1,625
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Anaerobic membrane bioreactors for sludge digestion: Current status and future perspectives

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2119-2157 | Published online: 22 Jun 2020

References

  • Anjum, M., Al-Makishah, N. H., & Barakat, M. A. (2016). Wastewater sludge stabilization using pre-treatment methods. Process Safety and Environmental Protection, 102, 615–632. https://doi.org/10.1016/j.psep.2016.05.022
  • Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755–781. https://doi.org/10.1016/j.pecs.2008.06.002
  • Barret, M., Delgadillo-Mirquez, L., Trably, E., Delgenes, N., Braun, F., Cea-Barcia, G., Steyer, J. P., & Patureau, D. (2012). Anaerobic removal of trace organic contaminants in sewage sludge: 15 years of experience. Pedosphere, 22(4), 508–517. https://doi.org/10.1016/S1002-0160(12)60035-6
  • Bindoff, A. M., Treffry‐Goatley, K., Fortmann, N. E., Hunt, J. W., & Buckley, C. A. (1988). The application of cross‐flow microfiltration technology to the concentration of sewage works sludge streams. Water and Environment Journal, 2(5), 513–522. https://doi.org/10.1111/j.1747-6593.1988.tb01333.x
  • Campos, J. L., Otero, L., Franco, A., Mosquera-Corral, A., & Roca, E. (2009). Ozonation strategies to reduce sludge production of a seafood industry WWTP. Bioresource Technology, 100(3), 1069–1073. https://doi.org/10.1016/j.biortech.2008.07.056
  • Carrère, H., Dumas, C., Battimelli, A., Batstone, D. J., Delgenès, J. P., Steyer, J. P., & Ferrer, I. (2010). Pretreatment methods to improve sludge anaerobic degradability: A review. Journal of Hazardous Materials, 183(1–3), 1–15. https://doi.org/10.1016/j.jhazmat.2010.06.129
  • Cavinato, C., Bolzonella, D., Pavan, P., Fatone, F., & Cecchi, F. (2013). Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot-and full-scale reactors. Renewable Energy., 55, 260–265. https://doi.org/10.1016/j.renene.2012.12.044
  • Chen, R., Wen, W., Jiang, H., Lei, Z., Li, M., & Li, Y. Y. (2019). Energy recovery potential of thermophilic high-solids co-digestion of coffee processing wastewater and waste activated sludge by anaerobic membrane bioreactor. Bioresource Technology, 274, 127–133. https://doi.org/10.1016/j.biortech.2018.11.080
  • Chu, L., Yan, S., Xing, X. H., Sun, X., & Jurcik, B. (2009). Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production. Water Research, 43(7), 1811–1822. https://doi.org/10.1016/j.watres.2009.02.012
  • Dagnew, M., Parker, W. J., & Seto, P. (2010). A pilot study of anaerobic membrane digesters for concurrent thickening and digestion of waste activated sludge (WAS). Water Science and Technology, 61(6), 1451–1458. https://doi.org/10.2166/wst.2010.028
  • Dagnew, M., Parker, W. J., & Seto, P. (2012). Anaerobic membrane bioreactors for treating waste activated sludge: Short term membrane fouling characterization and control tests. Journal of Membrane Science, 421–422, 103–110. https://doi.org/10.1016/j.memsci.2012.06.046
  • Dagnew, M., Pickel, J., Parker, W., & Seto, P. (2013). Anaerobic membrane bio‐reactors for waste activated sludge digestion: Tubular versus hollow fiber membrane configurations. Environmental Progress & Sustainable Energy, 32(3), 598–604. https://doi.org/10.1002/ep.11670
  • Dereli, R. K., Ersahin, M. E., Ozgun, H., Ozturk, I., Jeison, D., van der Zee, F., & van Lier, J. B. (2012). Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresource Technology, 122, 160–170. https://doi.org/10.1016/j.biortech.2012.05.139
