789
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Source-receptor relationship of transboundary particulate matter pollution between China, South Korea and Japan: Approaches, current understanding and limitations

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3896-3920 | Published online: 24 Aug 2021

References

  • Ashbaugh, L. L., Malm, W. C., & Sadeh, W. Z. (1985). A residence time probability analysis of sulfur concentrations at grand Canyon National Park. Atmospheric Environment (1967), 19(8), 1263–1270. https://doi.org/10.1016/0004-6981(85)90256-2
  • Bae, C., Kim, B. U., Kim, H. C., Yoo, C., & Kim, S. (2020). Long-range transport influence on key chemical components of PM2.5 in the Seoul metropolitan area, South Korea, during the years 2012–2016. Atmosphere, 11(1), 48. https://doi.org/10.3390/atmos11010048
  • Bae, M., Kim, B.-U., Kim, H. C., & Kim, S. (2020). A multiscale tiered approach to quantify contributions: A case study of PM2.5 in South Korea during 2010–2017. Atmosphere, 11(2), 141. https://doi.org/10.3390/atmos11020141
  • Burr, M. J., & Zhang, Y. (2011). Source apportionment of fine particulate matter over the Eastern U.S. Part II: Source apportionment simulations using CAMx/PSAT and comparisons with CMAQ source sensitivity simulations. Atmospheric Pollution Research, 2(3), 318–336. https://doi.org/10.5094/APR.2011.037
  • Carmichael, G. R., Calori, G., Hayami, H., Uno, I., Cho, S. Y., Engardt, M., Kim, S.-B., Ichikawa, Y., Ikeda, Y., Woo, J.-H., Ueda, H., & Amann, M. (2002). The MICS-Asia study: Model intercomparison of long-range transport and sulfur deposition in East Asia. Atmospheric Environment, 36(2), 175–199. https://doi.org/10.1016/S1352-2310(01)00448-4
  • Chen, Q. Q., & Taylor, D. (2018). Transboundary atmospheric pollution in Southeast Asia: Current methods, limitations and future developments. Critical Reviews in Environmental Science and Technology, 48(16–18), 997–1029. https://doi.org/10.1080/10643389.2018.1493337
  • Choi, J., Park, R. J., Lee, H.-M., Lee, S., Jo, D. S., Jeong, J. I., Henze, D. K., Woo, J.-H., Ban, S.-J., Lee, M.-D., Lim, C.-S., Park, M.-K., Shin, H. J., Cho, S., Peterson, D., & Song, C.-K. (2019). Impacts of local vs. trans-boundary emissions from different sectors on PM2.5 exposure in South Korea during the KORUS-AQ campaign. Atmospheric Environment, 203, 196–205. https://doi.org/10.1016/j.atmosenv.2019.02.008
  • Clappier, A., Belis, C. A., Pernigotti, D., & Thunis, P. (2017). Source apportionment and sensitivity analysis: Two methodologies with two different purposes. Geoscientific Model Development, 10(11), 4245–4256. https://doi.org/10.5194/gmd-10-4245-2017
  • Cohan, D. S., & Napelenok, S. L. (2011). Air quality response modeling for decision support. Atmosphere, 2(3), 407–425. https://www.mdpi.com/2073-4433/2/3/407 https://doi.org/10.3390/atmos2030407
  • Cohan, D. S., Hakami, A., Hu, Y., & Russell, A. G. (2005). Nonlinear response of ozone to emissions: Source apportionment and sensitivity analysis. Environmental Science & Technology, 39(17), 6739–6748. https://doi.org/10.1021/es048664m
  • Crippa, M., Janssens-Maenhout, G., Guizzardi, D., Van Dingenen, R., & Dentener, F. (2019). Contribution and uncertainty of sectorial and regional emissions to regional and global PM2.5 health impacts. Atmospheric Chemistry and Physics, 19(7), 5165–5186. https://doi.org/10.5194/acp-19-5165-2019
  • Ding, J., Miyazaki, K., Johannes, V. R., Mijling, B., Kurokawa, J. I., Cho, S., Janssens-Maenhout, G., Zhang, Q., Liu, F., & Levelt, P. F. (2017). Intercomparison of NOx emission inventories over. Atmospheric Chemistry and Physics, 17(16), 10125–10141. https://doi.org/10.5194/acp-17-10125-2017
  • Draxler, R., & Hess, G. (1998). An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition. Australian Meteorological Magazine, 47, 295–308.
