1,510
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Impacts of metallic nanoparticles and transformed products on soil health

, , , &
Pages 973-1002 | Published online: 20 Mar 2020

References

  • Adetunji, A. T., Lewu, F. B., Mulidzi, R., & Ncube, B. (2017). The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. Journal of Soil Science and Plant Nutrition, 17(3), 794–807. doi:10.4067/S0718-95162017000300018
  • Asadishad, B., Chahal, S., Akbari, A., Cianciarelli, V., Azodi, M., Ghoshal, S., & Tufenkji, N. (2018). Amendment of agricultural soil with metal nanoparticles: Effects on soil enzyme activity and microbial community composition. Environmental Science & Technology, 52(4), 1908–1918. doi:10.1021/acs.est.7b05389
  • Asadishad, B., Chahal, S., Cianciarelli, V., Zhou, K., & Tufenkji, N. (2017). Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: Role of nanoparticle size and surface coating. Environmental Science: Nano, 4(4), 907–918. doi:10.1039/C6EN00567E
  • Aziz, Y., Shah, G. A., & Rashid, M. I. (2019). ZnO nanoparticles and zeolite influence soil nutrient availability but do not affect herbage nitrogen uptake from biogas slurry. Chemosphere, 216, 564–575. doi:10.1016/j.chemosphere.2018.10.119
  • Ben-Moshe, T., Frenk, S., Dror, I., Minz, D., & Berkowitz, B. (2013). Effects of metal oxide nanoparticles on soil properties. Chemosphere, 90(2), 640–646. doi:10.1016/j.chemosphere.2012.09.018
  • Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussaard, L., Butt, K. R., … Brun, J.-J. (2013). a review of earthworm impact on soil function and ecosystem service. European Journal of Soil Science, 64(2), 161–182. doi:10.1111/ejss.12025
  • Bowles, T., Acosta-Martinez, V., Calderon, F., & Jackson, L. (2014). Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biology and Biochemistry, 68, 252–262. doi:10.1016/j.soilbio.2013.10.004
  • Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1), 1–18. doi:10.1016/j.jcis.2004.04.005
  • Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., … Brussaard, L. (2018). Soil quality–A critical review. Soil Biology and Biochemistry, 120, 105–125.
  • Chai, H., Yao, J., Sun, J., Zhang, C., Liu, W., Zhu, M., & Ceccanti, B. (2015). The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bulletin of Environmental Contamination and Toxicology, 94(4), 490–495. doi:10.1007/s00128-015-1485-9
  • Chavan, S., & Nadanathangam, V. (2019). Effects of nanoparticles on plant growth-promoting bacteria in Indian agricultural soil. Agronomy, 9(3), 140. doi:10.3390/agronomy9030140
  • Chhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters, 15(1), 15–22. doi:10.1007/s10311-016-0600-4
  • Collins, D., Luxton, T., Kumar, N., Shah, S., Walker, V. K., & Shah, V. (2012). Assessing the impact of copper and zinc oxide nanoparticles on soil: A field study. PLoS One, 7(8), e42663. doi:10.1371/journal.pone.0042663
  • Conway, J. R., & Keller, A. A. (2016). Gravity-driven transport of three engineered nanomaterials in unsaturated soils and their effects on soil pH and nutrient release. Water Research, 98, 250–260. doi:10.1016/j.watres.2016.04.021
  • Coo, J. L., So, Z. P., & Ng, C. W. (2016). Effect of nanoparticles on the shrinkage properties of clay. Engineering Geology, 213, 84–88. doi:10.1016/j.enggeo.2016.09.001
  • Coq, S., Barthes, B. G., Oliver, R., Rabary, B., & Blanchart, E. (2007). Earthworm activity affects soil aggregation an organic matter dynamics according to the quality and localization of crop residues-An experimental study (Madagascar). Soil Biology and Biochemistry, 39(8), 2119–2128. doi:10.1016/j.soilbio.2007.03.019
