1,367
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Engineered/designer hierarchical porous carbon materials for organic pollutant removal from water and wastewater: A critical review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2295-2328 | Published online: 24 Jun 2020

References

  • Awad, Y. M., Kim, S.-C., Abd El-Azeem, S. A. M., Kim, K.-H., Kim, K.-R., Kim, K., Jeon, C., Lee, S. S., & Ok, Y. S. (2014). Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environmental Earth Sciences, 71(3), 1433–1440. https://doi.org/10.1007/s12665-013-2548-z
  • Baumann, T. F., Worsley, M. A., Han, T. Y.-J., & Satcher, J. H. (2008). High surface area carbon aerogel monoliths with hierarchical porosity. Journal of Non-Crystalline Solids, 354(29), 3513–3515. https://doi.org/10.1016/j.jnoncrysol.2008.03.006
  • Béguin, F., Presser, V., Balducci, A., & Frackowiak, E. (2014). Carbons and electrolytes for advanced supercapacitors. Advanced Materials, 26(14), 2219–2251. https://doi.org/10.1002/adma.201304137
  • Borchardt, L., Zhu, Q.-L., Casco, M. E., Berger, R., Zhuang, X., Kaskel, S., Feng, X., & Xu, Q. (2017). Toward a molecular design of porous carbon materials. Materials Today, 20(10), 592–610. https://doi.org/10.1016/j.mattod.2017.06.002
  • Bulavová, P., Parmentier, J., & Slovák, V. (2018). Facile synthesis of soft-templated carbon monoliths with hierarchical porosity for fast adsorption from liquid media. Microporous and Mesoporous Materials, 272, 155–165. https://doi.org/10.1016/j.micromeso.2018.06.024
  • Chai, G. S., Shin, I. S., & Yu, J.-S. (2004). Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells. Advanced Materials, 16(22), 2057–2061. https://doi.org/10.1002/adma.200400283
  • Chang, J., Gao, Z., Wang, X., Wu, D., Xu, F., Wang, X., Guo, Y., & Jiang, K. (2015). Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochimica Acta, 157, 290–298. https://doi.org/10.1016/j.electacta.2014.12.169
  • Chang, Z., Dai, J., Xie, A., He, J., Zhang, R., Tian, S., Yan, Y., Li, C., Xu, W., & Shao, R. (2017). From lignin to three-dimensional interconnected hierarchically porous carbon with high surface area for fast and superhigh-efficiency adsorption of sulfamethazine. Industrial & Engineering Chemistry Research, 56(33), 9367–9375. https://doi.org/10.1021/acs.iecr.7b02312
  • Chen, A., Yu, Y., Li, Y., Wang, Y., Li, Y., Li, S., & Xia, K. (2016). Synthesis of macro-mesoporous carbon materials and hollow core/mesoporous shell carbon spheres as supercapacitors. Journal of Materials Science, 51(9), 4601–4608. https://doi.org/10.1007/s10853-016-9774-1
  • Chen, H., Wang, G., Chen, L., Dai, B., & Yu, F. (2018). Three-dimensional honeycomb-like porous carbon with both interconnected hierarchical porosity and nitrogen self-doping from cotton seed husk for supercapacitor electrode. Nanomaterials, 8(6), 412. https://doi.org/10.3390/nano8060412
  • Chen, W., Zhang, H., Huang, Y., & Wang, W. (2010). A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors. Journal of Materials Chemistry, 20(23), 4773. https://doi.org/10.1039/c0jm00382d
  • Dai, J., Qin, L., Zhang, R., Xie, A., Chang, Z., Tian, S., Li, C., & Yan, Y. (2018). Sustainable bovine bone-derived hierarchically porous carbons with excellent adsorption of antibiotics: Equilibrium, kinetic and thermodynamic investigation. Powder Technology, 331, 162–170. https://doi.org/10.1016/j.powtec.2018.03.005
  • Duffy, E., He, X., Nesterenko, P. N., & Paull, B. (2015). Hierarchical porous graphitic carbon monoliths with detonation nanodiamonds: Synthesis, characterisation and adsorptive properties. Journal of Materials Science, 50(19), 6245–6259. https://doi.org/10.1007/s10853-015-9195-6