  • Dunker, A. M. (1984). The decoupled direct method for calculating sensitivity coefficients in chemical kinetics. The Journal of Chemical Physics, 81(5), 2385–2393. https://doi.org/10.1063/1.447938
  • Dunker, A. M., Yarwood, G., Ortmann, J. P., & Wilson, G. M. (2002). The decoupled direct method for sensitivity analysis in a three-dimensional air quality model-implementation, accuracy, and efficiency. Environmental Science & Technology, 36(13), 2965–2976. https://doi.org/10.1021/es0112691
  • Eddy, D. M. (2005). Evidence-based medicine: A unified approach. Health Affairs (Project Hope), 24(1), 9–17. https://doi.org/10.1377/hlthaff.24.1.9
  • Haas, P. M. (1992). Introduction: Epistemic communities and international policy coordination. International Organization, 46(1), 1–35. https://doi.org/10.1017/S0020818300001442
  • Hakami, A., Henze, D. K., Seinfeld, J. H., Singh, K., Sandu, A., Kim, S., Byun, D., & Li, Q. (2007). The adjoint of CMAQ. Environmental Science & Technology, 41(22), 7807–7817. https://doi.org/10.1021/es070944p
  • Han, K. M., Song, C. H., Ahn, H. J., Park, R. S., Woo, J. H., Lee, C. K., Richter, A., Burrows, J. P., Kim, J. Y., & Hong, J. H. (2009). Investigation of NOx emissions and NOx-related chemistry in East Asia using CMAQ-predicted and GOME-derived NO2 columns. Atmospheric Chemistry and Physics, 9(3), 1017–1036. https://doi.org/10.5194/acp-9-1017-2009
  • Han, Y.-J., Kim, T.-S., & Kim, H. (2008). Ionic constituents and source analysis of PM2.5 in three Korean cities. Atmospheric Environment, 42(19), 4735–4746. https://doi.org/10.1016/j.atmosenv.2008.01.047
  • Henze, D., Hakami, A., & Seinfeld, J. (2007). Development of the adjoint of GEOS-Chem. Atmospheric Chemistry and Physics, 7(9), 2413–2433. https://doi.org/10.5194/acp-7-2413-2007
  • Heo, J. B., Hopke, P. K., & Yi, S. M. (2009). Source apportionment of PM2.5 in Seoul, Korea. Atmospheric Chemistry and Physics, 9(14), 4957–4971. https://doi.org/10.5194/acp-9-4957-2009
  • Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81(396), 945–960. https://doi.org/10.1080/01621459.1986.10478354
  • Howick, J., Chalmers, I., Glasziou, P., Greenhalgh, T., Heneghan, C., Liberati, A., Moschetti, I., Phillips, B., & Thornton, H. (2011). The 2011 Oxford CEBM evidence levels of evidence (introductory document). http://www.cebm.net/index.aspx?o=5653
  • Ikeda, K., Yamaji, K., Kanaya, Y., Taketani, F., Pan, X., Komazaki, Y., Kurokawa, J.-i., & Ohara, T. (2014). Sensitivity analysis of source regions to PM2.5 concentration at Fukue Island. Journal of the Air & Waste Management Association, 64(4), 445–452. https://doi.org/10.1080/10962247.2013.845618
  • Ikeda, K., Yamaji, K., Kanaya, Y., Taketani, F., Pan, X. L., Komazaki, Y., Kurokawa, J., & Ohara, T. (2015). Source region attribution of PM2.5 mass concentrations over Japan. Geochemical Journal, 49(2), 185–194. https://doi.org/10.2343/geochemj.2.0344
  • Inomata, Y., Ohizumi, T., Take, N., Sato, K., & Nishikawa, M. (2016). Transboundary transport of anthropogenic sulfur in PM2.5 at a coastal site in the Sea of Japan as studied by sulfur isotopic ratio measurement. The Science of the Total Environment, 553, 617–625. https://doi.org/10.1016/j.scitotenv.2016.02.139
  • Itahashi, S., Uno, I., & Kim, S. (2012). Source contributions of sulfate aerosol over East Asia estimated by CMAQ-DDM. Environmental Science & Technology, 46(12), 6733–6741. https://doi.org/10.1021/es300887w
  • Itahashi, S., Uno, I., Osada, K., Kamiguchi, Y., Yamamoto, S., Tamura, K., Wang, Z., Kurosaki, Y., & Kanaya, Y. (2017). Nitrate transboundary heavy pollution over East Asia in winter. Atmospheric Chemistry and Physics, 17(6), 3823–3843. https://doi.org/10.5194/acp-17-3823-2017
