. (2006). Degradation of benzo[a]pyrene in an experimentally contaminated paddy soil by vetiver grass (Vetiveria zizanioides). Environmental Geochemistry and Health, 28, 1–2, 183–188. doi:10.1007/s10653-005-9029-6
  • Li, T., Tao, Q., Liang, C., Shohag, M. J. I., Yang, X., & Sparks, D. L. (2013). Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii. Environmental Pollution, 182, 248–255. doi:10.1016/j.envpol.2013.07.025
  • Liu, Y., Zhu, Y. G., Chen, B. D., Christie, P., & Li, X. L. (2005). Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza, 15(3), 187–192. doi:10.1007/s00572-004-0320-7
  • Li, W. C., Ye, Z. H., & Wong, M. H. (2007). Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. Journal of Experimental Botany, 58(15–16), 4173–4182. doi:10.1093/jxb/erm274
  • Li, X., Zhang, T., Wang, X., Hua, K., Zhao, L., & Han, Z. (2013). The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen. International Journal of Biological Sciences, 9(2), 164–173. doi:10.7150/ijbs.5579
  • Lombi, E., Tearall, K. L., Howarth, J. R., Zhao, F.-J., Hawkesford, M. J., & McGrath, S. P. (2002). Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiology, 128(4), 1359–1367. doi:10.1104/pp.010731
  • Long, H. H., Schmidt, D. D., & Baldwin, I. T. (2008). Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLOS ONE, 3(7), e2702. doi:10.1371/journal.pone.0002702
  • Lou, L. Q., Ye, Z. H., & Wong, M. H. (2007). Solubility and accumulation of metals in Chinese brake fern, vetiver and Rostrate sesbania using chelating agents. International Journal of Phytoremediation, 9(4), 325–343. doi:10.1080/15226510701475778
  • Lynch, J. M. (Ed.). (1990). The Rhizosphere (First). Chichester; New York: Wiley.
  • Maffei, M. E. (Ed.). (2002). Vetiveria: The Genus Vetiveria (1st ed.). London; New York: CRC Press.
  • Makris, K. C., Shakya, K. M., Datta, R., Sarkar, D., & Pachanoor, D. (2007). High uptake of 2,4,6-trinitrotoluene by vetiver grass – Potential for phytoremediation? Environmental Pollution, 146(1), 1–4. doi:10.1016/j.envpol.2006.06.020
  • Maldonado-Mendoza, I. E., & Harrison, M. J. (2018). RiArsB and RiMT-11: Two novel genes induced by arsenate in arbuscular mycorrhiza. Fungal Biology, 122(2–3), 121–130. doi:10.1016/j.funbio.2017.11.003
  • Marasco, R., Rolli, E., Ettoumi, B., Vigani, G., Mapelli, F., Borin, S., … Daffonchio, D. (2012). A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One, 7(10), e48479. doi:10.1371/journal.pone.0048479
  • McCalmont, J. P., Hastings, A., McNamara, N. P., Richter, G. M., Robson, P., Donnison, I. S., & Clifton‐Brown, J. (2017). Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. GCB Bioenergy, 9(3), 489–507. doi:10.1111/gcbb.12294
  • Meier, S., Alvear, M., Borie, F., Aguilera, P., Ginocchio, R., & Cornejo, P. (2012). Influence of copper on root exudate patterns in some metallophytes and agricultural plants. Ecotoxicology and Environmental Safety, 75, 8–15. doi:10.1016/j.ecoenv.2011.08.029
  • Melato, F. A., Mokgalaka, N. S., & McCrindle, R. I. (2016). Adaptation and detoxification mechanisms of Vetiver grass (Chrysopogon zizanioides) growing on gold mine tailings. International Journal of Phytoremediation, 18(5), 509–520. doi:10.1080/15226514.2015.1115963
