1,410
Views
38
CrossRef citations to date
0
Altmetric
Reviews

Insights into the mechanisms of arsenic-selenium interactions and the associated toxicity in plants, animals, and humans: A critical review

, , , , , , , , & show all
Pages 704-750 | Published online: 18 Mar 2020

References

  • Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, N., Khan, M., … Hussain, M. (2018). Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. International Journal of Environmental Research and Public Health, 15, 59. doi:10.3390/ijerph15010059
  • Abhyankar, L. N., Jones, M. R., Guallar, E., & Navas-Acien, A. (2012). Arsenic exposure and hypertension: A systematic review. Environmental Health Perspectives, 120(4), 494–500. doi:10.1289/ehp.1103988
  • Abul-Hassan, K. S., Lehnert, B. E., Guant, L., & Walmsley, R. (2004). Abnormal DNA repair in selenium-treated human cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 565(1), 45–51. doi:10.1016/j.mrgentox.2004.09.004
  • Agency for Toxic Substances and Disease Registry (ATSDR). (2007). Toxicological profile for arsenic. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
  • Akay, C., Thomas, C., III, & Gazitt, Y. (2004). Arsenic trioxide and paclitaxel induce apoptosis by different mechanism. Cell Cycle, 3(3), 322–332. doi:10.4161/cc.3.3.657
  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869–881. doi:10.1016/j.chemosphere.2013.01.075
  • Ali, W., Aslam, M. W., Feng, C., Junaid, M., Ali, K., Li, S., … Zhang, H. (2019). Unraveling prevalence and public health risks of arsenic, uranium and co-occurring trace metals in groundwater along riverine ecosystem in Sindh and Punjab, Pakistan. Environmental Geochemistry and Health, 41(5), 2223–2238. doi:10.1007/s10653-019-00278-7
  • Ali, W., Isayenkov, S. V., Zhao, F.-J., & Maathuis, F. J. (2009). Arsenite transport in plants. Cellular and Molecular Life Sciences, 66(14), 2329–2339. doi:10.1007/s00018-009-0021-7
  • Ali, W., Mushtaq, N., Javed, T., Zhang, H., Ali, K., Rasool, A., & Farooqi, A. (2019). Vertical mixing with return irrigation water the cause of arsenic enrichment in groundwater of district Larkana Sindh, Pakistan. Environmental Pollution, 245, 77–88. doi:10.1016/j.envpol.2018.10.103
  • Andrew, A. S., Burgess, J. L., Meza, M. M., Demidenko, E., Waugh, M. G., Hamilton, J. W., & Karagas, M. R. (2006). Arsenic exposure is associated with decreased DNA repair in vitro and in individuals exposed to drinking water arsenic. Environmental Health Perspectives, 114(8), 1193–1198. doi:10.1289/ehp.9008
  • Andrew, A. S., Karagas, M. R., & Hamilton, J. W. (2003). Decreased DNA repair gene expression among individuals exposed to arsenic in United States drinking water. International Journal of Cancer, 104(3), 263–268. doi:10.1002/ijc.10968
  • Arita, A., & Costa, M. (2009). Epigenetics in metal carcinogenesis: Nickel, arsenic, chromium and cadmium. Metallomics, 1(3), 222–228. doi:10.1039/b903049b
  • Asati, A., Pichhode, M., & Nikhil, K. (2016). Effect of heavy metals on plants: An overview. International Journal of Applied Engineering and Management, 5, 2319–4847.
  • Awasthi, S., Chauhan, R., Srivastava, S., & Tripathi, R. D. (2017). The journey of arsenic from soil to grain in rice. Frontiers in Plant Science, 8, 1007. doi:10.3389/fpls.2017.01007
  • Balakhnina, T., & Nadezhkina, E. (2017). Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. Russian Journal of Plant Physiology, 64(2), 215–223. doi:10.1134/S1021443717010022
  • Bastías, J. M., & Beldarrain, T. (2016). Arsenic translocation in rice cultivation and its implication for human health. Chilean Journal of Agricultural Research, 76(1), 114–122. doi:10.4067/S0718-58392016000100016
  • Bergeron, M., Clémençon, B., Hediger, M., & Markovich, D. (2013). SLC13 family of Na+-coupled di-and tri-carboxylate/sulfate transporters. Molecular Aspects of Medicine, 34(2–3), 299–312. doi:10.1016/j.mam.2012.12.001
  • Bhattacharjee, P., Banerjee, M., & Giri, A. K. (2013). Role of genomic instability in arsenic-induced carcinogenicity. A review. Environment International, 53, 29–40. doi:10.1016/j.envint.2012.12.004
  • Bhattacharya, P., Mukherjee, A. B., Bundschuh, J., Zevenhoven, R., & Loeppert, R. H. (2007). Arsenic in soil and groundwater environment: Biogeochemical interactions, health effects and remediation. Oxford: Elsevier.
  • Bhattacharya, S., Gupta, K., Debnath, S., Ghosh, U. C., Chattopadhyay, D., & Mukhopadhyay, A. (2012). Arsenic bioaccumulation in rice and edible plants and subsequent transmission through food chain in Bengal basin: A review of the perspectives for environmental health. Toxicological & Environmental Chemistry, 94, 429–441. doi:10.1080/02772248.2012.657200
  • Bitterli, C., Bañuelos, G., & Schulin, R. (2010). Use of transfer factors to characterize uptake of selenium by plants. Journal of Geochemical Exploration, 107(2), 206–216. doi:10.1016/j.gexplo.2010.09.009
  • Björnstedt, M., Kumar, S., & Holmgren, A. (1992). Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase. Journal of Biological Chemistry, 267, 8030–8034. doi:10.1074/jbc.M206452200
  • Blessing, H., Kraus, S., Heindl, P., Bal, W., & Hartwig, A. (2004). Interaction of selenium compounds with zinc finger proteins involved in DNA repair. European Journal of Biochemistry, 271(15), 3190–3199. doi:10.1111/j.1432-1033.2004.04251.x
  • Bleys, J., Navas-Acien, A., Laclaustra, M., Pastor-Barriuso, R., Menke, A., Ordovas, J., … Guallar, E. (2009). Serum selenium and peripheral arterial disease: Results from the national health and nutrition examination survey, 2003–2004. American Journal of Epidemiology, 169(8), 996–1003. doi:10.1093/aje/kwn414
  • Brammer, H., & Ravenscroft, P. (2009). Arsenic in groundwater: A threat to sustainable agriculture in South and South-east Asia. Environment International, 35(3), 647–654. doi:10.1016/j.envint.2008.10.004
  • Brigelius‐Flohé, R. (2008). Selenium compounds and selenoproteins in cancer. Chemistry & Biodiversity, 5, 389–395.
