1,264
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Energy, economic, and environmental impacts of sustainable biochar systems in rural China

ORCID Icon, , , , , , ORCID Icon & ORCID Icon show all
Pages 1063-1091 | Published online: 02 Dec 2020

References

  • Abdullah, H., & Wu, H. (2009). Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating  conditions. Energy & Fuels, 23(8), 4174–4181.
  • Alexander, B., Mitchell, R., & Gür, T. (2012). Experimental and modeling study of biomass conversion in a solid carbon fuel cell. Journal of the Electrochemical Society, 159(3), B347–B354.
  • Antero, R. V. P., Alves, A. C. F., de Oliveira, S. B., Ojala, S. A., & Brum, S. S. (2020). Challenges and alternatives for the adequacy of hydrothermal carbonization of lignocellulosic biomass in cleaner production systems: A review. Journal of Cleaner Production, 252, 119899. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.119899
  • Bian, R., Joseph, S., Cui, L., Pan, G., Li, L., Liu, X., Zhang, A., Rutlidge, H., Wong, S., Chia, C., Marjo, C., Gong, B., Munroe, P., & Donne, S. (2014). A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of Hazardous Materials, 272, 121–128. https://doi.org/https://doi.org/10.1016/j.jhazmat.2014.03.017
  • Cahyanti, M. N., Doddapaneni, T. R. K. C., & Kikas, T. (2020). Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements. Bioresource Technology, 301, 122737. https://doi.org/https://doi.org/10.1016/j.biortech.2020.122737
  • Cao, L., Yu, I. K. M., Xiong, X., Tsang, D. C. W., Zhang, S., Clark, J. H., Hu, C., Ng, Y. H., Shang, J., & Ok, Y. S. (2020). Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental Research, 186, 109547. https://doi.org/https://doi.org/10.1016/j.envres.2020.109547
  • Cheng, B.-H., Zeng, R. J., & Jiang, H. (2017). Recent developments of post-modification of biochar for electrochemical energy storage. Bioresource Technology, 246, 224–233. https://doi.org/https://doi.org/10.1016/j.biortech.2017.07.060
  • Chen, W., Liao, X., Wu, Y., Liang, J. B., Mi, J., Huang, J., Zhang, H., Wu, Y., Qiao, Z., Li, X., & Wang, Y. (2017). Effects of different types of biochar on methane and ammonia mitigation during layer manure composting. Waste Management, 61, 506–515. https://doi.org/https://doi.org/10.1016/j.wasman.2017.01.014
  • Chen, Q., & Liu, T. (2017). Biogas system in rural China: Upgrading from decentralized to centralized? Renewable and Sustainable Energy Reviews, 78, 933–944.
  • Chen, Y., Shen, H., Smith, K. R., Guan, D., Chen, Y., Shen, G., Liu, J., Cheng, H., Zeng, E. Y., & Tao, S. (2018b). Estimating household air pollution exposures and health impacts from space heating in rural China. Environment International, 119, 117–124. https://doi.org/https://doi.org/10.1016/j.envint.2018.04.054
  • Chen, X., Zhang, H., & Xiao, R. (2018a). Mobile autothermal pyrolysis system for local biomass conversion: Process simulation and techno-economic analysis. Energy & Fuels, 32(4), 4178–4188.
  • Chen, L., Zhao, L., Ren, C., & Wang, F. (2012). The progress and prospects of rural biogas production in China. Energy Policy, 51, 58–63.
  • Clare, A., Shackley, S., Joseph, S., Hammond, J., Pan, G., & Bloom, A. (2015). Competing uses for China's straw: The economic and carbon abatement potential of biochar. Gcb Bioenergy. , 7(6), 1272–1282.