  • Itahashi, S., Yumimoto, K., Uno, I., Hayami, H., Fujita, S. I., Pan, Y., & Wang, Y. (2018). A 15-year record (2001–2015) of the ratio of nitrate to non-sea-salt sulfate in precipitation over East Asia. Atmospheric Chemistry and Physics, 18(4), 2835–2852. https://doi.org/10.5194/acp-18-2835-2018
  • Jacob, D. J. (1999). Introduction to atmospheric chemistry. Princeton University Press. http://acmg.seas.harvard.edu/people/faculty/djj/book/
  • Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., & Li, M. (2015). HTAP_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmospheric Chemistry and Physics, 15(19), 11411–11432. https://doi.org/10.5194/acp-15-11411-2015
  • Jeong, J. I., & Park, R. J. (2019). Influence of the anthropogenic fugitive. Atmosphere, 10(12), 790. https://doi.org/10.3390/atmos10120790
  • Jiang, H., Liao, H., Pye, H. O. T., Wu, S., Mickley, L. J., Seinfeld, J. H., & Zhang, X. Y. (2013). Projected effect of 2000–2050 changes in climate and emissions on aerosol levels in China and associated transboundary transport. Atmospheric Chemistry and Physics, 13(16), 7937–7960. https://doi.org/10.5194/acp-13-7937-2013
  • Kajino, M., Sato, K., Inomata, Y., & Ueda, H. (2013). Source–receptor relationships of nitrate in Northeast Asia and influence of sea salt on the long-range transport of nitrate. Atmospheric Environment, 79, 67–78. https://doi.org/10.1016/j.atmosenv.2013.06.024
  • Kelly, J. T., Baker, K. R., Napelenok, S. L., & Roselle, S. J. (2015). Examining single-source secondary impacts estimated from brute-force, decoupled direct method, and advanced plume treatment approaches. Atmospheric Environment, 111, 10–19. https://doi.org/10.1016/j.atmosenv.2015.04.004
  • Kim, B. M., Seo, J., Kim, J. Y., Lee, J. Y., & Kim, Y. (2016). Transported vs. local contributions from secondary and biomass burning sources to PM2.5. Atmospheric Environment, 144, 24–36. https://doi.org/10.1016/j.atmosenv.2016.08.072
  • Kim, B., Bae, C., Kim, H. C., Kim, E., & Kim, S. (2017). Spatially and chemically resolved source apportionment analysis: Case study of high particulate matter event. Atmospheric Environment, 162, 55–70. https://doi.org/10.1016/j.atmosenv.2017.05.006
  • Kim, D.-S. (2017, January 3). 70% of Korea’s fine dust particles come from China: Study. Korea Herald. http://www.koreaherald.com/view.php?ud=20170103000745
  • Kim, H. C., Kim, E., Bae, C., Cho, J. H., Kim, B. U., & Kim, S. (2017). Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: Seasonal variation and sensitivity to meteorology and emissions inventory. Atmospheric Chemistry and Physics, 17(17), 10315–10332. https://doi.org/10.5194/acp-17-10315-2017
  • Kim, I. (2007). Environmental cooperation of Northeast Asia: Transboundary air pollution1. International Relations of the Asia-Pacific, 7(3), 439–462. https://doi.org/10.1093/irap/lcm008
  • Kim, J.-H., Choi, D.-R., Koo, Y.-S., Lee, J.-B., & Park, H.-J. (2016). Analysis of domestic and foreign contributions using DDM in CMAQ during particulate matter episode period of February 2014 in Seoul. Journal of Korean Society for Atmospheric Environment, 32(1), 82–99. https://doi.org/10.5572/KOSAE.2016.32.1.082
  • Kim, Y., Lee, I., Lim, C., Farquhar, J., Lee, S.-M., & Kim, H. (2018). The origin and migration of the dissolved sulfate from precipitation in Seoul, Korea. Environmental Pollution (Barking, Essex: 1987), 237, 878–886. https://doi.org/10.1016/j.envpol.2017.12.112
  • Koo, B., Wilson, G. M., Morris, R. E., Dunker, A. M., & Yarwood, G. (2009). Comparison of source apportionment and sensitivity analysis in a particulate matter air duality model. Environmental Science & Technology, 43(17), 6669–6675. https://doi.org/10.1021/es9008129