  • Cornelis, G., Kerstin, H.-R., Kuhlbusch, T., Brink, N. V D., & Carmen, N. (2014). Fate and bioavailability of engineered nanoparticles in soils: A review. Critical Reviews in Environmental Science and Technology, 44, 2720–2764. doi:10.1080/10643389.2013.829767
  • Dahle, J. T., & Arai, Y. (2014). Effects of Ce (III) and CeO2 nanoparticles on soil-denitrification kinetics. Archives of Environmental Contamination and Toxicology, 67(4), 474–482. doi:10.1007/s00244-014-0031-9
  • Das, G., Patra, J. K., Ansari, A., & Shi, H. (2019). Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PloS One, 14(8), e220950. doi:10.1371/journal.pone.0220950
  • De Souza, A., Govea-Alcaide, E., Masunaga, S. H., Fajardo-Rosabal, L., Effenberger, F., Rossi, L. M., & Jardim, R. F. (2019). Impact of Fe3O4 nanoparticle on nutrient accumulation in common bean plants grown in soil. SN Applied Sciences, 1, 308. doi:10.1007/s42452-019-0321-y
  • Dimkpa, C. O., White, J. C., Elmer, W. H., & Gardea-Torresdey, J. (2017). Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. Journal of Agricultural and Food Chemistry, 65(39), 8552–8559. doi:10.1021/acs.jafc.7b02961
  • Dimkpa, C., Singh, U., Adisa, I., Bindraban, P., Elmer, W., Gardea-Torresdey, J., & White, J. (2018). Effects of manganese nanoparticle exposure on nutrient acquisition in wheat (Triticum aestivum L.). Agronomy, 8(9), 158. doi:10.3390/agronomy8090158
  • Doolette, C. L., McLaughlin, M. J., Kirby, J. K., & Navarro, D. A. (2015). Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake. Journal of Hazardous Materials, 300, 788–795. doi:10.1016/j.jhazmat.2015.08.012
  • Eivazi, F., Afrasiabi, Z., & Elizabeth, J. O. S. E. (2018). Effects of silver nanoparticles on the activities of soil enzymes involved in carbon and nutrient cycling. Pedosphere, 28(2), 209–214. doi:10.1016/S1002-0160(18)60019-0
  • Fajardo, C., Gil-Díaz, M., Costa, G., Alonso, J., Guerrero, A. M., Nande, M., … Martín, M. (2015). Residual impact of aged nZVI on heavy metal-polluted soils. Science of the Total Environment, 535, 79–84. doi:10.1016/j.scitotenv.2015.03.067
  • Fajardo, C., Ortíz, L. T., Rodríguez-Membibre, M. L., Nande, M., Lobo, M. C., & Martin, M. (2012). Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere, 86(8), 802–808. doi:10.1016/j.chemosphere.2011.11.041
  • Fayiga, A., & Saha, U. (2017). Nanoparticles in biosolids: Effect on soil health and crop growth. Peertechz Journal of Environmental Science and Toxicology, 2(2), 59–67. doi:10.17352/pjest.000013
  • Feng, X., Yan, Y., Wan, B., Li, W., Jaisi, D. P., Zheng, L., … Liu, F. (2016). Enhanced dissolution and transformation of ZnO nanoparticles: The role of inositol hexakisphosphate. Environmental Science & Technology, 50(11), 5651–5660. doi:10.1021/acs.est.6b00268
  • Feng, Z. V., Gunsolus, I. L., Qiu, T. A., Hurley, K. R., Nyberg, L. H., Frew, H., … Haynes, C. L. (2015). Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria. Chemical Science, 6(9), 5186–5196. doi:10.1039/C5SC00792E
  • Fernandes, J. P., Almeida, C. M. R., Andreotti, F., Barros, L., Almeida, T., & Mucha, A. P. (2017). Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes. Science of the Total Environment, 581, 801–810. doi:10.1016/j.scitotenv.2017.01.015
  • Fletcher, N. D., Lieb, H. C., & Mullaugh, K. M. (2019). Stability of silver nanoparticle sulfidation products. Science of the Total Environment, 648, 854–860. doi:10.1016/j.scitotenv.2018.08.239
  • Frenk, S., Ben-Moshe, T., Dror, I., Berkowitz, B., & Minz, D. (2013). Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One., 8(12), e84441. doi:10.1371/journal.pone.0084441
  • Gao, X., Avellan, A., Laughton, S., Vaidya, R., Rodrigues, S. M., Casman, E. A., & Lowry, G. V. (2018). CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in Rhizosphere soil. Environmental Science & Technology, 52(5), 2888–2897. doi:10.1021/acs.est.7b05816