  • Dvořák, L., Gómez, M., Dolina, J., & Černín, A. (2016). Anaerobic membrane bioreactors-a mini review with emphasis on industrial wastewater treatment: Applications, limitations and perspectives. Desalination and Water Treatment, 57(41), 19062–19076. https://doi.org/10.1080/19443994.2015.1100879
  • Erden, G., & Filibeli, A. (2011). Ozone oxidation of biological sludge: Effects on disintegration, anaerobic biodegradability, and filterability. Environmental Progress & Sustainable Energy, 30(3), 377–383. https://doi.org/10.1002/ep.10494
  • Eurostat. (2015). Sewage sludge production and disposal from urban wastewater [dataset]. https://data.europa.eu/euodp/en/data/dataset/hzWkcfKt5mxEaFijeoA
  • Ersahin, M. E., Tao, Y., Ozgun, H., Gimenez, J. B., Spanjers, H., & van Lier, J. B. (2017). Impact of anaerobic dynamic membrane bioreactor configuration on treatment and filterability performance. Journal of Membrane Science, 526, 387–394. https://doi.org/10.1016/j.memsci.2016.12.057
  • Ersahin, M. E., Gimenez, J. B., Ozgun, H., Tao, Y., Spanjers, H., & van Lier, J. B. (2016). Gas-lift anaerobic dynamic membrane bioreactors for high strength synthetic wastewater treatment: Effect of biogas sparging velocity and HRT on treatment performance. Chemical Engineering Journal, 305, 46–53. https://doi.org/10.1016/j.cej.2016.02.003
  • Ersahin, M. E., Ozgun, H., Dereli, R. K., Ozturk, I., Roest, K., & van Lier, J. B. (2012). A review on dynamic membrane filtration: Materials, applications and future perspectives. Bioresource Technology, 122, 196–206. https://doi.org/10.1016/j.biortech.2012.03.086
  • Ersahin, M. E., Ozgun, H., Tao, Y., & van Lier, J. B. (2014). Applicability of dynamic membrane technology in anaerobic membrane bioreactors. Water Research, 48, 420–429. https://doi.org/10.1016/j.watres.2013.09.054
  • Ersahin, M. E., Ozgun, H., & van Lier, J. B. (2013). Effect of support material properties on dynamic membrane filtration performance. Separation Science and Technology, 48(15), 2263–2269. https://doi.org/10.1080/01496395.2013.804840
  • Fytili, D., & Zabaniotou, A. (2008). Utilization of sewage sludge in EU application of old and new methods-a review. Renewable and Sustainable Energy Reviews, 12(1), 116–140. https://doi.org/10.1016/j.rser.2006.05.014
  • Gao, X., Zhang, Q., & Zhu, H. (2019). High rejection rate of polysaccharides by microfiltration benefits Christensenella minuta and acetic acid production in an anaerobic membrane bioreactor for sludge fermentation. Bioresource Technology, 282, 197–201. https://doi.org/10.1016/j.biortech.2019.03.015
  • Ghyoot, W. R., & Verstraete, W. H. (1997). Coupling membrane filtration to anaerobic primary sludge digestion. Environmental Technology, 18(6), 569–580. https://doi.org/10.1080/09593331808616575
  • Gonzalez-Gil, L., Papa, M., Feretti, D., Ceretti, E., Mazzoleni, G., Steimberg, N., Pedrazzani, R., Bertanza, G., Lema, J. M., & Carballa, M. (2016). Is anaerobic digestion effective for the removal of organic micropollutants and biological activities from sewage sludge? Water Research, 102, 211–220. https://doi.org/10.1016/j.watres.2016.06.025
  • Grethlein, H. E. (1978). Anaerobic digestion and membrane separation of domestic wastewater. Journal (Water Pollution Control Federation), 50(4), 754–763.
