3,159
Views
14
CrossRef citations to date
0
Altmetric
Reviews

An overview of cotton and polyester, and their blended waste textile valorisation to value-added products: A circular economy approach – research trends, opportunities and challenges

, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 3921-3942 | Published online: 23 Aug 2021

References

  • Ansell, M. P., & Mwaikambo, L. Y. (2009). The structure of cotton and other plant fibres. In J. W. S. Hearle, M. Jaffe, S. Eichhorn & T. Kikutani (Eds.), Handbook of textile fibre structure (pp. 62–94). Woodhead Publishing. https://doi.org/10.1533/9781845697310.1.62
  • Austin, H. P., Allen, M. D., Donohoe, B. S., Rorrer, N. A., Kearns, F. L., Silveira, R. L., Pollard, B. C., Dominick, G., Duman, R., El Omari, K., Mykhaylyk, V., Wagner, A., Michener, W. E., Amore, A., Skaf, M. S., Crowley, M. F., Thorne, A. W., Johnson, C. W., Woodcock, H. L., McGeehan, J. E., & Beckham, G. T. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences, 115(19), E4350–E4357. https://doi.org/10.1073/pnas.1718804115
  • Barbero-Barrera, M. d M., Pombo, O., & Navacerrada, M. d l Á. (2016). Textile fibre waste bindered with natural hydraulic lime. Composites Part B: Engineering, 94, 26–33. https://doi.org/10.1016/j.compositesb.2016.03.013
  • Beeson, W. T., Vu, V. V., Span, E. A., Phillips, C. M., & Marletta, M. A. (2015). Cellulose degradation by polysaccharide monooxygenases. Annual Review of Biochemistry, 84, 923–946. https://doi.org/10.1146/annurev-biochem-060614-034439
  • Behl, K., SeshaCharan, P., Joshi, M., Sharma, M., Mathur, A., Kareya, M. S., Jutur, P. P., Bhatnagar, A., & Nigam, S. (2020). Multifaceted applications of isolated microalgae Chlamydomonas sp. TRC-1 in wastewater remediation, lipid production and bioelectricity generation. Bioresource Technology, 304, 122993. https://doi.org/10.1016/j.biortech.2020.122993
  • Bensah, E. C., & Mensah, M. (2013). Chemical pretreatment methods for the production of cellulosic ethanol: Technologies and innovations. International Journal of Chemical Engineering, 2013, 1–21. https://doi.org/10.1155/2013/719607
  • Bisaria, V., & Martin, A. (1991). Bioprocessing of agro-residues to glucose and chemicals. Elsevier.
  • Briga-Sá, A., Nascimento, D., Teixeira, N., Pinto, J., Caldeira, F., Varum, H., & Paiva, A. (2013). Textile waste as an alternative thermal insulation building material solution. Construction and Building Materials, 38, 155–160. https://doi.org/10.1016/j.conbuildmat.2012.08.037
  • Brijwani, K., & Vadlani, P. V. (2011). Cellulolytic enzymes production via solid-state fermentation: Effect of pretreatment methods on physicochemical characteristics of substrate. Enzymes in Biofuels Production, 10, 860134.
  • Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., & Subramanian, R. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Research, 2011, 787532. https://doi.org/10.4061/2011/787532
  • Chartrand, A., Lavoie, J.-M., & Huneault, M. A. (2017). Surface modification of microcrystalline cellulose (MCC) and its application in LDPE-based composites. Journal of Applied Polymer Science, 134(1), 44348. https://doi.org/10.1002/app.44348
  • Chen, C., & Li, T. (2016). Bacterial dye-decolorizing peroxidases: Biochemical properties and biotechnological opportunities. Physical Sciences Reviews, 1(9), 20160051. https://doi.org/10.1515/psr-2016-0051
  • Chen, S., Su, L., Chen, J., & Wu, J. (2013). Cutinase: Characteristics, preparation, and application. Biotechnology Advances, 31(8), 1754–1767. https://doi.org/10.1016/j.biotechadv.2013.09.005
  • Couto, S. R., & Sanrom’an, M. A. (2005). Application of solid-state fermentation to ligninolytic enzyme production. Biochemical Engineering Journal, 22, 211–219.