  • Mendez, M. O., Glenn, E. P., & Maier, R. M. (2007). Phytostabilization potential of quailbush for mine tailings: Growth, metal accumulation, and microbial community changes. Journal of Environmental Quality, 36(1), 245–253. doi:10.2134/jeq2006.0197
  • Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments—An emerging remediation technology. Environmental Health Perspectives, 116(3), 278–283. doi:10.1289/ehp.10608
  • Meyer, E., Londoño, D. M. M., de Armas, R. D., Giachini, A. J., Rossi, M. J., Stoffel, S. C. G., & Soares, C. R. F. S. (2017). Arbuscular mycorrhizal fungi in the growth and extraction of trace elements by Chrysopogon zizanioides (vetiver) in a substrate containing coal mine wastes. International Journal of Phytoremediation, 19(2), 113–120. doi:10.1080/15226514.2016.1207596
  • Ministry of Ecology and Environment of the People’s Republic of China, & Ministry of Natural Resources of the People’s Republic of China (MEE and MNR China). (2014). The Report on the National General Survey of Soil Contamination. Retrieved from http://www.gov.cn/foot/site1/20140417/782bcb88840814ba158d01.pdf
  • Miyadate, H., Adachi, S., Hiraizumi, A., Tezuka, K., Nakazawa, N., Kawamoto, T., … Akagi, H. (2011). OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytologist, 189(1), 190–199. doi:10.1111/j.1469-8137.2010.03459.x
  • Monteiro, J. M., Vollú, R. E., Coelho, M. R. R., Alviano, C. S., Blank, A. F., & Seldin, L. (2009). Comparison of the bacterial community and characterization of plant growth-promoting rhizobacteria from different genotypes of Chrysopogon zizanioides (L.) Roberty (Vetiver) rhizospheres. The Journal of Microbiology, 47(4), 363–370. doi:10.1007/s12275-009-0048-3
  • Monteiro, J. M., Vollú, R. E., Coelho, M. R. R., Fonseca, A., Gomes Neto, S. C., & Seldin, L. (2011). Bacterial communities within the rhizosphere and roots of vetiver (Chrysopogon zizanioides (L.) Roberty) sampled at different growth stages. European Journal of Soil Biology, 47(4), 236–242. doi:10.1016/j.ejsobi.2011.05.006
  • Montiel-Rozas, M. M., Madejón, E., & Madejón, P. (2016). Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Environmental Pollution, 216, 273–281. doi:10.1016/j.envpol.2016.05.080
  • Mora, M. L., Rosas, A., Ribera, A., & Rengel, Z. (2009). Differential tolerance to Mn toxicity in perennial ryegrass genotypes: Involvement of antioxidative enzymes and root exudation of carboxylates. Plant and Soil, 320(1–2), 79–89. doi:10.1007/s11104-008-9872-1
  • Nakajima, T., Yamada, T., Anzoua, K. G., Kokubo, R., & Noborio, K. (2018). Carbon sequestration and yield performances of Miscanthus × giganteus and Miscanthus sinensis. Carbon Management, 9(4), 415–423. doi:10.1080/17583004.2018.1518106
  • Namiki, S., Otani, T., & Seike, N. (2013). Fate and plant uptake of persistent organic pollutants in soil. Soil Science and Plant Nutrition, 59(4), 669–679. doi:10.1080/00380768.2013.813833
  • National Research Council. (1993). Vetiver grass: A thin green line against erosion. Washington, DC: The National Academies Press. doi:10.17226/2077
  • Nayak, A. K., Panda, S. S., Basu, A., & Dhal, N. K. (2018). Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. International Journal of Phytoremediation, 20(7), 682–691. doi:10.1080/15226514.2017.1413332
  • Ng, C. W. W., & Menzies, B. (2007). Advanced unsaturated soil mechanics and engineering. London; New York: Taylor & Francis.