  • Guven, H., Dereli, R. K., Ozgun, H., Ersahin, M. E., & Ozturk, I. (2019). Towards sustainable and energy efficient municipal wastewater treatment by up-concentration of organics. Progress in Energy and Combustion Science, 70, 145–168. https://doi.org/10.1016/j.pecs.2018.10.002
  • Hafuka, A., Mashiko, R., Odashima, R., Yamamura, H., Satoh, H., & Watanabe, Y. (2019). Digestion performance and contributions of organic and inorganic fouling in an anaerobic membrane bioreactor treating waste activated sludge. Bioresource Technology, 272, 63–69. https://doi.org/10.1016/j.biortech.2018.09.147
  • Hafuka, A., Mimura, K., Ding, Q., Yamamura, H., Satoh, H., & Watanabe, Y. (2016). Performance of anaerobic membrane bioreactor during digestion and thickening of aerobic membrane bioreactor excess sludge. Bioresource Technology, 218, 476–479. https://doi.org/10.1016/j.biortech.2016.06.124
  • Isik, O., Abdelrahman, A. M., Ozgun, H., Ersahin, M. E., Demir, I., & Koyuncu, I. (2019). Comparative evaluation of ultrafiltration and dynamic membranes in an aerobic membrane bioreactor for municipal wastewater treatment. Environmental Science and Pollution Research, 26(32), 32723–32733. https://doi.org/10.1007/s11356-019-04409-6
  • Jeong, T. Y., Cha, G. C., Yoo, I. K., & Kim, D. J. (2007). Hydrogen production from waste activated sludge by using separation membrane acid fermentation reactor and photosynthetic reactor. International Journal of Hydrogen Energy, 32(5), 525–530. https://doi.org/10.1016/j.ijhydene.2006.09.028
  • Joo, J. Y., Park, C. H., & Han, G. B. (2016). Optimization of two-phased anaerobic sludge digestion using the pressurized ultra filtration membrane with a mesh screen (MS-PUFM). Chemical Engineering Journal, 300, 20–28. https://doi.org/10.1016/j.cej.2016.04.078
  • Joshi, P., & Parker, W. (2015). Effect of pretreatment using ultrasound and hydrogen peroxide on digestion of waste activated sludge in an anaerobic membrane bioreactor. Environmental Progress & Sustainable Energy, 34(6), 1724–1730. https://doi.org/10.1002/ep.12180
  • Kayawake, E., Narukami, Y., & Yamagata, M. (1991). Anaerobic digestion by a ceramic membrane enclosed reactor. Journal of Fermentation and Bioengineering, 71(2), 122–125. https://doi.org/10.1016/0922-338X(91)90236-A
  • Kim, M., Ahn, Y. H., & Speece, R. E. (2002). Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Research, 36(17), 4369–4385. https://doi.org/10.1016/S0043-1354(02)00147-1
  • Kim, J. O., & Chung, J. (2012). Reuse of organic matter from coagulated sludge using a membrane-coupled anaerobic organic acid fermentor in advanced municipal wastewater treatment. Environmental Engineering Science, 29(7), 590–598. https://doi.org/10.1089/ees.2011.0011
  • Kim, J. O., & Jung, J. T. (2007). Performance of membrane-coupled organic acid fermentor for the resources recovery form municipal sewage sludge. Water Science and Technology, 55(10), 245–252. https://doi.org/10.2166/wst.2007.328
  • Kim, J. O., Kim, S. K., & Kim, R. H. (2005). Filtration performance of ceramic membrane for the recovery of volatile fatty acids from liquid organic sludge. Desalination, 172(2), 119–127. https://doi.org/10.1016/j.desal.2004.06.199
  • Kim, M. H., Park, C. H., & Han, G. B. (2017). Effects of coupling a UF membrane with a mesh screen and elevating temperature in the methanogenic digester of a two-phased anaerobic system. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 52(7), 641–648. https://doi.org/10.1080/10934529.2017.1297139
  • Kim, J. O., & Somiya, I. (2001a). Effect of hydraulic loading rate on acidogenesis in a membrane-coupled anaerobic VFAs fermenter. Environmental Technology, 22(1), 91–99. https://doi.org/10.1080/09593332208618310
  • Kim, J. O., & Somiya, I. (2001b). Effective combination of microfiltration and intermittent ozonation for high permeation flux and VFAs recovery from coagulated raw sludge. Environmental Technology, 22(1), 7–15. https://doi.org/10.1080/09593332208618314
  • Kim, J. O., Somiya, I., Shin, E. B., Bae, W., Kim, S. K., & Kim, R. H. (2002). Application of membrane-coupled anaerobic volatile fatty acids fermentor for dissolved organics recovery from coagulated raw sludge. Water Science and Technology, 45(12), 167–174. https://doi.org/10.2166/wst.2002.0423
  • Kondaveeti, S., & Min, B. (2015). Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels. Water Research, 87, 137–144. https://doi.org/10.1016/j.watres.2015.09.011
  • Kooijman, G., Lopes, W., Zhou, Z., Guo, H., de Kreuk, M., Spanjers, H., & van Lier, J. (2017). Impact of coagulant and flocculant addition to an anaerobic dynamic membrane bioreactor (AnDMBR) treating waste-activated sludge. Membranes, 7(2), 18. https://doi.org/10.3390/membranes7020018
  • Lamminen, M. O., Walker, H. W., & Weavers, L. K. (2004). Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. Journal of Membrane Science, 237(1–2), 213–223. https://doi.org/10.1016/j.memsci.2004.02.031
  • LeBlanc, R. J., Matthews, P., & Richard, R. P. (2008). Global Atlas of excreta, wastewater sludge, and biosolids management, moving forward the sustainable and welcome uses of a global resource. United Nations Human Settlements Programme (UN-HABITAT); Greater Moncton Sewerage Commission.