  • Brown, K. G., & Ross, G. L. (2002). Arsenic, drinking water, and health: A position paper of the American Council on Science and Health. Regulatory Toxicology and Pharmacology, 36(2), 162–174. doi:10.1006/rtph.2002.1573
  • Buchet, J. P., & Lauwerys, R. (1985). Study of inorganic arsenic methylation by rat liver in vitro: Relevance for the interpretation of observations in man. Archives of Toxicology, 57(2), 125–129. doi:10.1007/BF00343122
  • Burgess, J. L., Kurzius-Spencer, M., Poplin, G. S., Littau, S. R., Kopplin, M. J., Stürup, S., … Lantz, R. C. (2014). Environmental arsenic exposure, selenium and sputum alpha-1 antitrypsin. Journal of Exposure Science & Environmental Epidemiology, 24, 150. doi:10.1038/jes.2013.35
  • Cappa, J. J., Cappa, P. J., El Mehdawi, A. F., McAleer, J. M., Simmons, M. P., & Pilon‐Smits, E. A. (2014). Characterization of selenium and sulfur accumulation across the genus Stanleya (Brassicaceae): A field survey and common‐garden experiment. American Journal of Botany, 101(5), 830–839. doi:10.3732/ajb.1400041
  • Carlin, D. J., Naujokas, M. F., Bradham, K. D., Cowden, J., Heacock, M., Henry, H. F., … Tokar, E. J. (2016). Arsenic and environmental health: State of the science and future research opportunities. Environmental Health Perspectives, 124(7), 890–899. doi:10.1289/ehp.1510209
  • Challenger, F. (1945). Biological methylation. Chemical Reviews, 36(3), 315–361. doi:10.1021/cr60115a003
  • Chan, W., Li, H., Wu, F., Wu, S., & Wong, M. H. (2013). Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. Journal of Hazardous Materials, 262, 1116–1122. doi:10.1016/j.jhazmat.2012.08.020
  • Chandrakar, V., Naithani, S. C., & Keshavkant, S. (2016). Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: A review. Biologia, 71(4), 367–377. doi:10.1515/biolog-2016-0052
  • Chandrakar, V., Pandey, N., & Keshavkant, S. (2018). Plant responses to arsenic toxicity: Morphology and physiology. In M. Hasanuzzaman, ‎K. Nahar, & ‎M. Fujita (Eds.), Mechanisms of arsenic toxicity and tolerance in plants (pp. 27–48). Singapore: Springer.
  • Chang, C., Yin, R., Wang, X., Shao, S., Chen, C., & Zhang, H. (2019). Selenium translocation in the soil-rice system in the Enshi seleniferous area, Central China. Science of the Total Environment, 669, 83–90. doi:10.1016/j.scitotenv.2019.02.451
  • Châtelain, E., Satour, P., Laugier, E., Vu, B. L., Payet, N., Rey, P., & Montrichard, F. (2013). Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proceedings of the National Academy of Sciences, 110(9), 3633–3638. doi:10.1073/pnas.1220589110
  • Chauhan, R., Awasthi, S., Srivastava, S., Dwivedi, S., Pilon-Smits, E. A., Dhankher, O. P., & Tripathi, R. D. (2019). Understanding selenium metabolism in plants and its role as a beneficial element. Critical Reviews in Environmental Science and Technology, 49(21), 1937–1958. doi:10.1080/10643389.2019.1598240
  • Chauke, T. L. (2013). Evaluating the efficacy, safety and possible mechanism of action of potassium humate with selenium. Pretoria: University of Pretoria.
  • Chen, Q., Wang, Z., Xiong, Y., Zou, X., & Liu, Z. (2010). Comparative study of p38 MAPK signal transduction pathway of peripheral blood mononuclear cells from patients with coal-combustion-type fluorosis with and without high hair selenium levels. International Journal of Hygiene and Environmental Health, 213(5), 381–386. doi:10.1016/j.ijheh.2010.06.002
  • Chen, Y., Han, Y.-H., Cao, Y., Zhu, Y.-G., Rathinasabapathi, B., & Ma, L. Q. (2017). Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Frontiers in Plant Science, 8, 268. doi:10.3389/fpls.2017.00268
  • Chen, Y., & Maret, W. (2001). Catalytic oxidation of zinc/sulfur coordination sites in proteins by selenium compounds. Antioxidants & Redox Signaling, 3(4), 651–656. doi:10.1089/15230860152542998
  • Chitta, K. R., Figueroa, J. A. L., Caruso, J. A., & Merino, E. J. (2013). Selenium mediated arsenic toxicity modifies cytotoxicity, reactive oxygen species and phosphorylated proteins. Metallomics, 5(6), 673–685. doi:10.1039/c3mt20213e
  • Chou, W.-C., Jie, C., Kenedy, A. A., Jones, R. J., Trush, M. A., & Dang, C. V. (2004). Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proceedings of the National Academy of Sciences, 101(13), 4578–4583. doi:10.1073/pnas.0306687101
  • Chowdhury, R., Chowdhury, S., Roychoudhury, P., Mandal, C., & Chaudhuri, K. (2009). Arsenic induced apoptosis in malignant melanoma cells is enhanced by menadione through ROS generation, p38 signaling and p53 activation. Apoptosis, 14(1), 108–123. doi:10.1007/s10495-008-0284-8
  • Christian, W. J., Hopenhayn, C., Centeno, J. A., & Todorov, T. (2006). Distribution of urinary selenium and arsenic among pregnant women exposed to arsenic in drinking water. Environmental Research, 100, 115–122. doi:10.1016/j.envres.2005.03.009
  • Constantinescu-Aruxandei, D., Frîncu, R., Capră, L., & Oancea, F. (2018). Selenium analysis and speciation in dietary supplements based on next-generation selenium ingredients. Nutrients, 10(10), 1466. doi:10.3390/nu10101466
  • Cowan, K. J., & Storey, K. B. (2003). Mitogen-activated protein kinases: New signaling pathways functioning in cellular responses to environmental stress. Journal of Experimental Biology, 206(7), 1107–1115. doi:10.1242/jeb.00220
  • Crighton, D., Wilkinson, S., O'Prey, J., Syed, N., Smith, P., Harrison, P. R., … Ryan, K. M. (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 126(1), 121–134. doi:10.1016/j.cell.2006.05.034
  • Da Conceição Gomes, M. A., Hauser-Davis, R. A., de Souza, A. N., & Vitória, A. P. (2016). Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicology and Environmental Safety, 134, 133–147. doi:10.1016/j.ecoenv.2016.08.024
  • Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2, 53. doi:10.3389/fenvs.2014.00053
  • De Temmerman, L., Waegeneers, N., Thiry, C., Du Laing, G., Tack, F., & Ruttens, A. (2014). Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables. Science of the Total Environment , 468, 77–82. doi:10.1016/j.scitotenv.2013.08.016
  • Deavall, D. G., Martin, E. A., Horner, J. M., & Roberts, R. (2012). Drug-induced oxidative stress and toxicity. Journal of Toxicology, 2012, 1–13. doi:10.1155/2012/645460
  • Devesa, V., Del Razo, L. M., Adair, B., Drobná, Z., Waters, S. B., Hughes, M. F., … Thomas, D. J. (2004). Comprehensive analysis of arsenic metabolites by pH-specific hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 19(11), 1460–1467. doi:10.1039/B407388F
  • Douillet, C., Currier, J., Saunders, J., Bodnar, W. M., Matoušek, T., & Stýblo, M. (2013). Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets. Toxicology and Applied Pharmacology, 267(1), 11–15. doi:10.1016/j.taap.2012.12.007
  • Drobná, Z., Jaspers, I., Thomas, D. J., & Stýblo, M. (2003). Differential activation of AP-1 in human bladder epithelial cells by inorganic and methylated arsenicals. The FASEB Journal, 17(1), 67–69. doi:10.1096/fj.02-0287fje
  • Eguchi, R., Fujimori, Y., Takeda, H., Tabata, C., Ohta, T., Kuribayashi, K., … Nakano, T. (2011). Arsenic trioxide induces apoptosis through JNK and ERK in human mesothelioma cells. Journal of Cellular Physiology, 226(3), 762–768. doi:10.1002/jcp.22397
  • Feng, R., Wei, C., & Tu, S. (2013). The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany, 87, 58–68. doi:10.1016/j.envexpbot.2012.09.002
  • Fernández-Martínez, A., & Charlet, L. (2009). Selenium environmental cycling and bioavailability: A structural chemist point of view. Reviews in Environmental Science and Bio/Technology, 8(1), 81–110. doi:10.1007/s11157-009-9145-3
  • Finnegan, P., & Chen, W. (2012). Arsenic toxicity: The effects on plant metabolism. Frontiers in Physiology, 3, 182. doi:10.3389/fphys.2012.00182
  • Fleury, C., Mignotte, B., & Vayssière, J.-L. (2002). Mitochondrial reactive oxygen species in cell death signaling. Biochimie, 84(2–3), 131–141. doi:10.1016/S0300-9084(02)01369-X
  • Flora, S. J. (2011). Arsenic-induced oxidative stress and its reversibility. Free Radical Biology and Medicine, 51(2), 257–281. doi:10.1016/j.freeradbiomed.2011.04.008
  • Fordyce, F. M. (2013). Selenium deficiency and toxicity in the environment. In O. Selinus (Ed.), Essentials of medical geology (pp. 375–416). Berlin, Heidelberg: Springer.