  • Ge, Y., Schimel, J. P., & Holden, P. A. (2011). Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environmental Science & Technology, 45(4), 1659–1664. doi:10.1021/es103040t
  • Ge, Y., Schimel, J. P., & Holden, P. A. (2012). Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Applied and Environmental Microbiology, 78(18), 6749–6758. doi:10.1128/AEM.00941-12
  • Giannousi, K., Avramidis, I., & Dendrinou-Samara, C. (2013). Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Advances, 3(44), 21743–21752. doi:10.1039/c3ra42118j
  • Giese, B., Klaessig, F., Park, B., Kaegi, R., Steinfeldt, M., Wigger, H., … Gottschalk, F. (2018). Risks, release and concentrations of engineered nanomaterial in the environment. Scientific Reports, 8(1), 1565. doi:10.1038/s41598-018-19275-4
  • Gogos, A., Thalmann, B., Voegelin, A., & Kaegi, R. (2017). Sulfidation kinetics of copper oxide nanoparticles. Environmental Science: Nano, 4(8), 1733–1741. doi:10.1039/C7EN00309A
  • Gold, K., Slay, B., Knackstedt, M., & Gaharwar, A. K. (2018). Antimicroibal activity of metal and metal-oxide based nanoparticles. Advanced Therapeutics, 1(3), 1700033. doi:10.1002/adtp.201700033
  • Grün, A. L., Straskraba, S., Schulz, S., Schloter, M., & Emmerling, C. (2018). Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass, enzyme activity, and functional genes involved in the nitrogen cycle of loamy soil. Journal of Environmental Sciences, 69, 12–22. doi:10.1016/j.jes.2018.04.013
  • Guo, B., Jiang, J., Serem, W., Sharma, V. K., & Ma, X. (2019). Attachment of cerium oxide nanoparticles of different surface charges to kaolinite: Molecular and atomic mechanisms. Environmental Research, 177, 108645.
  • Hallmark, B. L. (2017). Impact of CeO2 Nanoparticles and Sodium Chloride (NaCl) on soil water potential and distribution (M.S. thesis). Texas A&M University.
  • He, S., Feng, Y., Ni, J., Sun, Y., Xue, L., Feng, Y., … Yang, L. (2016). Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere, 147, 195–202. doi:10.1016/j.chemosphere.2015.12.055
  • He, S., Feng, Y., Ren, H., Zhang, Y., Gu, N., & Lin, X. (2011). The impact of iron oxide magnetic nanoparticles on the soil bacterial community. Journal of Soils and Sediments, 11(8), 1408–1417. doi:10.1007/s11368-011-0415-7
  • Jassby, D., Su, Y., Kim, C., Ashworth, V., Adeleye, A. S., Rolshausen, P., … White, J. (2019). Delivery, uptake, fate, and transport of engineered nanoparticles in plants: A critical review and data analysis. Environmental Science: Nano, 6(8), 2311–2331. doi:10.1039/C9EN00461K
  • Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications, 2018, 1–18. doi:10.1155/2018/1062562
  • Jiao, W., Chen, W., Chang, A. C., & Page, A. L. (2012). Environmental risks of trace elements associated with long-term phosphate fertilizers applications: A review. Environmental Pollution, 168, 44–53. doi:10.1016/j.envpol.2012.03.052
  • Jośko, I., Oleszczuk, P., Dobrzyńska, J., Futa, B., Joniec, J., & Dobrowolski, R. (2019). Long-term effect of ZnO and CuO nanoparticles on soil microbial community in different types of soil. Geoderma, 352, 204–212. doi:10.1016/j.geoderma.2019.06.010
  • Kah, M., Kookana, R. S., Gogos, A., & Bucheli, T. D. (2018). A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology, 13(8), 677–684. doi:10.1038/s41565-018-0131-1
  • Kalaiselvi, D., Mohankumar, A., Shanmugam, G., Nivitha, S., & Sundararaj, P. (2019). Green synthesis of silver nanoparticles using latex extract of Euphorbia tirucalli: A novel approach for the management of root knot nematode, Meloidogyne incognita. Crop Protection, 117, 108–114. doi:10.1016/j.cropro.2018.11.020
