863
Views
8
CrossRef citations to date
0
Altmetric
Reviews

The enigma of environmental organoarsenicals: Insights and implications

, , , & ORCID Icon
Pages 3835-3862 | Published online: 19 Jul 2021

References

  • Ajees, A. A., Marapakala, K., Packianathan, C., Sankaran, B., & Rosen, B. P. (2012). Structure of an as(III) S-adenosylmethionine methyltransferase: insights into the mechanism of arsenic biotransformation. Biochemistry, 51(27), 5476–5485. https://doi.org/10.1021/bi3004632
  • Andrewes, P., Demarini, D. M., Funasaka, K., Wallace, K., Lai, V. W. M., Sun, H., Cullen, W. R., & Kitchin, K. T. (2004). Do arsenosugars pose a risk to human health? The comparative toxicities of a trivalent and pentavalent arsenosugar. Environmental Science & Technology, 38(15), 4140–4148. https://doi.org/10.1021/es035440f
  • Aposhian, H., Petrick, J., Jagadish, B., & Mash, E. (2001). Monomethylarsonous acid (MMA(III)) and arsenite: LD(50) in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chemical Research in Toxicology, 14(6), 651–656. https://doi.org/10.1021/tx000264z
  • Bornhorst, J., Ebert, F., Meyer, S., Ziemann, V., Xiong, C., Guttenberger, N., Raab, A., Baesler, J., Aschner, M., Feldmann, J., Francesconi, K., Raber, G., & Schwerdtle, T. (2020). Toxicity of three types of arsenolipids: Species-specific effects in Caenorhabditis elegans. Metallomics : Integrated Biometal Science, 12(5), 794–798. https://doi.org/10.1039/d0mt00039f
  • Braeuer, S., Borovička, J., Glabonjat, R. A., Steiner, L., & Goessler, W. (2021). Arsenocholine-O-sulfate: A novel compound as major arsenic species in the parasitic mushroom Tolypocladium ophioglossoides. Chemosphere, 265, 128886. https://doi.org/10.1016/j.chemosphere.2020.128886
  • Braeuer, S., Borovička, J., Glasnov, T., Guedes de la Cruz, G., Jensen, K. B., & Goessler, W. (2018). Homoarsenocholine - A novel arsenic compound detected for the first time in nature. Talanta, 188, 107–110. https://doi.org/10.1016/j.talanta.2018.05.065
  • Broderick, J. B., Duffus, B. R., Duschene, K. S., & Shepard, E. M. (2014). Radical S-adenosylmethionine enzymes. Chemical Reviews, 114(8), 4229–4317. https://doi.org/10.1021/cr4004709
  • Calatayud, M., Vázquez, M., Devesa, V., & Vélez, D. (2012). In vitro study of intestinal transport of inorganic and methylated arsenic species by Caco-2/HT29-MTX cocultures. Chemical Research in Toxicology, 25(12), 2654–2662. https://doi.org/10.1021/tx300295n
  • Capuco, A., Urits, I., Hasoon, J., Chun, R., Gerald, B., Wang, J. K., Ngo, A. L., Simopoulos, T., Kaye, A. D., Colontonio, M. M., Parker-Actlis, T. Q., Fuller, M. C., & Viswanath, O. (2020). Gut microbiome dysbiosis and depression: A comprehensive review. Current Pain and Headache Reports, 24(7), 36. https://doi.org/10.1007/s11916-020-00871-x
  • Challenger, F., Higginbottom, C., & Louis, E. (1933). The formation of organo-metalloidal compounds by microorganisms. Part I. Trimethylarsine and dimethylethylarsine. Journal of the Chemical Society (Resumed), 95–101. https://doi.org/10.1039/jr9330000095
  • Chávez-Capilla, T., Maher, W., Kelly, T., & Foster, S. (2016). Evaluation of the ability of arsenic species to traverse cell membranes by simple diffusion using octanol-water and liposome-water partition coefficients. Journal of Environmental Sciences (China), 49, 222–232. https://doi.org/10.1016/j.jes.2016.08.007
  • Chen, J., Bhattacharjee, H., & Rosen, B. P. (2015b). ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Molecular Microbiology, 96(5), 1042–1052. https://doi.org/10.1111/mmi.12988
  • Chen, J., Garbinski, L. D., Rosen, B., Zhang, J., Xiang, P., & Ma, L. Q. (2020a). Organoarsenical compounds: Occurrence, toxicology and biotransformation. Critical Reviews in Environmental Science and Technology, 50(3), 217–243. https://doi.org/10.1080/10643389.2019.1619375
  • Cheng, J., Ji, W., Ma, S., Ji, X., Deng, Z., Ding, W., & Zhang, Q. (2021). Characterization and mechanistic study of the radical SAM enzyme ArsS involved in arsenosugar biosynthesis. Angewandte Chemie (International ed. in English), 60(14), 7570–7575. https://doi.org/10.1016/0009-2509(62)87032-8
  • Chen, C., Li, L., Huang, K., Zhang, J., Xie, W. Y., Lu, Y., Dong, X., & Zhao, F. J. (2019a). Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils. The ISME Journal, 13(10), 2523–2535. https://doi.org/10.1038/s41396-019-0451-7
  • Chen, J., Madegowda, M., Bhattacharjee, H., & Rosen, B. P. (2015a). ArsP: A methylarsenite efflux permease. Molecular Microbiology, 98(4), 625–635. https://doi.org/10.1111/mmi.13145
  • Chen, S. C., Sun, G. X., Rosen, B. P., Zhang, S. Y., Deng, Y., Zhu, B. K., Rensing, C., & Zhu, Y. G. (2017). Recurrent horizontal transfer of arsenite methyltransferase genes facilitated adaptation of life to arsenic. Scientific Reports, 7(1), 7741. http://dx.doi.org/10.1038/s41598-017-08313-2
  • Chen, S. C., Sun, G. X., Yan, Y., Konstantinidis, K. T., Zhang, S. Y., Deng, Y., Li, X. M., Cui, H. L., Musat, F., Popp, D., Rosen, B. P., & Zhu, Y. G. (2020b). The Great Oxidation Event expanded the genetic repertoire of arsenic metabolism and cycling. Proceedings of the National Academy of Sciences of the United States of America, 117(19), 10414–10421. https://doi.org/10.1073/pnas.2001063117