  • Das, J., Rene, E. R., Dupont, C., Dufourny, A., Blin, J., & van Hullebusch, E. D. (2019). Performance of a compost and biochar packed biofilter for gas-phase hydrogen sulfide removal. Bioresource Technology, 273, 581–591. https://doi.org/https://doi.org/10.1016/j.biortech.2018.11.052
  • Dehkhoda, A. M., West, A. H., & Ellis, N. (2010). Biochar based solid acid catalyst for biodiesel production. Applied Catalysis A: General, 382(2), 197–204.
  • Dissanayake, P. D., You, S., Igalavithana, A. D., Xia, Y., Bhatnagar, A., Gupta, S., Kua, H. W., Kim, S., Kwon, J.-H., Tsang, D. C. W., & Ok, Y. S. (2020). Biochar-based adsorbents for carbon dioxide capture: A critical review. Renewable and Sustainable Energy Reviews, 119, 109582. https://doi.org/https://doi.org/10.1016/j.rser.2019.109582
  • Dougherty, B., Gray, M., Johnson, M. G., & Kleber, M. (2017). Can biochar covers reduce emissions from manure lagoons while capturing nutrients? Journal of Environmental Quality, 46(3), 659–666. https://doi.org/https://doi.org/10.2134/jeq2016.12.0478
  • Duque-Acevedo, M., Belmonte-Ureña, L. J., Cortés-García, F. J., & Camacho-Ferre, F. (2020). Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation, 22, e00902. https://doi.org/https://doi.org/10.1016/j.gecco.2020.e00902
  • Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., & Moreno-Castilla, C. (2012). Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresource Technology, 111, 185–190. https://doi.org/https://doi.org/10.1016/j.biortech.2012.02.010
  • Fisher, E., Dupont, C., Darvell, L., Commandré, J.-M., Saddawi, A., Jones, J., Grateau, M., Nocquet, T., & Salvador, S. (2012). Combustion and gasification characteristics of chars from raw and torrefied biomass. Bioresource Technology, 119, 157–165.
  • Gabhi, R. S., Kirk, D. W., & Jia, C. Q. (2017). Preliminary investigation of electrical conductivity of monolithic biochar. Carbon, 116, 435–442.
  • General Office of the Ministry of Agriculture. (2017). General Office of the Ministry of Agriculture’s notice on promoting the top ten patterns of straw reutilization.
  • Giddey, S., Badwal, S., Kulkarni, A., & Munnings, C. (2012). A comprehensive review of direct carbon fuel cell technology. Progress in Energy and Combustion Science, 38(3), 360–399.
  • Gu, H., Tang, Y., Yao, J., & Chen, F. (2019). Study on biomass gasification under various operating conditions. Journal of the Energy Institute, 92(5), 1329–1336.
  • Han, H., & Wu, S. (2018). Rural residential energy transition and energy consumption intensity in China. Energy Economics, 74, 523–534.
  • Hansen, S., Mirkouei, A., & Diaz, L. A. (2020). A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels. Renewable and Sustainable Energy Reviews, 118, 109548. https://doi.org/https://doi.org/10.1016/j.rser.2019.109548
  • He, K., Zhang, J., & Zeng, Y. (2018). Rural households' willingness to accept compensation for energy utilization of crop straw in China. Energy, 165, 562–571.
  • He, K., Zhang, J., & Zeng, Y. (2019). Knowledge domain and emerging trends of agricultural waste management in the field of social science: A scientometric review. The Science of the Total Environment, 670, 236–244. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.03.184
  • Hong, J., Ren, L., Hong, J., & Xu, C. (2016). Environmental impact assessment of corn straw utilization in China. Journal of Cleaner Production, 112, 1700–1708.
  • Hou, D., & Li, F. (2017). Complexities surrounding China's soil action plan. Land Degradation & Development, 28, 2315–2320.
  • Huang, Y., Li, F., Meng, J., & Chen, W. (2018). Lignin content of agro-forestry biomass negatively affects the resultant biochar pH. BioResources, 13, 5153–5163.
  • Huang, Y., Zhao, Y-j., Hao, Y-h., Wei, G-q., Feng, J., Li, W-y., Yi, Q., Mohamed, U., Pourkashanian, M., & Nimmo, W. (2019). A feasibility analysis of distributed power plants from agricultural residues resources gasification in rural China. Biomass and Bioenergy, 121, 1–12.