  • Keller, A. A., & Lazareva, A. (2013). Predicted releases of engineered nanomaterials: From global to regional to local. Environmental Science & Technology Letters, 1(1), 65–70. doi:10.1021/ez400106t
  • Kent, R. D., Oser, J. G., & Vikesland, P. J. (2014). Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant. Environmental Science & Technology, 48(15), 8564–8572. doi:10.1021/es404989t
  • Kim, B., Park, C. S., Murayama, M., & Hochella, M. F. Jr, (2010). Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environmental Science & Technology, 44(19), 7509–7514. doi:10.1021/es101565j
  • Kraas, M., Schlich, K., Knopf, B., Wege, F., Kägi, R., Terytze, K., & Hund-Rinke, K. (2017). long-term effects of sulfidized silver nanoparticles in sewage sludge on soil microflora. Environmental Toxicology and Chemistry, 36(12), 3305–3313. doi:10.1002/etc.3904
  • Lowry, G. V., Avellan, A., & Gilbertson, L. M. (2019). Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature Nanotechnology, 14(6), 517–522. doi:10.1038/s41565-019-0461-7
  • Lv, J., Christie, P., & Zhang, S. (2019). Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environmental Science: Nano, 6(1), 41–59.
  • Lv, J., Zhang, S., Luo, L., Han, W., Zhang, J., Yang, K., & Christie, P. (2012). Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Environmental Science & Technology, 46(13), 7215–7221. doi:10.1021/es301027a
  • Ma, R., Levard, C., Michel, F. M., Brown, G. E. Jr., & Lowry, G. V. (2013). Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility. Environmental Science & Technology, 47(6), 2527–2534. doi:10.1021/es3035347
  • Ma, X., Geiser-Lee, J., Deng, Y., & Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Science of the Total Environment, 408(16), 3053–3061. doi:10.1016/j.scitotenv.2010.03.031
  • Markiewicz, M., Kumirska, J., Lynch, I., Matzke, M., Koser, J., Bemowsky, S., … Stolte, S. (2018). Changing environments and biomolecule coronas: Consequences and challenges for the design of environmentally acceptable engineered nanoparticles. Green Chemistry, 20(18), 4133–4168. doi:10.1039/C8GC01171K
  • Masrahi, A., VandeVoort, A. R., & Arai, Y. (2014). Effects of silver nanoparticle on soil-nitrification processes. Archives of Environmental Contamination and Toxicology, 66(4), 504–513. doi:10.1007/s00244-013-9994-1
  • McGee, C. F., Storey, S., Clipson, N., & Doyle, E. (2017). Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. Ecotoxicology, 26(3), 449–458. doi:10.1007/s10646-017-1776-5
  • McKee, M. S., & Filser, J. (2016). Impacts of metal-based engineered nanomaterials on soil communities. Environmental Science: Nano, 3(3), 506–533. doi:10.1039/C6EN00007J
  • Mushtaq, A., Jamil, N., Rizwan, S., Mandokhel, F., Riaz, M., Hornyak, G. L., … Naeem Shahwani, M. (2018). Engineered silica nanoparticles and silica nanoparticles containing controlled release fertilizer for drought and saline areas. IOP Conference Series: Materials Science and Engineering, 414(1), 12029. doi:10.1088/1757-899X/414/1/012029
  • Ng, C. W. W., & Coo, J. L. (2015). Hydraulic conductivity of clay mixed with nanomaterials. Canadian Geotechnical Journal, 52(6), 808–811. doi:10.1139/cgj-2014-0313
  • Ouyang, Y., Reeve, J. R., & Norton, J. M. (2018). Soil enzyme activities and abundance of microbial functional genes involved in nitrogen transformations in an organic farming system. Biology and Fertility of Soils, 54(4), 437–450. doi:10.1007/s00374-018-1272-y
  • Pawlett, M., Ritz, K., Dorey, R. A., Rocks, S., Ramsden, J., & Harris, J. A. (2013). The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environmental Science and Pollution Research, 20(2), 1041–1049.