  • Chen, J., Yoshinaga, M., Garbinski, L., & Rosen, B. P. (2016). Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance. Molecular Microbiology, 100(6), 945–953. https://doi.org/10.1111/mmi.13371
  • Chen, J., Yoshinaga, M., & Rosen, B. P. (2019b). The antibiotic action of methylarsenite is an emergent property of microbial communities. Molecular Microbiology, 111(2), 487–494. https://doi.org/10.1111/mmi.14169
  • Chi, L., Lai, Y., Tu, P., Liu, C. W., Xue, J., Ru, H., & Lu, K. (2019). Lipid and cholesterol homeostasis after arsenic exposure and antibiotic treatment in mice: Potential role of the microbiota. Environmental Health Perspectives, 127(9), 097002–097012. https://doi.org/10.1289/EHP4415
  • Clowes, L. A., & Francesconi, K. A. (2004). Uptake and elimination of arsenobetaine by the mussel Mytilus edulis is related to salinity. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 137(1), 35–42. https://doi.org/10.1016/j.cca.2003.11.003
  • Cruz-Morales, P., Kopp, J. F., Martínez-Guerrero, C., Yáñez-Guerra, L. A., Selem-Mojica, N., Ramos-Aboites, H., Feldmann, J., & Barona-Gómez, F. (2016). Phylogenomic analysis of natural products biosynthetic gene clusters allows discovery of arseno-organic metabolites in model Streptomycetes. Genome Biology and Evolution, 8(6), 1906–1916. https://doi.org/10.1093/gbe/evw125
  • Cullen, W. R., & Dodd, M. (1989). Arsenic speciation in clams of British Columbia. Applied Organometallic Chemistry, 3(1), 79–87. https://doi.org/10.1002/aoc.590030108
  • Devesa, V., Loos, A., Súñer, M. A., Vélez, D., Feria, A., Martínez, A., Montoro, R., & Sanz, Y. (2005). Transformation of organoarsenical species by the microflora of freshwater crayfish. Journal of Agricultural and Food Chemistry, 53(26), 10297–10305. https://doi.org/10.1021/jf050423q
  • Dopp, E., von Recklinghausen, U., Diaz-Bone, R., Hirner, A. V., & Rettenmeier, A. W. (2010). Cellular uptake, subcellular distribution and toxicity of arsenic compounds in methylating and non-methylating cells. Environmental Research, 110(5), 435–442. https://doi.org/10.1016/j.envres.2009.08.012
  • Duan, G.-L., Hu, Y., Schneider, S., McDermott, J., Chen, J., Sauer, N., Rosen, B. P., Daus, B., Liu, Z., & Zhu, Y.-G. (2016). Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nature Plants, 2(1), 1–16. https://doi.org/10.1038/nplants.2015.202.Inositol
  • Ebert, F., Leffers, L., Weber, T., Berndt, S., Mangerich, A., Beneke, S., Bürkle, A., & Schwerdtle, T. (2014). Toxicological properties of the thiolated inorganic arsenic and arsenosugar metabolite thio-dimethylarsinic acid in human bladder cells. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 28(2), 138–146. https://doi.org/10.1016/j.jtemb.2013.06.004
  • Ebert, F., Ziemann, V., Wandt, V. K., Witt, B., Müller, S. M., Guttenberger, N., Bankoglu, E. E., Stopper, H., Raber, G., Francesconi, K. A., & Schwerdtle, T. (2020). Cellular toxicological characterization of a thioxolated arsenic-containing hydrocarbon. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 61, 126563. https://doi.org/10.1016/j.jtemb.2020.126563
  • Edmonds, J. S., & Francesconi, K. A. (1981). Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem. Nature, 289(5798), 602–604. https://doi.org/10.1038/289602a0
  • Edmonds, J. S., & Francesconi, K. A. (2003). Organoarsenic compounds in the marine environment. In P. J. Craig (Ed.), Organometallic compounds in the environment (pp. 195–222). Wiley. https://doi.org/10.1017/CBO9781107415324.004
  • Edmonds, J. S., Francesconi, K. A., Cannon, J. R., Raston, C. L., Skelton, B. W., & White, A. H. (1977). Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituent of the western rock lobster Panulirus longipes cygnus George. Tetrahedron Letters, 18(18), 1543–1546. https://doi.org/10.1016/S0040-4039(01)93098-9
  • Edmonds, J. S., Shibata, Y., Yang, F., & Morita, M. (1997). Isolation and synthesis of 1-deoxy-1-dimethylarsinoylribitol-5-sulfate, a natural constituent of Chondria crassicaulis and other red algae. Tetrahedron Letters, 38(33), 5819–5820. https://doi.org/10.1016/S0040-4039(97)01330-0
  • Feldmann, J., & Krupp, E. M. (2011). Critical review or scientific opinion paper: Arsenosugars-a class of benign arsenic species or justification for developing partly speciated arsenic fractionation in foodstuffs? Analytical and Bioanalytical Chemistry, 399(5), 1735–1741. https://doi.org/10.1007/s00216-010-4303-6
  • Finke, H., Wandt, V. K., Ebert, F., Guttenberger, N., Glabonjat, R. A., Stiboller, M., Francesconi, K. A., Raber, G., & Schwerdtle, T. (2020). Toxicological assessment of arsenic-containing phosphatidylcholines in HepG2 cells. Metallomics: Integrated Biometal Science, 12(7), 1159–1170. https://doi.org/10.1039/d0mt00073f
  • Foster, S. (2007). Arsenic cycling in marine ecosystems: Investigating the link between primary production and secondary consumption. University of Canberra.