  • Frohne, T., Rinklebe, J., Diaz-Bone, R. A., & Du Laing, G. (2011). Controlled variation of redox conditions in a floodplain soil: Impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma, 160(3–4), 414–424. doi:10.1016/j.geoderma.2010.10.012
  • Gailer, J. (2002). Review: Reactive selenium metabolites as targets of toxic metals/metalloids in mammals: A molecular toxicological perspective. Applied Organometallic Chemistry, 16(12), 701–707. doi:10.1002/aoc.376
  • Gailer, J. (2007). Arsenic–selenium and mercury–selenium bonds in biology. Coordination Chemistry Reviews, 251(1–2), 234–254. doi:10.1016/j.ccr.2006.07.018
  • Gailer, J., George, G. N., Harris, H. H., Pickering, I. J., Prince, R. C., Somogyi, A., … Denton, M. B. (2002). Synthesis, purification, and structural characterization of the dimethyldiselenoarsinate anion. Inorganic Chemistry, 41(21), 5426–5432. doi:10.1021/ic0113146
  • Gailer, J., George, G. N., Pickering, I. J., Prince, R. C., Younis, H. S., & Winzerling, J. (2002). Biliary excretion of [(GS) 2AsSe]-after intravenous injection of rabbits with arsenite and selenate. Chemical Research in Toxicology, 15(11), 1466–1471. doi:10.1021/tx025538s
  • Gailer, J., Ruprecht, L., Reitmeir, P., Benker, B., & Schramel, P. (2004). Mobilization of exogenous and endogenous selenium to bile after the intravenous administration of environmentally relevant doses of arsenite to rabbits. Applied Organometallic Chemistry, 18(12), 670–675. doi:10.1002/aoc.655
  • Ganyc, D., Talbot, S., Konate, F., Jackson, S., Schanen, B., Cullen, W., & Self, W. T. (2007). Impact of trivalent arsenicals on selenoprotein synthesis. Environmental Health Perspectives, 115(3), 346–353. doi:10.1289/ehp.9440
  • Garg, N., & Singla, P. (2011). Arsenic toxicity in crop plants: Physiological effects and tolerance mechanisms. Environmental Chemistry Letters, 9(3), 303–321. doi:10.1007/s10311-011-0313-7
  • Gaxiola-Robles, R., Labrada-Martagón, V., Celis de la Rosa, A. D J., Acosta-Vargas, B., Méndez-Rodríguez, L. C., & Zenteno-Savín, T. (2014). Interaction between mercury (Hg), arsenic (As) and selenium (Se) affects the activity of glutathione S-transferase in breast milk; possible relationship with fish and sellfish intake. Nutricion Hospitalaria, 30(2), 436–446. doi:10.3305/nh.2014.30.2.7441
  • Ghosh, J., & Sil, P. C. (2015). Mechanism for arsenic-induced toxic effects. In S. J. S. Flora (Ed.), Handbook of arsenic toxicology (pp. 203–231). London: Elsevier.
  • Golob, A., Gadžo, D., Stibilj, V., Djikić, M., Gavrić, T., Kreft, I., & Germ, M. (2016). Sulphur interferes with selenium accumulation in Tartary buckwheat plants. Plant Physiology and Biochemistry, 108, 32–36. doi:10.1016/j.plaphy.2016.07.001
  • Gromer, S., Eubel, J., Lee, B., & Jacob, J. (2005). Human selenoproteins at a glance. Cellular and Molecular Life Sciences CMLS, 62(21), 2414–2437. doi:10.1007/s00018-005-5143-y
  • Gupta, M., & Gupta, S. (2017). An overview of selenium uptake, metabolism, and toxicity in plants. Frontiers in Plant Science, 7, 2074. doi:10.3389/fpls.2016.02074
  • Gupta, M., & Khan, E. (2015). Mechanism of arsenic toxicity and tolerance in plants: Role of silicon and signalling molecules. In B. Tripathi & M. Müller (Eds.), Stress responses in plants (pp. 143–157). Cham: Springer.
  • Hamilton, S. J. (2004). Review of selenium toxicity in the aquatic food chain. Science of the Total Environment, 326(1–3), 1–31. doi:10.1016/j.scitotenv.2004.01.019
  • Harper, L. K., Antony, S., & Bayse, C. A. (2014). Thiol reduction of arsenite and selenite: DFT modeling of the pathways to an As–Se bond. Chemical Research in Toxicology, 27(12), 2119–2127. doi:10.1021/tx500384h
  • Hartikainen, H. (2005). Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace Elements in Medicine and Biology, 18(4), 309–318. doi:10.1016/j.jtemb.2005.02.009
  • Hartwig, A. (2001). Zinc finger proteins as potential targets for toxic metal ions: Differential effects on structure and function. Antioxidants & Redox Signaling, 3(4), 625–634. doi:10.1089/15230860152542970
  • Hartwig, A., Blessing, H., Schwerdtle, T., & Walter, I. (2003). Modulation of DNA repair processes by arsenic and selenium compounds. Toxicology, 193(1–2), 161–169. doi:10.1016/j.tox.2003.08.004
  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Extreme temperature responses, oxidative stress and antioxidant defense in plants. In K. Vahdati (Ed.), Abiotic stress - Plant responses and applications in agriculture (pp. 169–205). London: InTech.
  • Hawkesford, M. J., & De Kok, L. J. (2006). Managing sulphur metabolism in plants. Plant, Cell & Environment, 29(3), 382–395. doi:10.1111/j.1365-3040.2005.01470.x
  • Hayakawa, T., Kobayashi, Y., Cui, X., & Hirano, S. (2005). A new metabolic pathway of arsenite: Arsenic–glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Archives of Toxicology, 79(4), 183–191. doi:10.1007/s00204-004-0620-x
  • Hering, J. G., Burris, D., Reisinger, H., & O’Day, P. (2008). Environmental fate and exposure assessment for Arsenic in Groundwater. SERDP Project ER-1374.