  • Lee, W. S., Chua, A. S. M., Yeoh, H. K., & Ngoh, G. C. (2014). A review of the production and applications of waste-derived volatile fatty acids. Chemical Engineering Journal, 235, 83–99. https://doi.org/10.1016/j.cej.2013.09.002
  • Liao, B. Q., Kraemer, J. T., & Bagley, D. M. (2006). Anaerobic membrane bioreactors: Applications and research directions. Critical Reviews in Environmental Science and Technology, 36(6), 489–530. https://doi.org/10.1080/10643380600678146
  • Li, Q., Li, Y. Y., Qiao, W., Wang, X., & Takayanagi, K. (2015). Sulfate addition as an effective method to improve methane fermentation performance and propionate degradation in thermophilic anaerobic co-digestion of coffee grounds, milk and waste activated sludge with AnMBR. Bioresource Technology, 185, 308–315. https://doi.org/10.1016/j.biortech.2015.03.019
  • Liew Abdullah, A. G., Idris, A., Ahmadun, F. R., Baharin, B. S., Emby, F., Megat Mohd Noor, M. J., & Nour, A. H. (2005). A kinetic study of a membrane anaerobic reactor (MAR) for treatment of sewage sludge. Desalination, 183(1–3), 439–445. https://doi.org/10.1016/j.desal.2005.03.044
  • Lin, H., Peng, W., Zhang, M., Chen, J., Hong, H., & Zhang, Y. (2013). A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives. Desalination, 314, 169–188. https://doi.org/10.1016/j.desal.2013.01.019
  • Liu, H., Wang, J., Liu, X., Fu, B., Chen, J., & Yu, H. Q. (2012). Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Water Research, 46(3), 799–807. https://doi.org/10.1016/j.watres.2011.11.047
  • Liu, H., Wang, Y., Yin, B., Zhu, Y., Fu, B., & Liu, H. (2016). Improving volatile fatty acid yield from sludge anaerobic fermentation through self-forming dynamic membrane separation. Bioresource Technology, 218, 92–100. https://doi.org/10.1016/j.biortech.2016.06.077
  • Liu, H., Wang, L., Zhang, X., Fu, B., Liu, H., Li, Y., & Lu, X. (2019). A viable approach for commercial VFAs production from sludge: Liquid fermentation in anaerobic dynamic membrane reactor. Journal of Hazardous Materials, 365, 912–920. https://doi.org/10.1016/j.jhazmat.2018.11.082
  • Luduvice, M. (2007). Sludge stabilisation. In C. V. Andreoli, M. von Sperling, & F. Fernandes (Eds.), Sludge treatment and disposal (pp. 48–75). IWA Publishing.