  • Francesconi, K. A., & Edmonds, J. S. (1998). Arsenic species in marine samples. Croatica Chemica Acta, 71(2), 343–359. https://doi.org/10.1081/AL-120024327
  • Francesconi, K. A., Edmonds, J. S., & Stick, R. V. (1989). Accumulation of arsenic in yelloweye mullet (Aldrichetta forsteri) following oral administration of organoarsenic compounds and arsenate. The Science of the Total Environment, 79(1), 59–67. https://doi.org/10.1016/0048-9697(89)90053-3
  • Francesconi, K. A., Edmonds, J. S., & Stick, R. V. (1992). Arsenic compounds from the kidney of the giant clam Tridacna maxima: Isolation and identification of an arsenic-containing nucleoside. Journal of the Chemical Society, Perkin Transactions, 1(11), 1349–1357. https://doi.org/10.1039/p19920001349
  • Francesconi, K. A., Edmonds, J. S., Stick, R. V., Skelton, B. W., & White, A. H. (1991). Arsenic-containing ribosides from the brown alga Sargassum lacerifolium: X-ray molecular structure of 2-amino-3-[5′-deoxy-5′-(dimethylarsinoyl) ribosyloxy] propane-1-sulphonic acid. Journal of the Chemical Society, Perkin Transactions, 1(11), 2707–2716. https://doi.org/10.1039/P19910002707
  • Francesconi, K. A., Gailer, J., Edmonds, J. S., Goessler, W., & Irgolic, K. J. (1999). Uptake of arsenic-betaines by the mussel Mytilus edulis. Comparative Biochemistry and Physiology - C Pharmacology Toxicology and Endocrinology, 122(1), 131–137. https://doi.org/10.1016/S0742-8413(98)10095-6
  • Francesconi, K. A., Khokiattiwong, S., Goessler, W., Pedersen, S. N., & Pavkov, M. (2000). A new arsenobetaine from marine organisms identified by liquid chromatography-mass spectrometry. Chemical Communications, 70(12), 1083–1084. https://doi.org/10.1039/b002392m
  • Francesconi, K. A., Stick, R. V., & Edmonds, J. S. (1990). Glycerylphosphorylarsenocholine and phosphatidylarsenocholine in yelloweye mullet (Aldrichetta forsteri) following oral administration of arsenocholine. Experientia, 46(5), 464–466. https://doi.org/10.1007/BF01954231
  • Francesconi, K. A., Tanggaar, R., McKenzie, C. J., & Goessler, W. (2002). Arsenic metabolites in human urine after ingestion of an arsenosugar. Clinical Chemistry, 48(1), 92–101. https://doi.org/10.1093/clinchem/48.1.92
  • Freitas, F. P., Raber, G., Jensen, K. B., Nogueira, A. J. A., & Francesconi, K. A. (2020). Lipids that contain arsenic in the Mediterranean mussel, Mytilus galloprovincialis. Environmental Chemistry, 17(3), 289–301. https://doi.org/10.1071/EN19213
  • Fukuda, S., Terasawa, M., & Shiomi, K. (2011). Phosphatidylarsenocholine, one of the major arsenolipids in marine organisms: Synthesis and metabolism in mice. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 49(7), 1598–1603. https://doi.org/10.1016/j.fct.2011.03.053
  • Garbinski, L. D., Rosen, B. P., & Yoshinaga, M. (2020). Organoarsenicals inhibit bacterial peptidoglycan biosynthesis by targeting the essential enzyme MurA. Chemosphere, 254, 126911. https:// https://doi.org/10.1016/j.chemosphere.2020.126911
  • Glabonjat, R. A., Blum, J. S., Miller, L. G., Webb, S. M., Stolz, J. F., Francesconi, K. A., & Oremland, R. S. (2020). Arsenolipids in cultured Picocystis strain ML and their occurrence in biota and sediment from Mono Lake. California. Life, 10(6), 93. https://doi.org/10.3390/life10060093
  • Glabonjat, R. A., Duncan, E. G., Francesconi, K. A., & Maher, W. A. (2019a). Transformation of arsenic lipids in decomposing Ecklonia radiata. Journal of Applied Phycology, 31(6), 3979–3987. https://doi.org/10.1007/s10811-019-01845-2
  • Glabonjat, R. A., Ehgartner, J., Duncan, E. G., Raber, G., Jensen, K. B., Krikowa, F., Maher, W. A., & Francesconi, K. A. (2018). Arsenolipid biosynthesis by the unicellular alga Dunaliella tertiolecta is influenced by As/P ratio in culture experiments. Metallomics : integrated Biometal Science, 10(1), 145–153. https://doi.org/10.1039/c7mt00249a
  • Glabonjat, R. A., Raber, G., Jensen, K. B., Ehgartner, J., & Francesconi, K. A. (2014). Quantification of arsenolipids in the certified reference material NMIJ 7405-a (Hijiki) using HPLC/mass spectrometry after chemical derivatization . Analytical Chemistry, 86(20), 10282–10287. https://doi.org/10.1021/ac502488f
  • Glabonjat, R. A., Raber, G., Jensen, K. B., Guttenberger, N., Zangger, K., & Francesconi, K. A. (2017). A 2-O-methylriboside unknown outside the RNA world contains arsenic. Angewandte Chemie (International ed. in English), 56(39), 11963–11965. https://doi.org/10.1002/anie.201706310
  • Glabonjat, R. A., Raber, G., Jensen, K. B., Schubotz, F., Boyd, E. S., & Francesconi, K. A. (2019b). Origin of arsenolipids in sediments from Great Salt Lake. Environmental Chemistry, 16(5), 303–311. https://doi.org/10.1071/EN19135
  • Grinham, A., Kvennefors, C., Fisher, P. L., Gibbes, B., & Albert, S. (2014). Baseline arsenic levels in marine and terrestrial resources from a pristine environment: Isabel Island, Solomon Islands. Marine Pollution Bulletin, 88(1-2), 354–360. https://doi.org/10.1016/j.marpolbul.2014.08.018
  • Hata, A., Hasegawa, M., Yamauchi, T., Otomo, Y., Miura, M., Yamanaka, K., Yamano, Y., Fujitani, N., & Endo, G. (2019). Metabolism of 3-[5'-deoxy-5'-(dimethylarsinoyl)-β-ribofuranosyloxy]-2-hydroxypropylene glycol in an artificial digestive system. Heliyon, 5(7), e02079. https://doi.org/10.1016/j.heliyon.2019.e02079
  • Hoffmann, T., Warmbold, B., Smits, S. H. J., Tschapek, B., Ronzheimer, S., Bashir, A., Chen, C., Rolbetzki, A., Pittelkow, M., Jebbar, M., Seubert, A., Schmitt, L., & Bremer, E. (2018). Arsenobetaine: An ecophysiologically important organoarsenical confers cytoprotection against osmotic stress and growth temperature extremes. Environmental Microbiology, 20(1), 305–323. https://doi.org/10.1111/1462-2920.13999
  • Jennings, W., & Epand, R. M. (2020). CDP-diacylglycerol, a critical intermediate in lipid metabolism. Chemistry and Physics of Lipids, 230, 104914. https://doi.org/10.1016/j.chemphyslip.2020.104914
  • Jiang, X., McDermott, J. R., Ajees, A. A., Rosen, B. P., & Liu, Z. (2010). Trivalent arsenicals and glucose use different translocation pathways in mammalian GLUT1. Metallomics: Integrated Biometal Science, 2(3), 211–219. https://doi.org/10.1039/b920471g
  • Jones, A. J. (1922). The arsenic content of some of the marine algae. Pharmaceutical Journal, 109, 86.