  • Ng, C. W. W., Ni, J. J., Leung, A. K., Zhou, C., & Wang, Z. J. (2016). Effects of planting density on tree growth and induced soil suction. Géotechnique, 66(9), 711–724. doi:10.1680/jgeot.15.P.196
  • Nies, D. H. (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 27(2–3), 313–339. doi:10.1016/S0168-6445(03)00048-2
  • Nuccio, E. E., Hodge, A., Pett-Ridge, J., Herman, D. J., Weber, P. K., & Firestone, M. K. (2013). An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environmental Microbiology, 15(6), 1870–1881. doi:10.1111/1462-2920.12081
  • Pages, D., Rose, J., Conrod, S., Cuine, S., Carrier, P., Heulin, T., & Achouak, W. (2008). Heavy metal tolerance in Stenotrophomonas maltophilia. PLoS One, 3(2), e1539. doi:10.1371/journal.pone.0001539
  • Pagnanelli, F., Petrangeli Papini, M., Trifoni, M., & Vegliò, F. (2000). Biosorption of metal ions on Arthrobacter sp.: Biomass characterization and biosorption modeling. Environmental Science & Technology, 34(13), 2773–2778. doi:10.1021/es991271g
  • Pandey, S., Fartyal, D., Agarwal, A., Shukla, T., James, D., Kaul, T., … Reddy, M. K. (2017). Abiotic stress tolerance in plants: Myriad roles of ascorbate peroxidase. Frontiers in Plant Science, 8, 581. doi:10.3389/fpls.2017.00581
  • Pang, J., Chan, G. S. Y., Zhang, J., Liang, J., & Wong, M. H. (2003). Physiological aspects of vetiver grass for rehabilitation in abandoned metalliferous mine wastes. Chemosphere, 52(9), 1559–1570. doi:10.1016/S0045-6535(03)00496-X
  • Paszkowski, U., Kroken, S., Roux, C., & Briggs, S. P. (2002). Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13324–13329. doi:10.1073/pnas.202474599
  • Phenrat, T., Teeratitayangkul, P., Prasertsung, I., Parichatprecha, R., Jitsangiam, P., Chomchalow, N., & Wichai, S. (2017). Vetiver plantlets in aerated system degrade phenol in illegally dumped industrial wastewater by phytochemical and rhizomicrobial degradation. Environmental Science and Pollution Research, 24(15), 13235–13246. doi:10.1007/s11356-016-7707-9
  • Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013). Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11(11), 789–799. doi:10.1038/nrmicro3109
  • Phusantisampan, T., Meeinkuirt, W., Saengwilai, P., Pichtel, J., & Chaiyarat, R. (2016). Phytostabilization potential of two ecotypes of Vetiveria zizanioides in cadmium-contaminated soils: Greenhouse and field experiments. Environ. Sci. Pollut. Res, 23, 1–12.
  • Pollen-Bankhead, N., & Simon, A. (2010). Hydrologic and hydraulic effects of riparian root networks on streambank stability: Is mechanical root-reinforcement the whole story? Geomorphology, 116(3–4), 353–362. doi:10.1016/j.geomorph.2009.11.013
  • Pourrut, B., Shahid, M., Douay, F., Dumat, C., & Pinelli, E. (2013). Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. In D. K. Gupta, F. J. Corpas, & J. M. Palma (Eds.), Heavy metal stress in plants (pp. 121–147). Berlin: Springer. doi:10.1007/978-3-642-38469-1_7
  • Prasad, A., Chand, S., Kumar, S., Chattopadhyay, A., & Patra, D. D. (2014). Heavy metals affect yield, essential oil compound, and rhizosphere microflora of vetiver (Vetiveria zizanioides Linn. Nash) grass. Communications in Soil Science and Plant Analysis, 45(11), 1511–1522. doi:10.1080/00103624.2014.904334
  • Prasad, M. N. V., Nakbanpote, W., Phadermrod, C., Rose, D., & Suthari, S. (2016). Chapter 13 – Mulberry and Vetiver for phytostabilization of mine overburden: Cogeneration of economic products. In M. N. V. Prasad (Ed.), Bioremediation and bioeconomy (pp. 295–328). Oxford: Elsevier. doi:10.1016/B978-0-12-802830-8.00013-7
  • Punamiya, P., Datta, R., Sarkar, D., Barber, S., Patel, M., & Das, P. (2010). Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. Journal of Hazardous Materials, 177(1–3), 465–474. doi:10.1016/j.jhazmat.2009.12.056