  • De, J. E., & Jungmeier, G. (2015). Biorefinery concepts in comparison to petrochemical refineries. In: A. Pandey, R. Höfer, M. Taherzadeh, K. Madhavan Nampoothiri, & C. Larroche (Eds.), Industrial biorefineries & white biotechnology (1st ed., pp. 3–33). Elsevier.
  • Dimos, K., Paschos, T., Louloudi, A., Kalogiannis, K. G., Lappas, A. A., Papayannakos, N., Kekos, D., & Mamma, D. (2019). Effect of various pretreatment methods on bioethanolproduction from cotton stalks. Fermentation, 5 (1), 5–12. https://doi.org/10.3390/fermentation5010005
  • Echeverria, C. A., Handoko, W., Pahlevani, F., & Sahajwalla, V. (2019). Cascading use of textile waste for the advancement of fibre reinforced composites for building applications. Journal of Cleaner Production, 208, 1524–1536. https://doi.org/10.1016/j.jclepro.2018.10.227
  • Fazal, T., Mushtaq, A., Rehman, F., Ullah Khan, A., Rashid, N., Farooq, W., Rehman, M. S. U., & Xu, J. (2018). Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renewable and Sustainable Energy Reviews, 82, 3107–3126. https://doi.org/10.1016/j.rser.2017.10.029
  • Fecker, T., Galaz-Davison, P., Engelberger, F., Narui, Y., Sotomayor, M., Parra, L. P., & Ramírez-Sarmiento, C. A. (2018). Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase. Biophysical Journal, 114(6), 1302–1312. https://doi.org/10.1016/j.bpj.2018.02.005
  • Fernández-Fueyo, E., Linde, D., Almendral, D., López-Lucendo, M. F., Ruiz-Dueñas, F. J., & Martínez, A. T. (2015). Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II)). Applied Microbiology and Biotechnology, 99(21), 8927–8942. https://doi.org/10.1007/s00253-015-6665-3
  • Florencio, C., Cunha, F. M., Badino, A. C., Farinas, C. S., Ximenes, E., & Ladisch, M. R. (2016). Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis. Enzyme and Microbial Technology, 90, 53–60. https://doi.org/10.1016/j.enzmictec.2016.04.011
  • Golan, A. E. (2010). Cellulase: Types and action, mechanism, and uses. Nova Science Publishers.
  • Gounni, A., Mabrouk, M. T., El Wazna, M., Kheiri, A., El Alami, M., El Bouari, A., & Cherkaoui, O. (2019). Thermal and economic evaluation of new insulation materials for building envelope based on textile waste. Applied Thermal Engineering, 149, 475–483. https://doi.org/10.1016/j.applthermaleng.2018.12.057
  • Gusakov, A. (2011). Alternatives to Trichoderma reesei in biofuel production. Trends in Biotechnology, 29(9), 419–425. https://doi.org/10.1016/j.tibtech.2011.04.004
  • Hanoğlu, A., Çay, A., & Yanık, J. (2019). Production of biochars from textile fibres through torrefaction and their characterisation. Energy, 166, 664–673. https://doi.org/10.1016/j.energy.2018.10.123
  • Hasanzadeh, E., Mirmohamadsadeghi, S., & Karimi, K. (2018). Enhancing energy production from waste textile by hydrolysis of synthetic parts. Fuel, 218, 41–48. https://doi.org/10.1016/j.fuel.2018.01.035
  • Haslinger, S., Hummel, M., Anghelescu-Hakala, A., Määttänen, M., & Sixta, H. (2019). Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Management, 97, 88–96. https://doi.org/10.1016/j.wasman.2019.07.040
  • Homem, N. C., & Amorim, M. T. P. (2020). Synthesis of cellulose acetate using as raw material textile wastes. Materials Today: Proceedings, 31, S315–S317. https://doi.org/10.1016/j.matpr.2020.01.494
  • Hong, F., Guo, X., Zhang, S., Han, S-f., Yang, G., & Jönsson, L. J. (2012). Bacterial cellulose production from cotton-based waste textiles: Enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresource Technology, 104, 503–508. https://doi.org/10.1016/j.biortech.2011.11.028
  • Hou, W., Ling, C., Shi, S., & Yan, Z. (2019). Preparation and characterization of microcrystalline cellulose from waste cotton fabrics by using phosphotungstic acid. International Journal of Biological Macromolecules, 123, 363–368. https://doi.org/10.1016/j.ijbiomac.2018.11.112
  • Hou, W., Ling, C., Shi, S., Yan, Z., Zhang, M., Zhang, B., & Dai, J. (2018). Separation and characterization of waste cotton/polyester blend fabric with hydrothermal method. Fibers and Polymers, 19(4), 742–750. https://doi.org/10.1007/s12221-018-7735-9