  • Ebele, A. J., Abou-Elwafa Abdallah, M., & Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants, 3(1), 1–16. https://doi.org/10.1016/j.emcon.2016.12.004
  • Flexer, V., Brun, N., Destribats, M., Backov, R., & Mano, N. (2013). A novel three-dimensional macrocellular carbonaceous biofuel cell. Physical Chemistry Chemical Physics: PCCP, 15(17), 6437–6445. https://doi.org/10.1039/c3cp50807b
  • Fu, J., Lee, W.-N., Coleman, C., Nowack, K., Carter, J., & Huang, C.-H. (2019). Removal of pharmaceuticals and personal care products by two-stage biofiltration for drinking water treatment. The Science of the Total Environment, 664, 240–248. https://doi.org/10.1016/j.scitotenv.2019.02.026
  • Fu, R., Li, Z., Liang, Y., Li, F., Xu, F., & Wu, D. (2011). Hierarchical porous carbons: Design, preparation, and performance in energy storage. New Carbon Materials, 26(3), 171–179. https://doi.org/10.1016/S1872-5805(11)60074-7
  • Fuertes, A. B., & Sevilla, M. (2015). High-surface area carbons from renewable sources with a bimodal micro-mesoporosity for high-performance ionic liquid-based supercapacitors. Carbon N Carbon, 94, 41–52. https://doi.org/10.1016/j.carbon.2015.06.028
  • Gao, A., Guo, N., Yan, M., Li, M., Wang, F., & Yang, R. (2018). Hierarchical porous carbon activated by CaCO3 from pigskin collagen for CO2 and H2 adsorption. Microporous and Mesoporous Materials, 260, 172–179. https://doi.org/10.1016/j.micromeso.2017.08.048
  • Gao, M., Shih, C.-C., Pan, S.-Y., Chueh, C.-C., & Chen, W.-C. (2018). Advances and challenges of green materials for electronics and energy storage applications: From design to end-of-life recovery. Journal of Materials Chemistry A, 6(42), 20546–20563. https://doi.org/10.1039/C8TA07246A
  • García, A., Nieto, A., Vila, M., & Vallet-Regí, M. (2013). Easy synthesis of ordered mesoporous carbon containing nickel nanoparticles by a low temperature hydrothermal method. Carbon N Carbon, 51, 410–418. https://doi.org/10.1016/j.carbon.2012.08.074
  • Górka, J., & Jaroniec, M. (2011). Hierarchically porous phenolic resin-based carbons obtained by block copolymer-colloidal silica templating and post-synthesis activation with carbon dioxide and water vapor. Carbon N Carbon, 49(1), 154–160. https://doi.org/10.1016/j.carbon.2010.08.055
  • Guo, N., Li, M., Sun, X., Wang, F., & Yang, R. (2017). Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities. Green Chemistry, 19(11), 2595–2602. https://doi.org/10.1039/C7GC00506G
  • Guo, T., Gao, J., Xu, M., Ju, Y., Li, J., & Xue, H. (2019). Hierarchically porous organic materials derived from copolymers: Preparation and electrochemical applications. Polymer Reviews., 59(1), 149–186. https://doi.org/10.1080/15583724.2018.1488730
  • He, X., Zeng, M., Brabazon, D. (2017). Recent progress in fabrication of nanostructured carbon monolithic materials. In: Reference module in materials science and materials engineering. Elsevier. https://doi.org/10.1016/b978-0-12-803581-8.04066-2
  • Hu, J., Noked, M., Gillette, E., Han, F., Gui, Z., Wang, C., & Lee, S. B. (2015). Dual-template synthesis of ordered mesoporous carbon/Fe 2 O 3 nanowires: High porosity and structural stability for supercapacitors. Journal of Materials Chemistry A, 3(43), 21501–21510. https://doi.org/10.1039/C5TA06372H
  • Hu, L., Zhu, Q., Wu, Q., Li, D., An, Z., Xu, B. (2018). Natural biomass-derived hierarchical porous carbon synthesized by an in situ hard template coupled with NaOH activation for ultrahigh rate supercapacitors, 7. https://doi.org/10.1021/acssuschemeng.8b02299