  • Kaise, T., Hanaoka, K., & Tagawa, S. (1987). The formation of trimethylarsine oxide from arsenobetaine by biodegradation with marine microorganisms. Chemosphere, 16(10-12), 2551–2558. https://doi.org/10.1016/0045-6535(87)90313-4
  • Kerl, C. F., Schindele, R. A., Brüggenwirth, L., Colina Blanco, A. E., Rafferty, C., Clemens, S., & Planer-Friedrich, B. (2019). Methylated thioarsenates and monothioarsenate differ in uptake, transformation, and contribution to total arsenic translocation in rice plants. Environmental Science & Technology, 53(10), 5787–5796. https://doi.org/10.1021/acs.est.9b00592
  • Kulp, T. R., Hoeft, S. E., Asao, M., Madigan, M. T., Hollibaugh, J. T., Fisher, J. C., Stolz, J. F., Culbertson, C. W., Miller, L. G., & Oremland, R. S. (2008). Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science (New York, N.Y.), 321(5891), 967–970. https://doi.org/10.1126/science.1160799
  • Kuramata, M., Sakakibara, F., Kataoka, R., Abe, T., Asano, M., Baba, K., Takagi, K., & Ishikawa, S. (2015). Arsenic biotransformation by Streptomyces sp. isolated from rice rhizosphere. Environmental Microbiology, 17(6), 1897–1909. https://doi.org/10.1111/1462-2920.12572
  • Latner, A. L. (1970). Principles of Biochemistry. BMJ, 4(5733), 481–481. https://doi.org/10.1136/bmj.4.5733.481-a
  • Lee, J., & Levin, D. E. (2019). Methylated metabolite of arsenite blocks glycerol production in yeast by inhibition of glycerol-3-phosphate dehydrogenase. Molecular Biology of the Cell, 30(17), 2134–2140. https://doi.org/10.1091/mbc.E19-04-0228
  • Leffers, L., Wehe, C. A., Hüwel, S., Bartel, M., Ebert, F., Taleshi, M. S., Galla, H. J., Karst, U., Francesconi, K. A., & Schwerdtle, T. (2013). In vitro intestinal bioavailability of arsenosugar metabolites and presystemic metabolism of thio-dimethylarsinic acid in Caco-2 cells. Metallomics : integrated Biometal Science, 5(8), 1031–1042. https://doi.org/10.1039/c3mt00039g
  • Lehr, C. R., Polishchuk, E., Radoja, U., & Cullen, W. R. (2003). Demethylation of methylarsenic species by Mycobacterium neoaurum. Applied Organometallic Chemistry, 17(11), 831–834. https://doi.org/10.1002/aoc.544
  • Li, M. Y., Wang, P., Wang, J. Y., Chen, X. Q., Zhao, D., Yin, D. X., Luo, J., Juhasz, A. L., Li, H. B., & Ma, L. Q. (2019). Arsenic concentrations, speciation, and localization in 141 cultivated market mushrooms: implications for arsenic exposure to humans. Environmental Science & Technology, 53(1), 503–511. https://doi.org/10.1021/acs.est.8b05206
  • Little, R., Wine, E., Kamath, B. M., Griffiths, A. M., & Ricciuto, A. (2020). Gut microbiome in primary sclerosing cholangitis: A review. World Journal of Gastroenterology, 26(21), 2768–2780. https://doi.org/10.3748/wjg.v26.i21.2768
  • Liu, Z. J., Boles, E., & Rosen, B. P. (2004). Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. Journal of Biological Chemistry, 279(17), 17312–17318. https://doi.org/10.1074/jbc.M314006200
  • Liu, Z. J., Shen, J., Carbrey, J. M., Mukhopadhyay, R., Agre, P., & Rosen, B. P. (2002). Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proceedings of the National Academy of Sciences of the United States of America, 99(9), 6053–6058. https://doi.org/10.1073/pnas.092131899
  • Lomax, C., Liu, W. J., Wu, L., Xue, K., Xiong, J., Zhou, J., McGrath, S. P., Meharg, A. A., Miller, A. J., & Zhao, F. J. (2012). Methylated arsenic species in plants originate from soil microorganisms. The New Phytologist, 193(3), 665–672. https://doi.org/10.1111/j.1469-8137.2011.03956.x
  • Lu, K., Cable, P. H., Abo, R. P., Ru, H., Graffam, M. E., Schlieper, K. A., Parry, N. M. A., Levine, S., Bodnar, W. M., Wishnok, J. S., Styblo, M., Swenberg, J. A., Fox, J. G., & Tannenbaum, S. R. (2013). Gut microbiome perturbations induced by bacterial infection affect arsenic biotransformation. Chemical Research in Toxicology, 26(12), 1893–1903. https://doi.org/10.1021/tx4002868
  • Luvonga, C., Rimmer, C. A., Yu, L. L., & Lee, S. B. (2020). Organoarsenicals in seafood: Occurrence, dietary exposure, toxicity, and risk assessment considerations - a review. Journal of Agricultural and Food Chemistry, 68(4), 943–960. https://doi.org/10.1021/acs.jafc.9b07532
  • Majlessi, M., Nelson, N. C., & Becker, M. M. (1998). Advantages of 2'-O-methyl oligoribonucleotide probes for detecting RNA targets. Nucleic Acids Research, 26(9), 2224–2229. https://doi.org/10.1093/nar/26.9.2224