  • Hettick, B. E., Canas-Carrell, J. E., French, A. D., & Klein, D. M. (2015). Arsenic: A review of the element’s toxicity, plant interactions, and potential methods of remediation. Journal of Agricultural and Food Chemistry, 63(32), 7097–7107. doi:10.1021/acs.jafc.5b02487
  • Hondal, R. J., Marino, S. M., & Gladyshev, V. N. (2013). Selenocysteine in thiol/disulfide-like exchange reactions. Antioxidants & Redox Signaling, 18, 1675–1689. doi:10.1089/ars.2012.5013
  • Hsueh, Y.-M., Ko, Y.-F., Huang, Y.-K., Chen, H.-W., Chiou, H.-Y., Huang, Y.-L., … Chen, C.-J. (2003). Determinants of inorganic arsenic methylation capability among residents of the Lanyang Basin, Taiwan: Arsenic and selenium exposure and alcohol consumption. Toxicology Letters, 137(1–2), 49–63. doi:10.1016/S0378-4274(02)00380-6
  • Huang, J.-H. (2014). Impact of microorganisms on arsenic biogeochemistry: A review. Water, Air, & Soil Pollution, 225, 1848. doi:10.1007/s11270-013-1848-y
  • Huang, Y.-Z., Hu, Y., & Liu, Y.-X. (2007). Interactions between sulfur and selenium uptake by corn in solution culture. Journal of Plant Nutrition, 31(1), 43–54. doi:10.1080/01904160701741826
  • Hughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicology Letters, 133(1), 1–16. doi:10.1016/S0378-4274(02)00084-X
  • Hughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S., & Thomas, D. J. (2011). Arsenic exposure and toxicology: A historical perspective. Toxicological Sciences, 123(2), 305–332. doi:10.1093/toxsci/kfr184
  • Hugouvieux, V., Dutilleul, C., Jourdain, A., Reynaud, F., Lopez, V., & Bourguignon, J. (2009). Arabidopsis putative selenium-binding protein1 expression is tightly linked to cellular sulfur demand and can reduce sensitivity to stresses requiring glutathione for tolerance. Plant Physiology, 151(2), 768–781. doi:10.1104/pp.109.144808
  • Jacob, C., Giles, G. I., Giles, N. M., & Sies, H. (2003). Sulfur and selenium: The role of oxidation state in protein structure and function. Angewandte Chemie International Edition, 42(39), 4742–4758. doi:10.1002/anie.200300573
  • Jain, C., & Ali, I. (2000). Arsenic: Occurrence, toxicity and speciation techniques. Water Research, 34(17), 4304–4312. doi:10.1016/S0043-1354(00)00182-2
  • Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., … Valko, M. (2011). Arsenic: Toxicity, oxidative stress and human disease. Journal of Applied Toxicology, 31, 95–107. doi:10.1002/jat.1649
  • Jones, G. D., Droz, B., Greve, P., Gottschalk, P., Poffet, D., McGrath, S. P., … Winkel, L. H. (2017). Selenium deficiency risk predicted to increase under future climate change. Proceedings of the National Academy of Sciences, 114(11), 2848–2853. doi:10.1073/pnas.1611576114
  • Jornstedt, M. B., Kumar, S., & Holmgren, A. (1995). Selenite and selenodiglutathione: Reactions with thioredoxin systems. Methods in Enzymology, 252(22), 209–219.
  • Joseph, J., & Loscalzo, J. (2013). Selenistasis: Epistatic effects of selenium on cardiovascular phenotype. Nutrients, 5(2), 340–358. doi:10.3390/nu5020340
  • József, L., & Filep, J. G. (2003). Selenium-containing compounds attenuate peroxynitrite-mediated NF-κB and AP-1 activation and interleukin-8 gene and protein expression in human leukocytes. Free Radical Biology and Medicine, 35(9), 1018–1027. doi:10.1016/S0891-5849(03)00439-8
  • Khalid, S., Shahid, M., Niazi, N. K., Rafiq, M., Bakhat, H. F., Imran, M., … Dumat, C. (2017). Arsenic behaviour in soil-plant system: Biogeochemical reactions and chemical speciation influences. In N. A. Anjum, ‎S. S. Gill, & ‎N. Tuteja (Eds.), Enhancing cleanup of environmental pollutants (pp. 97–140). Cham: Springer.
  • Khanam, R., Kumar, A., Nayak, A., Shahid, M., Tripathi, R., Vijayakumar, S., … Panneerselvam, P. (2019). Metal (loid) s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Science of the Total Environment, 134330. doi:10.1016/j.scitotenv.2019.134330
  • Kim, E. H., Sohn, S., Kwon, H. J., Kim, S. U., Kim, M.-J., Lee, S.-J., & Choi, K. S. (2007). Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Research, 67(13), 6314–6324. doi:10.1158/0008-5472.CAN-06-4217
  • Kim, T-S., Jeong, D-W., Yun, B. Y., & Kim, I. Y. (2002). Dysfunction of rat liver mitochondria by selenite: Induction of mitochondrial permeability transition through thiol-oxidation. Biochemical and Biophysical Research Communications, 294(5), 1130–1137. doi:10.1016/S0006-291X(02)00612-5
  • Kircelli, F., Akay, C., & Gazitt, Y. (2007). Arsenic trioxide induces p53-dependent apoptotic signals in myeloma cells with SiRNA-silenced p53: MAP kinase pathway is preferentially activated in cells expressing inactivated p53. International Journal of Oncology, 30, 993–1001. doi:10.3892/ijo.30.4.993
  • Klaunig, J. E., & Kamendulis, L. M. (2004). The role of oxidative stress in carcinogenesis. Annual Review of Pharmacology and Toxicology, 44(1), 239–267. doi:10.1146/annurev.pharmtox.44.101802.121851
  • Klug, A. (2010). The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annual Review of Biochemistry, 79(1), 213–231. doi:10.1146/annurev-biochem-010909-095056
  • Kofroňová, M., Mašková, P., & Lipavská, H. (2018). Two facets of world arsenic problem solution: Crop poisoning restriction and enforcement of phytoremediation. Planta, 248(1), 19–35. doi:10.1007/s00425-018-2906-x
  • Kojima, C., Ramirez, D. C., Tokar, E. J., Himeno, S., Drobná, Z., Stýblo, M., … Waalkes, M. P. (2009). Requirement of arsenic biomethylation for oxidative DNA damage. Journal of the National Cancer Institute,
  • La Porte, P. F. (2011). Selenium in the detoxification of arsenic: Mechanisms and clinical efficacy. Chicago: The University of Chicago.
  • Lai, R., Wang, Y., Li, X., & Yu, R. (2008). Effect of selenium and arsenic on oxidative stress, DNA oxidative damage and repair in HepG2 cells. Wei sheng yan jiu = Journal of Hygiene Research, 37(6), 645–648.