  • Koo, Y.-S., Kim, S.-T., Yun, H.-Y., Han, J.-S., Lee, J.-Y., Kim, K.-H., & Jeon, E.-C. (2008). The simulation of aerosol transport over East Asia region. Atmospheric Research, 90(2–4), 264–271. https://doi.org/10.1016/j.atmosres.2008.03.014
  • Lee, D.-G., Lee, Y.-M., Jang, K.-W., Yoo, C., Kang, K.-H., Lee, J.-H., Jung, S.-W., Park, J.-M., Lee, S.-B., Han, J.-S., Hong, J.-H., & Lee, S.-J. (2011). Korean national emissions inventory system and 2007. Asian Journal of Atmospheric Environment, 5(4), 278–291. https://doi.org/10.5572/ajae.2011.5.4.278
  • Lee, H. J., Jo, H. Y., Kim, S. W., Park, M. S., & Kim, C. H. (2019a). Impacts of atmospheric vertical structures on transboundary aerosol transport from China to South Korea. Scientific Reports, 9(1), 13040. https://doi.org/10.1038/s41598-019-49691-z
  • Lee, H. J., Jo, H. Y., Park, S. Y., Jo, Y. J., Jeon, W., Ahn, J. Y., & Kim, C. H. (2019b). A case study of the transport/transformation of air pollutants over the Yellow Sea during the MAPS 2015 campaign. Journal of Geophysical Research: Atmospheres, 124(12), 6532–6553. https://doi.org/10.1029/2018JD029751
  • Lee, H.-M., Park, R. J., Henze, D. K., Lee, S., Shim, C., Shin, H.-J., Moon, K.-J., & Woo, J.-H. (2017). PM2.5 source attribution for Seoul in May from 2009 to 2013 using GEOS-Chem and its adjoint model. Environmental Pollution (Barking, Essex: 1987), 221, 377–384. https://doi.org/10.1016/j.envpol.2016.11.088
  • Lee, S., Ho, C.-H., & Choi, Y.-S. (2011). High-PM10 concentration episodes in Seoul, Korea: Background sources and related meteorological conditions. Atmospheric Environment, 45(39), 7240–7247. https://doi.org/10.1016/j.atmosenv.2011.08.071
  • Lee, S., Kim, J., Choi, M., Hong, J., Lim, H., Eck, T. F., Holben, B. N., Ahn, J.-Y., Kim, J., & Koo, J.-H. (2019). Analysis of long-range transboundary transport (LRTT) effect on Korean aerosol pollution during the KORUS-AQ campaign. Atmospheric Environment, 204, 53–67. https://doi.org/10.1016/j.atmosenv.2019.02.020
  • Lee, T., & Paik, W. (2020). Asymmetric barriers in atmospheric politics of transboundary air pollution: A case of particulate matter (PM) cooperation between China and South Korea. International Environmental Agreements: Politics, Law and Economics, 20(1), 123–140. https://doi.org/10.1007/s10784-019-09463-6
  • Li, J., Yang, W., Wang, Z., Chen, H., Hu, B., Li, J., Sun, Y., & Huang, Y. (2014). A modeling study of source–receptor relationships in atmospheric particulate matter over Northeast Asia. Atmospheric Environment, 91, 40–51. https://doi.org/10.1016/j.atmosenv.2014.03.027
  • Li, J., Yang, W., Wang, Z., Chen, H., Hu, B., Li, J., Sun, Y., Fu, P., & Zhang, Y. (2016). Modeling study of surface ozone source-receptor relationships in East Asia. Atmospheric Research, 167, 77–88. https://doi.org/10.1016/j.atmosres.2015.07.010
  • Li, J., Zhang, Y., Wang, Z., Sun, Y., Fu, P., Yang, Y., Huang, H., Li, J., Zhang, Q., Lin, C., & Lin, N.-H. (2017). Regional impact of biomass burning in Southeast Asia on atmospheric aerosols during the 2013 seven south-east Asian studies project. Aerosol and Air Quality Research, 17(12), 2924–2941. https://doi.org/10.4209/aaqr.2016.09.0422
  • Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man, H., Zhang, Q., & He, K. (2017a). Anthropogenic emission inventories in China: A review. National Science Review, 4(6), 834–866. https://doi.org/10.1093/nsr/nwx150
  • Li, M., Zhang, Q., Kurokawa, J. I., Woo, J. H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., & Zheng, B. (2017b). MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 17(2), 935–963. https://doi.org/10.5194/acp-17-935-2017
