2,038
Views
42
CrossRef citations to date
0
Altmetric
Article

Feasibility of wet-extraction of phosphorus from incinerated sewage sludge ash (ISSA) for phosphate fertilizer production: A critical review

, ORCID Icon, , , , & ORCID Icon show all
Pages 939-971 | Published online: 06 Apr 2020

References

  • Adam, C., Peplinski, B., Michaelis, M., Kley, G., & Simon, F.-G. (2009). Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Management, 29(3), 1122–1128. doi:10.1016/j.wasman.2008.09.011
  • Biswas, B. K., Inoue, K., Harada, H., Ohto, K., & Kawakita, H. (2009). Leaching of phosphorus from incinerated sewage sludge ash by means of acid extraction followed by adsorption on orange waste gel. Journal of Environmental Sciences, 21(12), 1753–1760. doi:10.1016/S1001-0742(08)62484-5
  • Budak, T. B. (2013). Removal of heavy metals from wastewater using synthetic ion exchange resin. Asian Journal of Chemistry, 25(8), 4207–4210. doi:10.14233/ajchem.2013.13902
  • Cabeza, R., Steingrobe, B., Römer, W., & Claassen, N. (2011). Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments. Nutrient Cycling in Agroecosystems, 91(2), 173–184. doi:10.1007/s10705-011-9454-0
  • Cheeseman, C., & Virdi, G. (2005). Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resources, Conservation and Recycling, 45(1), 18–30. doi:10.1016/j.resconrec.2004.12.006
  • Chen, Z., Li, J. S., & Poon, C. S. (2018b). Combined use of sewage sludge ash and recycled glass cullet for the production of concrete blocks. Journal of Cleaner Production, 171, 1447–1459. doi:10.1016/j.jclepro.2017.10.140
  • Chen, Z., Li, J.-S., Zhan, B.-J., Sharma, U., & Poon, C. S. (2018a). Compressive strength and microstructural properties of dry-mixed geopolymer pastes synthesized from GGBS and sewage sludge ash. Construction and Building Materials, 182, 597–607. doi:10.1016/j.conbuildmat.2018.06.159
  • Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production, 142, 1728–1740. doi:10.1016/j.jclepro.2016.11.116
  • Cohen, Y. (2009). Phosphorus dissolution from ash of incinerated sewage sludge and animal carcasses using sulphuric acid. Environmental Technology, 30(11), 1215–1226. doi:10.1080/09593330903213879
  • Cordell, D., Rosemarin, A., Schroder, J. J., & Smit, A. L. (2011). Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere, 84(6), 747–758. doi:10.1016/j.chemosphere.2011.02.032
  • Cyr, M., Coutand, M., & Clastres, P. (2007). Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cement & Concrete Research, 37(8), 1278–1289. doi:10.1016/j.cemconres.2007.04.003
  • Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W., … Meesschaert, B. (2015). Global phosphorus scarcity and full-scale P-recovery techniques: A review. Critical Reviews in Environmental Science and Technology, 45(4), 336–384. doi:10.1080/10643389.2013.866531
  • Directive, E. U. (2003). Regulation (EC) No 2003/2003 of the European Parliament and of the Council of 13 October 2003 relating to fertilizers. European Parliament and European Council.
  • Dissanayake, C., & Chandrajith, R. (2009). Phosphate mineral fertilizers, trace metals and human health. Journal of the National Science Foundation of Sri Lanka, 37(3), 153–165. doi:10.4038/jnsfsr.v37i3.1219
  • Donatello, S., & Cheeseman, C. R. (2013). Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Management, 33(11), 2328–2340. doi:10.1016/j.wasman.2013.05.024
  • Donatello, S., Tong, D., & Cheeseman, C. R. (2010b). Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA). Waste Management, 30(8–9), 1634–1642. doi:10.1016/j.wasman.2010.04.009
  • Donatello, S., Tyrer, M., & Cheeseman, C. R. (2010a). EU landfill waste acceptance criteria and EU Hazardous Waste Directive compliance testing of incinerated sewage sludge ash. Waste Management, 30(1), 63–71. doi:10.1016/j.wasman.2009.09.028
  • Donatello, S. (2009). Characteristics of incinerated sewage sludge ashes: Potential for phosphate extraction and re-use as a pozzolanic material in construction products. Department of Civil and Environmental Engineering, Imperial College London, London, UK.