  • Philippe, A., & Schaumann, G. E. (2014). Interactions of dissolved organic matter with natural and engineered inorganic colloids: A review. Environmental Science & Technology, 48(16), 8946–8962. doi:10.1021/es502342r
  • Poynton, H. C., Chen, C., Alexander, S. L., Major, K. M., Blalock, B. J., & Unrine, J. M. (2019). Enhanced toxicity of environmentally transformed ZnO nanoparticles relative to Zn ions in the epibenthic amphipod Hyalella azteca. Environmental Science: Nano, 6(1), 325–340. doi:10.1039/C8EN00755A
  • Pulido-Reyes, G., Leganes, F., Fernandez-Pinas, F., & Rosal, R. (2017). Bio-nano interface and environment: A critical review. Environmental Toxicology & Chemistry, 36(12), 3183–3193.
  • Qi, L., Ge, Y., Xia, T., He, J. Z., Shen, C., Wang, J., & Liu, Y. J. (2019). Rare earth oxide nanoparticles promote soil microbial antibiotic resistance by selectively enriching antibiotic resistance genes. Environmental Science: Nano, 6(2), 456–466. doi:10.1039/C8EN01129J
  • Raliya, R., Tarafdar, J. C., & Biswas, P. (2016). Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. Journal of Agricultural and Food Chemistry, 64(16), 3111–3118. doi:10.1021/acs.jafc.5b05224
  • Rashid, M. I., Shahzad, T., Shahid, M., Imran, M., Dhavamani, J., Ismail, I. M. I., … Almeelbi, T. (2017). Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil. Scientific Reports, 7(1), 41965. doi:10.1038/srep41965
  • Rashid, M. I., Shahzad, T., Shahid, M., Ismail, I. M., Shah, G. M., & Almeelbi, T. (2017). Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil. Journal of Hazardous Materials, 324, 298–305. doi:10.1016/j.jhazmat.2016.10.063
  • Read, D. S., Matzke, M., Gweon, H. S., Newbold, L. K., Heggelund, L., Ortiz, M. D., … Svendsen, C. (2016). Soil pH effects on the interactions between dissolved zinc, non-nano-and nano-ZnO with soil bacterial communities. Environmental Science and Pollution Research, 23(5), 4120–4128. doi:10.1007/s11356-015-4538-z
  • Reyes, V. C., Opot, S. O., & Mahendra, S. (2015). Planktonic and biofilm‐grown nitrogen‐cycling bacteria exhibit different susceptibilities to copper nanoparticles. Environmental Toxicology and Chemistry, 34(4), 887–897. doi:10.1002/etc.2867
  • Rinot, O., Levy, G. J., Steinberger, Y., Svoray, T., & Eshel, G. (2019). Soil health assessment: A critical review of current methodologies and a proposed new approach. Science of the Total Environment, 648, 1484–1491. doi:10.1016/j.scitotenv.2018.08.259
  • Rossi, L., Sharifan, H., Zhang, W., Schwab, A. P., & Ma, X. (2018). Mutual effects and in planta accumulation of co-existing cerium oxide nanoparticles and cadmium in hydroponically grown soybean (Glycine max (L.) Merr.). Environmental Science: Nano, 5(1), 150–157. doi:10.1039/C7EN00931C
  • Sahoo, S., Maiti, M., Ganguly, A., Jacob George, J., & Bhowmick, A. K. (2007). Effect of zinc oxide nanoparticles as cure activator on the properties of natural rubber and nitrile rubber. Journal of Applied Polymer Science, 105(4), 2407–2415. doi:10.1002/app.26296
  • Schmitt, D., Taylor, H. E., Aiken, G. R., Roth, D. A., & Frimmel, F. H. (2002). Influence of natural organic matter on the adsorption of metal ions onto clay minerals. Environmental Science & Technology, 36(13), 2932–2938. doi:10.1021/es010271p
  • Scott, N. R., Chen, H., & Cui, H. (2018). Nanotechnology applications and implications of agrochemicals toward sustainable agriculture and food systems. Journal of Agricultural and Food Chemistry, 66(26), 6451–6456.