  • Huang, C.-H., & Doong, R.-A. (2012). Sugarcane bagasse as the scaffold for mass production of hierarchically porous carbon monoliths by surface self-assembly. Microporous and Mesoporous Materials, 147(1), 47–52. https://doi.org/10.1016/j.micromeso.2011.05.027
  • Igalavithana, A. D., Mandal, S., Niazi, N. K., Vithanage, M., Parikh, S. J., Mukome, F. N. D., Rizwan, M., Oleszczuk, P., Al-Wabel, M., Bolan, N., Tsang, D. C. W., Kim, K.-H., & Ok, Y. S. (2017). Advances and future directions of biochar characterization methods and applications. Critical Reviews in Environmental Science and Technology, 47(23), 2275–2330. https://doi.org/10.1080/10643389.2017.1421844
  • Ilnicka, A., & Lukaszewicz, J. P. (2015). Synthesis of N-rich microporous carbon materials from chitosan by alkali activation using Na2CO3. Materials Science and Engineering: B, 201, 66–71. https://doi.org/10.1016/j.mseb.2015.08.002
  • Ji, L., Liu, F., Xu, Z., Zheng, S., & Zhu, D. (2010). Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro- and mesoporous carbons. Environmental Science & Technology, 44(8), 3116–3122. https://doi.org/10.1021/es903716s
  • Juhl, A. C., Elverfeldt, C.-P., Hoffmann, F., & Fröba, M. (2018). Porous carbon monoliths with pore sizes adjustable between 10 nm and 2 μm prepared by phase separation – New insights in the relation between synthesis composition and resulting structure. Microporous and Mesoporous Materials, 255, 271–280. https://doi.org/10.1016/j.micromeso.2017.07.040
  • Kaur, P., Verma, G., & Sekhon, S. S. (2019). Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Progress in Materials Science, 102, 1–71. https://doi.org/10.1016/j.pmatsci.2018.12.002
  • Knox, J. H., Kaur, B., & Millward, G. R. (1986). Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A, 352, 3–25. https://doi.org/10.1016/S0021-9673(01)83368-9
  • Lee, D., Jung, J.-Y., Jung, M.-J., & Lee, Y.-S. (2015). Hierarchical porous carbon fibers prepared using a SiO2 template for high-performance EDLCs. Chemical Engineering Journal and the Biochemical Engineering Journal, 263, 62–70. https://doi.org/10.1016/j.cej.2014.10.070
  • Lee, J., Kim, J., & Hyeon, T. (2006). Recent progress in the synthesis of porous carbon materials. Advanced Materials, 18(16), 2073–2094. https://doi.org/10.1002/adma.200501576
  • Li, H., Yuan, D., Tang, C., Wang, S., Sun, J., Li, Z., Tang, T., Wang, F., Gong, H., & He, C. (2016). Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon N Carbon, 100, 151–157. https://doi.org/10.1016/j.carbon.2015.12.075
  • Li, J., Bai, H., Li, X., Li, W., Zhai, J., Li, M., & Xi, G. (2018). Hierarchical porous carbon microspheres with superhydrophilic surface for efficient adsorption and detection of water-soluble contaminants. Journal of Materials Chemistry A, 6(25), 12153–12161. https://doi.org/10.1039/C8TA02143K
  • Li, N., Zheng, M., Feng, S., Lu, H., Zhao, B., Zheng, J., Zhang, S., Ji, G., & Cao, J. (2013). Fabrication of hierarchical macroporous/mesoporous carbons via the dual-template method and the restriction effect of hard template on shrinkage of mesoporous polymers. The Journal of Physical Chemistry C, 117(17), 8784–8792. https://doi.org/10.1021/jp3127219
  • Li, Z., Gao, S., Mi, H., Lei, C., Ji, C., Xie, Z., Yu, C., & Qiu, J. (2019). High-energy quasi-solid-state supercapacitors enabled by carbon nanofoam from biowaste and high-voltage inorganic gel electrolyte. Carbon N Carbon, 149, 273–280. https://doi.org/10.1016/j.carbon.2019.04.056