  • Ebbers, B., Ottosen, L. M., & Jensen, P. E. (2015). Comparison of two different electrodialytic cells for separation of phosphorus and heavy metals from sewage sludge ash. Chemosphere, 125, 122–129. doi:10.1016/j.chemosphere.2014.12.013
  • Egle, L., Rechberger, H., Krampe, J., & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of the Total Environment, 571, 522–542. doi:10.1016/j.scitotenv.2016.07.019
  • Fang, L., Li, J-S., Donatello, S., Cheeseman, C. R., Poon, C. S., & Tsang, D. C. W. (2019). Use of modified biochar to adsorb phosphorus from acid-extract of incinerated sewage sludge ash (ISSA) for fertilizer applications. Journal of Cleaner Production, 244, 118853. doi:10.1016/j.jclepro.2019.118853
  • Fang, L., Li, J-S., Donatello, S., Cheeseman, C. R., Wang, Q., Poon, C. S., & Tsang, D. C. W. (2018). Recovery of phosphorus from incinerated sewage sludge ash by combined two-step extraction and selective precipitation. Chemical Engineering Journal, 348, 74–83. doi:10.1016/j.cej.2018.04.201
  • Fang, L., Li, J-S., Guo, M. Z., Cheeseman, C. R., Tsang, D. C. W., Donatello, S., & Poon, C. S. (2018). Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA). Chemosphere, 193, 278–287. doi:10.1016/j.chemosphere.2017.11.023
  • FAO. (2015). World fertilizer trends and outlook to 2018. Food and Agriculture Organization of the United Nations. Reporte.
  • Fonts, I., Gea, G., Azuara, M., Ábrego, J., & Arauzo, J. (2012). Sewage sludge pyrolysis for liquid production: A review. Renewable and Sustainable Energy Reviews, 16(5), 2781–2805. doi:10.1016/j.rser.2012.02.070
  • Franz, M. (2008). Phosphate fertilizer from sewage sludge ash (SSA). Waste Management, 28(10), 1809–1818. doi:10.1016/j.wasman.2007.08.011
  • Frost, R. L., Weier, M. L., Martens, W., Kloprogge, J. T., & Ding, Z. (2003). Dehydration of synthetic and natural vivianite. Thermochimica Acta, 401(2), 121–130. doi:10.1016/S0040-6031(02)00505-1
  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. doi:10.1016/j.jenvman.2010.11.011
  • Fytili, D., & Zabaniotou, A. (2008). Utilization of sewage sludge in EU application of old and new methods—A review. Renewable and Sustainable Energy Reviews, 12(1), 116–140. doi:10.1016/j.rser.2006.05.014
  • Gendebien, A., Davis, B., Hobson, J., Palfrey, R., Pitchers, R., Rumsby, P., … Middleton, J. (2010). Environmental, Economic, and Social Impacts of the Use of Sewage Sludge on Land: Final Report. Part III: Project Interim Reports. Milieu Ltd., WRc, RPA.
  • Gorazda, K., Tarko, B., Worek, Z., Nowak, AK., Kulczycka, K., Smol, M., & Henclik, A. (2017). Sustainable use of sewage sludge ash in fertilisers production-PolFerAsh technology. Athens 2017. Athens. https://pdfs.semanticscholar.org/9704/af2ceac711163bb4367295fa65ba9c48b6aa.pdf
  • Gorazda, K., Tarko, B., Wzorek, Z., Nowak Anna, K., Kulczycka, J., & Henclik, A. (2016). Characteristic of wet method of phosphorus recovery from polish sewage sludge ash with nitric acid. Open Chemistry, 14(1), 37. doi:10.1515/chem-2016-0006
  • Gorazda, K., Wzorek, Z., Tarko, B., Nowak, A. K., Kulczycka, J., & Henclik, A. (2013). Phosphorus cycle - possibilities for its rebuilding. Acta Biochimica Polonica, 60(4), 725. doi:10.18388/abp.2013_2048
  • He, Z.-W., Liu, W.-Z., Wang, L., Tang, C.-C., Guo, Z.-C., Yang, C.-X., & Wang, A.-J. (2016). Clarification of phosphorus fractions and phosphorus release enhancement mechanism related to pH during waste activated sludge treatment. Bioresource Technology, 222, 217–225.