  • Marapakala, K., Packianathan, C., Ajees, A. A., Dheeman, D. S., Sankaran, B., Kandavelu, P., & Rosen, B. P. (2015). A disulfide-bond cascade mechanism for arsenic(III) S-adenosylmethionine methyltransferase. Acta Crystallographica. Section D, Biological Crystallography, 71(Pt 3), 505–515. https://doi.org/10.1107/S1399004714027552
  • McSheehy, S., Pohl, P., Vélez, D., & Szpunar, J. (2002a). Multidimensional liquid chromatography with parallel ICP MS and electrospray MS/MS detection as a tool for the characterization of arsenic species in algae. Analytical and Bioanalytical Chemistry, 372(3), 457–466. https://doi.org/10.1007/s00216-001-1182-x
  • McSheehy, S., Szpunar, J., Lobinski, R., Haldys, V., Tortajada, J., & Edmonds, J. S. (2002b). Characterization of arsenic species in kidney of the clam Tridacna derasa by multidimensional liquid chromatography-ICPMS and electrospray time-of-flight tandem mass spectrometry. Analytical Chemistry, 74(10), 2370–2378. https://doi.org/10.1021/ac011136y
  • Meier, J., Kienzl, N., Goessler, W., & Francesconi, K. A. (2005). The occurrence of thio-arsenosugars in some samples of marine algae. Environmental Chemistry, 2(4), 304–307. https://doi.org/10.1071/EN05071
  • Mestrot, A., Xie, W. Y., Xue, X. M., & Zhu, Y. G. (2013). Arsenic volatilization in model anaerobic biogas digesters. Applied Geochemistry, 33, 294–297. https://doi.org/10.1016/j.apgeochem.2013.02.023
  • Meyer, S., Matissek, M., Müller, S. M., Taleshi, M. S., Ebert, F., Francesconi, K. A., & Schwerdtle, T. (2014b). In vitro toxicological characterisation of three arsenic-containing hydrocarbons. Metallomics: Integrated Biometal Science, 6(5), 1023–1033. https://doi.org/10.1039/c4mt00061g
  • Meyer, S., Raber, G., Ebert, F., Taleshi, M. S., Francesconi, K. A., & Schwerdtle, T. (2015). Arsenic-containing hydrocarbons and arsenic-containing fatty acids: Transfer across and presystemic metabolism in the Caco-2 intestinal barrier model. Molecular Nutrition & Food Research, 59(10), 2044–2056. https://doi.org/10.1002/mnfr.201500286
  • Meyer, S., Schulz, J., Jeibmann, A., Taleshi, M. S., Ebert, F., Francesconi, K. A., & Schwerdtle, T. (2014a). Arsenic-containing hydrocarbons are toxic in the in vivo model Drosophila melanogaster. Metallomics: Integrated Biometal Science, 6(11), 2010–2014. https://doi.org/10.1039/c4mt00249k
  • Molin, M., Ydersbond, T. A., Ulven, S. M., Holck, M., Dahl, L., Sloth, J. J., Fliegel, D., Goessler, W., Alexander, J., & Meltzer, H. M. (2012). Major and minor arsenic compounds accounting for the total urinary excretion of arsenic following intake of blue mussels (Mytilus edulis): A controlled human study. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 50(7), 2462–2472. https://doi.org/10.1016/j.fct.2012.04.026
  • Morita, M., & Shibata, Y. (1988). Isolation and identification of arseno-lipid from a brown alga, Undaria pinnatifida (Wakame). Chemosphere, 17(6), 1147–1152. https://doi.org/10.1016/0045-6535(88)90180-4
  • Müller, S. M., Ebert, F., Raber, G., Meyer, S., Bornhorst, J., Hüwel, S., Galla, H. J., Francesconi, K. A., & Schwerdtle, T. (2018). Effects of arsenolipids on in vitro blood-brain barrier model. Archives of Toxicology, 92(2), 823–832. https://doi.org/10.1007/s00204-017-2085-8
  • Nadar, V. S., Chen, J., Dheeman, D. S., Galván, A. E., Yoshinaga-Sakurai, K., Kandavelu, P., Sankaran, B., Kuramata, M., Ishikawa, S., Rosen, B. P., & Yoshinaga, M. (2019). Arsinothricin, an arsenic-containing non-proteinogenic amino acid analog of glutamate, is a broad-spectrum antibiotic. Communications Biology, 2(1), 131. https://doi.org/10.1038/s42003-019-0365-y
  • Nadar, V. S., Yoshinaga, M., Pawitwar, S. S., Kandavelu, P., Sankaran, B., & Rosen, B. P. (2016). Structure of the ArsI C-As Lyase: Insights into the mechanism of degradation of organoarsenical herbicides and growth promoters. Journal of Molecular Biology, 428(11), 2462–2473. https://doi.org/10.1016/j.jmb.2016.04.022
  • Nearing, M. M., Koch, I., & Reimer, K. J. (2014). Arsenic speciation in edible mushrooms. Environmental Science & Technology, 48(24), 14203–14210. https://doi.org/10.1021/es5038468
  • Niehoff, A. C., Schulz, J., Soltwisch, J., Meyer, S., Kettling, H., Sperling, M., Jeibmann, A., Dreisewerd, K., Francesconi, K. A., Schwerdtle, T., & Karst, U. (2016). Imaging by elemental and molecular mass spectrometry reveals the uptake of an arsenolipid in the brain of Drosophila melanogaster. Analytical Chemistry, 88(10), 5258–5263. https://doi.org/10.1021/acs.analchem.6b00333