  • Rillig, M. C., Mardatin, N. F., Leifheit, E. F., & Antunes, P. M. (2010). Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biology and Biochemistry, 42(7), 1189–1191. doi:10.1016/j.soilbio.2010.03.027
  • Rivera-Becerril, F., van Tuinen, D., Martin-Laurent, F., Metwally, A., Dietz, K.-J., Gianinazzi, S., & Gianinazzi-Pearson, V. (2005). Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza, 16(1), 51–60. doi:10.1007/s00572-005-0016-7
  • Rodríguez, O. S. (1997). Hedgerows and mulch as soil conservation measures evaluated under field simulated rainfall. Soil Technology, 11(1), 79–93. doi:10.1016/S0933-3630(96)00117-1
  • Rodriguez, R. J, Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., … Redman, R. S. (2008). Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal, 2(4), 404–416. doi:10.1038/ismej.2007.106
  • Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M. L., … Daffonchio, D. (2015). Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environmental Microbiology, 17(2), 316–331. doi:10.1111/1462-2920.12439
  • Sandrin, T. R., & Hoffman, D. R. (2007). Bioremediation of organic and metal co-contaminated environments: Effects of metal toxicity, speciation, and bioavailability on biodegradation. In S. N. Singh & R. D. Tripathi (Eds.), Environmental bioremediation technologies (pp. 1–34). Berlin: Springer. doi:10.1007/978-3-540-34793-4_1
  • Sandrin, T. R., & Maier, R. M. (2003). Impact of metals on the biodegradation of organic pollutants. Environmental Health Perspectives, 111(8), 1093–1101. doi:10.1289/ehp.5840
  • Sangeetha, D. (2012). Screening of antimicrobial activity of vetiver extracts against certain pathogenic microorganisms. International Journal of Pharmaceutical & Biological Archive, 3(1), 197–203.
  • Santos-Medellín, C., Edwards, J., Liechty, Z., Nguyen, B., & Sundaresan, V. (2017). Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. MBio, 8(4), e00764–17. doi:10.1128/mBio.00764-17
  • Schützendübel, A., & Polle, A. (2002). Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53(372), 1351–1365.
  • Sengupta, A. (2014). Remediation of tetracycline from water sources using vetiver grass (Chrysopogon zizanioides L. Nash) and tetracycline-tolerant root-associated bacteria (PhD thesis). Michigan Technological University. Retrieved from https://digitalcommons.mtu.edu/etds/793
  • Shao, J. F., Yamaji, N., Shen, R. F., & Ma, J. F. (2017). The key to Mn homeostasis in plants: Regulation of Mn transporters. Trends in Plant Science, 22(3), 215–224. doi:10.1016/j.tplants.2016.12.005
  • Shu, W. S., Xia, H. P., Zhang, Z. Q., Lan, C. Y., & Wong, M. H. (2002). Use of vetiver and three other grasses for revegetation of Pb/Zn mine tailings: Field experiment. International Journal of Phytoremediation, 4(1), 47–57. doi:10.1080/15226510208500072
  • Simonich, S. L., & Hites, R. A. (1995). Organic pollutant accumulation in vegetation. Environmental Science & Technology, 29(12), 2905–2914. doi:10.1021/es00012a004
  • Singh, M., & Guleria, N. (2011). A strategy for sustainable carbon sequestration using vetiver (Vetiveria zizanioides (L.)): A quantitative assessment over India. Project Document CM PD-1101. CSIR Center for Mathematical Modelling and Computer Simulation.
  • Singh, S., Melo, J. S., Eapen, S., & D’souza, S. F. (2008). Potential of vetiver (Vetiveria zizanoides L. Nash) for phytoremediation of phenol. Ecotoxicology and Environmental Safety, 71, 3, 671–676. doi:10.1016/j.ecoenv.2007.10.023
  • Sivamohan, M. V. K., Scott, C. A., & Walter, M. F. (1993). Vetiver grass for soil and water conservation: Prospects and problems. World Soil Erosion and Conservation, 293–309.
