1,347
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Case study on wastewater treatment technology of coal chemical industry in China

ORCID Icon, , &
Pages 1003-1044 | Published online: 25 Mar 2020

References

  • Aghapour, A. A., Moussavi, G., & Yaghmaeian, K. (2015). Degradation and COD removal of catechol in wastewater using the catalytic ozonation process combined with the cyclic rotating-bed biological reactor. Journal of Environmental Management, 157, 262–266. doi:10.1016/j.jenvman.2015.02.036
  • Aivalioti, M., Pothoulaki, D., Papoulias, P., & Gidarakos, E. (2012). Removal of BTEX, MYBE and TAME from aqueous solutions by adsorption onto raw and thermally treated lignite. Journal of Hazardous Materials, 207-208(6), 136–146. doi:10.1016/j.jhazmat.2011.04.084
  • An, H., Liu, Z., Cao, X., Teng, J., Miao, W., Liu, J., … Li, P. (2016). Mesoporous lignite-coke as an effective adsorbent for coal gasification wastewater treatment. Environmental Science: Water Research & Technology, 3(1), 169–174. doi:10.1039/C6EW00260A
  • Baeyens, J., & Van Puyvelde, F. (1994). Fluidized bed incineration of sewage sludge: A strategy for the design of the incinerator and the future for incinerator ash utilization. Journal of Hazardous Materials, 37(1), 179–190. doi:10.1016/0304-3894(94)85047-X
  • Béchet, Q., Sialve, B., Steyer, J. P., Shilton, A., & Guieysse, B. (2018). Comparative assessment of evaporation models in algal ponds. Algal Research, 35, 283–291. doi:10.1016/j.algal.2018.08.022
  • Boczkaj, G., & Fernandes, A. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chemical Engineering Journal, 320, 608–633. doi:10.1016/j.cej.2017.03.084
  • Boczkaj, G., Gągol, M., Klein, M., & Przyjazny, A. (2018). Effective method of treatment of effluents from production of bitumens under basic pH conditions using hydrodynamic cavitation aided by external oxidants. Ultrasonics Sonochemistry, 40, 969–979. doi:10.1016/j.ultsonch.2017.08.032
  • Bournazou, M. N. C., Hooshiar, K., Arellano-Garcia, H., Wozny, G., & Lyberatos, G. (2013). Model based optimization of the intermittent aeration profile for SBRs under partial nitrification. Water Research, 47(10), 3399–3410. doi:10.1016/j.watres.2013.03.044
  • Cheng, Y., Fan, W., & Guo, L. (2014). Coking wastewater treatment using a magnetic porous ceramsite carrier. Separation and Purification Technology, 130, 167–172. doi:10.1016/j.seppur.2014.04.030
  • Choi, D., Cho, K., & Jung, J. (2019). Optimization of nitrogen removal performance in a single-stage SBR based on partial nitritation and ANAMMOX. Water Research, 162, 105–114. doi:10.1016/j.watres.2019.06.044
  • Cooper, R. L., & Catchpole, J. R. (1973). The biological treatment of carbonization effluents-iv: The nitrification of coke-oven liquors and other trade wastes and the enhancement of biological oxidation of resistant organic compounds by the addition of growth factors to activated sludge. Water Research, 7(8), 1137–1153. doi:10.1016/0043-1354(73)90068-7
  • Di Fraia, S., Macaluso, A., Massarotti, N., & Vanoli, L. (2019). Energy, exergy and economic analysis of a novel geothermal energy system for wastewater and sludge treatment. Energy Conversion and Management, 195, 533–547. doi:10.1016/j.enconman.2019.05.035
  • El-Naas, M. H., Al-Zuhair, S., & Alhaija, M. A. (2010). Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon. Chemical Engineering Journal, 162(3), 997–1005. doi:10.1016/j.cej.2010.07.007
  • Fang, F., Han, H. J., Xu, C. Y., Zhao, Q., & Zhang, L. H. (2014). Degradation of phenolic compounds in coal gasification wastewater by biofilm reactor with isolated klebsiella sp. Journal of Harbin Institute of Technology, 21(3), 9–17.