  • Nischwitz, V., & Pergantis, S. A. (2007). Mapping of arsenic species and identification of a novel arsenosugar in giant clams Tridacna maxima and Tridacna derasa using advanced mass spectrometric techniques. Environmental Chemistry, 4(3), 187–196. https://doi.org/10.1071/EN07009
  • Ochi, T., Kita, K., Suzuki, T., Rumpler, A., Goessler, W., & Francesconi, K. A. (2008). Cytotoxic, genotoxic and cell-cycle disruptive effects of thio-dimethylarsinate in cultured human cells and the role of glutathione. Toxicology and Applied Pharmacology, 228(1), 59–67. https://doi.org/10.1016/j.taap.2007.11.023
  • Oremland, R. S., Saltikov, C. W., Wolfe-Simon, F., & Stolz, J. F. (2009). Arsenic in the evolution of earth and extraterrestrial ecosystems. Geomicrobiology Journal, 26(7), 522–536. https://doi.org/10.1080/01490450903102525
  • Oremland, R. S., & Stolz, J. F. (2003). The ecology of arsenic. Science (New York, N.Y.), 300(5621), 939–944. https://doi.org/10.1126/science.1081903
  • Packianathan, C., Kandavelu, P., & Rosen, B. P. (2018a). The structure of an As(III) S-adenosylmethionine methyltransferase with 3-coordinately bound As(III) depicts the first step in catalysis. Biochemistry, 57(28), 4083–4092. https://doi.org/10.1021/acs.biochem.8b00457
  • Packianathan, C., Li, J., Kandavelu, P., Sankaran, B., & Rosen, B. P. (2018b). Reorientation of the methyl group in MAs(III) is the rate-limiting step in the ArsM As(III) S-adenosylmethionine methyltransferase reaction. ACS Omega, 3(3), 3104–3112. https://doi.org/10.1021/acsomega.8b00197
  • Pal, C., Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. G. J. (2015). Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics, 16(1), 964. https://doi.org/10.1186/s12864-015-2153-5
  • Pasternak, A., Kierzek, E., Pasternak, K., Turner, D. H., & Kierzek, R. (2007). A chemical synthesis of LNA-2,6-diaminopurine riboside, and the influence of 2'-O-methyl-2,6-diaminopurine and LNA-2,6-diaminopurine ribosides on the thermodynamic properties of 2'-O-methyl RNA/RNA heteroduplexes. Nucleic Acids Research, 35(12), 4055–4063. https://doi.org/10.1093/nar/gkm421
  • Pétursdóttir, Á. H., Blagden, J., Gunnarsson, K., Raab, A., Stengel, D. B., Feldmann, J., & Gunnlaugsdóttir, H. (2019). Arsenolipids are not uniformly distributed within two brown macroalgal species Saccharina latissima and Alaria esculenta. Analytical and Bioanalytical Chemistry, 411(19), 4973–4985. https://doi.org/10.1007/s00216-019-01907-x
  • Pétursdóttir, Á. H., Fletcher, K., Gunnlaugsdóttir, H., Krupp, E., Kupper, F. C., & Feldmann, J. (2016). Environmental effects on arsenosugars and arsenolipids in Ectocarpus (Phaeophyta). Environmental Chemistry, 13(1), 21–33. https://doi.org/10.1071/EN14229
  • Poole, A., Penny, D., & Sjöberg, B. M. (2000). Methyl-RNA: An evolutionary bridge between RNA and DNA? Chemistry & Biology, 7(12), R207–R216. https://doi.org/10.1016/S1074-5521(00)00042-9
  • Qin, J., Lehr, C. R., Yuan, C., Le, X. C., McDermott, T. R., & Rosen, B. P. (2009). Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proceedings of the National Academy of Sciences of the United States of America, 106(13), 5213–5217. https://doi.org/10.1073/pnas.0900238106
  • Qin, J., Rosen, B. P., Zhang, Y., Wang, G., Franke, S., & Rensing, C. (2006). Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2075–2080. https://doi.org/10.1073/pnas.0506836103
  • Řezanka, T., Nedbalová, L., Barcytė, D., Vítová, M., & Sigler, K. (2019). Arsenolipids in the green alga Coccomyxa (Trebouxiophyceae, Chlorophyta). Phytochemistry, 164, 243–251. https://doi.org/10.1016/j.phytochem.2019.05.002
  • Rosen, B. P., Ajees, A. A., & Mcdermott, T. R. (2011). Life and death with arsenic. Arsenic life: an analysis of the recent report "A bacterium that can grow by using arsenic instead of phosphorus". BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 33(5), 350–357. https://doi.org/10.1002/bies.201100012
  • Rumpler, A., Edmonds, J. S., Katsu, M., Jensen, K. B., Goessler, W., Raber, G., Gunnlaugsdottir, H., & Francesconi, K. A. (2008). Arsenic-containing long-chain fatty acids in cod-liver oil: A result of biosynthetic infidelity? Angewandte Chemie (International ed. in English), 47(14), 2665–2667. https://doi.org/10.1002/anie.200705405
  • Sadolin, E. (1928). Investigations into the occurrence of arsenic in the organism of fish. Biochem. Z, 201, 323–331.