  • Hwang, O., Lee, S.-R., Cho, S., Ro, K. S., Spiehs, M., Woodbury, B., Silva, P. J., Han, D.-W., Choi, H., & Kim, K.-Y. (2018). Efficacy of different biochars in removing odorous volatile organic compounds (VOCs) emitted from swine manure. ACS Sustainable Chemistry & Engineering, 6, 14239–14247.
  • Islas, J., Manzini, F., Masera, O., & Vargas, V. (2019). Solid biomass to heat and power. In C. Lago, N. Caldés & Y. Lechón (Eds.), The role of bioenergy in the bioeconomy (pp. 145–177). Elsevier.
  • Ji, L.-Q. (2015). An assessment of agricultural residue resources for liquid biofuel production in China. Renewable and Sustainable Energy Reviews, 44, 561–575.
  • Jiang, J., Zhang, L., Wang, X., Holm, N., Rajagopalan, K., Chen, F., & Ma, S. (2013). Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochimica Acta, 113, 481–489.
  • Jin, H., Wang, X., Gu, Z., & Polin, J. (2013). Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. Journal of Power Sources, 236, 285–292.
  • Kaikiti, K., Stylianou, M., & Agapiou, A. (2020). Use of biochar for the sorption of volatile organic compounds (VOCs) emitted from cattle manure. Environmental Science and Pollution Research. https://doi.org/https://doi.org/10.1007/s11356-020-09545-y
  • Kakwani, N., Li, S., Wang, X., & Zhu, M. (2019). Evaluating the effectiveness of the rural minimum living standard guarantee (Dibao) program in China. China Economic Review, 53, 1–14.
  • Kalus, K., Konkol, D., Korczyński, M., Koziel, J. A., & Opaliński, S. (2020). Effect of biochar diet supplementation on chicken broilers performance, NH3 and odor emissions and meat consumer acceptance. Animals, 10(9), 1539. https://doi.org/https://doi.org/10.3390/ani10091539
  • Kang, S., Selosse, S., & Maïzi, N. (2015). Strategy of bioenergy development in the largest energy consumers of Asia (China, India, Japan and South Korea). Energy Strategy Reviews, 8, 56–65.
  • Khan, S., Reid, B. J., Li, G., & Zhu, Y.-G. (2014). Application of biochar to soil reduces cancer risk via rice consumption: A case study in Miaoqian village, Longyan, China. Environment International, 68, 154–161.
  • Kumar, R., Strezov, V., Weldekidan, H., He, J., Singh, S., Kan, T., & Dastjerdi, B. (2020). Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renewable and Sustainable Energy Reviews, 123, 109763. https://doi.org/https://doi.org/10.1016/j.rser.2020.109763
  • Lai, A. M., Carter, E., Shan, M., Ni, K., Clark, S., Ezzati, M., Wiedinmyer, C., Yang, X., Baumgartner, J., & Schauer, J. J. (2019). Chemical composition and source apportionment of ambient, household, and personal exposures to PM2.5 in communities using biomass stoves in rural China. The Science of the Total Environment, 646, 309–319. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.07.322
  • Le, C., & Kolaczkowski, S. (2015). Steam gasification of a refuse derived char: Reactivity and kinetics. Chemical Engineering Research and Design, 102, 389–398.
  • Lee, J. W., Kidder, M., Evans, B. R., Paik, S., Buchanan, A. C., Garten, C. T., & Brown, R. C. (2010). Characterization of biochars produced from cornstovers for soil amendment. Environmental Science & Technology, 44(20), 7970–7974. https://doi.org/https://doi.org/10.1021/es101337x
  • Lehmann, J. (2007). A handful of carbon. Nature, 447(7141), 143–144. https://doi.org/https://doi.org/10.1038/447143a
  • Li, F., Cao, X., Zhao, L., Yang, F., Wang, J., & Wang, S. (2013). Short-term effects of raw rice straw and its derived biochar on greenhouse gas emission in five typical soils in China. Soil Science and Plant Nutrition, 59(5), 800–811.