  • Li, P., Sato, K., Hasegawa, H., Huo, M., Minoura, H., Inomata, Y., Take, N., Yuba, A., Futami, M., Takahashi, T., & Kotake, Y. (2018). Chemical characteristics and source apportionment of PM2.5 and long-range transport from Northeast Asia continent to Niigata in Eastern Japan. Aerosol and Air Quality Research, 18(4), 938–956. https://doi.org/10.4209/aaqr.2017.05.0181
  • Liang, S., Qu, S., Zhu, Z., Guan, D., & Xu, M. (2017). Income-based greenhouse gas emissions of nations. Environmental Science & Technology, 51(1), 346–355. https://doi.org/10.1021/acs.est.6b02510
  • Lin, J., Pan, D., Davis, S. J., Zhang, Q., He, K., Wang, C., Streets, D. G., Wuebbles, D. J., & Guan, D. (2014). China’s international trade and air pollution in the United States. Proceedings of the National Academy of Sciences, 111(5), 1736–1741. https://doi.org/10.1073/pnas.1312860111
  • Liu, J., Li, W., & Li, J. (2016). Quality screening for air quality monitoring data in China. Environmental Pollution (Barking, Essex: 1987), 216, 720–723. https://doi.org/10.1016/j.envpol.2016.06.037
  • LTP. (2019). Summary report of the 4th stage (2013–2017) LTP project (Joint Research Project for Long–range Transboundary Air Pollutants in Northeast Asia, Issue. https://nier.go.kr/NIER/cmm/fms/NoLoginFileDown.do;jsessionid=C1A37B9309AC438907222958C0680EF9?atchFileId=FILE_000000000029154&fileSn=0
  • Meng, J., Liu, J., Xu, Y., Guan, D., Liu, Z., Huang, Y., & Tao, S. (2016). Globalization and pollution: Tele-connecting local primary PM2.5 emissions to global consumption. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 472(2195), 20160380. https://doi.org/10.1098/rspa.2016.0380
  • Moreno, T., Kojima, T., Querol, X., Alastuey, A., Amato, F., & Gibbons, W. (2012). Natural versus anthropogenic inhalable aerosol chemistry of transboundary East Asian atmospheric outflows into western Japan. The Science of the Total Environment, 424, 182–192. https://doi.org/10.1016/j.scitotenv.2012.02.060
  • Napelenok, S. L., Cohan, D. S., Hu, Y., & Russell, A. G. (2006). Decoupled direct 3D sensitivity analysis for particulate matter (DDM-3D/PM). Atmospheric Environment, 40(32), 6112–6121. https://doi.org/10.1016/j.atmosenv.2006.05.039
  • NASA & NIER. (2017). The Korea‐United States air quality study rapid science synthesis report. https://espo.nasa.gov/sites/default/files/documents/KORUS-AQ-ENG.pdf
  • Ock, H. (2019, March 6). Agency blames Chinese fireworks for recent fine dust pollution. The Korea Herald. http://www.koreaherald.com/view.php?ud=20190306000469
  • Oh, H. R., Ho, C. H., Koo, Y. S., Baek, K. G., Yun, H. Y., Hur, S. K., Choi, D. R., Jhun, J. G., & Shim, J. S. (2020). Impact of Chinese air pollutants on a record-breaking PMs episode in the Republic of Korea for 11–15 January 2019. Atmospheric Environment, 223, 117262. https://doi.org/10.1016/j.atmosenv.2020.117262
  • Oh, H.-R., Ho, C.-H., Kim, J., Chen, D., Lee, S., Choi, Y.-S., Chang, L.-S., & Song, C.-K. (2015). Long-range transport of air pollutants originating in China: A possible major cause of multi-day high-PM10 episodes during cold season in Seoul. Atmospheric Environment, 109, 23–30. https://doi.org/10.1016/j.atmosenv.2015.03.005
  • Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., & Hayasaka, T. (2007). An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmospheric Chemistry and Physics Discussions, 7, 6843–6902. https://doi.org/10.5194/acpd-7-6843-2007
  • Park, H., Lim, W., & Oh, H. (2020). Cross-border spillover effect of particulate matter pollution between China and Korea. Korean Economic Review, 36(1), 227–248.