  • Schmeisser, E., Rumpler, A., Kollroser, M., Rechberger, G., Goessler, W., & Francesconi, K. A. (2005). Arsenic fatty acids are human urinary metabolites of arsenolipids present in cod liver. Angewandte Chemie (International ed. in English), 45(1), 150–154. https://doi.org/10.1002/anie.200502706
  • Shen, S., Li, X., Cullen, W. R., Weinfeld, M., & Le, X. C. (2013). Arsenic binding to proteins. Chemical Reviews, 113(10), 7769–7748. https://doi.org/10.1021/cr300015c
  • Shi, L., Guo, T., Lv, P., Niu, Z., Zhou, Y., Tang, X. J., Zheng, P., Zhu, L., Zhu, Y. G., Kappler, A., & Zhao, H. (2020). Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils. Nature Geoscience, 13(12), 799–805. https://doi.org/10.1038/s41561-020-00659-z
  • Soza-Ried, C., Bustamante, E., Caglevic, C., Rolfo, C., Sirera, R., & Marsiglia, H. (2019). Oncogenic role of arsenic exposure in lung cancer: A forgotten risk factor. Critical Reviews in Oncology/Hematology, 139, 128–133. https://doi.org/10.1016/j.critrevonc.2019.01.012
  • Sun, Y., Liu, G., & Cai, Y. (2016). Thiolated arsenicals in arsenic metabolism: Occurrence, formation, and biological implications. Journal of Environmental Sciences (China), 49, 59–73. https://doi.org/10.1016/j.jes.2016.08.016
  • Súñer, M. A., Devesa, V., Clemente, M. J., Vélez, D., Montoro, R., Urieta, I., Jalón, M., & Macho, M. L. (2002). Organoarsenical species contents in fresh and processed seafood products. Journal of Agricultural and Food Chemistry, 50(4), 924–932. https://doi.org/10.1021/jf011026s
  • Suzol, S. H., Hasan Howlader, A., Galván, A. E., Radhakrishnan, M., Wnuk, S. F., Rosen, B. P., & Yoshinaga, M. (2020). Semisynthesis of the organoarsenical antibiotic arsinothricin. Journal of Natural Products, 83(9), 2809–2813. https://doi.org/10.1021/acs.jnatprod.0c00522
  • Taleshi, M. S., Jensen, K. B., Raber, G., Edmonds, J. S., Gunnlaugsdottir, H., & Francesconi, K. A. (2008). Arsenic-containing hydrocarbons: Natural compounds in oil from the fish capelin, Mallotus villosus. Chemical Communications, 39(39), 4706–4707. https://doi.org/10.1039/b808049f
  • Tang, Z., Wang, Y., Gao, A., Ji, Y., Yang, B., Wang, P., Tang, Z., & Zhao, F. J. (2020). Dimethylarsinic acid is the causal agent inducing rice straighthead disease. Journal of Experimental Botany, 71(18), 5631–5644. https://doi.org/10.1093/jxb/eraa253
  • Tokmina-Lukaszewska, M., Shi, Z., Tripet, B., McDermott, T. R., Copié, V., Bothner, B., & Wang, G. (2017). Metabolic response of Agrobacterium tumefaciens 5A to arsenite. Environmental Microbiology, 19(2), 710–721. https://doi.org/10.1111/1462-2920.13615
  • Trøseid, M., Andersen, G. Ø., Broch, K., & Hov, J. R. (2020). The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine, 52, 102649. https://doi.org/10.1016/j.ebiom.2020.102649
  • Vahter, M. (1999). Methylation of inorganic arsenic in different mammalian species and population groups. Science Progress, 82(1), 69–88. https://doi.org/10.1177/003685049908200104
  • Van de Wiele, T., Van den Abbeele, P., Ossieur, W., Possemiers, S., & Marzorati, M. (2015). The simulator of the human intestinal microbial ecosystem (SHIME®). In K. Verhoeckx (Eds.), The impact of food bioactives on health. Springer. https://doi.org/10.1007/978-3-319-16104-4_27
  • Viczek, S. A., Jensen, K. B., & Francesconi, K. A. (2016). Arsenic-containing phosphatidylcholines: A new group of arsenolipids discovered in herring caviar. Angewandte Chemie (International ed. in English), 55(17), 5259–5262. https://doi.org/10.1002/anie.201512031
  • Visscher, P. T., Gallagher, K. L., Bouton, A., Farias, M. E., Kurth, D., Sancho-Tomás, M., Philippot, P., Somogyi, A., Medjoubi, K., Vennin, E., Bourillot, R., Walter, M. R., Burns, B. P., Contreras, M., & Dupraz, C. (2020). Modern arsenotrophic microbial mats provide an analogue for life in the anoxic Archean. Communications Earth & Environment, 1(1), 1–10. https://doi.org/10.1038/s43247-020-00025-2
  • Wang, H. T., Chi, Q. Q., Zhu, D., Li, G., Ding, J., An, X. L., Zheng, F., Zhu, Y. G., & Xue, X. M. (2019b). Arsenic and sulfamethoxazole increase the incidence of antibiotic resistance genes in the gut of earthworm. Environmental Science & Technology, 53(17), 10445–10453. https://doi.org/10.1021/acs.est.9b02277
  • Wang, P. P., Sun, G. X., & Zhu, Y. G. (2014). Identification and characterization of arsenite methyltransferase from an archaeon, Methanosarcina acetivorans C2A. Environmental Science & Technology, 48(21), 12706–12713. https://doi.org/10.1021/es503869k
  • Wang, H.-T., Zhu, D., Li, G., Zheng, F., Ding, J., O'Connor, P. J., Zhu, Y.-G., & Xue, X.-M. (2019a). Effects of arsenic on gut microbiota and its biotransformation genes in earthworm Metaphire sieboldi. Environmental Science & Technology, 53(7), 3841–3849. https://doi.org/10.1021/acs.est.8b06695
  • Witt, B., Ebert, F., Meyer, S., Francesconi, K. A., & Schwerdt, T. (2017a). Assessing neurodevelopmental effects of arsenolipids in pre‐differentiated human neurons. Molecular Nutrition & Food Research, 61(11), 1700199. https://doi.org/10.1002/mnfr.201700199
  • Witt, B., Meyer, S., Ebert, F., Francesconi, K. A., & Schwerdtle, T. (2017b). Toxicity of two classes of arsenolipids and their water-soluble metabolites in human differentiated neurons. Archives of Toxicology, 91(9), 3121–3134. https://doi.org/10.1007/s00204-017-1933-x