  • Li, Z-g., Gu, C-m., Zhang, R-h., Ibrahim, M., Zhang, G-s., Wang, L., Zhang, R-q., Chen, F., & Liu, Y. (2017b). The benefic effect induced by biochar on soil erosion and nutrient loss of slopping land under natural rainfall conditions in central China. Agricultural Water Management, 185, 145–150.
  • Li, Y.-H., Lin, H.-T., Xiao, K.-L., & Lasek, J. (2018b). Combustion behavior of coal pellets blended with Miscanthus biochar. Energy, 163, 180–190.
  • Li, W., Loh, K.-C., Zhang, J., Tong, Y. W., & Dai, Y. (2018a). Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system. Applied Energy, 209, 400–408.
  • Li, W., Lu, C., An, G., & Chang, S. (2017a). Comparison of alkali-buffering effects and co-digestion on high-solid anaerobic digestion of horticultural waste. Energy & Fuels, 31(10), 10990–10997.
  • Liu, M.-C., Kong, L.-B., Zhang, P., Luo, Y.-C., & Kang, L. (2012a). Porous wood carbon monolith for high-performance supercapacitors. Electrochimica Acta, 60, 443–448.
  • Liu, F., & Lv, T. (2019). Assessment of geographical distribution of photovoltaic generation in China for a low carbon electricity transition. Journal of Cleaner Production, 212, 655–665.
  • Liu, Z., Niu, W., Chu, H., Zhou, T., & Niu, Z. (2018). Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources, 13(2), 3429–3446.
  • Liu, X-y., Qu, J-j., Li, L-q., Zhang, A-f., Jufeng, Z., Zheng, J-w., & Pan, G-x. (2012b). Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies?—A cross site field experiment from South China. Ecological Engineering, 42, 168–173.
  • Liu, Y., Wen, C., & Liu, X. (2013). China's food security soiled by contamination. Science (New York, N.Y.), 339(6126), 1382–1383. https://doi.org/https://doi.org/10.1126/science.339.6126.1382-b
  • Long, H., & Qu, Y. (2018). Land use transitions and land management: A mutual feedback perspective. Land Use Policy , 74, 111–120.
  • Maurer, D., Koziel, J., Kalus, K., Andersen, D., & Opalinski, S. (2017). Pilot-scale testing of non-activated biochar for swine manure treatment and mitigation of ammonia, hydrogen sulfide, odorous volatile organic compounds (VOCs), and greenhouse gas emissions. Sustainability, 9(6), 929.
  • Musa, S. D., Zhonghua, T., Ibrahim, A. O., & Habib, M. (2018). China's energy status: A critical look at fossils and renewable options. Renewable and Sustainable Energy Reviews , 81, 2281–2290.
  • Naeem, M. A., Khalid, M., Aon, M., Abbas, G., Tahir, M., Amjad, M., Murtaza, B., Yang, A., & Akhtar, S. S. (2017). Effect of wheat and rice straw biochar produced at different temperatures on maize growth and nutrient dynamics of a calcareous soil. Archives of Agronomy and Soil Science, 63(14), 2048–2061.
  • Ng, W. C., You, S., Ling, R., Gin, K. Y.-H., Dai, Y., & Wang, C.-H. (2017). Co-gasification of woody biomass and chicken manure: Syngas production, biochar reutilization, and cost-benefit analysis. Energy, 139, 732–742.
  • Oleszczuk, P., Jośko, I., & Kuśmierz, M. (2013). Biochar properties regarding to contaminants content and ecotoxicological assessment. Journal of Hazardous Materials, 260, 375–382. https://doi.org/https://doi.org/10.1016/j.jhazmat.2013.05.044
  • Owens, G. M. (2007). Analyzing impacts of bioenergy expansion in China using strategic environmental assessment. Management of Environmental Quality: An International Journal, 18(4), 396–412.