  • Hsieh, Y.-L., & Cram, L. A. (1998). Enzymatic hydrolysis to improve wetting and absorbency of polyester fabrics. Textile Research Journal, 68(5), 311–319. https://doi.org/10.1177/004051759806800501
  • Hu, Y., Du, C., Leu, S.-Y., Jing, H., Li, X., & Lin, C. S. K. (2018). Valorisation of textile waste by fungal solid state fermentation: An example of circular waste-based biorefinery. Resources, Conservation and Recycling, 129, 27–35. https://doi.org/10.1016/j.resconrec.2017.09.024
  • Jeihanipour, A., & Taherzadeh, M. J. (2009). Ethanol production from cotton-based waste textiles. Bioresource Technology, 100(2), 1007–1010. https://doi.org/10.1016/j.biortech.2008.07.020
  • Jeoh, T., Ishizawa, C. I., Davis, M. F., Himmel, M. E., Adney, W. S., & Johnson, D. K. (2007). Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnology and Bioengineering, 98(1), 112–122. https://doi.org/10.1002/bit.21408
  • Johnson, S., Echeverria, D., Venditti, R., Jameel, H., & Yao, Y. (2020). Supply chain of waste cotton recycling and reuse: A review. AATCC Journal of Research, 7(1), 19–31. https://doi.org/10.14504/ajr.7.S1.3
  • Kassim, M. A., Khalil, H. P. S. A., Serri, N. A., Kassim, M. H. M., Syakir, M. I., Aprila, N. A. S., & Dungani, R. (2016). Irradiation pretreatment of tropical biomass and biofiber for biofuel production. In W. A. Monteiro (Ed.), Radiation effects in materials (pp. 329–356). IntechOpen. https://doi.org/10.5772/62728
  • Keh, E. Y. M., Yao, L., Liao, X., Liu, Y., Cheuk, K., & Chan, A. (2020). Method for separating and recycling a waste polyester-cotton textile by means of a hydrothermal reaction catalyzed by an organic acid (Patent No. WO2020/252523A1). World Intellectual Property Organization International Bureau. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019047174
  • Keskin, T., Nalakath Abubackar, H., Arslan, K., & Azbar, N. (2019). Biohydrogen production from solid wastes. In A. Pandey, S. Venkata Mohan, J.-S. Chang, P. C. Hallenbeck & C. Larroche (Eds.), Biohydrogen (2nd ed., pp. 321–346). Elsevier. https://doi.org/10.1016/b978-0-444-64203-5.00012-5
  • Kuhad, R. C., Gupta, R., & Singh, A. (2011). Microbial cellulases and their industrial applications. Enzyme Research, 2011, 280696. https://doi.org/10.4061/2011/280696
  • Kwan, T. H. (2018). Integrated Biorefinery Strategies for Valorisation of Food and Textile Wastes [Unpublished doctoral dissertation]. City University of Hong Kong.
  • Leu, S. Y., & Zhu, J. (2012). Substrate-related factors affecting enzymatic saccharification of lignocelluloses: Our recent understanding. BioEnergy Research, 6(2), 405–415.
  • Li, L., Frey, K., & Browning, K. J. (2010). Biodegradability study on cotton and polyester fabrics. Journal of Engineered Fibers and Fabrics, 5(4), 42–53. https://doi.org/10.1177/155892501000500406
  • Li, X., Hu, Y., Du, C., & Lin, C. S. K. (2019b). Recovery of glucose and polyester from textile waste by enzymatic hydrolysis. Waste and Biomass Valorization, 10(12), 3763–3772. https://doi.org/10.1007/s12649-018-0483-7
  • Li, J., Liu, X., Zheng, Q., Chen, L., Huang, L., Ni, Y., & Ouyang, X. (2019a). Urea/NaOH system for enhancing the removal of hemicellulose from cellulosic fibers. Cellulose, 26(11), 6393–6400. https://doi.org/10.1007/s10570-019-02587-7
  • Lin, C.-Y., Nguyen, M.-L T., & Lay, C.-H. (2017). Starch-containing textile wastewater treatment for biogas and microalgae biomass production. Journal of Cleaner Production, 168, 331–337. https://doi.org/10.1016/j.jclepro.2017.09.036
  • Linder, M., & Teeri, T. T. (1997). Biochemistry and genetics of cellulases and hemicellulases and their application: The roles and function of cellulose-binding domains. Journal of Biotechnology, 57(1-3), 15–28. https://doi.org/10.1016/S0168-1656(97)00087-4
  • Lindström, M., & Henriksson, G. (2016). Regeneration of cellulose (Patent No. EP 2 817 448 B1). E. P. Office.