  • Li, Z., Hu, X., Xiong, D., Li, B., Wang, H., & Li, Q. (2016). Facile synthesis of bicontinuous microporous/mesoporous carbon foam with ultrahigh specific surface area for supercapacitor application. Electrochimica Acta, 219, 339–349. https://doi.org/10.1016/j.electacta.2016.10.028
  • Liang, Z., Zhang, L., Liu, H., Zeng, J., Zhou, J., Li, H., & Xia, H. (2019). Soft-template assisted hydrothermal synthesis of size-tunable, N-doped porous carbon spheres for supercapacitor electrodes. Results in Physics, 12, 1984–1990. https://doi.org/10.1016/j.rinp.2019.01.074
  • Liu, D., Yuan, P., Tan, D., Liu, H., Wang, T., Fan, M., Zhu, J., & He, H. (2012). Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products. Journal of Colloid and Interface Science, 388(1), 176–184. https://doi.org/10.1016/j.jcis.2012.08.023
  • Liu, F., Wang, Z., Zhang, H., Jin, L., Chu, X., Gu, B., Huang, H., & Yang, W. (2019). Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin. Carbon N Carbon, 149, 105–116. https://doi.org/10.1016/j.carbon.2019.04.023
  • Liu, G., Ma, J., Li, X., & Qin, Q. (2009). Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments. Journal of Hazardous Materials, 164(2-3), 1275–1280. https://doi.org/10.1016/j.jhazmat.2008.09.038
  • Liu, H., Cao, C.-Y., Wei, F.-F., Jiang, Y., Sun, Y.-B., Huang, P.-P., & Song, W.-G. (2013). Fabrication of macroporous/mesoporous carbon nanofiber using CaCO 3 nanoparticles as dual purpose template and its application as catalyst support. The Journal of Physical Chemistry C, 117(41), 21426–21432. https://doi.org/10.1021/jp4078807
  • Liu, H., Wei, Y., Luo, J., Li, T., Wang, D., Luo, S., & Crittenden, J. C. (2019). 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water. Chemical Engineering Journal and the Biochemical Engineering Journal, 368, 639–648. https://doi.org/10.1016/j.cej.2019.03.007
  • Liu, Y. N., Zhang, J. N., Wang, H. T., Kang, X. H., & Bian, S. W. (2019). Boosting the electrochemical performance of carbon cloth negative electrodes by constructing hierarchically porous nitrogen-doped carbon nanofiber layers for all-solid-state asymmetric supercapacitors. Materials Chemistry Frontiers, 3(1), 25–31. https://doi.org/10.1039/C8QM00293B
  • Lu, A.-H., Li, W.-C., Schmidt, W., & Schüth, F. (2006). Fabrication of hierarchically structured carbon monoliths via self-binding and salt templating. Microporous and Mesoporous Materials, 95(1-3), 187–192. https://doi.org/10.1016/j.micromeso.2006.05.024
  • Martín-Jimeno, F. J., Suárez-García, F., Paredes, J. I., Enterría, M., Pereira, M. F. R., Martins, J. I., Figueiredo, J. L., Martínez-Alonso, A., & Tascón, J. M. D. (2017). A “nanopore lithography” strategy for synthesizing hierarchically micro/mesoporous carbons from ZIF-8/graphene oxide hybrids for electrochemical energy storage. ACS Applied Materials & Interfaces, 9(51), 44740–44755. https://doi.org/10.1021/acsami.7b16567
  • Meng, Y., Gu, D., Zhang, F., Shi, Y., Yang, H., Li, Z., Yu, C., Tu, B., & Zhao, D. (2005). Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angewandte Chemie, 117(43), 7215–7221. https://doi.org/10.1002/ange.200501561
  • Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review. Bioresource Technology, 160, 191–202. https://doi.org/10.1016/j.biortech.2014.01.120
  • Ng, S. W. L., Yilmaz, G., Ong, W. L., & Ho, G. W. (2018). One-step activation towards spontaneous etching of hollow and hierarchical porous carbon nanospheres for enhanced pollutant adsorption and energy storage. Applied Catalysis B: Environmental, 220, 533–541. https://doi.org/10.1016/j.apcatb.2017.08.069