  • Pacioni, T. R., Soares, D., Di Domenico, M., Rosa, M. F., Moreira, R. D. F. P. M., & José, H. J. (2016). Bio-syngas production from agro-industrial biomass residues by steam gasification. Waste Management (New York, N.Y.).), 58, 221–229. https://doi.org/https://doi.org/10.1016/j.wasman.2016.08.021
  • Palansooriya, K. N., Ok, Y. S., Awad, Y. M., Lee, S. S., Sung, J.-K., Koutsospyros, A., & Moon, D. H. (2019). Impacts of biochar application on upland agriculture: A review. Journal of Environmental Management, 234, 52–64. https://doi.org/https://doi.org/10.1016/j.jenvman.2018.12.085
  • Panahi, H. K. S., Dehhaghi, M., Ok, Y. S., Nizami, A. S., Khoshnevisan, B., Mussatto, S. I., Aghbashlo, M., Tabatabaei, M., & Lam, S. S. (2020). A comprehensive review of engineered biochar: Production, characteristics, and environmental applications. Journal of Cleaner Production, 270, 122462.
  • Pan, X., Chen, W., Wang, L., Lin, L., & Li, N. (2018). The role of biomass in China’s long-term mitigation toward the Paris climate goals. Environmental Research Letters, 13(12), 124028.
  • Pan, J., Ma, J., Liu, X., Zhai, L., Ouyang, X., & Liu, H. (2019). Effects of different types of biochar on the anaerobic digestion of chicken manure. Bioresource Technology, 275, 258–265. https://doi.org/https://doi.org/10.1016/j.biortech.2018.12.068
  • Phillips, C. L., Trippe, K., Reardon, C., Mellbye, B., Griffith, S. M., Banowetz, G. M., & Gady, D. (2018). Physical feasibility of biochar production and utilization at a farm-scale: A case-study in non-irrigated seed production. Biomass and Bioenergy , 108, 244–251.
  • Piovani, C. (2017). The “greening” of China: Progress, limitations, and contradictions. Journal of Contemporary Asia, 47(1), 93–115.
  • Qian, L., Chen, L., Joseph, S., Pan, G., Li, L., Zheng, J., Zhang, X., Zheng, J., Yu, X., & Wang, J. (2014). Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China. Carbon Management, 5(2), 145–154.
  • Qifa, Z., Houge, B. A., Zhaohui, T., Bin, G., & Guodong, L. (2018). An in-situ Technique for Producing Low-Cost Agricultural Biochar. Pedosphere, 28(4), 690–695.
  • Qin, X., Li, Ye., Wang, H., Liu, C., Li, J., Wan, Y., Gao, Q., Fan, F., & Liao, Y. (2016). Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China. Science of the Total Environment , 569-570, 1390–1401.
  • Ren, H., Li, Za., Guo, Q., & Wang, Q. (2008). Bioenergy: Future direction of China's energy and environment integrated strategy. AMBIO: A Journal of the Human Environment, 37(2), 136–139. https://doi.org/https://doi.org/10.1579/0044-7447(2008)37[136:BFDOCE]2.0.CO;2
  • Shafeeyan, M. S., Daud, W. M. A. W., Houshmand, A., & Shamiri, A. (2010). A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 89(2), 143–151.
  • Shan, M., Li, D., Jiang, Y., & Yang, X. (2016). Re-thinking china's densified biomass fuel policies: Large or small scale? Energy Policy, 93, 119–126.
  • Shan, M., Wang, P., Li, J., Yue, G., & Yang, X. (2015). Energy and environment in Chinese rural buildings: Situations, challenges, and intervention strategies. Building and Environment, 91, 271–282.
  • Shi, X. (2019). Inequality of opportunity in energy consumption in China. Energy Policy, 124, 371–382.