  • Laity, J. H., Lee, B. M., & Wright, P. E. (2001). Zinc finger proteins: New insights into structural and functional diversity. Current Opinion in Structural Biology, 11(1), 39–46. doi:10.1016/S0959-440X(00)00167-6
  • Larabee, J. L., Hocker, J. R., & Hanas, J. S. (2009). Mechanisms of inhibition of zinc-finger transcription factors by selenium compounds ebselen and selenite. Journal of Inorganic Biochemistry, 103(3), 419–426. doi:10.1016/j.jinorgbio.2008.12.007
  • Letavayova, L., Vlčková, V., & Brozmanova, J. (2006). Selenium: From cancer prevention to DNA damage. Toxicology, 227, 1–14. doi:10.1016/j.tox.2006.07.017
  • Levander, O. A. (1977). Metabolic interrelationships between arsenic and selenium. Environmental Health Perspectives, 19, 159–164. doi:10.1289/ehp.7719159
  • Lin, L., Zhou, W., Dai, H., Cao, F., Zhang, G., & Wu, F. (2012). Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Journal of Hazardous Materials, 235, 343–351. doi:10.1016/j.jhazmat.2012.08.012
  • Liu, J., Yin, M., Zhang, W., Tsang, D. C., Wei, X., Zhou, Y., … Sun, Y. (2019). Response of microbial communities and interactions to thallium in contaminated sediments near a pyrite mining area. Environmental Pollution, 248, 916–928. doi:10.1016/j.envpol.2019.02.089
  • Liu, Z., Shen, J., Carbrey, J. M., Mukhopadhyay, R., Agre, P., & Rosen, B. P. (2002). Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proceedings of the National Academy of Sciences, 99(9), 6053–6058. doi:10.1073/pnas.092131899
  • Lozano, G., & Elledge, S. J. (2000). Cancer: P 53 sends nucleotides to repair DNA. Nature, 404(6773), 24–25. doi:10.1038/35003670
  • Lu, J., & Jiang, C. (2001). Antiangiogenic activity of selenium in cancer chemoprevention: Metabolite-specific effects. Nutrition and Cancer, 40(1), 64–73. doi:10.1207/S15327914NC401_12
  • Ma, J. F., & Yamaji, N. (2008). Functions and transport of silicon in plants. Cellular and Molecular Life Sciences, 65(19), 3049–3057. doi:10.1007/s00018-008-7580-x
  • Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409(6820), 579–579. doi:10.1038/35054664
  • Maiti, S. (2015). Arsenic-induced mutagenesis and carcinogenesis: A possible mechanism. In S. J. S. Flora (Ed.), Handbook of arsenic toxicology (pp. 233–279). London: Elsevier.
  • Manley, S. A., George, G. N., Pickering, I. J., Glass, R. S., Prenner, E. J., Yamdagni, R., … Gailer, J. (2006). The seleno bis (S-glutathionyl) arsinium ion is assembled in erythrocyte lysate. Chemical Research in Toxicology, 19(4), 601–607. doi:10.1021/tx0503505
  • Maret, W. (2003). Cellular zinc and redox states converge in the metallothionein/thionein pair. The Journal of Nutrition, 133(5), 1460S–1462S. doi:10.1093/jn/133.5.1460S
  • Maritim, A., Sanders, A., & Watkins, rJ. (2003). Diabetes, oxidative stress, and antioxidants: A review. Journal of Biochemical and Molecular Toxicology, 17(1), 24–38. doi:10.1002/jbt.10058
  • Mazej, D., Osvald, J., & Stibilj, V. (2008). Selenium species in leaves of chicory, dandelion, lamb’s lettuce and parsley. Food Chemistry, 107(1), 75–83. doi:10.1016/j.foodchem.2007.07.036
  • McKenzie, R. C., Arthur, J. R., & Beckett, G. J. (2002). Selenium and the regulation of cell signaling, growth, and survival: Molecular and mechanistic aspects. Antioxidants & Redox Signaling, 4(2), 339–351. doi:10.1089/152308602753666398
  • Messarah, M., Klibet, F., Boumendjel, A., Abdennour, C., Bouzerna, N., Boulakoud, M. S., & El Feki, A. (2012). Hepatoprotective role and antioxidant capacity of selenium on arsenic-induced liver injury in rats. Experimental and Toxicologic Pathology, 64(3), 167–174. doi:10.1016/j.etp.2010.08.002
  • Moreno-Jiménez, E., Esteban, E., & Peñalosa, J. M. (2012). The fate of arsenic in soil-plant systems. In D. M. Whitacre (Ed.), Reviews of environmental contamination and toxicology (pp. 1–37). New York: Springer.
  • Moriarty-Craige, S. E., & Jones, D. P. (2004). Extracellular thiols and thiol/disulfide redox in metabolism. Annual Review of Nutrition, 24(1), 481–509. doi:10.1146/annurev.nutr.24.012003.132208
  • Naranmandura, H., Suzuki, N., & Suzuki, K. T. (2006). Trivalent arsenicals are bound to proteins during reductive methylation. Chemical Research in Toxicology, 19(8), 1010–1018. doi:10.1021/tx060053f
  • Naujokas, M. F., Anderson, B., Ahsan, H., Aposhian, H. V., Graziano, J. H., Thompson, C., & Suk, W. A. (2013). The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environmental Health Perspectives, 121(3), 295–302. doi:10.1289/ehp.1205875
  • Navarro-Alarcon, M., & Cabrera-Vique, C. (2008). Selenium in food and the human body: A review. Science of the Total Environment, 400(1–3), 115–141. doi:10.1016/j.scitotenv.2008.06.024
  • Navas-Acien, A., Silbergeld, E. K., Streeter, R. A., Clark, J. M., Burke, T. A., & Guallar, E. (2006). Arsenic exposure and type 2 diabetes: A systematic review of the experimental and epidemiologic evidence. Environmental Health Perspectives, 114(5), 641–648. doi:10.1289/ehp.8551
  • Ogra, Y., & Anan, Y. (2009). Selenometabolomics: Identification of selenometabolites and specification of their biological significance by complementary use of elemental and molecular mass spectrometry. Journal of Analytical Atomic Spectrometry, 24(11), 1477–1488. doi:10.1039/b910235c
  • Ohta, Y., & Suzuki, K. T. (2008). Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium. Toxicology and Applied Pharmacology, 226(2), 169–177. doi:10.1016/j.taap.2007.09.011
  • Park, S.-H., Kim, J.-H., Chi, G. Y., Kim, G.-Y., Chang, Y.-C., Moon, S.-K., … Choi, Y. H. (2012). Induction of apoptosis and autophagy by sodium selenite in A549 human lung carcinoma cells through generation of reactive oxygen species. Toxicology Letters, 212(3), 252–261. doi:10.1016/j.toxlet.2012.06.007
  • Pilon-Smits, E. A., & LeDuc, D. L. (2009). Phytoremediation of selenium using transgenic plants. Current Opinion in Biotechnology, 20(2), 207–212. doi:10.1016/j.copbio.2009.02.001
  • Pilon-Smits, E. A., & Quinn, C. F. (2010). Selenium metabolism in plants. In R. Hell & ‎R.-R. Mendel (Eds.), Cell biology of metals and nutrients (pp. 225–241). Berlin, Heidelberg: Springer.
  • Pilsner, J. R., Hall, M. N., Liu, X., Ahsan, H., Ilievski, V., Slavkovich, V., … Gamble, M. V. (2010). Associations of plasma selenium with arsenic and genomic methylation of leukocyte DNA in Bangladesh. Environmental Health Perspectives, 119(1), 113–118. doi:10.1289/ehp.1001973
  • Plant, J., Kinniburgh, D., Smedley, P., Fordyce, F., & Klinck, B. (2004). Arsenic and selenium.