  • Smalla, K., Wieland, G., Buchner, A., Zock, A., Parzy, J., Kaiser, S., Roskot, N., Berg, G. (2001). Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: Plant-dependent enrichment and seasonal shifts revealed. Applied and Environmental Microbiology, 67(10), 4742–4751. doi:10.1128/AEM.67.10.4742-4751.2001
  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis (3rd ed.). London, UK: Academic Press.
  • Soni, A., & Dahiya, P. (2015). Screening of phytochemicals and antimicrobial potential of extracts of Vetiver zizanoides and Phragmites kara against clinical isolates. International Journal of Applied Pharmaceutics, 7, 22–24.
  • Sreenath, H. L., Jagadishchandra, K. S., & Bajaj, Y. P. S. (1994). Vetiveria zizanioides (L.) Nash (Vetiver grass): In vitro culture, regeneration, and the production of essential oils. In Y. P. S. Bajaj (Ed.), Medicinal and aromatic plants VI (pp. 403–421). Berlin: Springer. doi:10.1007/978-3-642-57970-7_27
  • Srivastava, J., Shukla, D., Chand, V., Naraian, R., Chandra, H., & Nautiyal, A. R. (2010). Mycorrhizal colonization affects the survival of Vetiveria zizanioides (L.) Nash grown in water containing As(III). Clean Soil Air Water, 38(8), 771–774. doi:10.1002/clen.200900252
  • Stewart, F. M., Muholland, T., Cunningham, A. B., Kania, B. G., & Osterlund, M. T. (2008). Floating islands as an alternative to constructed wetlands for treatment of excess nutrients from agricultural and municipal wastes – results of laboratory-scale tests. Land Contamination & Reclamation, 16(1), 25–33. doi:10.2462/09670513.874
  • Stout, L., & Nüsslein, K. (2010). Biotechnological potential of aquatic plant–microbe interactions. Current Opinion in Biotechnology, 21(3), 339–345. doi:10.1016/j.copbio.2010.04.004
  • Summerfelt, S. T., Adler, P. R., Glenn, D. M., & Kretschmann, R. N. (1999). Aquaculture sludge removal and stabilization within created wetlands. Aquacultural Engineering, 19(2), 81–92. doi:10.1016/S0144-8609(98)00042-9
  • Sun, Q., Ye, Z. H., Wang, X. R., & Wong, M. H. (2005). Increase of glutathione in mine population of Sedum alfredii: A Zn hyperaccumulator and Pb accumulator. Phytochemistry, 66(21), 2549–2556. doi:10.1016/j.phytochem.2005.08.012
  • Sun, Q., Ye, Z. H., Wang, X. R., & Wong, M. H. (2007). Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. Journal of Plant Physiology, 164(11), 1489–1498. doi:10.1016/j.jplph.2006.10.001
  • Sziderics, A. H., Rasche, F., Trognitz, F., Sessitsch, A., & Wilhelm, E. (2007). Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Canadian Journal of Microbiology, 53(11), 1195–1202. doi:10.1139/W07-082
  • Taghavi, S., Barac, T., Greenberg, B., Borremans, B., Vangronsveld, J., & van der Lelie, D. (2005). Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Applied and Environmental Microbiology, 71(12), 8500–8505. doi:10.1128/AEM.71.12.8500-8505.2005
  • Taiz, L., & Zeiger, E. (2002). Plant Physiology (3rd ed.). Sunderland: Sinauer Associates.
  • Tao, Q., Hou, D., Yang, X., & Li, T. (2016). Oxalate secretion from the root apex of Sedum alfredii contributes to hyperaccumulation of Cd. Plant and Soil, 398(1–2), 139–152. doi:10.1007/s11104-015-2651-x
  • Tenhaken, R. (2015). Cell wall remodeling under abiotic stress. Frontiers in Plant Science, 5(771), 1–9. doi:10.3389/fpls.2014.00771
  • Tkacz, A., Cheema, J., Chandra, G., Grant, A., & Poole, P. S. (2015). Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. The ISME Journal, 9(11), 2349–2359. doi:10.1038/ismej.2015.41
  • Tomar, R. S., Singh, B., & Jajoo, A. (2019). Effects of organic pollutants on photosynthesis. In P. Ahmad, M. A. Ahanger, M. N. Alyemeni, & P. Alam (Eds.), Photosynthesis, productivity and environmental stress (pp. 1–26). Boca Raton: Wiley. doi:10.1002/9781119501800.ch1
  • Truong, P. (2000). Application of the vetiver system for phytoremediation of mercury pollution in the Lake and Yoho counties, northern California. In Pollution Solutions Seminar, Lear Lake (Vol. 10, pp. 550–61).