  • Hernandez, A. B., Ferrasse, J.-H., Chaurand, P., Saveyn, H., Borschneck, D., & Roche, N. (2011). Mineralogy and leachability of gasified sewage sludge solid residues. Journal of Hazardous Materials, 191(1–3), 219–227. doi:10.1016/j.jhazmat.2011.04.070
  • Herzel, H., Krüger, O., Hermann, L., & Adam, C. (2016). Sewage sludge ash — A promising secondary phosphorus source for fertilizer production. Science of the Total Environment, 542, 1136–1143. doi:10.1016/j.scitotenv.2015.08.059
  • Houben, D., Michel, E., Nobile, C., Lambers, H., Kandeler, E., & Faucon, M.-P. (2019). Response of phosphorus dynamics to sewage sludge application in an agroecosystem in northern France. Applied Soil Ecology, 137, 178–186. doi:10.1016/j.apsoil.2019.02.017
  • Huang, W., Huang, W., Li, H., Lei, Z., Zhang, Z., Tay, J. H., & Lee, D.-J. (2015). Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge. Bioresource Technology, 193, 549–552. doi:10.1016/j.biortech.2015.06.120
  • Huang, R., & Tang, Y. (2015). Speciation Dynamics of phosphorus during (hydro)thermal treatments of sewage sludge. Environmental Science & Technology, 49(24), 14466–14474. doi:10.1021/acs.est.5b04140
  • Huang, R., & Tang, Y. (2016). Evolution of phosphorus complexation and mineralogy during (hydro) thermal treatments of activated and anaerobically digested sludge: Insights from sequential extraction and P K-edge XANES. Water Research, 100, 439–447. doi:10.1016/j.watres.2016.05.029
  • Huang, Y., Wang, C., & Yi, S. (2006). The application situation of fluid fertilizer and its developmental prospects. China Academic Journal Electronic Publishing House, (2), 198–200.
  • Interreg North-west Europe (INE). (2018). Acid extraction of phosphorus from sewage sludge incineration ash: REMONDIS TetraPhos®. https://www.nweurope.eu/media/5064/2_phos4you-tetraphos.pdf.
  • Jin, L., Zhang, G., & Tian, H. (2014). Current state of sewage treatment in China. Water Research, 66, 85–98. doi:10.1016/j.watres.2014.08.014
  • Kalmykova, Y., & Karlfeldt Fedje, K. (2013). Phosphorus recovery from municipal solid waste incineration fly ash. Waste Management, 33(6), 1403–1410. doi:10.1016/j.wasman.2013.01.040
  • Kataki, S., West, H., Clarke, M., & Baruah, D. C. (2016). Phosphorus recovery as struvite from farm, municipal and industrial waste: Feedstock suitability, methods and pre-treatments. Waste Management, 49, 437–454. doi:10.1016/j.wasman.2016.01.003
  • Kleemann, R., Chenoweth, J., Clift, R., Morse, S., Pearce, P., & Saroj, D., (2017). Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC). Waste Management, 60, 201–210. doi:10.1016/j.wasman.2016.10.055
  • Krüger, O., & Adam, C. (2015). Recovery potential of German sewage sludge ash. Waste Management, 45, 400–406. S0956053X15000641. doi:10.1016/j.wasman.2015.01.025
  • Lee, M., & Kim, D.-J. (2017). Identification of phosphorus forms in sewage sludge ash during acid pre-treatment for phosphorus recovery by chemical fractionation and spectroscopy. Journal of Industrial and Engineering Chemistry, 51, 64–70. doi:10.1016/j.jiec.2017.02.013
  • Lemming, C., Bruun, S., Jensen, L. S., & Magid, J. (2017). Plant availability of phosphorus from dewatered sewage sludge, untreated incineration ashes, and other products recovered from a wastewater treatment system. Journal of Plant Nutrition and Soil Science, 180(6), 779–787. doi:10.1002/jpln.201700206
  • Levlin, E., & Hultman, B. (2004). Phosphorus recovery from sewage sludge-Ideas for further studies to improve leaching. Report, 12, 5–6.