  • Lo Leggio, L., Simmons, T. J., Poulsen, J.-C N., Frandsen, K. E. H., Hemsworth, G. R., Stringer, M. A., von Freiesleben, P., Tovborg, M., Johansen, K. S., De Maria, L., Harris, P. V., Soong, C.-L., Dupree, P., Tryfona, T., Lenfant, N., Henrissat, B., Davies, G. J., & Walton, P. H. (2015). Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nature Communications, 6(1), 1–9. https://doi.org/10.1038/ncomms6961
  • Ma, Y., Rosson, L., Wang, X., & Byrne, N. (2020). Upcycling of waste textiles into regenerated cellulose fibres: Impact of pretreatments. The Journal of the Textile Institute, 111(5), 630–638. https://doi.org/10.1080/00405000.2019.1656355
  • Maciel, M. M. Á. D., Benini, K. C. C. d C., Voorwald, H. J. C., & Cioffi, M. O. H. (2019). Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions. International Journal of Biological Macromolecules, 126, 496–506. https://doi.org/10.1016/j.ijbiomac.2018.12.202
  • Marten, E., Müller, R.-J., & Deckwer, W.-D. (2005). Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic–aromatic copolyesters. Polymer Degradation and Stability, 88(3), 371–381. https://doi.org/10.1016/j.polymdegradstab.2004.12.001
  • Mate, D. M., & Alcalde, M. (2017). Laccase: A multi‐purpose biocatalyst at the forefront of biotechnology. Microbial Biotechnology, 10(6), 1457–1467. https://doi.org/10.1111/1751-7915.12422
  • Merino, S., & Cherry, J. (2007). Progress and challenges in enzyme development for biomass utilization. Biofuels, 108, 95–120.
  • Michud, A., Tanttu, M., Asaadi, S., Ma, Y., Netti, E., Kääriainen, P., Persson, A., Berntsson, A., Hummel, M., & Sixta, H. (2016). Ioncell-F: Ionic liquid-based cellulosic textile fibers as an alternative to viscose and Lyocell. Textile Research Journal, 86(5), 543–552. https://doi.org/10.1177/0040517515591774
  • Midha, V., & Dakuri, A. (2017). Spun bonding technology and fabric properties: A review. Journal of Textile Engineering & Fashion Technology, 1(4), 1–9. https://doi.org/10.15406/jteft.2017.01.00023
  • Müller, B. (2016). Verfahren Zur Gewinnung Von Schwer Entflammbaren Synthesefasern Aus Textilabfällen, Schwer Entflammbare Synthesefasern Sowie Deren Verwendung (Patent No. Ep 3 260 595 A1). E. Patentanmeldung.
  • Müller, R. J., Schrader, H., Profe, J., Dresler, K., & Deckwer, W. D. (2005). Enzymatic degradation of poly (ethylene terephthalate): Rapid hydrolyse using a hydrolase from T. fusca. Macromolecular Rapid Communications, 26(17), 1400–1405. https://doi.org/10.1002/marc.200500410
  • Navone, L., Moffitt, K., Hansen, K.-A., Blinco, J., Payne, A., & Speight, R. (2020). Closing the textile loop: Enzymatic fibre separation and recycling of wool/polyester fabric blends. Waste Management, 102, 149–160. https://doi.org/10.1016/j.wasman.2019.10.026
  • Nikolic, S., Lazic, V., Veljovic, D., & Mojovic, L. (2017). Production of bioethanol from pre-treated cotton fabrics and waste cotton materials. Carbohydrate Polymers, 164, 136–144. https://doi.org/10.1016/j.carbpol.2017.01.090
  • Nunes, L. J. R., Godina, R., Matias, J. C. O., & Catalão, J. P. S. (2018). Economic and environmental benefits of using textile waste for the production of thermal energy. Journal of Cleaner Production, 171, 1353–1360. https://doi.org/10.1016/j.jclepro.2017.10.154
  • Payne, A. (2015). Open-and closed-loop recycling of textile and apparel products. In S. S. Muthu (Ed.), Handbook of life cycle assessment (LCA) of textiles and clothing (pp. 103–123). Elsevier.