  • Truong, P., Baker, D., & Christiansen, I. (1995). Stiffgrass barrier with vetiver grass – A new approach to erosion and sediment control. Proceedings of the Third Annual Conference on Soil and Water Management for Urban Development. Presented at the Third Annual Conference on Soil and Water Management for Urban Development, Sydney, Australia.
  • Truong, P., Van, T. T., & Pinners, E. (2008). Vetiver system applications technical reference manual: Second Edition. Scotts Valley: CreateSpace Independent Publishing Platform.
  • Truong, P. (1999). Vetiver grass technology for mine rehabilitation. Retrieved from https://www.vetiver.org/PRVN_mine-rehab_bul.pdf
  • Truong, P., & Baker, D. (1998). Vetiver grass system for environmental protection. Retrieved from https://www.vetiver.org/AUS_environ.htm
  • Tsuruta, T., Umenai, D., Hatano, T., Hirajima, T., & Sasaki, K. (2014). Screening micro-organisms for cadmium absorption from aqueous solution and cadmium absorption properties of Arthrobacter nicotianae. Bioscience, Biotechnology, and Biochemistry, 78(10), 1791–1796. doi:10.1080/09168451.2014.930321
  • Turesson, G. (1925). The plant species in relation to habitat and climate. Hereditas, 6(2), 147–236. doi:10.1111/j.1601-5223.1925.tb03139.x
  • Vaishampayan, P. A., Kanekar, P. P., & Dhakephalkar, P. K. (2007). Isolation and characterization of Arthrobacter sp. Strain MCM B-436, an atrazine-degrading bacterium, from rhizospheric soil. International Biodeterioration & Biodegradation, 60(4), 273–278. doi:10.1016/j.ibiod.2007.05.001
  • Vollú, R. E., Blank, A. F., Seldin, L., & Coelho, M. R. R. (2012). Molecular diversity of nitrogen-fixing bacteria associated with Chrysopogon zizanioides (L.) Roberty (vetiver), an essential oil producer plant. Plant and Soil, 356(1–2), 101–111. doi:10.1007/s11104-011-0801-3
  • Walker, T. S., Bais, H. P., Grotewold, E., & Vivanco, J. M. (2003). Root exudation and rhizosphere biology. Plant Physiology, 132(1), 44–51. doi:10.1104/pp.102.019661
  • Wang, Z. H., Fang, H., & Chen, M. (2017). Effects of root exudates of woody species on the soil anti-erodibility in the rhizosphere in a karst region, China. PeerJ, 5, e3029. doi:10.7717/peerj.3029
  • Wang, Z., Yamaji, N., Huang, S., Zhang, X., Shi, M., Fu, S., … Xia, J. (2019). OsCASP1 is required for Casparian strip formation at endodermal cells of rice roots for selective uptake of mineral elements. The Plant Cell, 31(11), 2636–2648. doi:10.1105/tpc.19.00296
  • Weyens, N., van der Lelie, D., Taghavi, S., & Vangronsveld, J. (2013). The poplar endophyte Pseudomonas putida W619 as a key to a successful phytoremediation of volatile organic contaminants. In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (pp. 429–435). Boca Raton: Wiley. doi:10.1002/9781118297674.ch40
  • Weyens, N., van der Lelie, D., Taghavi, S., & Vangronsveld, J. (2009). Phytoremediation: Plant–endophyte partnerships take the challenge. Current Opinion in Biotechnology, 20(2), 248–254. doi:10.1016/j.copbio.2009.02.012
  • Willey, N. (2016). Environmental plant physiology (1st ed.). New York: Garland Science.
  • Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50(6), 775–780. doi:10.1016/S0045-6535(02)00232-1
  • Wong, M. H., & Bradshaw, A. D. (2002). China: Progress in the reclamation of degraded land. In A. J. Davy & M. R. Perrow (Eds.), Handbook of ecological restoration: Restoration in practice (Vol. 2). Cambridge, UK: Cambridge University Press.
  • Wong, M. H., & Lau, W. M. (1985). The effects of applications of phosphate, lime, EDTA, refuse compost and pig manure on the Pb contents of crops. Agricultural Wastes, 12(1), 61–75. doi:10.1016/0141-4607(85)90046-0
  • Wong, C. C., Wu, S. C., Kuek, C., Khan, A. G., & Wong, M. H. (2007). The role of mycorrhizae associated with vetiver grown in Pb-/Zn-contaminated soils: Greenhouse study. Restoration Ecology, 15(1), 60–67. doi:10.1111/j.1526-100X.2006.00190.x
  • Wu, T. H. (2013). Root reinforcement of soil: Review of analytical models, test results, and applications to design. Canadian Geotechnical Journal, 50, 3, 259–274. doi:10.1139/cgj-2012-0160
  • Wu, F. Y., Chung, A. K. C., Tam, N. F. Y., & Wong, M. H. (2012). Root exudates of wetland plants influenced by nutrient status and types of plant cultivation. International Journal of Phytoremediation, 14(6), 543–553. doi:10.1080/15226514.2011.604691
  • Wu, S. C., Wong, C. C., Shu, W. S., Khan, A. G., & Wong, M. H. (2011). Mycorrhizo-remediation of lead/zinc mine tailings using vetiver: A field study. International Journal of Phytoremediation, 13, 61–74.
  • Wu, S., Zhang, X., Sun, Y., Wu, Z., Li, T., Hu, Y., … Chen, B. (2015). Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM–EDS, TEM–EDS, and XAFS. Environmental Science & Technology, 49(24), 14036–14047. doi:10.1021/acs.est.5b03659
  • Wu, S., Zhang, X., Sun, Y., Wu, Z., Li, T., Hu, Y., … Chen, B. (2016). Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses. Journal of Hazardous Materials, 316, 34–42. doi:10.1016/j.jhazmat.2016.05.017
  • Xia, H., & Yang, B. (2003). Study on screening for better ecotypes of vetiver grass. Proceedings of Third International Vetiver Conference. Guangzhou, China, pp. 7.
  • Yang, Y.-Y., Jung, J.-Y., Song, W.-Y., Suh, H.-S., & Lee, Y. (2000). Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiology, 124(3), 1019–1026. doi:10.1104/pp.124.3.1019
  • Yang, J., Kloepper, J. W., & Ryu, C.-M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14(1), 1–4. doi:10.1016/j.tplants.2008.10.004
  • Yang, B., Shu, W. S., Ye, Z. H., Lan, C. Y., & Wong, M. H. (2003). Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Chemosphere, 52(9), 1593–1600. doi:10.1016/S0045-6535(03)00499-5
  • Yang, J., Tam, N. F.-Y., & Ye, Z. (2014). Root porosity, radial oxygen loss and iron plaque on roots of wetland plants in relation to zinc tolerance and accumulation. Plant and Soil, 374(1–2), 815–828. doi:10.1007/s11104-013-1922-7
  • Ybarra, G., & Webb, R. (1999). Effects of divalent metal cations and resistance mechanisms of the cyanobacterium Synechococcus sp. Strain PCC 7942. Journal of Hazardous Substance Research, 2(1). doi:10.4148/1090-7025.1011
  • Ye, Q., Liang, C., Chen, X. W., Fang, T., Wang, Y., & Wang, H. (2019). Molecular characterization of methanogenic microbial communities for degrading various types of polycyclic aromatic hydrocarbon. Journal of Environmental Sciences, 86, 97–106. doi:10.1016/j.jes.2019.04.027