  • Xiong, C., Stiboller, M., Glabonjat, R. A., Rieger, J., Paton, L., & Francesconi, K. A. (2020). Transport of arsenolipids to the milk of a nursing mother after consuming salmon fish. Journal of Trace Elements in Medicine and Biology, 61, 126502. https://doi.org/10.1016/j.jtemb.2020.126502
  • Xue, X. M., Raber, G., Foster, S., Chen, S. C., Francesconi, K. A., & Zhu, Y. G. (2014). Biosynthesis of arsenolipids by the cyanobacterium Synechocystis sp. PCC 6803. Environmental Chemistry, 11(5), 506–513. https://doi.org/10.1071/EN14069
  • Xue, X. M., Yan, Y., Xiong, C., Raber, G., Francesconi, K. A., Pan, T., Ye, J., & Zhu, Y. G. (2017a). Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120. Environmental Pollution (Barking, Essex: 1987), 228, 111–117. https://doi.org/10.1016/j.envpol.2017.05.005
  • Xue, X. M., Ye, J., Raber, G., Francesconi, K. A., Li, G., Gao, H., Yan, Y., Rensing, C., & Zhu, Y. G. (2017b). Arsenic methyltransferase is involved in arsenosugar biosynthesis by providing DMA. Environmental Science & Technology, 51(3), 1224–1230. https://doi.org/10.1021/acs.est.6b04952
  • Xue, X. M., Ye, J., Raber, G., Rosen, B. P., Francesconi, K. A., Xiong, C., Zhu, Z., Rensing, C., & Zhu, Y. G. (2019). Identification of steps in the pathway of arsenosugar biosynthesis. Environmental Science & Technology, 53(2), 634–641. https://doi.org/10.1021/acs.est.8b04389
  • Yan, Y., Ding, K., Yu, X., Ye, J., & Xue, X. M. (2017). Ability of periplasmic phosphate binding proteins from Synechocystis sp. PCC 6803 to discriminate phosphate against arsenate. Water, Air, and Soil Pollution, 228, 148. https://doi.org/10.1007/s11270-017-3334-4
  • Yang, Y. P., Zhang, H. M., Yuan, H. Y., Duan, G. L., Jin, D. C., Zhao, F. J., & Zhu, Y. G. (2018). Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Environmental Pollution (Barking, Essex : 1987), 236, 598–608. https://doi.org/10.1016/j.envpol.2018.01.099
  • Yan, Y., Ye, J., Xue, X. M., & Zhu, Y. G. (2015). Arsenic demethylation by a C·As Lyase in Cyanobacterium Nostoc sp. PCC 7120. Environmental Science & Technology, 49(24), 14350–14358. https://doi.org/10.1021/acs.est.5b03357
  • Ye, J., Rensing, C., Rosen, B. P., & Zhu, Y. G. (2012). Arsenic biomethylation by photosynthetic organisms. Trends in Plant Science, 17(3), 155–162. https://doi.org/10.1016/j.tplants.2011.12.003
  • Yin, X. X., Chen, J., Qin, J., Sun, G. X., Rosen, B. P., & Zhu, Y. G. (2011a). Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiology, 156(3), 1631–1638. https://doi.org/10.1104/pp.111.178947
  • Yin, X. X., Zhang, Y. Y., Yang, J., & Zhu, Y. G. (2011b). Rapid biotransformation of arsenic by a model protozoan Tetrahymena pyriformis GL-C. [corrected]. Environmental Pollution (Barking, Essex : 1987), 159(4), 837–840. https://doi.org/10.1016/j.envpol.2010.12.033
  • Yoshinaga, M., Cai, Y., & Rosen, B. P. (2011). Demethylation of methylarsonic acid by a microbial community. Environmental Microbiology, 13(5), 1205–1215. https://doi.org/10.1111/j.1462-2920.2010.02420.x
  • Yoshinaga, M., & Rosen, B. P. (2014). A C⋅As lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters. Proceedings of the National Academy of Sciences of the United States of America, 111(21), 7701–7706. https://doi.org/10.1073/pnas.1403057111
  • Zakharyan, R. A., Sampayo-Reyes, A., Healy, S. M., Tsaprailis, G., Board, P. G., Liebler, D. C., & Aposhian, H. V. (2001). Human monomethylarsonic acid (MMA(V)) reductase is a member of the glutathione-S-transferase superfamily . Chemical Research in Toxicology, 14(8), 1051–1057. https://doi.org/10.1021/tx010052h
  • Zhang, S. Y., Williams, P. N., Luo, J., & Zhu, Y. G. (2017). Microbial mediated arsenic biotransformation in wetlands. Frontiers Environmental Science Eng, 11(1), 1–11. https://doi.org/10.1007/s11783-017-0893-y
  • Zhao, R., Xie, C. T., Xu, Y., Ji, D. H., Chen, C. S., Ye, J., Xue, X. M., & Wang, W. L. (2020). The response of Pyropia haitanensis to inorganic arsenic under laboratory culture. Chemosphere, 261, 128160. https://doi.org/10.1016/j.chemosphere.2020.128160
  • Zheng, M. Z., Cai, C., Hu, Y., Sun, G. X., Williams, P. N., Cui, H. J., Li, G., Zhao, F. J., & Zhu, Y. G. (2011). Spatial distribution of arsenic and temporal variation of its concentration in rice. The New Phytologist, 189(1), 200–209. https://doi.org/10.1111/j.1469-8137.2010.03456.x
  • Zhou, G. W., Yang, X. R., Zheng, F., Zhang, Z. X., Zheng, B. X., Zhu, Y. G., & Xue, X. M. (2020). Arsenic transformation mediated by gut microbiota affects the fecundity of Caenorhabditis elegans. Environmental Pollution (Barking, Essex : 1987), 260, 113991. https://doi.org/10.1016/j.envpol.2020.113991
  • Zhu, J., Chen, Z., Lallemand-Breitenbach, V., & de Thé, H. (2002). How acute promyelocytic leukaemia revived arsenic. Nature Reviews. Cancer, 2(9), 705–514. https://doi.org/10.1038/nrc887
  • Zhu, Y. G., Xue, X. M., Kappler, A., Rosen, B. P., & Meharg, A. A. (2017b). Linking genes to microbial biogeochemical cycling: Lessons from Arsenic. Environmental Science & Technology, 51(13), 7326–7339. https://doi.org/10.1021/acs.est.7b00689
  • Zhu, Y. G., Yoshinaga, M., Zhao, F. J., & Rosen, B. P. (2014). Earth abides arsenic biotransformations. Annual Review of Earth and Planetary Sciences, 42(1), 443–467. https://doi.org/10.1146/annurev-earth-060313-054942
  • Zhu, Y. G., Zhao, Y., Li, B., Huang, C. L., Zhang, S. Y., Yu, S., Chen, Y. S., Zhang, T., Gillings, M. R., & Su, J. Q. (2017a). Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology, 2, 16270. https://doi.org/10.1038/nmicrobiol.2016.270

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.