  • Pensupa, N., Jin, M., Kokolski, M., Archer, D. B., & Du, C. (2013). A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw. Bioresource Technology, 149, 261–267. https://doi.org/10.1016/j.biortech.2013.09.061
  • Pensupa, N., Leu, S.-Y., Hu, Y., Du, C., Liu, H., Jing, H., Wang, H., & Lin, C. S. K. (2017). Recent trends in sustainable textile waste recycling methods: Current situation and future prospects. Topics in Current Chemistry (Cham), 375(5), 76. https://doi.org/10.1007/s41061-017-0165-0
  • Piribauer, B., & Bartl, A. (2019). Textile recycling processes, state of the art and current developments: A mini review. Waste Management & Research, 37(2), 112–119. https://doi.org/10.1177/0734242X18819277
  • Quintana, E., Roncero, M. B., Vidal, T., & Valls, C. (2017). Cellulose oxidation by laccase-TEMPO treatments. Carbohydrate Polymers, 157, 1488–1495. https://doi.org/10.1016/j.carbpol.2016.11.033
  • Rajendran, R., Radhai, R., Sundaram Karthik, S., & Rajalakshmi, V. (2015). Utilization of cellulosic biomass as a substrate for the production of bioethanol. International Journal of Environmental Sciences, 5(4), 743–753. https://doi.org/10.6088/ijes.2014050100069
  • Ranjithkumar, M., Ravikumar, R., Sankar, M. K., Kumar, M. N., & Thanabal, V. (2017). An effective conversion of cotton waste biomass to ethanol: A critical review on pretreatment processes. Waste and Biomass Valorization, 8(1), 57–68. https://doi.org/10.1007/s12649-016-9563-8
  • Renewcell. (n.d.). Technology. https://www.renewcell.com/en/technology/
  • Robinson, E. G. (2020). Textile recycling via ionic liquids.
  • Sahu, S., & Pramanik, K. (2018). Evaluation and optimization of organic acid pretreatment of cotton gin waste for enzymatic hydrolysis and bioethanol production. Applied Biochemistry and Biotechnology, 186(4), 1047–1060. https://doi.org/10.1007/s12010-018-2790-7
  • Sandin, G., & Peters, G. M. (2018). Environmental impact of textile reuse and recycling–A review. Journal of Cleaner Production, 184, 353–365. https://doi.org/10.1016/j.jclepro.2018.02.266
  • Sartova, K., Omurzak, E., Kambarova, G., Dzhumaev, I., Borkoev, B., & Abdullaeva, Z. (2019). Activated carbon obtained from the cotton processing wastes. Diamond and Related Materials, 91, 90–97. https://doi.org/10.1016/j.diamond.2018.11.011
  • Semerci, I., & Güler, F. (2018). Protic ionic liquids as effective agents for pretreatment of cotton stalks at high biomass loading. Industrial Crops and Products, 125, 588–595. https://doi.org/10.1016/j.indcrop.2018.09.046
  • Shi, S., Zhang, M., Ling, C., Hou, W., & Yan, Z. (2018). Extraction and characterization of microcrystalline cellulose from waste cotton fabrics via hydrothermal method. Waste Management, 82, 139–146. https://doi.org/10.1016/j.wasman.2018.10.023
  • Shirvanimoghaddam, K., Motamed, B., Ramakrishna, S., & Naebe, M. (2020). Death by waste: Fashion and textile circular economy case. Science of the Total Environment, 718, 137317. https://doi.org/10.1016/j.scitotenv.2020.137317
  • Silva, C. M., Carneiro, F., O'Neill, A., Fonseca, L. P., Cabral, J. S., Guebitz, G., & Cavaco‐Paulo, A. (2005). Cutinase—a new tool for biomodification of synthetic fibers. Journal of Polymer Science Part A: Polymer Chemistry, 43(11), 2448–2450. https://doi.org/10.1002/pola.20684
  • Silva, T. L., Cazetta, A. L., Souza, P. S. C., Zhang, T., Asefa, T., & Almeida, V. C. (2018). Mesoporous activated carbon fibers synthesized from denim fabric waste: Efficient adsorbents for removal of textile dye from aqueous solutions. Journal of Cleaner Production, 171, 482–490. https://doi.org/10.1016/j.jclepro.2017.10.034