  • Ok, Y. S., Chang, S. X., Gao, B., & Chung, H. J. (2015). SMART biochar technology-A shifting paradigm towards advanced materials and healthcare research. Environmental Technology & Innovation, 4, 206–209. https://doi.org/10.1016/j.eti.2015.08.003
  • Paraknowitsch, J. P., & Thomas, A. (2013). Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science, 6(10), 2839. https://doi.org/10.1039/c3ee41444b
  • Perreault, F., Fonseca de Faria, A., & Elimelech, M. (2015). Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 44(16), 5861–5896. https://doi.org/10.1039/c5cs00021a
  • Qi, C., Xu, L., Zhang, M., & Zhang, M. (2019). Fabrication and application of hierarchical porous carbon for the adsorption of bulky dyes. Microporous and Mesoporous Materials, 290, 109651. https://doi.org/10.1016/j.micromeso.2019.109651
  • Rajapaksha, A. U., Alam, M. S., Chen, N., Alessi, D. S., Igalavithana, A. D., Tsang, D. C. W., & Ok, Y. S. (2018). Removal of hexavalent chromium in aqueous solutions using biochar: Chemical and spectroscopic investigations. The Science of the Total Environment, 625, 1567–1573. https://doi.org/10.1016/j.scitotenv.2017.12.195
  • Rajapaksha, A. U., Vithanage, M., Ahmad, M., Seo, D. C., Cho, J. S., Lee, S. E., Lee, S. S., & Ok, Y. S. (2015). Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. Journal of Hazardous Materials, 290, 43–50. https://doi.org/10.1016/j.jhazmat.2015.02.046
  • Ryoo, R., Joo, S. H., Jun, S. (1999). Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. https://doi.org/10.1021/JP991673A
  • Seo, J., Park, H., Shin, K., Baeck, S. H., Rhym, Y., & Shim, S. E. (2014). Lignin-derived macroporous carbon foams prepared by using poly(methyl methacrylate) particles as the template. Carbon N Carbon, 76, 357–367. https://doi.org/10.1016/j.carbon.2014.04.087
  • Sevilla, M., Ferrero, G. A., & Fuertes, A. B. (2017). Beyond KOH activation for the synthesis of superactivated carbons from hydrochar. Carbon N Carbon, 114, 50–58. https://doi.org/10.1016/j.carbon.2016.12.010
  • Sevilla, M., & Fuertes, A. B. (2011). Sustainable porous carbons with a superior performance for CO2 capture. Energy & Environmental Science, 4(5), 1765. https://doi.org/10.1039/c0ee00784f
  • Siyasukh, A., Maneeprom, P., Larpkiattaworn, S., Tonanon, N., Tanthapanichakoon, W., Tamon, H., & Charinpanitkul, T. (2008). Preparation of a carbon monolith with hierarchical porous structure by ultrasonic irradiation followed by carbonization, physical and chemical activation. Carbon N Carbon, 46(10), 1309–1315. https://doi.org/10.1016/j.carbon.2008.05.006
  • Song, Y., Li, W., Xu, Z., Ma, C., Liu, Y., Xu, M., Wu, X., & Liu, S. (2019). Hierarchical porous carbon spheres derived from larch sawdust via spray pyrolysis and soft-templating method for supercapacitors. SN Applied Sciences, 1(1), 122. https://doi.org/10.1007/s42452-018-0132-6
  • Sun, J.-K., & Xu, Q. (2014). Functional materials derived from open framework templates/precursors: Synthesis and applications. Energy & Environmental Science, 7(7), 2071. https://doi.org/10.1039/c4ee00517a
  • Sun, M., Wang, X., Pan, X., Liu, L., Li, Y., Zhao, Z., & Qiu, J. (2019). Nitrogen-rich hierarchical porous carbon nanofibers for selective oxidation of hydrogen sulfide. Fuel Processing Technology, 191, 121–128. https://doi.org/10.1016/j.fuproc.2019.03.020
  • Tao, G., Zhang, L., Hua, Z., Chen, Y., Guo, L., Zhang, J., Shu, Z., Gao, J., Chen, H., Wu, W., Liu, Z., & Shi, J. (2014). Highly efficient adsorbents based on hierarchically macro/mesoporous carbon monoliths with strong hydrophobicity. Carbon N Carbon, 66, 547–559. https://doi.org/10.1016/j.carbon.2013.09.037