  • Sui, F., Zuo, J., Chen, D., Li, L., Pan, G., & Crowley, D. E. (2018). Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: A 3-year field study. Environmental Science and Pollution Research International, 25(4), 3368–3377. https://doi.org/https://doi.org/10.1007/s11356-017-0652-4
  • Sun, X., Shan, R., Li, X., Pan, J., Liu, X., Deng, R., & Song, J. (2017). Characterization of 60 types of Chinese biomass waste and resultant biochars in terms of their candidacy for soil application. Gcb Bioenergy. , 9(9), 1423–1435. https://doi.org/https://doi.org/10.1111/gcbb.12435
  • Tan, Z., Lin, C. S., Ji, X., & Rainey, T. J. (2017). Returning biochar to fields: A review. Applied Soil Ecology , 116, 1–11. https://doi.org/https://doi.org/10.1016/j.apsoil.2017.03.017
  • Tsai, W.-T., Liu, S.-C., Chen, H.-R., Chang, Y.-M., & Tsai, Y.-L. (2012). Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere, 89(2), 198–203. https://doi.org/https://doi.org/10.1016/j.chemosphere.2012.05.085
  • Wang, W., Guo, L., Li, Y., Su, M., Lin, Y., De Perthuis, C., Ju, X., Lin, E., & Moran, D. (2015). Greenhouse gas intensity of three main crops and implications for low-carbon agriculture in China. Climatic Change, 128(1–2), 57–70.
  • Wang, Y., Hu, Y., Zhao, X., Wang, S., & Xing, G. (2013). Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy & Fuels, 27, 5890–5899.
  • Wang, L., Li, L., Cheng, K., Ji, C., Yue, Q., Bian, R., & Pan, G. (2018b). An assessment of emergy, energy, and cost-benefits of grain production over 6 years following a biochar amendment in a rice paddy from. Environmental Science and Pollution Research, 25(10), 9683–9614.
  • Wang, G., Li, Q., Dzakpasu, M., Gao, X., Yuwen, C., & Wang, X. C. (2018a). Impacts of different biochar types on hydrogen production promotion during fermentative co-digestion of food wastes and dewatered sewage sludge. Waste Management (New York, N.Y.), 80, 73–80. https://doi.org/https://doi.org/10.1016/j.wasman.2018.08.042
  • Wang, Y.-S., Li, D.-B., Zhang, F., Tong, Z.-H., & Yu, H.-Q. (2018c). Algal biomass derived biochar anode for efficient extracellular electron uptake from Shewanella oneidensis MR-1. Frontiers of Environmental Science & Engineering, 12(4), 11.
  • Wang, L., Wang, Y., Ma, F., Tankpa, V., Bai, S., Guo, X., & Wang, X. (2019). Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review. Science of the Total Environment, 668, 1298–1309. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.03.011
  • Wang, C., Zhang, L., Yang, S., & Pang, M. (2012). A hybrid life-cycle assessment of nonrenewable energy and greenhouse-gas emissions of a village-level biomass gasification project in China. Energies, 5(8), 2708–2723.
  • Wang, X., Zhao, X., Zhang, Z., Yi, L., Zuo, L., Wen, Q., Liu, F., Xu, J., Hu, S., & Liu, B. (2016). Assessment of soil erosion change and its relationships with land use/cover change in China from the end of the 1980s to 2010. Catena, 137, 256–268.
  • Waqas, M., Aburiazaiza, A., Miandad, R., Rehan, M., Barakat, M., & Nizami, A. (2018). Development of biochar as fuel and catalyst in energy recovery technologies. Journal of Cleaner Production, 188, 477–488.
  • Wei, S., Zhu, M., Song, J., & Peng, Pa. (2017). Comprehensive characterization of biochars produced from three major crop straws of China. BioResources, 12(2), 3316–3330.
  • Wu, C., Yin, X., Ma, L., Zhou, Z., & Chen, H. (2008). Design and operation of a 5.5 MWe biomass integrated gasification combined cycle demonstration plant. Energy & Fuels, 22, 4259–4264.