  • Maaz, M., Yasin, M., Aslam, M., Kumar, G., Atabani, A. E., Idrees, M., Anjum, F., Jamil, F., Ahmad, R., Khan, A. L., Lesage, G., Heran, M., & Kim, J. (2019). Anaerobic membrane bioreactors for wastewater treatment: Novel configurations, fouling control and energy considerations. Bioresource Technology, 283, 358–372. https://doi.org/10.1016/j.biortech.2019.03.061
  • Martin-Ryals, A. D., Schideman, L. C., & Guy, K. (2017). Utilizing ion-exchange resin to improve recovery from organic shock-loading in an AnMBR treating sewage sludge. Water Research, 126, 285–298. https://doi.org/10.1016/j.watres.2017.09.038
  • Martin-Ryals, A. D., Schideman, L. C., & Ong, M. (2020). Utilizing bioaugmentation to improve performance of a two-phase AnMBR treating sewage sludge. Environmental Technology, 41(10), 1322–1336. https://doi.org/10.1080/09593330.2018.1533041
  • Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427. https://doi.org/10.1016/j.rser.2014.04.039
  • Meabe, E., Déléris, S., Soroa, S., & Sancho, L. (2013). Performance of anaerobic membrane bioreactor for sewage sludge treatment: Mesophilic and thermophilic processes. Journal of Membrane Science, 446, 26–33. https://doi.org/10.1016/j.memsci.2013.06.018
  • McCarty, P. L., Bae, J., & Kim, J. (2011). Domestic wastewater treatment as a net energy producer – Can this be achieved? Environmental Science & Technology, 45(17), 7100–7106. https://doi.org/10.1021/es2014264
  • Melin, T., Jefferson, B., Bixio, D., Thoeye, C., De Wilde, W., De Koning, J., van der Graaf, J., & Wintgens, T. (2006). Membrane bioreactor technology for wastewater treatment and reuse. Desalination, 187(1–3), 271–282. https://doi.org/10.1016/j.desal.2005.04.086
  • Molinuevo, B., García, M. C., Karakashev, D., & Angelidaki, I. (2009). Anammox for ammonia removal from pig manure effluents: Effect of organic matter content on process performance. Bioresource Technology, 100(7), 2171–2175. https://doi.org/10.1016/j.biortech.2008.10.038
  • Murić, A., Petrinić, I., & Christensen, M. L. (2014). Comparison of ceramic and polymeric ultrafiltration membranes for treating wastewater from metalworking industry. Chemical Engineering Journal, 255, 403–410. https://doi.org/10.1016/j.cej.2014.06.009
  • Musa, M., Idrus, S., Che Man, H., & Nik Daud, N. (2018). Wastewater treatment and biogas recovery using anaerobic membrane bioreactors (AnMBRs): Strategies and achievements. Energies, 11(7), 1675. https://doi.org/10.3390/en11071675
  • Ozgun, H., Dereli, R. K., Ersahin, M. E., Kinaci, C., Spanjers, H., & van Lier, J. B. (2013). A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations. Separation and Purification Technology, 118, 89–104. https://doi.org/10.1016/j.seppur.2013.06.036
  • Ozgun, H., Ersahin, M. E., Tao, Y., Spanjers, H., & van Lier, J. B. (2013). Effect of upflow velocity on the effluent membrane fouling potential in membrane coupled upflow anaerobic sludge blanket reactors. Bioresource Technology, 147, 285–292. https://doi.org/10.1016/j.biortech.2013.08.039
  • Ozgun, H., Ersahin, M. E., Zhou, Z., Tao, Y., Spanjers, H., & van Lier, J. B. (2019). Comparative evaluation of the sludge characteristics along the height of upflow anaerobic sludge blanket coupled ultrafiltration systems. Biomass and Bioenergy, 125, 114–122. https://doi.org/10.1016/j.biombioe.2019.04.001
  • Ozgun, H., Gimenez, J. B., Ersahin, M. E., Tao, Y., Spanjers, H., & van Lier, J. B. (2015). Impact of membrane addition for effluent extraction on the performance and sludge characteristics of upflow anaerobic sludge blanket reactors treating municipal wastewater. Journal of Membrane Science, 479, 95–104. https://doi.org/10.1016/j.memsci.2014.12.021
  • Ozgun, H., Tao, Y., Ersahin, M. E., Zhou, Z., Gimenez, J. B., Spanjers, H., & van Lier, J. B. (2015). Impact of temperature on feed-flow characteristics and filtration performance of an upflow anaerobic sludge blanket coupled ultrafiltration membrane treating municipal wastewater. Water Research, 83, 71–83. https://doi.org/10.1016/j.watres.2015.06.035