  • Tian, W., Zhang, H., Duan, X., Sun, H., Tade, M. O., Ang, H. M., & Wang, S. (2016). Nitrogen- and sulfur-codoped hierarchically porous carbon for adsorptive and oxidative removal of pharmaceutical contaminants. ACS Applied Materials & Interfaces, 8(11), 7184–7193. https://doi.org/10.1021/acsami.6b01748
  • Tian, W., Zhang, H., Sun, H., Tadé, M. O., & Wang, S. (2017). Template-free synthesis of N-doped carbon with pillared-layered pores as bifunctional materials for supercapacitor and environmental applications. Carbon N Carbon, 118, 98–105. https://doi.org/10.1016/j.carbon.2017.03.027
  • Tian, Z., Xiang, M., Zhou, J., Hu, L., & Cai, J. (2016). Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass: Direct carbonization and excellent electrochemical properties. Electrochimica Acta., 211, 225–233. https://doi.org/10.1016/j.electacta.2016.06.053
  • Tran, N. H., Reinhard, M., Khan, E., Chen, H., Nguyen, V. T., Li, Y., Goh, S. G., Nguyen, Q. B., Saeidi, N., & Gin, K. Y.-H. (2019). Emerging contaminants in wastewater, stormwater runoff, and surface water: Application as chemical markers for diffuse sources. The Science of the Total Environment, 676, 252–267. https://doi.org/10.1016/j.scitotenv.2019.04.160
  • Tripathi, P. K., Liu, M., Zhao, Y., Ma, X., Gan, L., Noonan, O., & Yu, C. (2014). Enlargement of uniform micropores in hierarchically ordered micro–mesoporous carbon for high level decontamination of bisphenol A. Journal of Materials Chemistry A, 2(22), 8534. https://doi.org/10.1039/c4ta00578c
  • Vernimmen, J., Meynen, V., & Cool, P. (2011). Synthesis and catalytic applications of combined zeolitic/mesoporous materials. Beilstein Journal of Nanotechnology, 2, 785–801. https://doi.org/10.3762/bjnano.2.87
  • Vithanage, M., Rajapaksha, A. U., Tang, X., Thiele-Bruhn, S., Kim, K. H., Lee, S.-E., & Ok, Y. S. (2014). Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar. Journal of Environmental Management, 141, 95–103. https://doi.org/10.1016/j.jenvman.2014.02.030
  • Wang, D. W., Li, F., Lu, G. Q., & Cheng, H. M. (2008). Synthesis and dye separation performance of ferromagnetic hierarchical porous carbon. Carbon N Carbon, 46(12), 1593–1599. https://doi.org/10.1016/j.carbon.2008.06.052
  • Wang, Q., Yan, J., & Fan, Z. (2016). Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities. Energy & Environmental Science, 9(3), 729–762. https://doi.org/10.1039/C5EE03109E
  • Wang, S., Zhao, M., Zhou, M., Li, Y. C., Wang, J., Gao, B., Sato, S., Feng, K., Yin, W., Igalavithana, A. D., Oleszczuk, P., Wang, X., & Ok, Y. S. (2019). Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review. Journal of Hazardous Materials, 373, 820–834. https://doi.org/10.1016/j.jhazmat.2019.03.080
  • Wang, Y., Tao, S., & An, Y. (2012). Superwetting monolithic carbon with hierarchical structure as supercapacitor materials. Microporous and Mesoporous Materials, 163, 249–258. https://doi.org/10.1016/j.micromeso.2012.07.044
  • Wang, Z., Kiesel, E. R., & Stein, A. (2008). Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity. Journal of Materials Chemistry, 18(19), 2194. https://doi.org/10.1039/b719489g
  • Woo, S.-W., Dokko, K., Nakano, H., & Kanamura, K. (2008). Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors. Journal of Materials Chemistry, 18(14), 1674. https://doi.org/10.1039/b717996k
  • Wu, K., Chen, X., Liu, S., Pan, Y., Cheong, W.-C., Zhu, W., Cao, X., Shen, R., Chen, W., Luo, J., Yan, W., Zheng, L., Chen, Z., Wang, D., Peng, Q., Chen, C., & Li, Y. (2018). Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Research, 11(12), 6260–6269. https://doi.org/10.1007/s12274-018-2149-y