  • Silverstein, R. A., Chen, Y., Sharma-Shivappa, R. R., Boyette, M. D., & Osborne, J. (2007). A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology, 98(16), 3000–3011. https://doi.org/10.1016/j.biortech.2006.10.022
  • Singhania, R. R., Sukumaran, R. K., Patel, A. K., Larroche, C., & Pandey, A. (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology, 46(7), 541–549. https://doi.org/10.1016/j.enzmictec.2010.03.010
  • Srivastava, N., Srivastava, M., Mishra, P. K., Gupta, V. K., Molina, G., Rodriguez-Couto, S., Manikanta, A., & Ramteke, P. W. (2018). Applications of fungal cellulases in biofuel production: Advances and limitations. Renewable and Sustainable Energy Reviews, 82, 2379–2386. https://doi.org/10.1016/j.rser.2017.08.074
  • Srivastava, N., Srivastava, M., Mishra, P. K., Singh, P., & Ramteke, P. W. (2015). Application of cellulases in biofuels industries: An overview. Journal of Biofuels and Bioenergy, 1(1), 55–63. https://doi.org/10.5958/2454-8618.2015.00007.3
  • Sternberg, D. (1976). Production of cellulase by Trichoderma. Biotechnology and Bioengineering Symposium, 6, 35–53.
  • Subramanian, K., Chopra, S. S., Cakin, E., Li, X., & Lin, C. S. K. (2020). Environmental life cycle assessment of textile bio-recycling – valorizing cotton-polyester textile waste to pet fiber and glucose syrup. Resources, Conservation and Recycling, 161, 104989. https://doi.org/10.1016/j.resconrec.2020.104989
  • Sugano, Y. (2009). DyP-type peroxidases comprise a novel heme peroxidase family. Cellular and Molecular Life Sciences, 66(8), 1387–1403. https://doi.org/10.1007/s00018-008-8651-8
  • Sulaiman, S., Yamato, S., Kanaya, E., Kim, J.-J., Koga, Y., Takano, K., & Kanaya, S. (2012). Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Applied and Environmental Microbiology, 78(5), 1556–1562. https://doi.org/10.1128/AEM.06725-11
  • Taniguchi, I., Yoshida, S., Hiraga, K., Miyamoto, K., Kimura, Y., & Oda, K. (2019). Biodegradation of PET: Current status and application aspects. ACS Catalysis, 9(5), 4089–4105. https://doi.org/10.1021/acscatal.8b05171
  • TencelTM. (n.d.). Lenzing unveils REFIBRA™ breakthrough technology strengthening their commitment to the circular economy in textiles. https://www.tencel.com/news-and-events/lenzing-unveils-refibra-breakthrough-technology-strengthening-their-commitment-to-the-circular-economy-in-textiles
  • Thi Nguyen, M.-L., Lin, C.-Y., & Lay, C.-H. (2019). Microalgae cultivation using biogas and digestate carbon sources. Biomass and Bioenergy, 122, 426–432. https://doi.org/10.1016/j.biombioe.2019.01.050
  • To, M. H., Uisan, K., Ok, Y. S., Pleissner, D., & Lin, C. S. K. (2019). Recent trends in green and sustainable chemistry: Rethinking textile waste in a circular economy. Current Opinion in Green and Sustainable Chemistry, 20, 1–10. https://doi.org/10.1016/j.cogsc.2019.06.002
  • Tournier, V., Topham, C. M., Gilles, A., David, B., Folgoas, C., Moya-Leclair, E., Kamionka, E., Desrousseaux, M.-L., Texier, H., Gavalda, S., Cot, M., Guémard, E., Dalibey, M., Nomme, J., Cioci, G., Barbe, S., Chateau, M., André, I., Duquesne, S., & Marty, A. (2020). An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 580(7802), 216–219. https://doi.org/10.1038/s41586-020-2149-4
  • Ukaegbu Chinonso, I., Shah Samiur, R., & Esmail Abdullah Mohammed, B. (2014). Chemical methods of pretreatment, sugar yields and economic costs: A review. Journal of Biotechnology Science Research, 1(2), 30–38.