  • Feng, D., Yu, Z., Chen, Y., & Qian, Y. (2009). Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation. Industrial & Engineering Chemistry Research, 48(12), 5816–5823. doi:10.1021/ie9002987
  • Fernandes, A., Gągol, M., Makoś, P., Ali Khan, J., & Boczkaj, G. (2019a). Integrated photocatalytic advanced oxidation system (TiO2/UV/O3/H2O2) for degradation of volatile organic compounds. Separation and Purification Technology, 224, 1–14. doi:10.1016/j.seppur.2019.05.012
  • Fernandes, A., Makoś, P., Wang, Z., & Boczkaj, G. (2019b). Synergistic effect of TiO2 photocatalytic advanced oxidation processes in the treatment of refinery effluents. Chemical Engineering Journal, 123488. doi:10.1016/j.cej.2019.123488
  • Fernandes, A., Makoś, P., & Boczkaj, G. (2018a). Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions. Journal of Cleaner Production, 195, 374–384. doi:10.1016/j.jclepro.2018.05.207
  • Fernandes, A., Makoś, P., Khan, J. A., & Boczkaj, G. (2018b). Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based advanced oxidation processes. Journal of Cleaner Production, 208, 54–64. doi:10.1016/j.jclepro.2018.10.081
  • Fu, H., Ji, P., Xia, Q., & Guo, X. (2017). A siphon well model for hydraulic performance optimization and bubble elimination. Nuclear Engineering and Design, 311, 43–49. doi:10.1016/j.nucengdes.2016.11.013
  • Gągol, M., Soltani, R. D. C., Przyjazny, A., & Boczkaj, G. (2019). Effective degradation of sulfide ions and organic sulfides in cavitation-based advanced oxidation processes (AOPs). Ultrasonics Sonochemistry, 58, 104610. doi:10.1016/j.ultsonch.2019.05.027
  • Gągol, M., Przyjazny, A., & Boczkaj, G. (2018a). Wastewater treatment by means of advanced oxidation processes based on cavitation - A review. Chemical Engineering Journal, 338, 599–627. doi:10.1016/j.cej.2018.01.049
  • Gągol, M., Przyjazny, A., & Boczkaj, G. (2018b). Effective method of treatment of industrial effluents under basic pH conditions using acoustic cavitation - A comprehensive comparison with hydrodynamic cavitation processes. Chemical Engineering and Processing - Process Intensification, 128, 103–113. doi:10.1016/j.cep.2018.04.010
  • Gao, X., Zhao, Y., Lu, S., Chen, Q., An, T., Han, X., & Zhuo, L. (2019). Impact of coal power production on sustainable water resources management in the coal-fired power energy bases of Northern China. Applied Energy, 250, 821–833. doi:10.1016/j.apenergy.2019.05.046
  • Geng, X., & Boufadel, M. C. (2015). Numerical modeling of water flow and salt transport in bare saline soil subjected to evaporation. Journal of Hydrology, 524, 427–438. doi:10.1016/j.jhydrol.2015.02.046
  • Ghatak, H. R. (2014). Advanced oxidation processes for the treatment of biorecalcitrant organics in wastewater. Critical Reviews in Environmental Science and Technology, 44(11), 1167–1219. doi:10.1080/10643389.2013.763581
  • Ji, Q., Tabassum, S., Hena, S., Silva, C. G., Yu, G., & Zhang, Z. (2016). A review on the coal gasification wastewater treatment technologies: Past, present and future outlook. Journal of Cleaner Production, 126, 38–55. doi:10.1016/j.jclepro.2016.02.147
  • Jia, S., Han, H., Zhuang, H., & Hou, B. (2016). The pollutants removal and bacterial community dynamics relationship within a full-scale British Gas/Lurgi coal gasification wastewater treatment using a novel system. Bioresource Technology, 200, 103–110. doi:10.1016/j.biortech.2015.10.005