  • Prasad, K. S., & Selvaraj, K. (2014). Biogenic synthesis of selenium nanoparticles and their effect on As (III)-induced toxicity on human lymphocytes. Biological Trace Element Research, 157(3), 275–283. doi:10.1007/s12011-014-9891-0
  • Qian, Y., Castranova, V., & Shi, X. (2003). New perspectives in arsenic-induced cell signal transduction. Journal of Inorganic Biochemistry, 96(2–3), 271–278. doi:10.1016/S0162-0134(03)00235-6
  • Rahman, M. A., & Hasegawa, H. (2011). Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere, 83(5), 633–646. doi:10.1016/j.chemosphere.2011.02.045
  • Rahman, M. A., Hogan, B., Duncan, E., Doyle, C., Krassoi, R., Rahman, M. M., … Hassler, C. (2014). Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35). Ecotoxicology and Environmental Safety, 106, 126–135. doi:10.1016/j.ecoenv.2014.03.004
  • Rai, P. K., Kumar, V., Lee, S., Raza, N., Kim, K.-H., Ok, Y. S., & Tsang, D. C. (2018). Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environment International, 119, 1–19. doi:10.1016/j.envint.2018.06.012
  • Ramoutar, R. R., & Brumaghim, J. L. (2007). Effects of inorganic selenium compounds on oxidative DNA damage. Journal of Inorganic Biochemistry, 101(7), 1028–1035. doi:10.1016/j.jinorgbio.2007.03.016
  • Ratnaike, R. N. (2003). Acute and chronic arsenic toxicity. Postgraduate Medical Journal, 79(933), 391–396. doi:10.1136/pmj.79.933.391
  • Rayman, M. P. (2000). The importance of selenium to human health. The Lancet, 356(9225), 233–241. doi:10.1016/S0140-6736(00)02490-9
  • Rees, K., Hartley, L., Day, C., Flowers, N., Clarke, A., & Stranges, S. (2013). Selenium supplementation for the primary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews, (1), CD009671.
  • Reichard, J. F., & Puga, A. (2010). Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics, 2(1):87–104.
  • Ren, X., McHale, C. M., Skibola, C. F., Smith, A. H., Smith, M. T., & Zhang, L. (2011). An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environmental Health Perspectives, 119(1), 11–19. doi:10.1289/ehp.1002114
  • Renkema, H., Koopmans, A., Kersbergen, L., Kikkert, J., Hale, B., & Berkelaar, E. (2012). The effect of transpiration on selenium uptake and mobility in durum wheat and spring canola. Plant and Soil, 354(1–2), 239–250. doi:10.1007/s11104-011-1069-3
  • Rizwan, M., Ali, S., Adrees, M., Ibrahim, M., Tsang, D. C., Zia-Ur-Rehman, M., … Ok, Y. S. (2017). A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere, 182, 90–105. doi:10.1016/j.chemosphere.2017.05.013
  • Rizwan, M., Ali, S., Ur Rehman, M. Z., Rinklebe, J., Tsang, D. C., Bashir, A., … Ok, Y. S. (2018). Cadmium phytoremediation potential of Brassica crop species: A review. Science of the Total Environment, 631, 1175–1191. doi:10.1016/j.scitotenv.2018.03.104
  • Rosen, B. P., & Liu, Z. (2009). Transport pathways for arsenic and selenium: A minireview. Environment International, 35(3), 512–515. doi:10.1016/j.envint.2008.07.023
  • Rossman, T. G., & Uddin, A. N. (2004). Selenium prevents spontaneous and arsenite-induced mutagenesis. In International congress series (pp. 173–179). New York: Elsevier. doi:10.1016/j.ics.2004.09.038
  • Sah, S., Vandenberg, A., & Smits, J. (2013). Treating chronic arsenic toxicity with high selenium lentil diets. Toxicology and Applied Pharmacology, 272(1), 256–262. doi:10.1016/j.taap.2013.06.008
  • Saha, U., Fayiga, A., & Sonon, L. (2017). Selenium in the soil-plant environment: A review. International Journal of Applied Agricultural Sciences, 3(1), 1–18. doi:10.11648/j.ijaas.20170301.11
  • Salnikow, K., & Zhitkovich, A. (2008). Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: Nickel, arsenic, and chromium. Chemical Research in Toxicology, 21(1), 28–44. doi:10.1021/tx700198a
  • Sampayo-Reyes, A., Taméz-Guerra, R. S., de León, M. B., Vargas-Villarreal, J., Lozano-Garza, H. G., Rodríguez-Padilla, C., … Hernández, A. (2017). Tocopherol and selenite modulate the transplacental effects induced by sodium arsenite in hamsters. Reproductive Toxicology, 74, 204–211. doi:10.1016/j.reprotox.2017.10.003
  • Sarkar, B., Bhattacharjee, S., Daware, A., Tribedi, P., Krishnani, K., & Minhas, P. (2015). Selenium nanoparticles for stress-resilient fish and livestock. Nanoscale Research Letters, 10(1), 371. doi:10.1186/s11671-015-1073-2
  • Savitha, P. (2014). Role of selenium. Journal of Pharmaceutical Sciences and Research, 6, 56.
  • Schiavon, M., Pilon, M., Malagoli, M., & Pilon-Smits, E. A. (2015). Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation—A comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). Frontiers in Plant Science, 6, 2. doi:10.3389/fpls.2015.00002
  • Schiavon, M., & Pilon-Smits, E. A. (2017). Selenium biofortification and phytoremediation phytotechnologies: A review. Journal of Environmental Quality, 46(1), 10–19. doi:10.2134/jeq2016.09.0342
  • Schrauzer, G. N. (2000). Selenomethionine: A review of its nutritional significance, metabolism and toxicity. The Journal of Nutrition, 130(7), 1653–1656. doi:10.1093/jn/130.7.1653
  • Selvaraj, V., Tomblin, J., Armistead, M. Y., & Murray, E. (2013). Selenium (sodium selenite) causes cytotoxicity and apoptotic mediated cell death in PLHC-1 fish cell line through DNA and mitochondrial membrane potential damage. Ecotoxicology and Environmental Safety, 87, 80–88. doi:10.1016/j.ecoenv.2012.09.028
  • Shafik, N. M., & El Batsh, M. M. (2016). Protective effects of combined selenium and Punica granatum treatment on some inflammatory and oxidative stress markers in arsenic-induced hepatotoxicity in rats. Biological Trace Element Research, 169(1), 121–128. doi:10.1007/s12011-015-0397-1
  • Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., & Niazi, N. K. (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials, 325, 36–58. doi:10.1016/j.jhazmat.2016.11.063
  • Shahid, M., Niazi, N. K., Khalid, S., Murtaza, B., Bibi, I., & Rashid, M. I. (2018). A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environmental Pollution, 234, 915–934. doi:10.1016/j.envpol.2017.12.019
  • Shakir, S. K., Azizullah, A., Murad, W., Daud, M. K., Nabeela, F., Rahman, H., … Häder, D.-P. (2016). Toxic metal pollution in Pakistan and its possible risks to public health. In D. M. Whitacre (Ed.), Reviews of environmental contamination and toxicology (pp. 1–60). New York: Springer.