  • Park, S. A., & Tak, H. (2012). The environmental effects of the CNG bus program on metropolitan air quality in Korea. The Annals of Regional Science, 49(1), 261–287. https://doi.org/10.1007/s00168-011-0439-3
  • Qu, Y., An, J. L., He, Y. J., & Zheng, J. (2016). An overview of emissions of SO2 and NOx and the long-range transport of oxidized sulfur and nitrogen pollutants in East Asia. Journal of Environmental Sciences (China), 44, 13–25. https://doi.org/10.1016/j.jes.2015.08.028
  • Rolph, G. D., & Draxler, R. R. (1990). Sensitivity of three-dimensional trajectories to the spatial and temporal densities of the wind field. Journal of Applied Meteorology, 29(10), 1043–1054. https://doi.org/10.1175/1520-0450(1990)029<1043:SOTDTT>2.0.CO;2
  • Sakata, M., Ishikawa, T., & Mitsunobu, S. (2013). Effectiveness of sulfur and boron isotopes in aerosols as tracers of emissions from coal burning in Asian continent. Atmospheric Environment, 67, 296–303. https://doi.org/10.1016/j.atmosenv.2012.11.025
  • Seibert, P., Kromp-Kolb, H., Baltensperger, U., Jost, D. T., & Schwikowski, M. (1994). Trajectory analysis of high-alpine air pollution data. In S.-E. Gryning & M. M. Millán (Eds.), Air pollution modeling and its application X (pp. 595–596). Springer US. https://doi.org/10.1007/978-1-4615-1817-4_65
  • Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill building approach. John Wiley & Sons.
  • Shimadera, H., Kondo, A., Kaga, A., Shrestha, K. L., & Inoue, Y. (2009). Contribution of transboundary air pollution to ionic concentrations in fog in the Kinki Region of Japan. Atmospheric Environment, 43(37), 5894–5907. https://doi.org/10.1016/j.atmosenv.2009.08.022
  • Singh, H. B., Brune, W. H., Crawford, J. H., Flocke, F., & Jacob, D. J. (2009). Chemistry and transport of pollution over the Gulf of Mexico and the Pacific: Spring 2006 INTEX-B campaign overview and first results. Atmospheric Chemistry and Physics, 9(7), 2301–2318. https://doi.org/10.5194/acp-9-2301-2009
  • Stein, A., Draxler, R., Rolph, G., Stunder, B., Cohen, M., & Ngan, F. (2015). NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1
  • Stohl, A. (1996). Trajectory statistics-A new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmospheric Environment, 30(4), 579–587. https://doi.org/10.1016/1352-2310(95)00314-2
  • Tang, J.-H., Chan, L.-Y., Chan, C.-Y., Li, Y.-S., Chang, C.-C., Liu, S.-C., & Li, Y.-D. (2007). Nonmethane hydrocarbons in the transported and local air masses at a clean remote site on Hainan Island, south. Journal of Geophysical Research, 112(D14). https://doi.org/10.1029/2006JD007796
  • Taniguchi, Y., Shimada, K., Takami, A., Lin, N. H., Chan, C. K., Kim, Y. P., & Hatakeyama, S. (2017). Transboundary and local air pollutants in western Japan distinguished on the basis of ratios of metallic elements in size-segregated aerosols. Aerosol and Air Quality Research, 17(12), 3141–3150. https://doi.org/10.4209/aaqr.2016.12.0578
  • Thiemens, M. H. (2006). History and applications of mass-independent isotope effects. Annual Review of Earth and Planetary Sciences, 34(1), 217–262. https://doi.org/10.1146/annurev.earth.34.031405.125026
  • Thunis, P., Clappier, A., Pisoni, E., & Degraeuwe, B. (2015). Quantification of non-linearities as a function of time averaging in regional air quality modeling applications. Atmospheric Environment, 103, 263–275. https://doi.org/10.1016/j.atmosenv.2014.12.057