  • Grady, Jr, C. P. L., Dang, J. S., Harvey, D. M., Jobbagy, A., & Wang, X. L. (1988). Determination of biodegradation kinetics through use of electrolytic respirometry. Water Science and Technology, 21(8–9), 957–968. doi:10.2166/wst.1989.0298
  • Kuschk, P., Stottmeister, U., Liu, Y. J., Wiessner, A., Kästner, M., & Müller, R. (2010). Batch methanogenic fermentation experiments of wastewater froma brown coal low-temperature coke plant. Journal of Environmental Sciences, 22(2), 192–197. doi:10.1016/S1001-0742(09)60092-9
  • Kuşçu, Ö. S., & Sponza, D. T. (2011). Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system. Journal of Hazardous Materials, 187(1-3), 222–234. doi:10.1016/j.jhazmat.2011.01.021
  • Laera, G., Cassano, D., Lopez, A., Pinto, A., Pollice, A., Ricco, G., & Mascolo, G. (2011). Removal of organics and degradation products from industrial wastewater by a membrane bioreactor integrated with ozone or UV/H2O2 treatment. Environmental Science & Technology, 46(2), 1010–1018. doi:10.1021/es202707w
  • Lee, E. H., Moon, K. E., & Cho, K. S. (2017). Long-term performance and bacterial community dynamics in biocovers for mitigating methane and malodorous gases. Journal of Biotechnology, 242, 1–10. doi:10.1016/j.jbiotec.2016.12.007
  • Li, K., Ma, W., Han, H., Xu, C., Han, Y., Wang, D., … Zhu, H. (2018). Selective recovery of salt from coal gasification brine by nanofiltration membranes. Journal of Environmental Management, 223, 306–313. doi:10.1016/j.jenvman.2018.06.032
  • Li, K., Shi, J., Xu, C., Han, Y., & Han, H. (2019a). Enhanced anaerobic degradation of quinoline, pyriding, and indole with polyurethane (PU), Fe3O4@PU, powdered activated carbon (PAC), Fe(OH)3@PAC, biochar, and Fe(OH)3@biochar and analysis of microbial succession in different reactors. Bioresource Technology, 289, 121487. doi:10.1016/j.biortech.2019.121866
  • Li, J., Wachemo, A. C., Yuan, H., Zuo, X., & Li, X. (2019b). Evaluation of system stability and anaerobic conversion performance for corn stover using combined pretreatment. Waste Management, 97, 52–62. doi:10.1016/j.wasman.2019.07.025
  • Luan, M., Jing, G., Piao, Y., Liu, D., & Jin, L. (2017). Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation. Arabian Journal of Chemistry, 10, S769–S776. doi:10.1016/j.arabjc.2012.12.003
  • Luo, G., Li, J., Li, Y., Wang, Z., Li, W. T., & Li, A. M. (2016). Performance, kinetics behaviors and microbial community of internal circulation anaerobic reactor treating wastewater with high organic loading rate: Role of external hydraulic circulation. Bioresource Technology, 222, 470–477. doi:10.1016/j.biortech.2016.10.023
  • Oller, I., Malato, S., & Sanchez-Perez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Science of the Total Environment, 409(20), 4141–4166. doi:10.1016/j.scitotenv.2010.08.061
  • Pan, L. Y., Liu, P., Ma, L. W., & Li, Z. (2012). A supply chain based assessment of water issues in the coal industry in China. Energy Policy, 48, 93–102. doi:10.1016/j.enpol.2012.03.063
  • Park, D., Lee, D. S., Kim, Y. M., & Park, J. M. (2008). Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility. Bioresource Technology, 99(6), 2092–2096. doi:10.1016/j.biortech.2007.03.027