  • Liang, S., Chen, H., Zeng, X., Li, Z., Yu, W., Xiao, K., … Yang, J. (2019). A comparison between sulfuric acid and oxalic acid leaching with subsequent purification and precipitation for phosphorus recovery from sewage sludge incineration ash. Water Research, 159, 242–251. doi:10.1016/j.watres.2019.05.022
  • Lin, K. L., Chiang, K. Y., & Lin, D. F. (2006). Effect of heating temperature on the sintering characteristics of sewage sludge ash. Journal of Hazardous Materials, 128(2–3), 175–181. doi:10.1016/j.jhazmat.2005.07.051
  • Lin, K., Chiang, K., & Lin, C. (2005). Hydration characteristics of waste sludge ash that is reused in eco-cement clinkers. Cement and Concrete Research, 35(6), 1074–1081. doi:10.1016/j.cemconres.2004.11.014
  • Li, J-S., Tsang, D. C. W., Wang, Q-M., Fang, L., Xue, Q., & Poon, C. S. (2017). Fate of metals before and after chemical extraction of incinerated sewage sludge ash. Chemosphere, 186, 350–359. doi:10.1016/j.chemosphere.2017.08.012
  • Liu, Y., & Qu, H. (2016). Design and optimization of a reactive crystallization process for high purity phosphorus recovery from sewage sludge ash. Journal of Environmental Chemical Engineering, 4(2), 2155–2162. doi:10.1016/j.jece.2016.03.042
  • Li, R., Zhang, Z., Li, Y., Teng, W., Wang, W., & Yang, T. (2015). Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge. Chemosphere, 141(35), 57–61.
  • Lombi, E., Mclaughlin, M. J., Johnston, C., Armstrong, R. D., & Holloway, R. E. (2005). Mobility, solubility and lability of fluid and granular forms of P fertiliser in calcareous and non-calcareous soils under laboratory conditions. Plant and Soil, 269(1–2), 25–34. doi:10.1007/s11104-004-0558-z
  • Lundin, M., Olofsson, M., Pettersson, G. J., & Zetterlund, H. (2004). Environmental and economic assessment of sewage sludge handling options. Resources, Conservation and Recycling, 41(4), 255–278. doi:10.1016/j.resconrec.2003.10.006
  • Luyckx, L., Geerts, S., & Van Caneghem, J. (2019). Closing the phosphorus cycle: Multi-criteria techno-economic optimization of phosphorus extraction from wastewater treatment sludge ash. Science of the Total Environment, 713, 135543. doi:10.1016/j.scitotenv.2019.135543
  • Manara, P., & Zabaniotou, A. (2012). Towards sewage sludge based biofuels via thermochemical conversion – A review. Renewable and Sustainable Energy Reviews, 16(5), 2566–2582. doi:10.1016/j.rser.2012.01.074
  • Mattenberger, H., Fraissler, G., Brunner, T., Herk, P., Hermann, L., & Obernberger, I. (2008). Sewage sludge ash to phosphorus fertiliser: Variables influencing heavy metal removal during thermochemical treatment. Waste Management, 28(12), 2709–2722. doi:10.1016/j.wasman.2008.01.005
  • Mattenberger, H., Fraissler, G., Jöller, M., Brunner, T., Obernberger, I., Herk, P., & Hermann, L. (2010). Sewage sludge ash to phosphorus fertiliser (II): Influences of ash and granulate type on heavy metal removal. Waste Management, 30(8–9), 1622–1633. doi:10.1016/j.wasman.2010.03.037
  • Meng, X., Liu, X., Huang, Q., Gao, H., Tay, K., & Yan, J. (2019). Recovery of phosphate as struvite from low-temperature combustion sewage sludge ash (LTCA) by cation exchange. Waste Management, 90, 84–93. doi:10.1016/j.wasman.2019.04.045
  • Mitrano, D. M., Mehrabi, K., Dasilva, Y. A. R., & Nowack, B. (2017). Mobility of metallic (nano) particles in leachates from landfills containing waste incineration residues. Environmental Science: Nano, 4(2), 480–492. doi:10.1039/C6EN00565A
  • Mochiyama, T. (2019). Industrial-scale manufacturing of phosphoric acid using sewage sludge ash. In Phosphorus recovery and recycling (pp. 133–142). Singapore: Springer.