  • Wu, X., Lam, C. W. K., Wu, N., Pang, S.-S., Xing, Z., Zhang, W., & Ju, Z. (2019). Multiple templates fabrication of hierarchical porous carbon for enhanced rate capability in potassium-ion batteries. Materials Today Energy, 11, 182–191. https://doi.org/10.1016/j.mtener.2018.11.009
  • Wu, Y., Xia, Y., Jing, X., Cai, P., Igalavithana, A. D., Tang, C., Tsang, D. C. W., & Ok, Y. S. (2020). Recent advances in mitigating membrane biofouling using carbon-based materials. Journal of Hazardous Materials, 382, 120976. https://doi.org/10.1016/j.jhazmat.2019.120976
  • Xia, K., Gao, Q., Jiang, J., & Hu, J. (2008). Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon N Carbon, 46(13), 1718–1726. https://doi.org/10.1016/j.carbon.2008.07.018
  • Xiao, N., Zhou, Y., Ling, Z., & Qiu, J. (2013). Synthesis of a carbon nanofiber/carbon foam composite from coal liquefaction residue for the separation of oil and water. Carbon N Carbon, 59, 530–536. https://doi.org/10.1016/j.carbon.2013.03.051
  • Xie, A., Dai, J., Chen, X., Ma, P., He, J., Li, C., Zhou, Z., & Yan, Y. (2016). Ultrahigh adsorption of typical antibiotics onto novel hierarchical porous carbons derived from renewable lignin via halloysite nanotubes-template and in-situ activation. Chemical Engineering Journal and the Biochemical Engineering Journal, 304, 609–620. https://doi.org/10.1016/j.cej.2016.06.138
  • Xu, D., Tong, Y., Yan, T., Shi, L., & Zhang, D. (2017). N,P-codoped meso-/microporous carbon derived from biomass materials via a dual-activation strategy as high-performance electrodes for deionization capacitors. ACS Sustainable Chemistry & Engineering, 5(7), 5810–5819. https://doi.org/10.1021/acssuschemeng.7b00551
  • Xu, F., Han, H., Ding, B., Qiu, Y., Zhang, E., Li, H., & Kaskel, S. (2019). Engineering pore ratio in hierarchical porous carbons towards high-rate and large-volumetric performances. Microporous and Mesoporous Materials, 282, 205–210. https://doi.org/10.1016/j.micromeso.2019.03.038
  • Xue, C., Tu, B., & Zhao, D. (2009). Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly. Nano Research, 2(3), 242–253. https://doi.org/10.1007/s12274-009-9022-y
  • Yang, D., Jing, H., Wang, Z., Li, J., Hu, M., Lv, R., Zhang, R., & Chen, D. (2018). Coupled ultrasonication-milling synthesis of hierarchically porous carbon for high-performance supercapacitor. Journal of Colloid and Interface Science, 528, 208–224. https://doi.org/10.1016/j.jcis.2018.05.050
  • Yang, G., Han, H., Li, T., & Du, C. (2012). Synthesis of nitrogen-doped porous graphitic carbons using nano-CaCO3 as template, graphitization catalyst, and activating agent. Carbon N Carbon, 50(10), 3753–3765. https://doi.org/10.1016/j.carbon.2012.03.050
  • Yang, K., & Xing, B. (2010). Adsorption of organic compounds by carbon nanomaterials in aqueous phase: polanyi theory and its application. Chemical Reviews, 110(10), 5989–6008. https://doi.org/10.1021/cr100059s
  • Yang, Y., Ok, Y. S., Kim, K.-H., Kwon, E. E., & Tsang, Y. F. (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. The Science of the Total Environment, 596-597, 303–320. https://doi.org/10.1016/j.scitotenv.2017.04.102
  • Yang, Z., Ren, J., Zhang, Z., Chen, X., Guan, G., Qiu, L., Zhang, Y., & Peng, H. (2015). Recent advancement of nanostructured carbon for energy applications. Chemical Reviews, 115(11), 5159–5223. https://doi.org/10.1021/cr5006217