  • Ramakrishnan, A., & Gupta, S. K. (2006). Anaerobic biogranulation in a hybrid reactor treating phenolic waste. Journal of Hazardous Materials, 137(3), 1488–1495. doi:10.1016/j.jhazmat.2006.04.034
  • Ramakrishnan, A., & Gupta, S. K. (2008). Effect of effluent recycling and shock loading on the biodegradation of complex phenolic mixture in hybrid UASB reactors. Bioresource Technology, 99(9), 3745–3753. doi:10.1016/j.biortech.2007.07.014
  • Rava, E., & Chirwa, E. (2016). Effect of carrier fill ratio on biofilm properties and performance of a hybrid fixed-film bioreactor treating coal gasification wastewater for the removal of COD, phenols and ammonia-nitrogen. Water Science and Technology, 73, 2461–2467. doi:10.2166/wst.2016.108
  • Ruskowitz, J. A., Suárez, F., Tyler, S. W., & Childress, A. E. (2014). Evaporation suppression and solar energy collection in a salt-gradient solar pond. Solar Energy, 99, 36–46. doi:10.1016/j.solener.2013.10.035
  • Shah, N. S., Khan, J. A., Sayed, M., Khan, Z. U. H., Rizwan, A. D., Muhammad, N., … Zaman, G. (2018). Solar light driven degradation of norfloxacin using as-synthesized Bi3+ and Fe2+ co-doped ZnO with the addition of HSO5−: Toxicities and degradation pathways investigation. Chemical Engineering Journal, 351, 841–855. doi:10.1016/j.cej.2018.06.111
  • Shi, J., Xu, C., Han, Y., & Han, H. (2019a). Enhanced anaerobic biodegradation efficiency and mechanism of quinoline, pyridine, and indole in coal gasification wastewater. Chemical Engineering Journal and the Biochemical Engineering Journal., 361, 1019–1029. doi:10.1016/j.cej.2018.12.162
  • Shi, J., Xu, C., Han, Y., & Han, H. (2019b). Anaerobic bioaugmentation hydrolysis of selected nitrogen heterocyclic compound in coal gasification wastewater. Bioresource Technology, 278, 223–230. doi:10.1016/j.biortech.2018.12.113
  • Shi, J., Xu, C., Han, Y., & Han, H. (2019c). Enhanced biodegradation of coal gasification wastewater with anaerobic biofilm on polyurethane (PU), powdered activated carbon (PAC), and biochar. Bioresource Technology, 289, 121487. doi:10.1016/j.biortech.2019.121487
  • Shi, J., Xu, C., Han, Y., & Han, H. (2019d). Enhanced anaerobic degradation of selected nitrogen heterocyclic compounds with the assistance of carboxymethyl cellulose. Science of the Total Environment, 689, 781–788. doi:10.1016/j.scitotenv.2019.06.469
  • Shi, J., Xu, C., Han, Y., & Han, H. (2019e). Enhanced anaerobic degradation of nitrogen heterocyclic compounds with methanol, sodium citrate, chlorella, spirulina, and carboxymethylcellulose as co-metabolic substances. Journal of Hazardous Materials, 2019, 121496. doi:10.1016/j.jhazmat.2019.121496
  • Shi, J., Han, Y., Xu, C., & Han, H. (2018). Biological coupling process for treatment of toxic and refractory compounds in coal gasification wastewater. Reviews in Environmental Science and Bio/Technology, 17(4), 765–790. doi:10.1007/s11157-018-9481-2
  • Shi, Z. S. Z., Fang, M. F. M., Zhou, C. Z. C., Wang, Q. W. Q., & Luo, Z. L. Z. (2011). Studies on the Extraction of Phenol from the Wastewater of Multi-generation System. International Conference on Computer Distributed Control & Intelligent Environmental Monitoring, 1303–1309.