  • Šebesta, M., Nemček, L., Urík, M., Kolenčík, M., Bujdoš, M., Vávra, I., … Matúš, P. (2020). Partitioning and stability of ionic, nano-and microsized zinc in natural soil suspensions. Science of the Total Environment, 700, 134445. doi:10.1016/j.scitotenv.2019.134445
  • Seeber, J., Seeber, G. U. H., Langel, R., Scheu, S., & Meyer, E. (2008). The effect of macro-invertebrates and plant litter of different quality on the release of N from litter to plant on alpine pastureland. Biology and Fertility of Soils, 44(5), 783–790. doi:10.1007/s00374-008-0282-6
  • Servin, A. D., Castillo-Michel, H., Hernandez-Viezcas, J. A., De Nolf, W., De La Torre-Roche, R., Pagano, L., … White, J. C. (2018). Bioaccumulation of CeO2 nanoparticles by earthworms in biochar-amended soil: A synchrotron microspectroscopy study. Journal of Agricultural and Food Chemistry, 66(26), 6609–6618. doi:10.1021/acs.jafc.7b04612
  • Servin, A., Elmer, W., Mukherjee, A., De la Torre-Roche, R., Hamdi, H., White, J. C., … Dimkpa, C. (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 17(2), 92. doi:10.1007/s11051-015-2907-7
  • Sharifan, H., Wang, X., Guo, B., & Ma, X. (2018). Investigation on the modification of physicochemical properties of cerium oxide nanoparticles through adsorption of Cd and As (III)/As (V). ACS Sustainable Chemistry & Engineering, 6(10), 13454–13461. doi:10.1021/acssuschemeng.8b03355
  • Shipitalo, M., & Bayon, R. (2004). Quantifying the effects of earthworms on soil aggregation and porosity. Earthworm Ecology, 10, 183–200.
  • Shoults-Wilson, W. A., Reinsch, B. C., & Tsyusko, O. V. (2011). Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Science Society of America Journal, 775, 365–377. doi:10.2136/sssaj2010.0127nps
  • Shoults-Wilson, W. A., Reinsch, B. C., Tsyusko, O. V., Bertsch, P. M., Lowry, G. V., & Unrine, J. M. (2011). Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology, 5(3), 432–444. doi:10.3109/17435390.2010.537382
  • Simonin, M., Cantarel, A. A., Crouzet, A., Gervaix, J., Martins, J. M., & Richaume, A. (2018). Negative effects of copper oxide nanoparticles on carbon and nitrogen cycle microbial activities in contrasting agricultural soils and in presence of plants. Frontiers in Microbiology, 9, 3102. doi:10.3389/fmicb.2018.03102
  • Simonin, M., Martins, J. M., Le Roux, X., Uzu, G., Calas, A., & Richaume, A. (2017). Toxicity of TiO2 nanoparticles on soil nitrification at environmentally relevant concentrations: Lack of classical dose–response relationships. Nanotoxicology, 11(2), 247–255. doi:10.1080/17435390.2017.1290845
  • Smijs, T. G., & Pavel, S. (2011). Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnology, Science and Applications, 4, 95–112. doi:10.2147/NSA.S19419
  • Starnes, D., Unrine, J., Chen, C., Lichtenberg, S., Starnes, C., Svendsen, C., … Tsyusko, O. (2019). Toxicogenomic responses of Caenorhabditis elegans to pristine and transformed zinc oxide nanoparticles. Environmental Pollution, 247, 917–926. doi:10.1016/j.envpol.2019.01.077
  • Stegemeier, J. P., Schwab, F., Colman, B. P., Webb, S. M., Newville, M., Lanzirotti, A., … Lowry, G. V. (2015). Speciation matters: Bioavailability of silver and silver sulfide nanoparticles to alfalfa (Medicago sativa). Environmental Science & Technology, 49(14), 8451–8460. doi:10.1021/acs.est.5b01147
  • Stevens, A. W. (2018). The economics of soil health. Food Policy., 80, 1–9. doi:10.1016/j.foodpol.2018.08.005
  • Stowers, C., King, M., Rossi, L., Zhang, W., Arya, A., & Ma, X. (2018). Initial sterilization of soil affected interactions of cerium oxide nanoparticles and soybean seedlings (Glycine max (L.) Merr.) in a greenhouse study. ACS Sustainable Chemistry & Engineering, 6(8), 10307–10314. doi:10.1021/acssuschemeng.8b01654
  • Taghipour, M., & Jalali, M. (2015). Effect of nanoparticles on kinetics release and fractionation of phosphorus. Journal of Hazardous Materials, 283, 359–370. doi:10.1016/j.jhazmat.2014.09.045
  • Tilston, E. L., Collins, C. D., Mitchell, G. R., Princivalle, J., & Shaw, L. J. (2013). Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Environmental Pollution, 173, 38–46. doi:10.1016/j.envpol.2012.09.018
  • United Nations. (2015). World population prospects: The 2015 revison, Key findings and advance tables. ESA/P/WP.241. United Nations, Department of Economic and Social Affairs, Population Division.