  • Yonghui, D., Chong, L., Ting, Y., Feng, L., Fuqiang, Z., Wan, Y., Zhang, L., Wang, C., Tu, B., Webley, P. A., Wang, H., & Dongyuan, Z. (2007). Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chemistry of Materials, 19(13), 3271–3277. https://doi.org/10.1021/cm070600y
  • Yousefi, N., Lu, X., Elimelech, M., & Tufenkji, N. (2019). Environmental performance of graphene-based 3D macrostructures. Nature Nanotechnology, 14(2), 107–119. https://doi.org/10.1038/s41565-018-0325-6
  • Yu, W., Wang, H., Liu, S., Mao, N., Liu, X., Shi, J., Liu, W., Chen, S., & Wang, X. (2016). N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. Journal of Materials Chemistry A, 4(16), 5973–5983. https://doi.org/10.1039/C6TA01821A
  • Yuan, Z.-Y., & Su, B.-L. (2006). Insights into hierarchically meso–macroporous structured materials. Journal of Materials Chemistry, 16(7), 663–677. https://doi.org/10.1039/B512304F
  • Yun, Y. S., Im, C., Park, H. H., Hwang, I., Tak, Y., & Jin, H.-J. (2013). Hierarchically porous carbon nanofibers containing numerous heteroatoms for supercapacitors. Journal of Power Sources, 234, 285–291. https://doi.org/10.1016/j.jpowsour.2013.01.169
  • Zhang, M., Xu, L., Qi, C., & Zhang, M. (2019). Highly effective removal of tetracycline from water by hierarchical porous carbon: Batch and column adsorption. Industrial & Engineering Chemistry Research, 58(43), 20036–20046. https://doi.org/10.1021/acs.iecr.9b03547
  • Zhang, S., Chen, L., Zhou, S., Zhao, D., & Wu, L. (2010). Facile synthesis of hierarchically ordered porous carbon via in Situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support. Chemistry of Materials, 22(11), 3433–3440. https://doi.org/10.1021/cm1002274
  • Zhang, X. Q., Cui, Y. L., Zhong, Y., Wang, D. H., Tang, W. J., Wang, X. L., Xia, X. H., Gu, C. D., & Tu, J. P. (2019). Cobalt disulfide-modified cellular hierarchical porous carbon derived from bovine bone for application in high-performance lithium-sulfur batteries. Journal of Colloid and Interface Science, 551, 219–226. https://doi.org/10.1016/j.jcis.2019.04.079
  • Zhang, Y., Che, E., Zhang, M., Sun, B., Gao, J., Han, J., & Song, Y. (2014). Increasing the dissolution rate and oral bioavailability of the poorly water-soluble drug valsartan using novel hierarchical porous carbon monoliths. International Journal of Pharmaceutics, 473(1-2), 375–383. https://doi.org/10.1016/j.ijpharm.2014.07.024
  • Zhao, Y., Zheng, M., Cao, J., Ke, X., Liu, J., Chen, Y., & Tao, J. (2008). Easy synthesis of ordered meso/macroporous carbon monolith for use as electrode in electrochemical capacitors. Materials Letters, 62(3), 548–551. https://doi.org/10.1016/j.matlet.2007.06.002
  • Zheng, X., Luo, J., Lv, W., Wang, D.-W., & Yang, Q.-H. (2015). Two-dimensional porous carbon: Synthesis and ion-transport properties. Advanced Materials, 27(36), 5388–5395. https://doi.org/10.1002/adma.201501452
  • Zhu, H., Liu, Z., Wang, Y., Kong, D., Yuan, X., & Xie, Z. (2008). Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal. Chemistry of Materials, 20(3), 1134–1139. https://doi.org/10.1021/cm071385o
  • Zhu, Z., Ji, C., Zhong, L., Liu, S., Cui, F., Sun, H., & Wang, W. (2017). Magnetic Fe–Co crystal doped hierarchical porous carbon fibers for removal of organic pollutants. Journal of Materials Chemistry A, 5(34), 18071–18080. https://doi.org/10.1039/C7TA03990E
  • Zou, C., Wu, D., Li, M., Zeng, Q., Xu, F., Huang, Z., & Fu, R. (2010). Template-free fabrication of hierarchical porous carbon by constructing carbonyl crosslinking bridges between polystyrene chains. Journal of Materials Chemistry, 20(4), 731–735. https://doi.org/10.1039/B917960G

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.