  • Pierkiel, A., & Lanting, J. (2005). Membrane-coupled anaerobic digestion of municipal sewage sludge. Water Science and Technology, 52(1–2), 253–258. https://doi.org/10.2166/wst.2005.0525
  • Pileggi, V., & Parker, W. J. (2017). AnMBR digestion of mixed WRRF sludges: Impact of digester loading and temperature. Journal of Water Process Engineering, 19, 74–80. https://doi.org/10.1016/j.jwpe.2017.07.011
  • Pillay, V. L., Townsend, B., & Buckley, C. A. (1994). Improving the performance of anaerobic digesters at wastewater treatment works: The coupled cross-flow microfiltration/digester process. Water Science and Technology, 30(12), 329–337. https://doi.org/10.2166/wst.1994.0632
  • Qiao, W., Takayanagi, K., Niu, Q., Shofie, M., & Li, Y. Y. (2013). Long-term stability of thermophilic co-digestion submerged anaerobic membrane reactor encountering high organic loading rate, persistent propionate and detectable hydrogen in biogas. Bioresource Technology, 149, 92–102. https://doi.org/10.1016/j.biortech.2013.09.023
  • Qiao, W., Takayanagi, K., Shofie, M., Niu, Q., Yu, H. Q., & Li, Y. Y. (2013). Thermophilic anaerobic digestion of coffee grounds with and without waste activated sludge as co-substrate using a submerged AnMBR: System amendments and membrane performance. Bioresource Technology, 150, 249–258. https://doi.org/10.1016/j.biortech.2013.10.002
  • Ruffino, B., Campo, G., Genon, G., Lorenzi, E., Novarino, D., Scibilia, G., & Zanetti, M. (2015). Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment. Bioresource Technology, 175, 298–308. https://doi.org/10.1016/j.biortech.2014.10.071
  • Santos, A., & Judd, S. (2010). The commercial status of membrane bioreactors for municipal wastewater. Separation Science and Technology, 45(7), 850–857. https://doi.org/10.1080/01496391003662337
  • Siembida, B., Cornel, P., Krause, S., & Zimmermann, B. (2010). Effect of mechanical cleaning with granular material on the permeability of submerged membranes in the MBR process. Water Research, 44(14), 4037–4046. https://doi.org/10.1016/j.watres.2010.05.016
  • Skouteris, G., Hermosilla, D., López, P., Negro, C., & Blanco, Á. (2012). Anaerobic membrane bioreactors for wastewater treatment: A review. Chemical Engineering Journal, 198–199, 138–148. https://doi.org/10.1016/j.cej.2012.05.070
  • Smith, K. M., Fowler, G. D., Pullket, S., & Graham, N. D. (2009). Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Research, 43(10), 2569–2594. https://doi.org/10.1016/j.watres.2009.02.038
  • Takashima, M., Kudoh, Y., & Tabata, N. (1996). Complete anaerobic digestion of activated sludge by combining membrane separation and alkaline heat post-treatment. Water Science and Technology, 34(5–6), 477–481. https://doi.org/10.2166/wst.1996.0585
  • Tiehm, A., Nickel, K., & Neis, U. (1997). The use of ultrasound to accelerate the anaerobic digestion of sewage sludge. Water Science and Technology, 36(11), 121–128. https://doi.org/10.2166/wst.1997.0402
  • Torres, A., Hemmelmann, A., Vergara, C., & Jeison, D. (2011). Application of two-phase slug-flow regime to control flux reduction on anaerobic membrane bioreactors treating wastewaters with high suspended solids concentration. Separation and Purification Technology, 79(1), 20–25. https://doi.org/10.1016/j.seppur.2011.03.006
  • van Lier, J. B., van der Zee, F. P., Frijters, C. T. M. J., & Ersahin, M. E. (2015). Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment. Reviews in Environmental Science and Bio/Technology, 14(4), 681–702. https://doi.org/10.1007/s11157-015-9375-5
  • Verstraete, W., & Vandevivere, P. (1999). New and broader applications of anaerobic digestion. Critical Reviews in Environmental Science and Technology, 29(2), 151–173. https://doi.org/10.1080/10643389991259191