  • Ye, Y., Li, P., Xu, T., Zeng, L., Cheng, D., Yang, M., … Lian, X. (2017). OsPT4 contributes to arsenate uptake and transport in rice. Frontiers in Plant Science, 8, 2197. doi:10.3389/fpls.2017.02197
  • Ye, M., Sun, M., Wan, J., Fang, G., Li, H., Hu, F., … Kengara, F. O. (2015). Evaluation of enhanced soil washing process with tea saponin in a peanut oil–water solvent system for the extraction of PBDEs/PCBs/PAHs and heavy metals from an electronic waste site followed by vetiver grass phytoremediation. Journal of Chemical Technology & Biotechnology, 90(11), 2027–2035. doi:10.1002/jctb.4512
  • Ye, Z. H., Wong, J. W. C., Wong, M. H., Baker, A. J. M., Shu, W. S., & Lan, C. Y. (2000). Revegetation of Pb/Zn Mine Tailings, Guangdong Province, China. Restoration Ecology, 8(1), 87–92. doi:10.1046/j.1526-100x.2000.80012.x
  • Ye, Z. H., Wong, J. W. C., Wong, M. H., Lan, C. Y., & Baker, A. J. M. (1999). Lime and pig manure as ameliorants for revegetating lead/zinc mine tailings: A greenhouse study. Bioresource Technology, 69(1), 35–43. doi:10.1016/S0960-8524(98)00171-0
  • Ye, S., Zeng, G., Wu, H., Zhang, C., Dai, J., Liang, J., … Zhang, C. (2017). Biological technologies for the remediation of co-contaminated soil. Critical Reviews in Biotechnology, 37(8), 1062–1076. doi:10.1080/07388551.2017.1304357
  • Yuan, Z., Druzhinina, I. S., Labbé, J., Redman, R., Qin, Y., Rodriguez, R., … Lin, F. (2016). Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Scientific Reports, 6, 1, 32467. doi:10.1038/srep32467
  • Zélicourt, A., Al-Yousif, M., & Hirt, H. (2013). Rhizosphere microbes as essential partners for plant stress tolerance. Molecular Plant, 6(2), 242–245. doi:10.1093/mp/sst028
  • Zélicourt, A. de, Synek, L., Saad, M. M., Alzubaidy, H., Jalal, R., Xie, Y., … Hirt, H. (2018). Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2‐keto‐4‐methylthiobutyric acid production. PLOS Genetics, 14(3), e1007273. doi:10.1371/journal.pgen.1007273
  • Zhalnina, K., Louie, K. B., Hao, Z., Mansoori, N., da Rocha, U. N., Shi, S., … Brodie, E. L. (2018). Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 3(4), 470–480. doi:10.1038/s41564-018-0129-3
  • Zhang, C., Feng, Y., Liu, Y., Chang, H., Li, Z., & Xue, J. (2017). Uptake and translocation of organic pollutants in plants: A review. Journal of Integrative Agriculture, 16(8), 1659–1668. doi:10.1016/S2095-3119(16)61590-3
  • Zhao, F.-J., Hamon, R. E., Lombi, E., McLaughlin, M. J., & McGrath, S. P. (2002). Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 53(368), 535–543. doi:10.1093/jexbot/53.368.535
  • Zhao, X., Javed, C. H., He, Y., Zhang, Z., Peng, G., & Tan, Z. (2009). Diversity of associated nitrogen-fixing bacteria isolated from the pioneer plants—Vetiver zizanioides. Wei sheng wu xue bao = Acta microbiologica Sinica, 49, 11, 1430–1437.
  • Zhou, Q., & Yu, B. (2010). Changes in free, conjugated and bound polyamine content in salt adaptation of vetiver grass (Vetiveria zizanioides, Poaceae). Acta Botanica Yunnanica, 31(6), 477–485. doi:10.3724/SP.J.1143.2009.00477
  • Zhu, J.-K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53(1), 247–273. doi:10.1146/annurev.arplant.53.091401.143329
  • Zhu, J.-K. (2016). Abiotic stress signaling and responses in plants. Cell, 167(2), 313–324. doi:10.1016/j.cell.2016.08.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.