  • Xin, D., Xian, M., & Chiu, P. C. (2019). New methods for assessing electron storage capacity and redox reversibility of biochar. Chemosphere, 215, 827–834. https://doi.org/https://doi.org/10.1016/j.chemosphere.2018.10.080
  • Yang, J., & Chen, B. (2014). Global warming impact assessment of a crop residue gasification project—a dynamic LCA perspective. Applied Energy, 122, 269–279.
  • Yang, Q., Han, F., Chen, Y., Yang, H., & Chen, H. (2016). Greenhouse gas emissions of a biomass-based pyrolysis plant in China. Renewable and Sustainable Energy Reviews, 53, 1580–1590.
  • Yang, J., Song, K., Hou, J., Zhang, P., & Wu, J. (2017). Temporal and spacial dynamics of bioenergy-related CO2 emissions and underlying forces analysis in China. Renewable and Sustainable Energy Reviews, 70, 1323–1330.
  • Yang, Q., Zhou, H., Zhang, X., Nielsen, C. P., Li, J., Lu, X., Yanga, H., & Chen, H. (2018). Hybrid life-cycle assessment for energy consumption and greenhouse gas emissions of a typical biomass gasification power plant in China. Journal of Cleaner Production, 205, 661–671.
  • Yao, Z., Li, W., Kan, X., Dai, Y., Tong, Y. W., & Wang, C.-H. (2017). Anaerobic digestion and gasification hybrid system for potential energy recovery from yard waste and woody biomass. Energy, 124, 133–145.
  • Ye, S., Zeng, G., Wu, H., Liang, J., Zhang, C., Dai, J., Xiong, W., Song, B., Wu, S., & Yu, J. (2019). The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resources, Conservation and Recycling, 140, 278–285.
  • Ye, S., Zeng, G., Wu, H., Zhang, C., Dai, J., Liang, J., Yu, J., Ren, X., Yi, H., Cheng, M., & Zhang, C. (2017). Biological technologies for the remediation of co-contaminated soil. Critical Reviews in Biotechnology, 37(8), 1062–1076. https://doi.org/https://doi.org/10.1080/07388551.2017.1304357
  • Yin, X. L., Wu, C. Z., Zheng, S. P., & Chen, Y. (2002). Design and operation of a CFB gasification and power generation system for rice husk. Biomass and Bioenergy, 23(3), 181–187.
  • You, S., Ok, Y. S., Chen, S. S., Tsang, D. C., Kwon, E. E., Lee, J., & Wang, C.-H. (2017a). A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresource Technology, 246, 242–253. https://doi.org/https://doi.org/10.1016/j.biortech.2017.06.177
  • You, S., Ok, Y. S., Tsang, D. C., Kwon, E. E., & Wang, C.-H. (2018). Towards practical application of gasification: A critical review from syngas and biochar perspectives. Critical Reviews in Environmental Science and Technology, 48(22-24), 1165–1149.
  • You, S., Tong, H., Armin-Hoiland, J., Tong, Y. W., & Wang, C.-H. (2017b). Techno-economic and greenhouse gas savings assessment of decentralized biomass gasification for electrifying the rural areas of Indonesia. Applied Energy, 208, 495–510.
  • You, S., & Wang, X. (2019). On the Carbon Abatement Potential and Economic Viability of Biochar Production Systems: Cost-Benefit and Life Cycle Assessment. In Y. S. Ok, D. C. W. Tang, N. Bolan, & J. M. Novak (Eds.), Biochar from Biomass and Waste (pp. 385–408). Elsevier.
  • Zhang, A., Bian, R., Li, L., Wang, X., Zhao, Y., Hussain, Q., & Pan, G. (2015a). Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy. Environmental Science and Pollution Research International, 22(23), 18977–18986. https://doi.org/https://doi.org/10.1007/s11356-015-4967-8
  • Zhang, A., Bian, R., Pan, G., Cui, L., Hussain, Q., Li, L., Zheng, J., Zheng, J., Zhang, X., Han, X., & Yu, X. (2012). Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Research, 127, 153–160.