  • Silva, C., González, D., & Suárez, F. (2017). An experimental and numerical study of evaporation reduction in a salt-gradient solar pond using floating discs. Solar Energy, 142, 204–214. doi:10.1016/j.solener.2016.12.036
  • Su, J. F., Zhang, Y. M., Liang, D. H., Wang, J. X., Wang, Z., & Li, M. (2019a). Performance and microbial community of an immobilized biofilm reactor (IBR) for Mn(II)-based autotrophic and mixotrophic denitrification. Bioresource Technology, 286, 121407. doi:10.1016/j.biortech.2019.121407
  • Su, J. F., Gao, C., Huang, T., Gao, Y., Bai, X., & He, L. (2019b). Characterization and mechanism of the Cd(II) removal by anaerobic denitrification bacterium Pseudomonas sp. H117. Chemosphere, 222, 970–979. doi:10.1016/j.chemosphere.2019.01.192
  • Su, J. F., Bai, Y. F., Huang, T. L., Wei, L., Gao, C. Y., & Wen, Q. (2019c). Multifunctional modified polyvinyl alcohol: A powerful biomaterial for enhancing bioreactor performance in nitrate, Mn(II) and Cd(II) removal. Water Research, 115152. doi:10.1016/j.watres.2019.115152
  • Tansel, B., & Pascual, B. (2011). Removal of emulsified fuel oils from brackish and pond water by dissolved air flotation with and without polyelectrolyte use: Pilot-scale investigation for estuarine and near shore applications. Chemosphere, 85(7), 1182–1186. doi:10.1016/j.chemosphere.2011.07.006
  • Tian, X., Ou, Q., Liu, J., Liang, Y., & Pui, D. Y. H. (2019). Influence of pre-stage filter selection and face velocity on the loading characteristics of a two-stage filtration system. Separation and Purification Technology, 224, 227–236. doi:10.1016/j.seppur.2019.05.031
  • Ülgüdür, N., Ergüder, T. H., Uludağ-Demirer, S., & Demirer, G. N. (2019). High-rate anaerobic treatment of digestate using fixed film reactors. Environmental Pollution, 252, 1622–1632. doi:10.1016/j.envpol.2019.06.115
  • Wang, M., Liu, H., & Dai, X. (2019). Dosage effects of lincomycin mycelial residues on lincomycin resistance genes and soil microbial communities. Environmental Pollution, 113392. doi:10.1016/j.envpol.2019.113392
  • Wang, D., Han, H., Han, Y., Li, K., & Zhu, H. (2017). Enhanced treatment of fischer-tropsch (f-t) wastewater using the up-flow anaerobic sludge blanket coupled with bioelectrochemical system: Effect of electric field. Bioresource Technology, 232, 18–26. doi:10.1016/j.biortech.2017.02.010
  • Wang, W., Han, H., Yuan, M., & Li, H. (2010). Enhanced anaerobic biodegradability of real coal gasification wastewater with methanol addition. Journal of Environmental Sciences, 22(12), 1868–1874. doi:10.1016/S1001-0742(09)60327-2
  • Wang, W., Han, H., Yuan, M., Li, H., Fang, F., & Wang, K. (2011). Treatment of coal gasification wastewater by a two-continuous UASB system with step-feed for COD and phenols removal. Bioresource Technology, 102(9), 5454–5460. doi:10.1016/j.biortech.2010.10.019
  • Wang, W., Han, H. J., & He, C. H. (2009). Nitrogen transformation in two-phase anaerobic system of monosodium glutamate wastewater treatment. Proceedings of the International Conference on Pipelines and Trenchless Technology; 361, 2110–2121. doi:10.1061/41073(361)224
  • Wang, X., Wang, S., Xue, T., Li, B., Dai, X., & Peng, Y. (2015). Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage. Water Research, 77, 191–200. doi:10.1016/j.watres.2015.03.019
  • Xu, X., Cao, D., Wang, Z., Liu, J., Gao, J., Sanchuan, M., & Wang, Z. (2019). Study on ultrasonic treatment for municipal sludge. Ultrasonics Sonochemistry, 57, 29–37. doi:10.1016/j.ultsonch.2019.05.008