  • Morf, L., Schlumberger, S., Adam, F., & Nogueira, G. D. (2019). Urban phosphorus mining in the Canton of Zurich: Phosphoric acid from sewage sludge ash. In Phosphorus recovery and recycling (pp. 157–177). Singapore: Springer.
  • Nakagawa, H., & Ohta, J. (2019). Phosphorus recovery from sewage sludge ash: A case study in Gifu, Japan. In Phosphorus recovery and recycling (pp. 149–155). Singapore: Springer.
  • Naoum, C., Fatta, D., Haralambous, K. J., & Loizidou, M. (2001). Removal of heavy metals from sewage sludge by acid treatment. Journal of Environmental Science and Health, Part A, 36(5), 873–881. doi:10.1081/ESE-100103767
  • Nättorp, A., Kabbe, C., Matsubae, K., & Ohtake, H. (2019). Development of phosphorus recycling in Europe and Japan. In Phosphorus recovery and recycling (pp. 3-27). Singapore: Springer.
  • Niu, X., & Shen, L. (2018). Release and transformation of phosphorus in chemical looping combustion of sewage sludge. Chemical Engineering Journal, 335, 621–630. doi:10.1016/j.cej.2017.11.015
  • Nowak, B., Aschenbrenner, P., & Winter, F. (2013). Heavy metal removal from sewage sludge ash and municipal solid waste fly ash—a comparison. Fuel Processing Technology, 105, 195–201. doi:10.1016/j.fuproc.2011.06.027
  • Oliver, K., Angela, G., & Christian, A. (2014). Complete survey of German sewage sludge ash. Environmental Science & Technology, 48(20), 11811–11818.
  • Ottosen, L. M., Jensen, P. E., & Kirkelund, G. M. (2016). Phosphorous recovery from sewage sludge ash suspended in water in a two-compartment electrodialytic cell. Waste Management, 51, 142–148. doi:10.1016/j.wasman.2016.02.015
  • Ottosen, L. M., Kirkelund, G. M., & Jensen, P. E. (2013). Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemosphere, 91(7), 963–969. doi:10.1016/j.chemosphere.2013.01.101
  • Paltrinieri, L., Remmen, K., Müller, B., Chu, L., Köser, J., Wintgens, T., … Sudhölter, E. J. R. (2019). Improved phosphoric acid recovery from sewage sludge ash using layer-by-layer modified membranes. Journal of Membrane Science, 587, 117162. doi:10.1016/j.memsci.2019.06.002
  • Pantelica, A. I., Salagean, M. N., Georgescu, I. I., & Pincovschi, E. T. (1997). INAA of some phosphates used in fertilizer industries. Journal of Radioanalytical and Nuclear Chemistry, 216(2), 261–264. doi:10.1007/BF02033788
  • Park, Y. J., Moon, S. O., & Heo, J. (2003). Crystalline phase control of glass ceramics obtained from sewage sludge fly ash. Ceramics International, 29(2), 223–227. doi:10.1016/S0272-8842(02)00109-8
  • Pedersen, K. B., Ottosen, L. M., Jensen, P. E., & Lejon, T. (2015). Comparison of 2-compartment, 3-compartment and stack designs for electrodialytic removal of heavy metals from harbour sediments. Electrochimica Acta, 181, 48–57. doi:10.1016/j.electacta.2014.12.003
  • Petzet, S., & Cornel, P. (2011). Towards a complete recycling of phosphorus in wastewater treatment–options in Germany. Water Science and Technology, 64(1), 29–35. doi:10.2166/wst.2011.540
  • Petzet, S., Peplinski, B., Bodkhe, S., & Cornel, P. (2011). Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-Phos-recovery process). Water Science and Technology, 64(3), 693–699. doi:10.2166/wst.2011.682