  • Zhang, F., Chen, X., & Vitousek, P. (2013). Chinese agriculture: An experiment for the world. Nature, 497(7447), 33–35. https://doi.org/https://doi.org/10.1038/497033a
  • Zhang, L., Liu, Y., & Hao, L. (2016). Contributions of open crop straw burning emissions to PM2. 5 concentrations in China. Environmental Research Letters, 11(1), 014014. https://doi.org/https://doi.org/10.1088/1748-9326/11/1/014014
  • Zhang, W., & Tsang, D. C. (2019). Sludge-derived biochar and its application in soil fixation. In Y. S. Ok, D. C. W. Tang, N. Bolan, & J. M. Novak (Eds.), Biochar from biomass and waste (pp. 239–253). Elsevier.
  • Zhang, L., Wang, C., & Bahaj, A. (2014a). Carbon emissions by rural energy in China. Renewable Energy., 66, 641–649.
  • Zhang, W., Wang, C., Zhang, L., Xu, Y., Cui, Y., Lu, Z., & Streets, D. G. (2018b). Evaluation of the performance of distributed and centralized biomass technologies in rural China. Renewable Energy., 125, 445–455.
  • Zhang, R., Wei, T., Glomsrød, S., & Shi, Q. (2014b). Bioenergy consumption in rural China: Evidence from a survey in three provinces. Energy Policy, 75, 136–145.
  • Zhang, J., Zhao, W., Zhang, H., Wang, Z., Fan, C., & Zang, L. (2018a). Recent achievement in enhancing anaerobic digestion with carbon-based functional materials. Bioresource Technology, 266, 555–567.
  • Zhang, X., Zhong, T., Liu, L., & Ouyang, X. (2015b). Impact of soil heavy metal pollution on food safety in China. PLoS One, 10(8), e0135182. https://doi.org/https://doi.org/10.1371/journal.pone.0135182
  • Zhang, A., Zhou, X., Li, M., & Wu, H. (2017). Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China. Chemosphere, 186, 986–993. https://doi.org/https://doi.org/10.1016/j.chemosphere.2017.08.074
  • Zhang, Z., Zhu, Z., Shen, B., & Liu, L. (2019). Insights into biochar and hydrochar production and applications: A review. Energy, 171, 581–598.
  • Zhao, X. (2018). Soil degradation through agriculture in China: Its extent, impacts and implications for environmental law reform. In H. Ginzky, E. Dooley, I. L. Heuser, E. Kasimbazi, T. Markus, & T. Qin (Eds.), International yearbook of soil law and policy 2017 (pp. 37–63). Springer.
  • Zhao, F.-J., Ma, Y., Zhu, Y.-G., Tang, Z., & McGrath, S. P. (2014). Soil contamination in China: Current status and mitigation strategies. Environmental Science & Technology, 49, 750–759.
  • Zheng, R., Chen, Z., Cai, C., Tie, B., Liu, X., Reid, B. J., Huang, Q., Lei, M., Sun, G., & Baltrėnaitė, E. (2015). Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment-a field experiment in Hunan, China. Environmental Science and Pollution Research, 22(14), 11097–11108. https://doi.org/https://doi.org/10.1007/s11356-015-4268-2
  • Zhou, Z., Yin, X., Xu, J., & Ma, L. (2012). The development situation of biomass gasification power generation in China. Energy Policy, 51, 52–57.
  • Zhu, Z., Jia, Z., Peng, L., Chen, Q., He, L., Jiang, Y., & Ge, S. (2018). Life cycle assessment of conventional and organic apple production systems in. China. Journal of Cleaner Production, 201, 156–168.
  • Zhuang, P., Zou, B., Li, N., & Li, Z. (2009). Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: Implication for human health. Environmental Geochemistry and Health, 31(6), 707–715. https://doi.org/https://doi.org/10.1007/s10653-009-9248-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.