  • Thunis, P., Clappier, A., Tarrason, L., Cuvelier, C., Monteiro, A., Pisoni, E., Wesseling, J., Belis, C. A., Pirovano, G., Janssen, S., Guerreiro, C., & Peduzzi, E. (2019). Source apportionment to support air quality planning: Strengths and weaknesses of existing approaches. Environment International, 130, 104825. https://doi.org/10.1016/j.envint.2019.05.019
  • Toshiaki, M., Zhang, J., Hiroshi, S., Hitoshi, M., Kentaro, M., & Kiyoto, K. (2012). Lead and sulfur isotopic ratios in precipitation and their relations to trans-boundary atmospheric pollution. Atmospheric Research, 104–105, 237–244. https://doi.org/10.1016/j.atmosres.2011.10.015
  • Uno, I., Kuwahara, S., Wang, Z., Itahashi, S., Yumimoto, K., Osada, K., & Yamamoto, S. (2017). Trans-boundary transport of PM2.5 to the western Japan and Japan Sea side regions based on the source-receptor analysis. Earozou Kenkyu (Aerosol Research), 32(3), 188–198. https://doi.org/10.11203/jar.32.188
  • Uno, I., Wang, Z., Itahashi, S., Yumimoto, K., Yamamura, Y., Yoshino, A., Takami, A., Hayasaki, M., & Kim, B.-G. (2020). Paradigm shift in aerosol chemical composition over regions downwind of China. Scientific Reports, 10(1), 6450. https://doi.org/10.1038/s41598-020-63592-6
  • Wagstrom, K. M., Pandis, S. N., Yarwood, G., Wilson, G. M., & Morris, R. E. (2008). Development and application of a computationally efficient particulate matter apportionment algorithm in a three-dimensional chemical transport model. Atmospheric Environment, 42(22), 5650–5659. https://doi.org/10.1016/j.atmosenv.2008.03.012
  • Wang, J., Xu, J., He, Y., Chen, Y., & Meng, F. (2016). Long range transport of nitrate in the low atmosphere over Northeast Asia. Atmospheric Environment, 144, 315–324. https://doi.org/10.1016/j.atmosenv.2016.08.084
  • Wang, M. Y., Yim, S. H. L., Wong, D. C., & Ho, K. F. (2019). Source contributions of surface ozone in China using an adjoint sensitivity analysis. The Science of the Total Environment, 662, 385–392. https://doi.org/10.1016/j.scitotenv.2019.01.116
  • Wang, Z. S., Chien, C.-J., & Tonnesen, G. S. (2009). Development of a tagged species source apportionment algorithm to characterize three-dimensional transport and transformation of precursors and secondary pollutants. Journal of Geophysical Research, 114(D21). https://doi.org/10.1029/2008JD010846
  • Woo, J.-H., Choi, K.-C., Kim, H. K., Baek, B. H., Jang, M., Eum, J.-H., Song, C. H., Ma, Y.-I., Sunwoo, Y., Chang, L.-S., & Yoo, S. H. (2012). Development of an anthropogenic emissions processing system for Asia using SMOKE. Atmospheric Environment, 58, 5–13. https://doi.org/10.1016/j.atmosenv.2011.10.042
  • Yadav, I. C., Linthoingambi Devi, N., Li, J., Syed, J. H., Zhang, G., & Watanabe, H. (2017). Biomass burning in Indo-China peninsula and its impacts on regional air quality and global climate change - a review. Environmental Pollution (Barking, Essex: 1987), 227, 414–427. https://doi.org/10.1016/j.envpol.2017.04.085
  • Yarime, M., & Li, A. T. (2018). Facilitating international cooperation on air pollution in East Asia: Fragmentation of the epistemic communities. Global Policy, 9, 35–41. https://doi.org/10.1111/1758-5899.12623
  • Yim, S. H. L., Gu, Y. F., Shapiro, M., & Stephens, B. (2019). Air quality and acid deposition impacts of local emissions and transboundary air pollution in Japan and South Korea. Atmospheric Chemistry and Physics, 19(20), 13309–13323. https://doi.org/10.5194/acp-19-13309-2019