  • Petzet, S., Peplinski, B., & Cornel, P. (2012). On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Research, 46(12), 3769–3780. doi:10.1016/j.watres.2012.03.068
  • Pokhrel, S. P., Milke, M. W., Bello-Mendoza, R., Buitrón, G., & Thiele, J. (2018). Use of solid phosphorus fractionation data to evaluate phosphorus release from waste activated sludge. Waste Management, 76, 90–97. doi:10.1016/j.wasman.2018.03.008
  • Qian, T. T., & Jiang, H. (2014). Migration of phosphorus in sewage sludge during different thermal treatment processes. ACS Sustainable Chemistry & Engineering, 2(6), 1411–1419.
  • Raison, R., Khanna, P., & Woods, P. (1985). Mechanisms of element transfer to the atmosphere during vegetation fires. Canadian Journal of Forest Research, 15(1), 132–140.
  • Ruijter, J. A. (2018). Dutch experience of sludge management and P-recovery pathways. Environ 2018, 28 March, Cork, Ireland. http://www.nweurope.eu/media/3386/1_p4y_environ2018_hvc-snb_ruijter.pdf.
  • Sabiha, J., Mehmood, T., Chaudhry, M. M., Tufail, M., & Irfan, N. (2009). Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchemical Journal, 91(1), 94–99. doi:10.1016/j.microc.2008.08.009
  • Samolada, M. C., & Zabaniotou, A. A. (2014). Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Management, 34(2), 411–420. doi:10.1016/j.wasman.2013.11.003
  • Schaum, C. (2007). Verfahren für eine zukünftige Klä rschlammbehandlung-Klärschlammkonditionierung und Rü ckgewinnung von Phosphor aus Klä rschlammasche (Processes for future sewage sludge treatment e sewage sludge conditioning and phosphorus recovery from sewage sludge ash) (Dissertation). Technische Universität Darmstadt.
  • Takahashi, M., Kato, S., Shima, H., Sarai, E., Ichioka, T., Hatyakawa, S., & Miyajiri, H. (2001). Technology for recovering phosphorus from incinerated wastewater treatment sludge. Chemosphere, 44(1), 23–29.
  • Tan, Z., & Lagerkvist, A. (2011). Phosphorus recovery from the biomass ash: A review. Renewable and Sustainable Energy Reviews, 15(8), 3588–3602. doi:10.1016/j.rser.2011.05.016
  • Tarayre, C., De Clercq, L., Charlier, R., Michels, E., Meers, E., Camargo-Valero, M., & Delvigne, F. (2016). New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste. Bioresource Technology, 2016, 264–274. doi:10.1016/j.biortech.2016.01.091
  • Tay, J.-H., & Show, K.-Y. (1997). Resource recovery of sludge as a building and construction material—a future trend in sludge management. Water Science and Technology, 36(11), 259–266. doi:10.2166/wst.1997.0419
  • Thant Zin, M. M., & Kim, D.-J. (2019). Struvite production from food processing wastewater and incinerated sewage sludge ash as an alternative N and P source: Optimization of multiple resources recovery by response surface methodology. Process Safety and Environmental Protection, 126, 242–249. doi:10.1016/j.psep.2019.04.018
  • U.S. Geological Survey (USGS). (2015). Mineral commodity summaries 2015: U.S. Geological Survey, 196 p. doi:10.3133/70140094
  • U.S. Geological Survey (USGS). (2017). Mineral commodity summaries 2017: U.S. Geological Survey, 202 p. doi:10.3133/70180197
  • U.S. Geological Survey (USGS). (2019). Mineral commodity summaries 2019: U.S. Geological Survey, 200 p. doi:10.3133/70202434.