  • Yilmaz, T., Yucel, A., Cakmak, Y., Uyanik, S., Yurtsever, A., & Ucar, D. (2019). Treatment of acidic mine drainage in up-flow sulfidogenic reactor: Metal recovery and the pH neutralization. Journal of Water Process Engineering, 32, 100916. doi:10.1016/j.jwpe.2019.100916
  • Yu, Z., Chen, Y., Feng, D., & Qian, Y. (2010). Process development, simulation, and industrial implementation of a new coal-gasification wastewater treatment installation for phenol and ammonia removal. Industrial & Engineering Chemistry Research, 49(6), 2874–2881. doi:10.1021/ie901958j
  • Yuan, X., Sun, H., & Guo, D. (2012). The removal of COD from coking wastewater using extraction replacement-biodegradation coupling. Desalination, 289, 45–50. doi:10.1016/j.desal.2012.01.002
  • Yuan, R., Jiang, M., Gao, S., Wang, Z., Wang, H., Boczkaj, G., … Li, Z. (2019). 3D mesoporous α-Co(OH)2 nanosheets electrodeposited on nickel foam: A new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation. Chemical Engineering Journal, 122447. doi:10.1016/j.cej.2019.122447
  • Zeng, J., Li, J., Gou, M., Xia, Z. Y., Sun, Z. Y., & Tang, Y. Q. (2019). Effective strategy for improving sludge treatment rate and microbial mechanisms during chromium bioleaching of tannery sludge. Process Biochemistry, 83, 159–167. doi:10.1016/j.procbio.2019.05.019
  • Zhang, J., Zhang, L., Miao, Y., Sun, Y., Zhang, Q., Wu, L., & Peng, Y. (2019). Enhancing sewage nitrogen removal via anammox and endogenous denitrification: Significance of anaerobic/oxic/anoxic operation mode. Bioresource Technology, 289, 121665. doi:10.1016/j.biortech.2019.121665
  • Zhao, Q., Han, H., Xu, C., Zhuang, H., Fang, F., & Zhang, L. (2013). Effect of powdered activated carbon technology on short-cut nitrogen removal for coal gasification wastewater. Bioresource Technology, 142, 179–185. doi:10.1016/j.biortech.2013.04.051
  • Zhao, Q., & Liu, Y. (2016). State of the art of biological processes for coal gasification wastewater treatment. Biotechnology Advances, 34(5), 1064–1072. doi:10.1016/j.biotechadv.2016.06.005
  • Zheng, M., Xu, C., Zhong, D., Han, Y., Zhang, Z., Zhu, H., & Han, H. (2019). Synergistic degradation on aromatic cyclic organics of coal pyrolysis wastewater by lignite activated coke-active sludge process. Chemical Engineering Journal, 364, 410–419. doi:10.1016/j.cej.2019.01.121
  • Zhou, H., Li, H., Wan, J., Rong, Y., Yu, X., Li, H., … Lu, X. (2016). Microwave-enhanced catalytic degradation of p-nitrophenol in soil using MgFe2O4. Chemical Engineering Journal, 284, 54–60. doi:10.1016/j.cej.2015.08.103
  • Zhu, H., Han, Y., Xu, C., Han, H., & Ma, W. (2018). Overview of the state of the art of processes and technical bottlenecks for coal gasification wastewater treatment. Science of the Total Environment, 637-638, 1108–1126. doi:10.1016/j.scitotenv.2018.05.054
  • Zhuang, H., Han, H., Xu, P., Hou, B., Jia, S., Wang, D., & Li, K. (2015). Biodegradation of quinoline by Streptomyces sp. N01 immobilized on bamboo carbon supported Fe3O4 nanoparticles. Biochemical Engineering Journal, 99, 44–47. doi:10.1016/j.bej.2015.03.004
  • Zhuang, H., Hong, X., Han, H., & Shan, S. (2016). Effect of pure oxygen fine bubbles on the organic matter removal and bacterial community evolution treating coal gasification wastewater by membrane bioreactor. Bioresource Technology, 221, 262–269. doi:10.1016/j.biortech.2016.09.029
  • Zhuang, H., Zhu, H., Shan, S., Zhang, L., Fang, C., & Shi, Y. (2018). Potential enhancement of direct interspecies electron transfer for anaerobic degradation of coal gasification wastewater using up-flow anaerobic sludge blanket (UASB) with nitrogen doped sewage sludge carbon assisted. Bioresource Technology, 270, 230–235. doi:10.1016/j.biortech.2018.09.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.