  • Wandera, S. M., Qiao, W., Jiang, M., Gapani, D. E., Bi, S., & Dong, R. (2018). AnMBR as alternative to conventional CSTR to achieve efficient methane production from thermal hydrolyzed sludge at short HRTs. Energy, 159, 588–598. https://doi.org/10.1016/j.energy.2018.06.201
  • Wandera, S. M., Qiao, W., Jiang, M., Mahdy, A., Yin, D., & Dong, R. (2019). Enhanced methanization of sewage sludge using an anaerobic membrane bioreactor integrated with hyperthermophilic biological hydrolysis. Energy Conversion and Management, 196, 846–855. https://doi.org/10.1016/j.enconman.2019.06.054
  • Wang, X., Wang, C., Tang, C. Y., Hu, T., Li, X., & Ren, Y. (2017). Development of a novel anaerobic membrane bioreactor simultaneously integrating microfiltration and forward osmosis membranes for low-strength wastewater treatment. Journal of Membrane Science, 527, 1–7. https://doi.org/10.1016/j.memsci.2016.12.062
  • Wang, Z., Ma, J., Tang, C. Y., Kimura, K., Wang, Q., & Han, X. (2014). Membrane cleaning in membrane bioreactors: A review. Journal of Membrane Science, 468, 276–307. https://doi.org/10.1016/j.memsci.2014.05.060
  • Wen, X., Sui, P., & Huang, X. (2008). Exerting ultrasound to control the membrane fouling in filtration of anaerobic activated sludge-mechanism and membrane damage. Water Science and Technology, 57(5), 773–779. https://doi.org/10.2166/wst.2008.120
  • Williams, C., & Wakeman, R. (2000). Membrane fouling and alternative techniques for its alleviation. Membrane Technology, 2000(124), 4–10. https://doi.org/10.1016/S0958-2118(00)80017-8
  • Xu, M., Wen, X., Huang, X., & Li, Y. (2010). Membrane fouling control in an anaerobic membrane bioreactor coupled with online ultrasound equipment for digestion of waste activated sludge. Separation Science and Technology, 45(7), 941–947. https://doi.org/10.1080/01496391003659903
  • Xu, M., Wen, X., Huang, X., Yu, Z., & Zhu, M. (2013). Mechanisms of membrane fouling controlled by online ultrasound in an anaerobic membrane bioreactor for digestion of waste activated sludge. Journal of Membrane Science, 445, 119–126. https://doi.org/10.1016/j.memsci.2013.06.006
  • Xu, M., Wen, X., Yu, Z., Li, Y., & Huang, X. (2011). A hybrid anaerobic membrane bioreactor coupled with online ultrasonic equipment for digestion of waste activated sludge. Bioresource Technology, 102(10), 5617–5625. https://doi.org/10.1016/j.biortech.2011.02.038
  • Yu, H., Wang, Q., Wang, Z., Sahinkaya, E., Li, Y., Ma, J., & Wu, Z. (2014). Start-up of an anaerobic dynamic membrane digester for waste activated sludge digestion: Temporal variations in microbial communities. PloS One, 9(4), e93710. https://doi.org/10.1371/journal.pone.0093710
  • Yu, H., Wang, Z., Wu, Z., & Zhu, C. (2016). Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: Performance, sludge characteristics and microbial community. Scientific Reports, 6, 20111. https://doi.org/10.1038/srep20111
  • Yu, Z., Song, Z., Wen, X., & Huang, X. (2015). Using polyaluminum chloride and polyacrylamide to control membrane fouling in a cross-flow anaerobic membrane bioreactor. Journal of Membrane Science, 479, 20–27. https://doi.org/10.1016/j.memsci.2015.01.016
  • Zhao, J., Li, Y., Pan, S., Tu, Q., & Zhu, H. (2019). Performance of a forward osmotic membrane bioreactor for anaerobic digestion of waste sludge with increasing solid concentration. Journal of Environmental Management, 246, 239–246. https://doi.org/10.1016/j.jenvman.2019.06.004
  • Zhen, G., Lu, X., Kato, H., Zhao, Y., & Li, Y. Y. (2017). Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renewable and Sustainable Energy Reviews, 69, 559–577. https://doi.org/10.1016/j.rser.2016.11.187
  • Zheng, W., Yu, Z., Xia, Y., & Wen, X. (2018). Influence of polyaluminum chloride on microbial characteristics in anaerobic membrane bioreactors for sludge digestion. Applied Microbiology and Biotechnology, 102(2), 1005–1017. https://doi.org/10.1007/s00253-017-8613-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.