  • Shankar, S., & Shanker, U. (2014). Arsenic contamination of groundwater: A review of sources, prevalence, health risks, and strategies for mitigation. The Scientific World Journal, 2014doi:10.1155/2014/304524
  • Sharma, I. (2012). Arsenic induced oxidative stress in plants. Biologia, 67(3), 447–453. doi:10.2478/s11756-012-0024-y
  • Shen, H.-M., & Liu, Z-G. (2006). JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radical Biology and Medicine, 40(6), 928–939. doi:10.1016/j.freeradbiomed.2005.10.056
  • Shi, H., Hudson, L. G., Ding, W., Wang, S., Cooper, K. L., Liu, S., … Liu, K. J. (2004). Arsenite causes DNA damage in keratinocytes via generation of hydroxyl radicals. Chemical Research in Toxicology, 17(7), 871–878. doi:10.1021/tx049939e
  • Shibata, Y., Morita, M., & Fuwa, K. (1992). Selenium and arsenic in biology: Their chemical forms and biological functions. Advances in Biophysics, 28, 31–80. doi:10.1016/0065-227X(92)90022-J
  • Shini, S., Sultan, A., & Bryden, W. (2015). Selenium biochemistry and bioavailability: Implications for animal agriculture. Agriculture, 5(4), 1277–1288. doi:10.3390/agriculture5041277
  • Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicology and Environmental Safety, 112, 247–270. doi:10.1016/j.ecoenv.2014.10.009
  • Skalickova, S., Milosavljevic, V., Cihalova, K., Horky, P., Richtera, L., & Adam, V. (2017). Selenium nanoparticles as a nutritional supplement. Nutrition, 33, 83–90. doi:10.1016/j.nut.2016.05.001
  • Skröder Löveborn, H., Kippler, M., Lu, Y., Ahmed, S., Kuehnelt, D., Raqib, R., & Vahter, M. (2016). Arsenic metabolism in children differs from that in adults. Toxicological Sciences, 152(1), 29–39. doi:10.1093/toxsci/kfw060
  • Sneddon, A. (2012). Selenium nutrition and its impact on health. Journal of Food & Health Innovation Service, 6, 104–108.
  • Snider, G. W., Ruggles, E., Khan, N., & Hondal, R. J. (2013). Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase: Comparison of selenium and sulfur enzymes. Biochemistry, 52(32), 5472–5481. doi:10.1021/bi400462j
  • Stadtman, T. C. (2005). Selenoproteins—Tracing the role of a trace element in protein function. PLoS Biology, 3(12), e421. doi:10.1371/journal.pbio.0030421
  • Stoeva, N., & Bineva, T. (2003). Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. Bulgarian Journal of Plant Physiology, 29, 87–95.
  • Stolz, J. F., Basu, P., Santini, J. M., & Oremland, R. S. (2006). Arsenic and selenium in microbial metabolism. Annual Review of Microbiology, 60(1), 107–130. doi:10.1146/annurev.micro.60.080805.142053
  • Styblo, M., & Thomas, D. J. (2001). Selenium modifies the metabolism and toxicity of arsenic in primary rat hepatocytes. Toxicology and Applied Pharmacology, 172(1), 52–61. doi:10.1006/taap.2001.9134
  • Su, C.-T., Hsieh, R.-L., Chung, C.-J., Huang, P.-T., Lin, Y.-C., Ao, P.-L., … Lin, M.-I. (2019). Plasma selenium influences arsenic methylation capacity and developmental delays in preschool children in Taiwan. Environmental Research, 171, 52–59. doi:10.1016/j.envres.2019.01.003
  • Sun, H.-J., Rathinasabapathi, B., Wu, B., Luo, J., Pu, L.-P., & Ma, L. Q. (2014). Arsenic and selenium toxicity and their interactive effects in humans. Environment International, 69, 148–158. doi:10.1016/j.envint.2014.04.019
  • Surai, P. F. (2006). Selenium in nutrition and health. Nottingham: Nottingham University Press.
  • Suzuki, K. T., Kurasaki, K., & Suzuki, N. (2007). Selenocysteine β-lyase and methylselenol demethylase in the metabolism of Se-methylated selenocompounds into selenide. Biochimica et Biophysica Acta (BBA) - General Subjects, 1770(7), 1053–1061. doi:10.1016/j.bbagen.2007.03.007
  • Talbot, S., Nelson, R., & Self, W. (2008). Arsenic trioxide and auranofin inhibit selenoprotein synthesis: Implications for chemotherapy for acute promyelocytic leukaemia. British Journal of Pharmacology, 154(5), 940–948. doi:10.1038/bjp.2008.161
  • Tanmoy, P., & Saha, N. C. (2019). Environmental arsenic and selenium contamination and approaches towards its bioremediation through the exploration of microbial adaptations: A review. Pedosphere, 29, 554–568. doi:10.1016/S1002-0160(19)60829-5
  • Terry, N., Zayed, A., De Souza, M., & Tarun, A. (2000). Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 401–432. doi:10.1146/annurev.arplant.51.1.401
  • Tinggi, U. (2003). Essentiality and toxicity of selenium and its status in Australia: A review. Toxicology Letters, 137(1–2), 103–110. doi:10.1016/S0378-4274(02)00384-3
  • Tseng, C.-H. (2009). A review on environmental factors regulating arsenic methylation in humans. Toxicology and Applied Pharmacology, 235(3), 338–350. doi:10.1016/j.taap.2008.12.016
  • Vahter, M. E. (2007). Interactions between arsenic-induced toxicity and nutrition in early life. The Journal of Nutrition, 137(12), 2798–2804. doi:10.1093/jn/137.12.2798
  • Valdiglesias, V., Pásaro, E., Méndez, J., & Laffon, B. (2010). In vitro evaluation of selenium genotoxic, cytotoxic, and protective effects: A review. Archives of Toxicology, 84(5), 337–351. doi:10.1007/s00204-009-0505-0
  • Valko, M., Rhodes, C., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160(1), 1–40. doi:10.1016/j.cbi.2005.12.009
  • Ventura, J.-J., Cogswell, P., Flavell, R. A., Baldwin, A. S., & Davis, R. J. (2004). JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes & Development, 18, 2905–2915. doi:10.1101/gad.1223004
  • Villa-Bellosta, R., & Sorribas, V. (2008). Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Toxicology and Applied Pharmacology, 232(1), 125–134. doi:10.1016/j.taap.2008.05.026
  • Vinceti, M., Maraldi, T., Bergomi, M., & Malagoli, C. (2009). Risk of chronic low-dose selenium overexposure in humans: Insights from epidemiology and biochemistry. Reviews on Environmental Health, 24(3), 231–248. doi:10.1515/REVEH.2009.24.3.231
  • Vinceti, M., Solovyev, N., Mandrioli, J., Crespi, C. M., Bonvicini, F., Arcolin, E., … Michalke, B. (2013). Cerebrospinal fluid of newly diagnosed amyotrophic lateral sclerosis patients exhibits abnormal levels of selenium species including elevated selenite. NeuroToxicology, 38, 25–32. doi:10.1016/j.neuro.2013.05.016
  • Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307–310. doi:10.1038/35042675
  • Wallenberg, M., Olm, E., Hebert, C., Björnstedt, M., & Fernandes, A. P. (2010). Selenium compounds are substrates for glutaredoxins: A novel pathway for selenium metabolism and a potential mechanism for selenium-mediated cytotoxicity. Biochemical Journal, 429(1), 85–93. doi:10.1042/BJ20100368
  • Walton, F. S., Waters, S. B., Jolley, S. L., LeCluyse, E. L., Thomas, D. J., & Styblo, M. (2003). Selenium compounds modulate the activity of recombinant rat AsIII-methyltransferase and the methylation of arsenite by rat and human hepatocytes. Chemical Research in Toxicology, 16(3), 261–265. doi:10.1021/tx025649r
  • Wang, Q. Q., Thomas, D. J., & Naranmandura, H. (2015). Importance of being thiomethylated: formation, fate, and effects of methylated thioarsenicals. Chemical Research in Toxicology, 28(3), 281–289. doi:10.1021/tx500464t
  • Wei, Y., Cao, X., Ou, Y., Lu, J., Xing, C., & Zheng, R. (2001). SeO2 induces apoptosis with down-regulation of Bcl-2 and up-regulation of P53 expression in both immortal human hepatic cell line and hepatoma cell line. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 490(2), 113–121. doi:10.1016/S1383-5718(00)00149-2
  • Weiller, M., Latta, M., Kresse, M., Lucas, R., & Wendel, A. (2004). Toxicity of nutritionally available selenium compounds in primary and transformed hepatocytes. Toxicology, 201(1–3), 21–30. doi:10.1016/j.tox.2004.03.026
  • Wen, H., & Carignan, J. (2007). Reviews on atmospheric selenium: Emissions, speciation and fate. Atmospheric Environment, 41(34), 7151–7165. doi:10.1016/j.atmosenv.2007.07.035
  • Whanger, P. (2004). Selenium and its relationship to cancer: An update. British Journal of Nutrition, 91(1), 11–28. doi:10.1079/BJN20031015
  • Wilson, S. C., Lockwood, P. V., Ashley, P. M., & Tighe, M. (2010). The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environmental Pollution, 158(5), 1169–1181. doi:10.1016/j.envpol.2009.10.045
  • Winkel, L. H., Johnson, C. A., Lenz, M., Grundl, T., Leupin, O. X., Amini, M., & Charlet, L. (2011). Environmental selenium research: From microscopic processes to global understanding. Washington, DC: ACS Publications.