  • U.N., Department of Economic and Social Affairs. (2019). Population: World Population Prospects 2019. https://www.un.org/en/development/desa/population/index.asp
  • Vaccari, D. A., Powers, S. M., & Liu, X. (2019). Demand-driven model for global phosphate rock suggests paths for phosphorus sustainability. Environmental Science & Technology, 53(17), 10417–10425. doi:10.1021/acs.est.9b02464
  • Van Kauwenbergh, S. J. (2010). World phosphate rock reserves and resources. Muscle Shoals, AL: IFDC.
  • Wang, Q., Li, J-S., Tang, P., Fang, L., & Poon, C. S. (2018). Sustainable reclamation of phosphorus from incinerated sewage sludge ash as value-added struvite by chemical extraction, purification and crystallization. Journal of Cleaner Production, 181, 717–725.
  • Wang, X., Zhao, B., Zhang, A., & Sha, Z. (2015). The present situation and research progress of treatment of sludge from city sewage treatment plant. Tianjin Daxue Xuebao, 30.
  • Weigand, H., Bertau, M., Hubner, W., Bohndick, F., & Bruckert, A. (2013). RecoPhos: Full-scale fertilizer production from sewage sludge ash. Waste Management, 33(3), 540–544. doi:10.1016/j.wasman.2012.07.009
  • Xie, C., Zhao, J., Tang, J., Xu, J., Lin, X., & Xu, X. (2011). The phosphorus fractions and alkaline phosphatase activities in sludge. Bioresource Technology, 102(3), 2455–2461. doi:10.1016/j.biortech.2010.11.011
  • Xue, T., & Huang, X. (2007). Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge. Journal of Environmental Sciences, 19(10), 1153–1158.
  • Xu, H., He, P., Gu, W., Wang, G., & Shao, L. (2012). Recovery of phosphorus as struvite from sewage sludge ash. Journal of Environmental Sciences (China), 24(8), 1533–1538. doi:10.1016/s1001-0742(11)60969-8
  • Xu, Y., Hu, H., Liu, J., Luo, J., Qian, G., & Wang, A. (2015). pH dependent phosphorus release from waste activated sludge: Contributions of phosphorus speciation. Chemical Engineering Journal, 267, 260–265. doi:10.1016/j.cej.2015.01.037
  • Xu, H., Zhang, H., Shao, L., & He, P. (2012). Fraction distributions of phosphorus in sewage sludge and sludge ash. Waste and Biomass Valorization, 3(3), 355–361. doi:10.1007/s12649-011-9103-5
  • Yang, G., Zhang, G., & Wang, H. (2015). Current state of sludge production, management, treatment and disposal in China. Water Research, 78, 60–73. doi:10.1016/j.watres.2015.04.002
  • Ye, Z., Chu, G., Zhi, J., Hu, Y., Liang, Y., & Tan, C. (2010). A comparison of mobility and availability of granular and fluid phophate fertilizers in calcareous soils under laboratory conditions. Plant Nutrition and Fertilizer Science, 16(6), 1433–1438.
  • Zhou, K., Barjenbruch, M., Kabbe, C., Inial, G., & Remy, C. (2017). Phosphorus recovery from municipal and fertilizer wastewater: China’s potential and perspective. Journal of Environmental Sciences, 52, 151–159.
  • Zuloaga, O., Navarro, P., Bizkarguenaga, E., Iparraguirre, A., Vallejo, A., Olivares, M., & Prieto, A. (2012). Overview of extraction, clean-up and detection techniques for the determination of organic pollutants in sewage sludge: A review. Analytica Chimica Acta, 736(1), 7–29. doi:10.1016/j.aca.2012.05.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.