  • VandeVoort, A. R., & Arai, Y. (2012). Effect of silver nanoparticles on soil denitrification kinetics. Industrial Biotechnology, 8(6), 358–364. doi:10.1089/ind.2012.0026
  • Vindedahl, A. M., Strehlau, J. H., Arnold, W. A., & Penn, R. L. (2016). Organic matter and iron oxide nanoparticles: Aggregation, interactions, and reactivity. Environmental Science: Nano, 3(3), 494–505. doi:10.1039/C5EN00215J
  • Wang, X., Sun, W., & Ma, X. (2019). Differential impacts of copper oxide nanoparticles and Copper (II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa). Environmental Pollution, 252, 967–973. doi:10.1016/j.envpol.2019.06.052
  • Wang, Z., Von Dem Bussche, A., Kabadi, P. K., Kane, A. B., & Hurt, R. H. (2013). Biological and environmental transformations of copper-based nanomaterials. ACS Nano, 7(10), 8715–8727. doi:10.1021/nn403080y
  • White, J. C., & Gardea-Torresdey, J. (2018). Achieving food security through the very small. Nature Nanotechnology, 13(8), 627–629. doi:10.1038/s41565-018-0223-y
  • Xu, C., Peng, C., Sun, L., Zhang, S., Huang, H., Chen, Y., & Shi, J. (2015). Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biology and Biochemistry, 86, 24–33. doi:10.1016/j.soilbio.2015.03.011
  • Yang, K., Lin, D., & Xing, B. (2009). Interactions of humic acid with nanosized inorganic oxides. Langmuir, 25(6), 3571–3576. doi:10.1021/la803701b
  • Yang, Y., Wang, J., Xiu, Z., & Alvarez, P. J. (2013). Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen‐cycling bacteria. Environmental Toxicology and Chemistry, 32(7), 1488–1494. doi:10.1002/etc.2230
  • You, T., Liu, D., Chen, J., Yang, Z., Dou, R., Gao, X., & Wang, L. (2018). Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. Journal of Soils and Sediments, 18(1), 211–221. doi:10.1007/s11368-017-1716-2
  • Zahra, Z., Arshad, M., Rafique, R., Mahmood, A., Habib, A., Qazi, I. A., & Khan, S. A. (2015). Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. Journal of Agricultural and Food Chemistry, 63(31), 6876–6882.
  • Zhang, W., Dan, Y., Shi, H., & Ma, X. (2017). Elucidating the mechanisms for plant uptake and in-planta speciation of cerium in radish (Raphanus sativus L.) treated with cerium oxide nanoparticles. Journal of Environmental Chemical Engineering, 5(1), 572–577.
  • Zhang, W., Schwab, A. P., White, J. C., & Ma, X. (2018). Impact of nanoparticle surface properties on the attachment of cerium oxide nanoparticles to sand and kaolin. Journal of Environmental Quality, 47(1), 129–138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.