  • Ütebay, B., Çelik, P., & Çay, A. (2020). Textile wastes: Status and perspectives. In A. Körlü (Ed.), Waste in textile and leather sectors (pp. 39–56). IntechOpen.
  • Valls, C., Pastor, F. J., Roncero, M. B., Vidal, T., Diaz, P., Martínez, J., & Valenzuela, S. V. (2019). Assessing the enzymatic effects of cellulases and LPMO in improving mechanical fibrillation of cotton linters. Biotechnology for Biofuels, 12(1), 161. https://doi.org/10.1186/s13068-019-1502-z
  • Vasconcelos, G., Lourenço, P. B., Camões, A., Martins, A., & Cunha, S. (2015). Evaluation of the performance of recycled textile fibres in the mechanical behaviour of a gypsum and cork composite material. Cement and Concrete Composites, 58, 29–39. https://doi.org/10.1016/j.cemconcomp.2015.01.001
  • Villares, A., Moreau, C., Bennati-Granier, C., Garajova, S., Foucat, L., Falourd, X., Saake, B., Berrin, J.-G., & Cathala, B. (2017). Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/srep40262
  • Wang, Y. (2007). Carpet fiber recycling technologies. In M. Miraftab & A. R. Horrocks (Eds.), Ecotextiles (pp. 26–32). Woodhead Publishing. https://doi.org/10.1533/9781845693039.1.26
  • Wang, Y. (2010). Fiber and textile waste utilization. Waste and Biomass Valorization, 1(1), 135–143. https://doi.org/10.1007/s12649-009-9005-y
  • Wang, H., Kaur, G., Pensupa, N., Uisan, K., Du, C., Yang, X., & Lin, C. S. K. (2018). Textile waste valorization using submerged filamentous fungal fermentation. Process Safety and Environmental Protection, 118, 143–151. https://doi.org/10.1016/j.psep.2018.06.038
  • Wang, J., Tavakoli, J., & Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods–A review. Carbohydrate Polymers, 219, 63–76. https://doi.org/10.1016/j.carbpol.2019.05.008
  • Yang, T. C., & Qin, W. (2014). Biofuels and bioproducts produced through microbial conversion of biomass. In V. E. Gupta, M. G. Tuohy, C. P. Kubicek, J. Saddler & F. Xu (Eds.), Bioenergy research: Advances and applications (pp. 71–93). Elsevier.
  • Ye, S., Yu, H.-Y., Wang, D., Zhu, J., & Gu, J. (2018). Green acid-free one-step hydrothermal ammonium persulfate oxidation of viscose fiber wastes to obtain carboxylated spherical cellulose nanocrystals for oil/water Pickering emulsion. Cellulose, 25(9), 5139–5155. https://doi.org/10.1007/s10570-018-1917-x
  • Yoon, L. W., Ang, T. N., Ngoh, G. C., & Chua, A. S. M. (2014). Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass and Bioenergy, 67, 319–338. https://doi.org/10.1016/j.biombioe.2014.05.013
  • Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate)). Science (New York, N.Y.), 351(6278), 1196–1199. https://doi.org/10.1126/science.aad6359
  • Yousef, S., Eimontas, J., Striūgas, N., Tatariants, M., Abdelnaby, M. A., Tuckute, S., & Kliucininkas, L. (2019). A sustainable bioenergy conversion strategy for textile waste with self-catalysts using mini-pyrolysis plant. Energy Conversion and Management, 196, 688–704. https://doi.org/10.1016/j.enconman.2019.06.050
  • Yousef, S., Tatariants, M., Tichonovas, M., Kliucininkas, L., Lukošiūtė, S.-I., & Yan, L. (2020). Sustainable green technology for recovery of cotton fibers and polyester from textile waste. Journal of Cleaner Production, 254, 120078. https://doi.org/10.1016/j.jclepro.2020.120078
  • Zeng, L., Zhao, S., & He, M. (2018). Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells. Journal of Power Sources, 376, 33–40. https://doi.org/10.1016/j.jpowsour.2017.11.071
  • Zhao, H., Jones, C. L., Baker, G., Xia, A. S., Olubajo, O., & Person, V. N. (2009). Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. Journal of Biotechnology, 139(1), 47–54. https://doi.org/10.1016/j.jbiotec.2008.08.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.