  • Zhang, J. (2018, December 29). ZHONG GUO GUAN FANG BO CHI HAN GUO WU MAI LAI ZI ZHONG GUO, HAN MEI QUE ZAI JIAN CHI SHUI GUO [Chinese officials refute that "Air pollution in South Korean comes from China", but South Korean media insists on blaming China for its own problem.]. Global Times. http://world.huanqiu.com/exclusive/2018-12/13924333.html?agt=15422
  • Zhang, K., Chai, F., Zhang, R., & Xue, Z. (2010). Source, route and effect of Asian sand dust on environment and the oceans. Particuology, 8(4), 319–324. https://doi.org/10.1016/j.partic.2010.03.016
  • Zhang, L., Constantinescu, E., Sandu, A., Tang, Y., Chai, T., Carmichael, G., Byun, D., & Olaguer, E. (2008). An adjoint sensitivity analysis and 4D-Var data assimilation study of Texas air quality. Atmospheric Environment, 42(23), 5787–5804. https://doi.org/10.1016/j.atmosenv.2008.03.048
  • Zhang, Q., Jiang, X., Tong, D., Davis, S. J., Zhao, H., Geng, G., Feng, T., Zheng, B., Lu, Z., Streets, D. G., Ni, R., Brauer, M., van Donkelaar, A., Martin, R. V., Huo, H., Liu, Z., Pan, D., Kan, H., Yan, Y., … Guan, D. (2017). Transboundary health impacts of transported global air pollution and international trade. Nature, 543(7647), 705–709. https://doi.org/10.1038/nature21712
  • Zhang, Q., Streets, D., Carmichael, G., He, K., Huo, H., Kannari, A., Klimont, Z., Park, I., Reddy, E. S., Fu, J., Chen, D., Duan, L., Lei, Y., Wang, L., & Yao, Z. (2009). Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics, 9(14), 5131–5153. https://doi.org/10.5194/acp-9-5131-2009
  • Zhang, X.-X., Claiborn, C., Lei, J.-Q., Vaughan, J., Wu, S.-X., Li, S.-Y., Liu, L.-Y., Wang, Z.-F., Wang, Y.-D., Huang, S.-Y., & Zhou, J. (2020). Aeolian dust in Central Asia: Spatial distribution and temporal variability. Atmospheric Environment, 238, 117734. https://doi.org/10.1016/j.atmosenv.2020.117734
  • Zhang, Y., Vijayaraghavan, K., & Seigneur, C. (2005). Evaluation of three probing techniques in a three-dimensional air quality model. Journal of Geophysical Research, 110(2), D02305. https://doi.org/10.1029/2004JD005248
  • Zhao, B., Wang, S., Dong, X., Wang, J., Duan, L., Fu, X., Hao, J., & Fu, J. (2013). Environmental effects of the recent emission changes in China: Implications for particulate matter pollution and soil acidification. Environmental Research Letters, 8(2), 024031. https://doi.org/10.1088/1748-9326/8/2/024031
  • Zhao, B., Wu, W., Wang, S., Xing, J., Chang, X., Liou, K.-N., Jiang, J. H., Gu, Y., Jang, C., Fu, J. S., Zhu, Y., Wang, J., Lin, Y., & Hao, J. (2017). A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing–Tianjin–Hebei region. Atmospheric Chemistry and Physics, 17(19), 12031–12050. https://doi.org/10.5194/acp-17-12031-2017
  • Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., & Zhang, Q. (2018). Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 18(19), 14095–14111. https://doi.org/10.5194/acp-18-14095-2018
  • Zhu, S., Kinnon, M. M., Shaffer, B. P., Samuelsen, G. S., Brouwer, J., & Dabdub, D. (2019). An uncertainty for clean air: Air quality modeling implications of underestimating VOC emissions in urban inventories. Atmospheric Environment, 211, 256–267. https://doi.org/10.1016/j.atmosenv.2019.05.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.