  • Winkel, L. H., Vriens, B., Jones, G. D., Schneider, L. S., Pilon-Smits, E., & Bañuelos, G. S. (2015). Selenium cycling across soil-plant-atmosphere interfaces: A critical review. Nutrients, 7(6), 4199–4239. doi:10.3390/nu7064199
  • Witkiewicz-Kucharczyk, A., & Bal, W. (2006). Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis. Toxicology Letters, 162, 29–42. doi:10.1016/j.toxlet.2005.10.018
  • Woo Youn, B., Fiala, E. S., & Soon Sohn, O. (2001). Mechanisms of organoselenium compounds in chemoprevention: Effects on transcription factor-DNA binding. Nutrition and Cancer, 40(1), 28–33. doi:10.1207/S15327914NC401_7
  • Wu, Z., Bañuelos, G. S., Lin, Z.-Q., Liu, Y., Yuan, L., Yin, X., & Li, M. (2015). Biofortification and phytoremediation of selenium in China. Frontiers in Plant Science, 6, 136. doi:10.3389/fpls.2015.00136
  • Xiong, T., Austruy, A., Pierart, A., Shahid, M., Schreck, E., Mombo, S., & Dumat, C. (2016). Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. Journal of Environmental Sciences, 46, 16–27. doi:10.1016/j.jes.2015.08.029
  • Xu, Z., Wang, Z., Li, J-J., Chen, C., Zhang, P-C., Dong, L., … Wang, Z-L. (2013). Protective effects of selenium on oxidative damage and oxidative stress related gene expression in rat liver under chronic poisoning of arsenic. Food and Chemical Toxicology , 58, 1–7. doi:10.1016/j.fct.2013.03.048
  • Yang, C., & Frenkel, K. (2002). Arsenic-mediated cellular signal transduction, transcription factor activation, and aberrant gene expression: Implications in carcinogenesis. Journal of Environmental Pathology, Toxicology and Oncology, 21. doi:10.1615/JEnvironPatholToxicolOncol.v21.i4.20
  • Yang, C., Kuo, M., Chen, J., & Chen, Y. (1999). Arsenic trioxide sensitivity is associated with low level of glutathione in cancer cells. British Journal of Cancer, 81(5), 796–799. doi:10.1038/sj.bjc.6690766
  • Yang, J., Cao, W., & Rui, Y. (2017). Interactions between nanoparticles and plants: Phytotoxicity and defense mechanisms. Journal of Plant Interactions, 12(1), 158–169. doi:10.1080/17429145.2017.1310944
  • Ye, W.-L., Khan, M. A., McGrath, S. P., & Zhao, F.-J. (2011). Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environmental Pollution, 159(12), 3739–3743. doi:10.1016/j.envpol.2011.07.024
  • Yoshioka, J., Schreiter, E. R., & Lee, R. T. (2006). Role of thioredoxin in cell growth through interactions with signaling molecules. Antioxidants & Redox Signaling, 8, 2143–2151. doi:10.1089/ars.2006.8.2143
  • Zakharyan, R. A., & Aposhian, H. V. (1999). Arsenite methylation by methylvitamin B 12 and glutathione does not require an enzyme. Toxicology and Applied Pharmacology, 154(3), 287–291. doi:10.1006/taap.1998.8587
  • Zarubin, T., & Jiahuai, H. (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Research, 15(1), 11–18. doi:10.1038/sj.cr.7290257
  • Zeng, G., Wu, H., Liang, J., Guo, S., Huang, L., Xu, P., … He, Y. (2015). Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil. RSC Advances, 5(44), 34541–34548. doi:10.1039/C5RA04834F
  • Zeng, H. (2001). Arsenic suppresses necrosis induced by selenite in human leukemia HL-60 cells. Biological Trace Element Research, 83(1), 01–15. doi:10.1385/BTER:83:1:01
  • Zeng, H. (2009). Selenium as an essential micronutrient: Roles in cell cycle and apoptosis. Molecules, 14(3), 1263–1278. doi:10.3390/molecules14031263
  • Zeng, H., & Combs, G. F. (2008). Selenium as an anticancer nutrient: Roles in cell proliferation and tumor cell invasion. The Journal of Nutritional Biochemistry, 19(1), 1–7. doi:10.1016/j.jnutbio.2007.02.005
  • Zeng, H., Uthus, E. O., & Combs, G. F., Jr. (2005). Mechanistic aspects of the interaction between selenium and arsenic. Journal of Inorganic Biochemistry, 99(6), 1269–1274. doi:10.1016/j.jinorgbio.2005.03.006
  • Zhao, F. J., Ma, J. F., Meharg, A., & McGrath, S. (2009). Arsenic uptake and metabolism in plants. New Phytologist, 181(4), 777–794. doi:10.1111/j.1469-8137.2008.02716.x
  • Zhong, C. X., & Mass, M. J. (2001). Both hypomethylation and hypermethylation of DNA associated with arsenite exposure in cultures of human cells identified by methylation-sensitive arbitrarily-primed PCR. Toxicology Letters, 122(3), 223–234. doi:10.1016/S0378-4274(01)00365-4
  • Zhou, N., Xiao, H., Li, T.-K., Nur-E-Kamal, A., & Liu, L. F. (2003). DNA damage-mediated apoptosis induced by selenium compounds. Journal of Biological Chemistry, 278(32), 29532–29537. doi:10.1074/jbc.M301877200
  • Zhou, X., Sun, X., Cooper, K. L., Wang, F., Liu, K. J., & Hudson, L. G. (2011). Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs. Journal of Biological Chemistry, 286(26), 22855–22863. doi:10.1074/jbc.M111.232926
  • Zwolak, I. (2019). The role of selenium in arsenic and cadmium toxicity: An updated review of scientific literature. Biological Trace Element Research, (1), 20. doi:10.1007/s12011-019-01691-w
  • Zwolak, I. (2020). The role of selenium in arsenic and cadmium toxicity: An updated review of scientific literature. Biological Trace Element Research, 193(1), 44–63. doi:10.1007/s12011-019-01691-w
  • Zwolak, I., & Zaporowska, H. (2012). Selenium interactions and toxicity: A review. Cell Biology and Toxicology, 28(1), 31–46. doi:10.1007/s10565-011-9203-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.